NCV4276BDT50RKG [ONSEMI]

400 mA Low‐Drop Voltage Regulator; 400毫安洛瓦????降稳压器
NCV4276BDT50RKG
型号: NCV4276BDT50RKG
厂家: ONSEMI    ONSEMI
描述:

400 mA Low‐Drop Voltage Regulator
400毫安洛瓦????降稳压器

线性稳压器IC 调节器 电源电路 输出元件
文件: 总18页 (文件大小:205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4276B  
400 mA Low‐Drop Voltage  
Regulator  
The NCV4276B is a 400 mA output current integrated low dropout  
regulator family designed for use in harsh automotive environments.  
It includes wide operating temperature and input voltage ranges. The  
device is offered with 3.3 V, 5.0 V, and adjustable voltage versions  
available in 2% output voltage accuracy. It has a high peak input  
voltage tolerance and reverse input voltage protection. It also  
provides overcurrent protection, overtemperature protection and  
inhibit for control of the state of the output voltage. The NCV4276B  
http://onsemi.com  
2
2
DPAK  
D PAK  
family is available in DPAK and D PAK surface mount packages.  
CASE 175AA  
CASE 936A  
The output is stable over a wide output capacitance and ESR range.  
The NCV4276B has improved startup behavior during input voltage  
transients.  
MARKING DIAGRAMS  
Features  
3.3 V, 5.0 V, and Adjustable Voltage Version (from 2.5 V to 20 V)  
2% Output Voltage  
400 mA Output Current  
76BXXG  
ALYWW  
500 mV (max) Dropout Voltage (5.0 V Output)  
Inhibit Input  
1
Very Low Current Consumption  
Fault Protection  
DPAK  
5-PIN  
+45 V Peak Transient Voltage  
42 V Reverse Voltage  
Short Circuit  
Thermal Overload  
NC  
V4276BXX  
AWLYWWG  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
These are Pb-Free Devices  
1
2
D PAK  
5-PIN  
*Tab is connected to Pin 3 on all packages.  
= Assembly Location  
A
WL, L = Wafer Lot  
Y
= Year  
WW  
G
XX  
= Work Week  
= Pb-Free Device  
= 33 (3.3 V)  
= 50 (5.0 V)  
= AJ (Adj. Voltage)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 16 of this data sheet.  
Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
February, 2013 Rev. 5  
NCV4276B/D  
NCV4276B  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
INH  
GND  
NC  
Figure 1. NCV4276B Block Diagram  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
INH  
GND  
VA  
Figure 2. NCV4276B Adjustable Block Diagram  
http://onsemi.com  
2
NCV4276B  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
I
Description  
1
2
3
4
Input; Battery Supply Input Voltage.  
INH  
Inhibit; Set low-to inhibit.  
GND  
NC/VA  
Ground; Pin 3 internally connected to heatsink.  
Not connected for fixed voltage version/Voltage Adjust Input for adjustable voltage version; use an external  
voltage divider to set the output voltage  
5
Q
Output: Bypass with a capacitor to GND. See Figures 3 to 7 and Regulator Stability Considerations section.  
Table 2. MAXIMUM RATINGS*  
Rating  
Symbol  
Min  
42  
Max  
45  
Unit  
V
Input Voltage  
V
I
V
I
Input Peak Transient Voltage  
Inhibit INH Voltage  
45  
V
V
42  
0.3  
1.0  
45  
V
INH  
Voltage Adjust Input VA  
Output Voltage  
V
10  
V
VA  
V
40  
V
Q
Ground Current  
I
100  
40  
mA  
V
q
Input Voltage Operating Range  
V
V
Q
+ 0.5 V or 4.5 V  
(Note 1)  
I
ESD Susceptibility  
(Human Body Model)  
(Machine Model)  
(Charged Device Model)  
4.0  
250  
1.25  
kV  
V
kV  
Junction Temperature  
Storage Temperature  
T
40  
50  
150  
150  
C  
C  
J
T
stg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal  
dissipation must be observed closely.  
1. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
Table 3. LEAD TEMPERATURE SOLDERING REFLOW (Note 2)  
Lead Temperature Soldering  
T
SLD  
C  
Reflow (SMD styles only), Leaded, 60150 s above 183, 30 s max at peak  
Reflow (SMD styles only), Lead Free, 60150 s above 217, 40 s max at peak  
Wave Solder (through hole styles only), 12 sec max  
240  
265  
310  
2. Per IPC/JEDEC JSTD020C.  
Table 4. THERMAL CHARACTERISTICS (Notes 3 and 4)  
Characteristic  
Test Conditions (Typical Value)  
Unit  
DPAK 5-PIN PACKAGE  
Min Pad Board (Note 5)  
1, Pad Board (Note 6)  
Junction-to-Tab (psi-JLx, y  
)
4.2  
4.7  
C/W  
C/W  
JLx  
Junction-to-Ambient (R , q  
)
)
100.9  
46.8  
q
JA JA  
2
D PAK 5-PIN PACKAGE  
0.4 sq. in. Spreader Board (Note 7)  
1.2 sq. in. Spreader Board (Note 8)  
Junction-to-Tab (psi-JLx, y  
)
3.8  
4.0  
C/W  
C/W  
JLx  
Junction-to-Ambient (R , q  
74.8  
41.6  
q
JA JA  
3. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
4. Per IPC/JEDEC JSTD020C.  
2
2
2
5. 1 oz. copper, 0.26 inch (168 mm ) copper area, 0.062thick FR4.  
2
6. 1 oz. copper, 1.14 inch (736 mm ) copper area, 0.062thick FR4.  
2
2
2
2
7. 1 oz. copper, 0.373 inch (241 mm ) copper area, 0.062thick FR4.  
8. 1 oz. copper, 1.222 inch (788 mm ) copper area, 0.062thick FR4.  
http://onsemi.com  
3
 
