NCV4279A50D1G [ONSEMI]

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output; 5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出
NCV4279A50D1G
型号: NCV4279A50D1G
厂家: ONSEMI    ONSEMI
描述:

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
5.0 V微150毫安LDO线性稳压器与延迟,可调复位和检测输出

稳压器
文件: 总14页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4279A  
5.0 V Micropower 150 mA  
LDO Linear Regulator with  
DELAY, Adjustable RESET,  
and Sense Output  
http://onsemi.com  
The NCV4279A is a 5.0 V precision micropower voltage regulator  
with an output current capability of 150 mA.  
The output voltage is accurate within 2.0% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low quiescent current is a feature  
drawing only 150 mA with a 1.0 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
Microprocessor control logic includes an active reset output RO  
with delay and a SI/SO monitor which can be used to provide an early  
warning signal to the microprocessor of a potential impending reset  
signal. The use of the SI/SO monitor allows the microprocessor to  
finish any signal processing before the reset shuts the microprocessor  
down.  
The active Reset circuit operates correctly at an output voltage as  
low as 1.0 V. The Reset function is activated during the power up  
sequence or during normal operation if the output voltage drops  
outside the regulation limits.  
MARKING  
DIAGRAMS  
8
SO8  
D SUFFIX  
CASE 751  
4279A5  
ALYW  
G
8
1
1
14  
SO14  
D SUFFIX  
CASE 751A  
NCV4279A5G  
AWLYWW  
14  
1
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
The reset threshold voltage can be decreased by the connection of an  
external resistor divider to the R  
lead. The regulator is protected  
ADJ  
G, G  
= Lead Free Indicators  
against reverse battery, short circuit, and thermal overload conditions.  
The device can withstand load dump transients making it suitable for  
use in automotive environments. The device has also been optimized  
for EMC conditions.  
PIN CONNECTIONS  
1
8
If the application requires pullup resistors at the logic outputs Reset  
and Sense Out, the NCV4269A with integrated resistors can be used.  
I
Q
SI  
SO  
RO  
GND  
R
Features  
ADJ  
D
5.0 V 2.0% Output  
Low 150 mA Quiescent Current  
SO8  
Active Reset Output Low Down to V = 1.0 V  
Q
1
14  
Adjustable Reset Threshold  
R
SI  
ADJ  
150 mA Output Current Capability  
D
I
GND  
GND  
GND  
GND  
RO  
GND  
GND  
GND  
Q
Fault Protection  
+60 V Peak Transient Voltage  
40 V Reverse Voltage  
Short Circuit  
SO  
Thermal Overload  
SO14  
Early Warning through SI/SO Leads  
Internally Fused Leads in SO14 Package  
Very Low Dropout Voltage  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
Electrical Parameters Guaranteed Over Entire Temperature Range  
These are PbFree Devices  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Change Controls  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
October, 2009 Rev. 1  
NCV4279A/D  
NCV4279A  
I
Q
Error  
Amplifier  
Current and  
Reference  
and Trim  
Saturation  
Control  
RO  
D
or  
Reference  
SO  
R
ADJ  
+
SI  
GND  
Figure 1. Block Diagram  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
SO8  
SO14  
Pin Symbol  
Function  
3
4
5
1
2
R
Reset Threshold Adjust; if not used to connect to GND.  
Reset Delay; To Set Time Delay, Connect to GND with a Capacitor  
Ground  
ADJ  
D
3, 4, 5, 6,  
10, 11, 12  
GND  
6
7
8
1
2
7
8
RO  
SO  
Q
Reset Output; This is an OpenCollector Output. Leave Open if Not Used.  
Sense Output; This is an OpenCollector Output. If not used, keep open.  
5 V Output; Connect to GND with a 10 mF Capacitor, ESR < 10 W.  
Input; Connect to GND Directly at the IC with a Ceramic Capacitor.  
Sense Input; If not used, Connect to Q.  
9
13  
14  
I
SI  
http://onsemi.com  
2
NCV4279A  
MAXIMUM RATINGS (T = 40°C to 150°C)  
J
Parameter  
Symbol  
Min  
Max  
Unit  
Input to Regulator  
V
I
40  
45  
V
I
I
Internally Limited Internally Limited  
Input Peak Transient Voltage  
Sense Input  
V
60  
V
I
V
40  
1  
45  
1
V
mA  
SI  
SI  
I
Reset Threshold Adjust  
Reset Delay  
V
0.3  
10  
7
V
RADJ  
RADJ  
I
10  
mA  
V
0.3  
7
V
D
I
Internally Limited Internally Limited  
D
Ground  
I
50  
mA  
V
q
Reset Output  
V
RO  
RO  
0.3  
7
I
Internally Limited Internally Limited  
Sense Output  
V
0.3  
7
V
SO  
SO  
I
Internally Limited Internally Limited  
Regulated Output  
V
Q
0.5  
10  
7.0  
V
mA  
Q
I
Junction Temperature  
Storage Temperature  
T
STG  
50  
150  
150  
°C  
°C  
J
T
Input Voltage Operating Range  
Junction Temperature Operating Range  
V
J
40  
45  
150  
V
°C  
I
T
JunctiontoAmbient Thermal Resistance  
SO8  
R
200  
70  
k/W  
q
q
JA  
JP  
SO14  
JunctiontoPin 4, all GND Pins Grounded.  
LEAD TEMPERATURE SOLDERING AND MSL  
Parameter  
SO14  
R
30  
k/W  
Symbol  
Value  
Unit  
MSL, 8Lead, 14Lead, LS Temperature 260°C Peak (Notes 3)  
MSL  
1
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series incorporates ESD protection and exceeds the following ratings:  
Human Body Model (HBM) 4.0 kV per AECQ100002.  
Machine Model (MM) 200 V per AECQ100003.  
2. Latchup Current Maximum Rating: 150 mA per AECQ100004.  
3. Lead free: 60150 Sec above 217°C, 40 Sec Max at Peak, 265°C Peak.  
http://onsemi.com  
3
 
NCV4279A  
ELECTRICAL CHARACTERISTICS (T = 40°C T 125°C, V = 13.5 V unless otherwise specified)  
J
J
I
Characteristic  
REGULATOR  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Current Limit  
V
1 mA v I v 100 mA; 6 V v V v 16 V  
4.90  
150  
5.00  
200  
190  
250  
2.0  
5.10  
500  
250  
450  
3.0  
0.5  
20  
V
Q
Q
I
I
Q
mA  
mA  
mA  
mA  
V
Current Consumption; I = I – I  
I
I
= 1 mA, RO, SO High  
= 10 mA, RO, SO High  
= 50 mA, RO, SO High  
q
I
Q
Q
Q
q
q
q
Q
Current Consumption; I = I – I  
I
I
I
I
q
I
Q
Current Consumption; I = I – I  
q
I
Q
Dropout Voltage  
Load Regulation  
Line Regulation  
V
dr  
I
= 100 mA (Note 4)  
= 5 mA to 100 mA  
Q
0.25  
10  
Q
DV  
DV  
I
mV  
mV  
Q
V = 6 V to 26 V; I = 1 mA  
10  
30  
Q
I
Q
RESET GENERATOR  
Reset Switching Threshold  
V
4.50  
1.26  
4.65  
1.35  
0.1  
1.8  
0.45  
4.80  
1.44  
0.4  
2.2  
0.60  
0.1  
9.5  
V
V
RT  
Reset Adjust Switching Threshold  
Reset Output Saturation Voltage  
Upper Delay Switching Threshold  
Lower Delay Switching Threshold  
Saturation Voltage on Delay Capacitor  
Charge Current  
V
V > 3.5 V  
Q
RADJ,TH  
V
V
Q
< V , R = 20 kW  
V
RO,SAT  
RT RO  
V
UD  
1.4  
0.3  
V
V
V
LD  
V
D,SAT  
V
< V  
RT  
V
Q
I ,C  
D
V
= 1 V  
3.0  
17  
6.5  
28  
mA  
ms  
ms  
D
Delay Time L ³ H  
t
C
C
= 100 nF  
= 100 nF  
d
D
D
Delay Time H ³ L  
t
3.15  
RR  
INPUT VOLTAGE SENSE  
Sense Threshold High  
V
1.24  
1.16  
1.31  
1.20  
0.1  
1.38  
1.28  
0.4  
V
V
SI,High  
Sense Threshold Low  
V
SI,Low  
Sense Output Saturation Voltage  
Sense Input Current  
V
V
SI  
< 1.20 V; V > 3 V; R = 20 kW  
V
SO,Low  
Q
SO  
I
SI  
1.0  
0.1  
1.0  
mA  
4. Dropout voltage = V V measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input.  
I
Q
http://onsemi.com  
4
 