NCV4276B  
Table 5. ELECTRICAL CHARACTERISTICS (V = 13.5 V; 40C < T < 150C; unless otherwise noted.)  
I
J
NCV4276B  
Typ  
Min  
Max  
Characteristic  
OUTPUT  
Symbol  
Test Conditions  
Unit  
Output Voltage, 5.0 V Version  
Output Voltage, 5.0 V Version  
Output Voltage, 3.3 V Version  
Output Voltage, 3.3 V Version  
V
V
V
V
5.0 mA < I < 400 mA,  
4.9  
4.9  
5.0  
5.0  
3.3  
3.3  
5.1  
5.1  
V
V
V
V
V
Q
Q
Q
Q
Q
6.0 V < V < 28 V  
I
5.0 mA < I < 200 mA,  
Q
6.0 V < V < 40 V  
I
5.0 mA < I < 400 mA,  
3.234  
3.234  
2%  
3.366  
3.366  
+2%  
Q
4.5 V < V < 28 V  
I
5.0 mA < I < 200 mA,  
Q
4.5 V < V < 40 V  
I
Output Voltage, Adjustable  
Version  
AV  
5.0 mA < I < 400 mA  
Q
Q
V +1 < V < 40 V  
Q
I
I
V > 4.5 V  
Output Current Limitation  
I
V
V
= 90% V  
(V = 2.5 V for ADJ Version)  
QTYP  
400  
700  
1100  
10  
mA  
Q
Q
QTYP  
Quiescent Current (Sleep Mode)  
I
= 0 V  
mA  
q
INH  
I = I I  
q
I
Q
Quiescent Current, I = I I  
I
I
I
I
I
= 1.0 mA  
= 250 mA  
= 400 mA  
130  
10  
200  
15  
mA  
mA  
mA  
q
I
Q
Q
Q
q
q
q
Q
Q
Q
Q
Quiescent Current, I = I I  
I
I
q
I
Quiescent Current, I = I I  
25  
35  
q
I
Dropout Voltage,  
Adjustable Version  
V
DR  
= 250 mA, V = V V  
DR I  
V > 4.5 V  
Q
250  
250  
3.0  
4.0  
500  
500  
20  
mV  
mV  
mV  
mV  
I
Dropout Voltage (5.0 V Version)  
Load Regulation  
V
DR  
I
Q
I
Q
= 250 mA (Note 9)  
DV  
= 5.0 mA to 400 mA  
Q,LO  
Line Regulation  
DV  
DV = 12 V to 32 V,  
15  
Q
I
I
Q
= 5.0 mA  
Power Supply Ripple Rejection  
Temperature Output Voltage Drift  
INHIBIT  
PSRR  
f = 100 Hz, V = 0.5 V  
70  
dB  
r
r
PP  
d
0.5  
mV/K  
VQ/dT  
Inhibit Voltage, Output High  
Inhibit Voltage, Output Low (Off)  
Input Current  
V
V
V
V
V
w V  
QMIN  
2.3  
2.2  
10  
2.8  
V
V
INH  
INH  
INH  
Q
v 0.1 V  
1.8  
5.0  
Q
I
= 5.0 V  
20  
mA  
INH  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature*  
T
SD  
I
Q
= 5.0 mA  
150  
210  
C  
*Guaranteed by design, not tested in production.  
9. Measured when the output voltage V has dropped 100 mV from the nominal valued obtained at V = 13.5 V.  
Q
http://onsemi.com  
4
 