NCV4279A  
I
I
I
Q
I
Q
C
Q
22 mF  
C
I
R
1000 mF  
ADJ1  
R
470 nF  
RO  
R
SO  
I
SI  
I
RADJ  
SI  
D
RADJ  
V
Q
GND  
RO  
SO  
V
I
I
D
I
q
V
RO  
V
SO  
V
SI  
V
RADJ  
V
D
C
R
D
ADJ2  
100 nF  
Figure 2. Measuring Circuit  
V
I
t
t
< t  
RR  
V
Q
V
RT  
dV  
dt  
I
C
D
D
+
V
D
V
UD  
V
LD  
t
t
t
d
RR  
V
RO  
V
RO,SAT  
t
PoweronReset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 3. Reset Timing Diagram  
http://onsemi.com  
5
NCV4279A  
Sense Input Voltage  
V
SI,High  
V
SI,Low  
t
Sense Output Voltage  
High  
Low  
t
Figure 4. Sense Timing Diagram  
http://onsemi.com  
6
NCV4279A  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
14  
12  
10  
8
3.2  
V = 13.5 V  
I
V = 13.5 V  
I
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
D
= 1.0 V  
V
V
UD  
6
4
LD  
2
0
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T (°C)  
J
T (°C)  
J
Figure 5. Charge Current ID,C vs. Temperature TJ  
Figure 6. Switching Voltage VUD and VLD vs.  
Temperature TJ  
500  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
400  
300  
200  
100  
0
T = 125°C  
J
T = 25°C  
J
T = 40°C  
J
0
30  
60  
90  
(mA)  
120  
150  
180  
40  
0
40  
80  
120  
160  
I
Q
T (°C)  
J
Figure 7. Drop Voltage Vdr vs. Output Current IQ  
Figure 8. Reset Adjust Switching Threshold  
RADJ,TH vs. Temperature TJ  
V
35  
30  
25  
20  
15  
10  
5
12  
10  
8
R = 33 W  
L
6
R = 50 W  
L
4
R = 50 W  
L
2
R = 200 W  
L
R = 100 W  
L
0
0
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V (V)  
I
V (V)  
I
Figure 9. Current Consumption Iq vs.  
Input Voltage VI  
Figure 10. Output Voltage VQ vs.  
Input Voltage VI  
http://onsemi.com  
7
NCV4279A  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.2  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V = 13.5 V  
I
V = 13.5 V  
I
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
Sense Output High  
Sense Output Low  
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T (°C)  
J
T (°C)  
J
Figure 12. Output Voltage VQ vs. Temperature TJ  
Figure 11. Sense Threshold VSI vs. Temperature TJ  
350  
300  
250  
T = 25°C  
J
200  
150  
100  
50  
T = 125°C  
J
0
0
10  
20  
30  
40  
50  
V (V)  
I
Figure 13. Output Current IQ vs. Input Voltage VI  
http://onsemi.com  
8
NCV4279A  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
10  
8
1.6  
1.4  
1.2  
1.0  
V = 13.5 V  
T = 25°C  
J
I
6
0.8  
0.6  
0.4  
0.2  
V = 13.5 V  
T = 25°C  
J
I
4
2
0
0
0
20  
40  
60  
80  
100  
120  
0
10  
20  
30  
40  
50  
I
Q
(mA)  
I (mA)  
Q
Figure 14. Current Consumption Iq vs.  
Output Current IQ  
Figure 15. Current Consumption Iq vs.  
Output Current IQ  
7
6
5
4
3
2
1
0
250  
200  
150  
100  
50  
T = 25°C  
T = 25°C  
J
J
I
= 100 mA  
Q
I
= 100 mA  
Q
I
= 50 mA  
Q
I
= 10 mA  
Q
0
6
8
10 12  
14  
16 18 20  
22 24  
26  
6
8
10 12  
14  
16 18 20  
V (V)  
22 24  
26  
V (V)  
I
I
Figure 16. Current Consumption Iq vs.  
Input Voltage VI  
Figure 17. Current Consumption Iq vs.  
Input Voltage VI  
http://onsemi.com  
9
NCV4279A  
APPLICATION DESCRIPTION  
OUTPUT REGULATOR  
If the reset adjust option is not needed, the R  
pin  
ADJ  
The output is controlled by a precision trimmed reference.  
The PNP output has drive quiescent current control for  
regulation while the input voltage is low, preventing over  
saturation. Current limit and voltage monitors complement  
the regulator design to give safe operating signals to the  
processor and control circuits.  
should be connected to GND causing the reset threshold to  
go to its default value (typically 4.65 V).  
RESET DELAY (D)  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output lead RO. The delay lead D  
D
provides charge current I  
(typically 6.5 mA) to the  
D,C  
RESET OUTPUT (RO)  
A reset signal, Reset Output, RO, (low voltage) is  
external delay capacitor C during the following times:  
D
1. During Powerup (once the regulation threshold has  
been exceeded).  
2. After a reset event has occurred and the device is  
back in regulation. The delay capacitor is set to  
generated as the IC powers up. After the output voltage V  
Q
increases above the reset threshold voltage V , the delay  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. A discharge of  
discharge when the regulation (V , reset  
UD  
RT  
the delay timer V is started when V drops and stays below  
threshold voltage) has been violated. When the  
D
Q
the reset threshold voltage V . When the voltage of the  
delay capacitor discharges to V , the reset signal  
RT  
LD  
delay timer V drops below the lower threshold voltage V  
RO pulls low.  
D
LD  
the reset output voltage V is brought low to reset the  
RO  
SETTING THE DELAY TIME  
processor.  
The delay time is set by the delay capacitor C and the  
D
The reset output RO is an open collector NPN transistor,  
controlled by a low voltage detection circuit. The circuit is  
functionally independent of the rest of the IC, thereby  
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to  
DSAT  
the higher level V . The time delay follows the equation:  
UD  
guaranteeing that RO is valid for V as low as 1.0 V.  
Q
(eq. 2)  
t
d
+ [C (V  
* V )]ńI  
D, SAT D  
D
UD  
RESET ADJUST (RADJ  
)
Example:  
Using C = 100 nF.  
The reset threshold V can be decreased from a typical  
RT  
D
value of 4.65 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin RADJ,  
as shown in Figure 18. The resistor divider keeps the voltage  
Use the typical value for V  
= 0.1 V.  
D,SAT  
Use the typical value for V = 1.8 V.  
UD  
Use the typical value for Delay Charge Current I = 6.5 mA.  
D
above the V  
(typical 1.35 V) for the desired input  
RADJ,TH  
voltages, and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
(eq. 3)  
t
d
+ [100 nF(1.8 * 0.1 V)]ń6.5 mA + 26.2 ms  
V
RT  
+ V  
@ (R  
) R  
)ńR  
ADJ2 ADJ2  
(eq. 1)  
RADJ, TH  
ADJ1  
V
BAT  
I
Q
V
DD  
R
R
ADJ1  
ADJ2  
C *  
0.1 mF  
I
C **  
10 mF  
(2.2 mF)  
Q
R
ADJ  
NCV4279A  
R
R
SI1  
D
R
RO  
SI  
R
SO  
SI2  
C
D
RO  
I/O  
SO  
I/O  
GND  
*C required if regulator is located far from the power supply filter.  
I
** C minimum cap required for stability is 2.2 mF while higher over/undershoots may be ex-  
Q
pected. Cap must operate at required temperature range.  
Figure 18. Application Diagram  
http://onsemi.com  
10  
 