NCV4276B  
Output  
I
I
I
Q
I 1  
5 Q  
5.5 45 V  
C
1.0 mF  
C
C
Q
22 mF  
I1  
I2  
Input  
100 nF  
NCV4276B  
INH  
NC  
R
L
2
4
3
I
INH  
GND  
Figure 3. Applications Circuit; Fixed Voltage Version  
V
Q
= [(R1 + R2) * V ] / R2  
ref  
Output  
I
I
I
Q
I 1  
5 Q  
Input  
C
I1  
C
I2  
C
Q
C *  
b
1.0 mF  
100 nF  
22 mF  
NCV4276B  
R
R
1
INH  
VA  
R
L
2
4
3
I
INH  
GND  
2
C * Required if usage of low ESR output capacitor C is demand, see Regulator Stability Considerations section  
b
Q
Figure 4. Applications Circuit; Adjustable Voltage Version  
http://onsemi.com  
5
 
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
C
= 22 mF for all  
Q
Unstable Region  
Stable Region  
Fixed Output Voltages  
1
0.1  
Maximum ESR  
for C = 22 mF  
Q
0.01  
0
50  
100  
150 200  
250  
300  
350 400  
I , OUTPUT CURRENT (mA)  
Q
Figure 5. Output Stability with Output Capacitor  
ESR, 5.0 V and 3.3 V Regulator  
10  
C
= 10 mF for 3.3 V and  
Q
Unstable Region  
Stable Region  
5 V Fixed Output Voltages  
1
Maximum ESR  
for C = 10 mF  
Q
0.1  
0.01  
0
50  
100  
150 200  
250  
300  
350 400  
I , OUTPUT CURRENT (mA)  
Q
Figure 6. Output Stability with Output Capacitor  
ESR, 5.0 V and 3.3 V Regulator  
100  
10  
C
Q
= 22 mF for these  
Output Voltages  
Unstable Region  
12 V  
6 V  
1
2.5 V  
Stable Region  
0.1  
0.01  
Unstable Region  
C capacitor not connected  
b
0
50  
100  
150 200  
250  
300  
350 400  
I , OUTPUT CURRENT (mA)  
Q
Figure 7. Output Stability with Output Capacitor  
ESR, Adjustable Regulator  
http://onsemi.com  
6
 