NCV4279A  
SENSE INPUT (SI) / SENSE OUTPUT (SO) VOLTAGE  
MONITOR  
solution, but, if the circuit operates at low temperatures  
(25°C to 40°C), both the value and ESR of the capacitor  
will vary considerably. The capacitor manufacturer’s data  
sheet usually provides this information.  
An onchip comparator is available to provide early  
warning to the microprocessor of a possible reset signal. The  
output is from an open collector driver. The reset signal  
typically turns the microprocessor off instantaneously. This  
can cause unpredictable results with the microprocessor.  
The signal received from the SO pin will allow the  
microprocessor time to complete its present task before  
shutting down. This function is performed by a comparator  
referenced to the band gap voltage. The actual trip point can  
be programmed externally using a resistor divider to the  
The 10 mF output capacitor C shown in Figure 18 should  
Q
work for most applications; however, it is not necessarily the  
optimized solution. Stability is guaranteed at CQ is min  
2.2 mF and max ESR is 10 W. There is no min ESR limit  
which was proved with MURATA’s ceramic caps  
GRM31MR71A225KA01 (2.2 mF, 10 V, X7R, 1206) and  
GRM31CR71A106KA01 (10 mF, 10 V, X7R, 1206) directly  
soldered between output and ground pins.  
input monitor SI (Figure 18). The values for R and R  
SI1  
SI2  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
are selected for a typical threshold of 1.20 V on the SI Pin.  
SIGNAL OUTPUT  
Figure 19 shows the SO Monitor timing waveforms as a  
result of the circuit depicted in Figure 18. As the output  
The maximum power dissipation for a single output  
regulator (Figure 18) is:  
P
+ [V  
I(max)  
* V  
]I  
) V  
I
(eq. 4)  
D(max)  
Q(min) Q(max)  
I(max) q  
voltage (V ) falls, the monitor threshold (V  
), is  
Q
SILOW  
where:  
crossed. This causes the voltage on the SO output to go low  
sending a warning signal to the microprocessor that a reset  
signal may occur in a short period of time. T  
time the microprocessor has to complete the function it is  
currently working on and get ready for the reset  
shutdown signal. When the voltage on the SO goes low and  
the RO stays high the current consumption is typically  
560 mA at 1 mA load current.  
V
I(max)  
is the maximum input voltage,  
V
Q(min)  
is the minimum output voltage,  
is the  
WARNING  
I
is the maximum output current for the application,  
Q(max)  
and I is the quiescent current the regulator consumes at  
q
I
.
Q(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
= (150°C – T ) / P  
D
R
(eq. 5)  
q
JA  
A
V
Q
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with R ’s  
qJA  
less than the calculated value in equation 2 will keep the die  
temperature below 150°C. In some cases, none of the packages  
will be sufficient to dissipate the heat generated by the IC, and  
an external heatsink will be required. The current flow and  
voltages are shown in the Measurement Circuit Diagram.  
SI  
V
SI,Low  
V
RO  
HEATSINKS  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
SO  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
T
WARNING  
determine the value of R  
:
Figure 19. SO Warning Waveform Time Diagram  
q
JA  
R
+ R  
) R  
) R  
qCS qSA  
(eq. 6)  
qJA  
qJC  
STABILITY CONSIDERATIONS  
where:  
The input capacitor C in Figure 18 is necessary for  
I
R
qJC  
R
qCS  
R
qSA  
= the junctiontocase thermal resistance,  
= the casetoheat sink thermal resistance, and  
= the heat sinktoambient thermal resistance.  
compensating input line reactance. Possible oscillations  
caused by input inductance and input capacitance can be  
damped by using a resistor of approximately 1.0 W in series  
R
qJC  
appears in the package section of the data sheet. Like  
with C  
I.  
R
qJA  
, it too is a function of package type. R  
and R  
are  
qCS  
qSA  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. The  
aluminum electrolytic capacitor is the least expensive  
functions of the package type, heatsink and the interface  
between them. These values appear in data sheets of  
heatsink manufacturers. Thermal, mounting, and  
heatsinking considerations are discussed in the  
ON Semiconductor application note AN1040/D, available  
on the ON Semiconductor website.  
http://onsemi.com  
11  
 