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS 4276B Version  
5.2  
5.1  
5.0  
3.45  
V = 13.5 V  
R = 1 kW  
L
I
V = 13.5 V  
R = 1 kW  
L
I
3.40  
3.35  
3.30  
3.25  
4.9  
4.8  
3.20  
3.15  
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (C)  
J
T , JUNCTION TEMPERATURE (C)  
J
Figure 8. Output Voltage vs.  
Figure 9. Output Voltage vs.  
Junction Temperature, 5.0 V Version  
Junction Temperature, 3.3 V Version  
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
40  
30  
20  
R = 20 W  
T = 25C  
J
L
T = 25C  
R = 20 W  
L
J
10  
0
2.0  
1.0  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 10. Current Consumption vs.  
Input Voltage, 5.0 V Version  
Figure 11. Current Consumption vs. Input  
Voltage, 3.3 V Version  
6.0  
5.0  
4.0  
3.0  
2.0  
6.0  
5.0  
4.0  
3.0  
2.0  
T = 25C  
R = 20 W  
L
J
R = 20 W  
T = 25C  
J
L
1.0  
0
1.0  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0
2.0  
4.0  
6.0  
8.0  
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 12. Low Voltage Behavior, 5.0 V Version  
Figure 13. Low Voltage Behavior, 3.3 V Version  
http://onsemi.com  
7
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS 4276B Version  
2.0  
0
6.0  
4.0  
2.0  
0
2.0  
4.0  
6.0  
2.0  
4.0  
6.0  
R = 6.8 kW  
T = 25C  
J
L
8.0  
10  
R = 6.8 kW  
T = 25C  
J
L
8.0  
10  
50  
25  
0
25  
50  
50  
25  
0
25  
50  
50  
60  
V , INPUT VOLTAGE (V)  
V , INPUT VOLTAGE (V)  
I
I
Figure 14. Input Current vs. Input Voltage,  
5.0 V Version  
Figure 15. Input Current vs. Input Voltage,  
3.3 V Version  
600  
500  
800  
600  
400  
T = 25C  
J
V
Q
= 0 V  
T = 125C  
J
400  
300  
200  
T = 25C  
J
200  
0
100  
0
0
100  
200  
300  
400  
0
10  
20  
30  
40  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 16. Dropout Voltage vs.  
Output Current  
Figure 17. Maximum Output Current vs.  
Input Voltage  
60  
50  
40  
30  
20  
1.6  
1.4  
1.2  
1.0  
V = 13.5 V  
T = 25C  
J
I
V = 13.5 V  
T = 25C  
I
J
0.8  
0.6  
0.4  
10  
0
0.2  
0
0
100  
200  
300  
400  
500  
600  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 18. Current Consumption vs.  
Output Current (High Load)  
Figure 19. Current Consumption vs.  
Output Current (Low Load)  
http://onsemi.com  
8
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS Adjustable Version  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
5.0  
4.5  
T = 25C  
R = 20 W  
L
J
V = 13.5 V  
T = 25C  
J
I
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.46  
2.45  
0.5  
0
40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
T , JUNCTION TEMPERATURE (C)  
J
V , INPUT VOLTAGE (V)  
I
Figure 20. Output Voltage vs. Junction  
Temperature, Adjustable Version  
Figure 21. Current Consumption vs. Input  
Voltage, Adjustable Version  
4
3.5  
3
2
0
T = 25C  
R = 20 W  
L
J
2  
4  
2.5  
2
6  
8  
10  
12  
14  
1.5  
1
T = 25C  
R = 6.8 kW  
L
J
0.5  
0
16  
18  
50  
25  
0
25  
50  
0
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 22. Low Voltage Behavior,  
Adjustable Version  
Figure 23. High Voltage Behavior,  
Adjustable Version  
http://onsemi.com  
9
NCV4276B  
TYPICAL PERFORMANCE CHARACTERISTICS Adjustable Version  
600  
500  
400  
300  
200  
800  
700  
600  
T = 125C  
J
500  
400  
T = 25C  
J
V
Q
= 0 V  
T = 25C  
J
300  
200  
100  
0
100  
0
0
50  
100  
150 200  
250 300  
350 400  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 24. Dropout Voltage vs. Output Current,  
Regulator Set at 5.0 V, Adjustable Version  
Figure 25. Maximum Output Current vs.  
Input Voltage, Adjustable Version  
60  
50  
40  
30  
20  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
T = 25C  
V = 13.5 V  
I
T = 25C  
V = 13.5 V  
I
J
J
10  
0
0.2  
0
0
100  
200  
300  
400  
500  
600  
0
10  
20  
30  
40  
50  
60  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 26. Current Consumption vs.  
Output Current (High Load), Adjustable Version  
Figure 27. Current Consumption vs. Output  
Current (Low Load), Adjustable Version  
http://onsemi.com  
10  
NCV4276B  
Circuit Description  
Minimum ESR for C = 22 mF is native ESR of ceramic  
Q
The NCV4276B is an integrated low dropout regulator  
that provides a regulated voltage at 400 mA to the output.  
It is enabled with an input to the inhibit pin. The regulator  
voltage is provided by a PNP pass transistor controlled by  
an error amplifier with a bandgap reference, which gives it  
the lowest possible dropout voltage. The output current  
capability is 400 mA, and the base drive quiescent current  
is controlled to prevent oversaturation when the input  
voltage is low or when the output is overloaded. The  
regulator is protected by both current limit and thermal  
shutdown. Thermal shutdown occurs above 150C to  
protect the IC during overloads and extreme ambient  
temperatures.  
capacitor with which the fixed output voltage devices are  
performing stable. Murata ceramic capacitors were used,  
GRM32ER71C226KE18 (22 mF, 16 V, X7R, 1210),  
GRM31CR71C106KAC7 (10 mF, 16 V, X7R, 1206).  
Calculating Bypass Capacitor  
If usage of low ESR ceramic capacitors is demand in case  
of Adjustable Regulator, connect the bypass capacitor C  
b
between Voltage Adjust pin and Q pin according to  
Applications circuit at Figure 4.  
Parallel combination of bypass capacitor C with the  
b
feedback resistor R contributes in the device transfer  
1
function as an additional zero and affects the device loop  
stability, therefore its value must be optimized. Attention  
to the Output Capacitor value and its ESR must be paid. See  
also Stability in High Speed Linear LDO Regulators  
Application Note, AND8037/D for more information.  
Optimal value of bypass capacitor is given by following  
expression  
Regulator  
The error amplifier compares the reference voltage to a  
sample of the output voltage (V ) and drives the base of a  
Q
PNP series pass transistor via a buffer. The reference is a  
bandgap design to give it a temperature-stable output.  
Saturation control of the PNP is a function of the load  
current and input voltage. Oversaturation of the output  
power device is prevented, and quiescent current in the  
ground pin is minimized. See Figure 4, Test Circuit, for  
circuit element nomenclature illustration.  
1
C
b
+
@ (F)  
(eq. 1)  
2   p   f   R  
z
1
where  
R = the upper feedback resistor  
1
f = the frequency of the zero added into the device  
z
Regulator Stability Considerations  
transfer function by R and C external components.  
1
b
The input capacitors (C and C ) are necessary to  
I1  
I2  
Set the R resistor according to output voltage  
1
stabilize the input impedance to avoid voltage line  
influences. Using a resistor of approximately 1.0 W in  
requirement. Chose the f with regard on the output  
z
capacitance C , refer to the table below.  
Q
series with C can stop potential oscillations caused by  
I2  
stray inductance and capacitance.  
C
Q
(mF)  
10  
22  
47  
100  
The output capacitor helps determine three main  
characteristics of a linear regulator: startup delay, load  
transient response and loop stability. The capacitor value  
and type should be based on cost, availability, size and  
temperature constraints. The aluminum electrolytic  
capacitor is the least expensive solution, but, if the circuit  
operates at low temperatures (25C to 40C), both the  
value and ESR of the capacitor will vary considerably. The  
capacitor manufacturer’s data sheet usually provides this  
information.  
f Range (kHz)  
20 - 50  
14 - 35  
10 - 20  
7 – 14  
z
Ceramic capacitors and its part numbers listed bellow  
have been used as low ESR output capacitors C from the  
table above to define the frequency ranges of additional  
zero required for stability.  
Q
GRM31CR71C106KAC7 (10 mF, 16 V, X7R, 1206)  
GRM32ER71C226KE18 (22 mF, 16 V, X7R, 1210)  
GRM32ER61C476ME15 (47 mF, 16 V, X5R, 1210)  
GRM32ER60J107ME20 (100 mF, 6.3 V, X5R, 1210)  
The value for the output capacitor C , shown in Figure 3,  
Q
should work for most applications; see also Figures 5 to 7  
for output stability at various load and Output Capacitor  