NCV4279A  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4279A50D1G  
SO8  
98 Units/Rail  
2500 Tape & Reel  
55 Units/Rail  
(PbFree)  
NCV4279A50D1R2G  
NCV4279A50D2G  
SO8  
(PbFree)  
5.0 V  
SO14  
(PbFree)  
NCV4279A50D2R2G  
SO14  
(PbFree)  
2500 Tape & Reel  
†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
12  
NCV4279A  
PACKAGE DIMENSIONS  
SO8  
D SUFFIX  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
NCV4279A  
PACKAGE DIMENSIONS  
SOIC14  
CASE 751A03  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A−  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
B−  
P 7 PL  
M
M
B
0.25 (0.010)  
7
1
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
F
R X 45  
_
C
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
T−  
J
M
K
SEATING  
1.27 BSC  
D 14 PL  
PLANE  
0.19  
0.10  
0
M
S
S
0.25 (0.010)  
T
B
A
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
SOLDERING FOOTPRINT*  
7X  
7.04  
14X  
1.52  
1
14X  
0.58  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV4279A/D  

相关型号:

NCV4279A50D1R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279A50D2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279A50D2R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279B

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BD1

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BD1G

暂无描述
ONSEMI

NCV4279BD1R2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BD2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BD2R2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BD2R2G

暂无描述
ONSEMI

NCV4279BDW

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Monitor FLAG
ONSEMI

NCV4279BDWG

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO20, LEAD FREE, SOIC-20
ONSEMI