ESR conditions. Stable region of ESR in Figures 5 to 7  
shows ESR values at which the LDO output voltage does  
not have any permanent oscillations at any dynamic  
changes of output load current. Marginal ESR is the value  
at which the output voltage waving is fully damped during  
four periods after the load change and no oscillation is  
further observable.  
Inhibit Input  
The inhibit pin is used to turn the regulator on or off. By  
holding the pin down to a voltage less than 1.8 V, the output  
of the regulator will be turned off. When the voltage on the  
Inhibit pin is greater than 2.8 V, the output of the regulator  
will be enabled to power its output to the regulated output  
voltage. The inhibit pin may be connected directly to the  
input pin to give constant enable to the output regulator.  
ESR characteristics were measured with ceramic  
capacitors and additional series resistors to emulate ESR.  
Low duty cycle pulse load current technique has been used  
to maintain junction temperature close to ambient  
temperature.  
Setting the Output Voltage (Adjustable Version)  
The output voltage range of the adjustable version can be  
set between 2.5 V and 20 V. This is accomplished with an  
external resistor divider feeding back the voltage to the IC  
http://onsemi.com  
11  
NCV4276B  
I
Q
I
I
back to the error amplifier by the voltage adjust pin VA.  
The internal reference voltage is set to a temperature stable  
reference of 2.5 V.  
SMART  
REGULATOR  
V
I
V
Q
The output voltage is calculated from the following  
formula. Ignoring the bias current into the VA pin:  
Control  
Features  
(eq. 2)  
V
Q
+ [(R1 ) R2) * V ] ń R2  
ref  
Iq  
Use R2 < 50 k to avoid significant voltage output errors  
due to VA bias current.  
Connecting VA directly to Q without R1 and R2 creates  
an output voltage of 2.5 V.  
Designers should consider the tolerance of R1 and R2  
during the design phase.  
Figure 28. Single Output Regulator with Key  
Performance Parameters Labeled  
Heatsinks  
The input voltage range for operation (pin 1) of the  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and  
the outside environment will have a thermal resistance.  
Like series electrical resistances, these resistances are  
adjustable version is between (V + 0.5 V) and 40 V.  
Q
Internal bias requirements dictate a minimum input voltage  
of 4.5 V. The dropout voltage for output voltages less than  
4.0 V is (4.5 V V ).  
Q
Calculating Power Dissipation  
summed to determine the value of R  
:
JA  
q
in a Single Output Linear Regulator  
The maximum power dissipation for a single output  
regulator (Figure 28) is:  
(eq. 5)  
R
qJA  
+ R  
qJC  
) R ) R  
qCS qSA  
where:  
R
P
+ [V  
* V )  
]I  
D(max)  
I(max)  
I
Q(min) Q(max)  
is the junction-to-case thermal resistance,  
is the case-to-heatsink thermal resistance,  
is the heatsink-to-ambient thermal resistance.  
JC  
q
(eq. 3)  
) V  
R
I(max) q  
CS  
SA  
q
q
R
where:  
R
appears in the package section of the data sheet.  
JC  
q
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
application,  
is the quiescent current the regulator  
I(max)  
Q(min)  
Q(max)  
Like R , it too is a function of package type. R  
and  
JA  
CS  
q
q
R
are functions of the package type, heatsink and the  
SA  
q
interface between them. These values appear in data sheets  
of heatsink manufacturers.  
I
q
Thermal, mounting, and heatsinking considerations are  
discussed in the ON Semiconductor application note  
AN1040/D.  
consumes at I  
.
Q(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
JA  
q
o
T
150 C *  
A
Thermal Model  
See pages 13 to 16 for detailed information about thermal  
model parameters.  
(eq. 4)  
R
+
qJA  
P
D
The value of R  
can then be compared with those in the  
JA  
q
package section of the data sheet. Those packages with  
less than the calculated value in Equation 4 will keep  
R
JA  
q
the die temperature below 150C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
http://onsemi.com  
12  
 
NCV4276B  
Table 6. DPAK 5-LEAD THERMAL RC NETWORK MODELS  
2
2
2
2
Drain Copper Area (1 oz thick)  
(SPICE Deck Format)  
168 mm  
736 mm  
168 mm  
736 mm  
Cauer Network  
Foster Network  
2
2
168 mm  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
4.36E04  
6.77E02  
1.51E01  
4.80E01  
3.740  
736 mm  
Units  
Tau  
Tau  
Units  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
C_C1  
C_C2  
C_C3  
C_C4  
C_C5  
C_C6  
C_C7  
C_C8  
C_C9  
C_C10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
3.64E04  
1.92E02  
1.27E01  
1.018  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
1.36E08  
7.41E07  
1.04E05  
3.91E05  
1.80E03  
3.77E01  
3.79E+00  
2.65E+01  
8.71E+01  
1.361E08  
7.411E07  
1.029E05  
3.737E05  
1.376E03  
2.851E02  
9.475E01  
1.173E+01  
8.59E+01  
2.955  
10.322  
0.438  
2
2
168 mm  
736 mm  
R’s  
R’s  
R_R1  
R_R2  
R_R3  
R_R4  
R_R5  
R_R6  
R_R7  
R_R8  
R_R9  
R_R10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
0.015  
0.08  
0.015  
0.08  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.0123  
0.0585  
0.0304  
0.3997  
3.115  
0.0123  
0.0585  
0.0287  
0.3772  
2.68  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.4  
0.4  
0.2  
0.2  
2.97519  
8.2971  
25.9805  
46.5192  
17.7808  
0.1  
2.6171  
1.6778  
7.4246  
14.9320  
19.2560  
0.1758  
3.571  
1.38  
12.851  
35.471  
46.741  
5.92  
7.39  
28.94  
NOTE: Bold face items represent the package without the external thermal system.  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
3
C
n
Time constants are not simple RC products. Amplitudes  
of mathematical solution are not the resistance values.  
Ambient  
(thermal ground)  
Figure 29. Grounded Capacitor Thermal Network (“Cauer” Ladder)  
R
1
R
2
R
3
R
n
Junction  
C
1
C
2
C
3
C
n
Each rung is exactly characterized by its RC-product  
time constant; amplitudes are the resistances.  
Ambient  
(thermal ground)  
Figure 30. Non-Grounded Capacitor Thermal Ladder (“Foster” Ladder)  
http://onsemi.com  
13  
NCV4276B  
Table 7. D2PAK 5-LEAD THERMAL RC NETWORK MODELS  
2
2
2
2
Drain Copper Area (1 oz thick)  
(SPICE Deck Format)  
241 mm  
788 mm  
241 mm  
788 mm  
Cauer Network  
Foster Network  
2
2
241 mm  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
2.82E04  
5.58E03  
4.25E01  
9.22E01  
1.73  
653 mm  
Units  
Tau  
Tau  
Units  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
sec  
C_C1  
C_C2  
C_C3  
C_C4  
C_C5  
C_C6  
C_C7  
C_C8  
C_C9  
C_C10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
1.00E06  
1.00E05  
6.00E05  
1.00E04  
2.87E04  
5.95E03  
4.61E01  
2.05  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
Ws/C  
1.361E08  
7.411E07  
1.005E05  
3.460E05  
7.868E04  
7.431E03  
2.786E+00  
2.014E+01  
1.134E+02  
1.361E08  
7.411E07  
1.007E05  
3.480E05  
8.107E04  
7.830E03  
2.012E+00  
2.601E+01  
1.218E+02  
4.88  
7.12  
1.31  
2
2
241 mm  
653 mm  
R’s  
R’s  
R_R1  
R_R2  
R_R3  
R_R4  
R_R5  
R_R6  
R_R7  
R_R8  
R_R9  
R_R10  
Junction  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
node1  
node2  
node3  
node4  
node5  
node6  
node7  
node8  
node9  
GND  
0.015  
0.08  
0.0150  
0.0800  
0.4000  
0.2000  
1.8839  
1.2272  
5.3383  
18.9591  
13.3369  
0.1191  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.0123  
0.0585  
0.0257  
0.3413  
1.77  
0.0123  
0.0585  
0.0260  
0.3438  
1.81  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
0.4  
0.2  
1.85638  
1.23672  
9.81541  
33.1868  
27.0263  
1.13944  
1.54  
1.52  
4.13  
3.46  
6.27  
5.03  
60.80  
29.30  
NOTE: Bold face items represent the package without the external thermal system.  
The Cauer networks generally have physical  
significance and may be divided between nodes to separate  
thermal behavior due to one portion of the network from  
another. The Foster networks, though when sorted by time  
constant (as above) bear a rough correlation with the Cauer  
networks, are really only convenient mathematical models.  
Cauer networks can be easily implemented using circuit  
simulating tools, whereas Foster networks may be more  
easily implemented using mathematical tools (for instance,  
in a spreadsheet program), according to the following  
formula:  
n
tńtau  
i
ǒ
R 1e  
i
Ǔ
(eq. 6)  
R(t) +  
S
i + 1  
http://onsemi.com  
14  
NCV4276B  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
1 oz  
1 oz  
60  
60  
2 oz  
2 oz  
50  
50  
40  
40  
30  
30  
150 200 250 300 350 400 450 500 550 600 650 700 750  
150 200 250 300 350 400 450 500 550 600 650 700 750  
2
2
COPPER AREA (mm )  
COPPER AREA (mm )  
Figure 31. qJA vs. Copper Spreader Area,  
Figure 32. qJA vs. Copper Spreader Area,  
DPAK 5-Lead  
D2PAK 5-Lead  
100  
2
Cu Area 167 mm  
2
Cu Area 736 mm  
10  
1.0  
0.1  
sqrt(t)  
0.01  
0.0000001  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
TIME (sec)  
Figure 33. Single-Pulse Heating Curves, DPAK 5-Lead  
100  
10  
2
Cu Area 167 mm  
2
Cu Area 736 mm  
1.0  
0.1  
0.01  
0.0000001  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
TIME (sec)  
Figure 34. Single-Pulse Heating Curves, D2PAK 5-Lead  
http://onsemi.com  
15  
NCV4276B  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
1.0  
0.1  
Nonnormalized Response  
0.01  
0.0000001  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
PULSE WIDTH (sec)  
Figure 35. Duty Cycle for 1, Spreader Boards, DPAK 5-Lead  
100  
50% Duty Cycle  
20%  
10  
1.0  
10%  
5%  
2%  
1%  
0.1  
Nonnormalized Response  
0.01  
0.0000001 0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
100  
1000  
PULSE WIDTH (sec)  
Figure 36. Duty Cycle for 1, Spreader Boards, D2PAK 5-Lead  
Table 8. ORDERING INFORMATION  
Device  
Output Voltage Accuracy  
Output Voltage  
Package  
Shipping  
NCV4276BDT33RKG  
DPAK, 5-Pin  
(Pb-Free)  
2,500 / Tape & Reel  
800 / Tape & Reel  
2,500 / Tape & Reel  
800 / Tape & Reel  
2,500 / Tape & Reel  
800 / Tape & Reel  
3.3 V  
2
NCV4276BDS33R4G  
NCV4276BDT50RKG  
NCV4276BDS50R4G  
NCV4276BDTADJRKG  
NCV4276BDSADJR4G  
D PAK, 5-Pin  
(Pb-Free)  
DPAK, 5-Pin  
(Pb-Free)  
2%  
5.0 V  
2
D PAK, 5-Pin  
(Pb-Free)  
DPAK, 5-Pin  
(Pb-Free)  
Adjustable  
2
D PAK, 5-Pin  
(Pb-Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
16  
NCV4276B  
PACKAGE DIMENSIONS  
DPAK 5, CENTER LEAD CROP  
DT SUFFIX  
CASE 175AA  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
SEATING  
T−  
PLANE  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
R1  
Z
A
K
S
4.56 BSC  
1 2 3 4  
5
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
1.14 BSC  
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
F
J
R1 0.185 0.210  
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
L
H
D 5 PL  
M
G
0.13 (0.005)  
T
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
NCV4276B  
PACKAGE DIMENSIONS  
D2PAK 5  
CASE 936A02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A  
AND K.  
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 6.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED 0.025  
(0.635) MAXIMUM.  
T−  
TERMINAL 6  
OPTIONAL  
CHAMFER  
A
E
U
S
K
V
B
H
1
2
3
4 5  
INCHES  
MILLIMETERS  
M
L
DIM  
A
B
C
D
E
MIN  
MAX  
0.403  
0.368  
0.180  
0.036  
0.055  
MIN  
9.804  
9.042  
4.318  
0.660  
1.143  
MAX  
10.236  
9.347  
4.572  
0.914  
1.397  
0.386  
0.356  
0.170  
0.026  
0.045  
D
M
P
N
0.010 (0.254)  
T
G
R
G
H
K
L
M
N
P
0.067 BSC  
1.702 BSC  
14.707  
1.270 REF  
0.539  
0.579 13.691  
0.050 REF  
0.000  
0.088  
0.018  
0.058  
0.010  
0.102  
0.026  
0.078  
0.000  
2.235  
0.457  
1.473  
0.254  
2.591  
0.660  
1.981  
C
R
S
U
V
5_ REF  
5_ REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
SOLDERING FOOTPRINT  
8.38  
0.33  
1.702  
0.067  
10.66  
0.42  
1.016  
0.04  
3.05  
0.12  
16.02  
0.63  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCV4276B/D  

相关型号:

NCV4276BDTADJRKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276B_14

400 mA Low‐Drop Voltage Regulator
ONSEMI

NCV4276C

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDS33R4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDS50R4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDSADJR4G

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDT33RKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDT50RKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDTADJRKG

LDO Regulator, 400 mA, Low Dropout Adjustable, 2%, 2500-REEL
ONSEMI

NCV4276DS18

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS18G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS18R4

Low-Drop Voltage Regulator
ONSEMI