NCV7101SN1T1G [ONSEMI]

1.8 Volt Rail-to-Rail Operational Amplifier;
NCV7101SN1T1G
型号: NCV7101SN1T1G
厂家: ONSEMI    ONSEMI
描述:

1.8 Volt Rail-to-Rail Operational Amplifier

文件: 总16页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS7101, NCV7101  
1.8 Volt Rail-to-Rail  
Operational Amplifier  
The NCS7101 operational amplifier provides railtorail operation  
on both the input and output. The output can swing within 50 mV of  
each rail. This railtorail operation enables the user to make full use  
of the entire supply voltage range available. It is designed to work at  
very low supply voltages (1.8 V and ground), yet can operate with a  
supply of up to 10 V and ground. The NCS7101 is available in the  
space saving SOT235 package with two industry standard pinouts.  
http://onsemi.com  
LOW VOLTAGE  
RAILTORAIL  
OPERATIONAL AMPLIFIER  
Features  
Low Voltage, Single Supply Operation (1.8 V and Ground to 10 V  
and Ground)  
CASE 483  
SOT235  
SN SUFFIX  
5
1.0 pA Input Bias Current  
1
Unity Gain Bandwidth of 1.0 MHz at 5.0 V,  
MARKING DIAGRAM  
0.9 MHz at 1.8 V  
x
= C for SN1  
D for SN2  
= Assembly Location  
= Year  
Output Voltage Swings Within 50 mV of Both Rails @ 1.8 V  
5
1
No Phase Reversal on the Output for OverDriven Input Signals  
Input Offset Trimmed to 1.0 mV  
AAx AYWG  
A
Y
G
W = Work Week  
Low Supply Current (I = 1.0 mA)  
D
G
= PbFree Package  
Works Down to Two Discharged NiCd Battery Cells  
ESD Protected Inputs Up to 2.0 kV  
(Note: Microdot may be in either location)  
These Devices are PbFree and are RoHS Compliant  
AECQ100 Qualified and PPAP Capable  
PIN CONNECTIONS  
1
2
3
5
V
V
EE  
OUT  
*NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements  
V
CC  
+ −  
NonInverting  
Inverting  
Input  
4
Input  
Typical Applications  
Dual NiCd/NiMH Cell Powered Systems  
Portable Communication Devices  
Low Voltage Active Filters  
Power Supply Monitor and Control  
Interface to DSP  
Style 1 Pin Out (SN1T1)  
1
2
3
5
4
V
V
CC  
OUT  
V
EE  
+ −  
NonInverting  
Inverting  
Input  
Input  
Style 2 Pin Out (SN2T1)  
Rail to Rail Input  
Rail to Rail Output  
ORDERING INFORMATION  
Device  
Package  
Shipping  
1.8 V  
to  
10 V  
NCS7101SN1T1G  
NCV7101SN1T1G*  
+
-
SOT235 3000 Tape & Reel  
(PbFree) (7 inch Reel)  
NCS7101SN2T1G  
NCV7101SN2T1G*  
This device contains 68 active transistors.  
Figure 1. Typical Application  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
October, 2011 Rev. 4  
NCS7101/D  
NCS7101, NCV7101  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
10  
Unit  
V
Supply Voltage (V to V  
)
V
S
CC  
EE  
Input Differential Voltage Range (Note 1)  
Input Common Mode Voltage Range (Note 1)  
Output Short Circuit Duration (Note 2)  
Junction Temperature  
V
V
V
V
300 mV to 10 V  
300 mV to 10 V  
Indefinite  
150  
V
IDR  
ICR  
SC  
EE  
V
EE  
t
sec  
°C  
T
J
Power Dissipation and Thermal Characteristics SOT235 Package  
Thermal Resistance, JunctiontoAir  
R
P
220  
364  
°C/W  
mW  
q
JA  
Power Dissipation @ T = 70°C  
A
D
Storage Temperature Range  
T
65 to +150  
°C  
°C  
stg  
Operating Ambient Temperature Range  
NCS7101  
NCV7101  
T
40 to +85  
40 to +125  
A
ESD Protection at any Pin Human Body Model (Note 3)  
V
ESD  
2000  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Either or both inputs should not exceed the range of V 300 mV to V + 10 V.  
EE  
EE  
2. Maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.  
T = T + (P R  
)
q
JA  
J
A
D
3. ESD data available upon request.  
http://onsemi.com  
2
 
NCS7101, NCV7101  
DC ELECTRICAL CHARACTERISTICS  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
V
V
= 0.9 V, V = 0.9 V  
CC  
EE  
T = 25°C  
7.0  
9.0  
0.6  
7.0  
9.0  
A
T = T  
to T  
High  
A
Low  
= 2.5 V, V = 2.5 V  
CC  
EE  
T = 25°C  
7.0  
9.0  
0.6  
7.0  
9.0  
A
T = T  
to T  
High  
A
Low  
= 5.0 V, V = 5.0 V  
CC  
EE  
T = 25°C  
7.0  
9.0  
0.6  
7.0  
9.0  
A
T = T  
to T  
High  
A
Low  
Input Offset Voltage Temperature Coefficient (R = 50)  
DV /DT  
8.0  
mV/°C  
S
IO  
T = 40°C to 125°C  
A
Input Bias Current (V = 1.8 V to 10 V)  
|I |  
1.0  
pA  
V
CC  
IB  
Common Mode Input Voltage Range  
Large Signal Voltage Gain  
V
ICR  
V
EE  
V
CC  
A
VOL  
kV/V  
V
CC  
= 5.0 V, V = 5.0 V  
EE  
R = 10 kW  
R = 2.0 kW  
L
16  
16  
50  
30  
L
Output Voltage Swing, High (V = "0.2 V)  
V
OH  
V
ID  
V
V
V
= 0.9 V, V = 0.9 V (T = 25°C)  
L
CC  
R = 10 k  
EE A  
0.85  
0.80  
0.88  
0.82  
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 10 k  
0.85  
0.79  
L
R = 2.0 k  
L
= 2.5 V, V = 2.5 V (T = 25°C)  
CC  
EE  
A
R = 600  
2.10  
2.35  
2.21  
2.44  
L
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 600  
2.00  
2.40  
L
R = 2.0 k  
L
= 5.0 V, V = 5.0 V (T = 25°C)  
CC  
EE  
A
R = 600  
4.40  
4.80  
4.60  
4.88  
L
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 600  
R = 2.0 k  
L
4.40  
4.80  
L
Output Voltage Swing, Low (V = "0.2 V)  
V
OL  
V
ID  
V
V
V
= 0.9 V, V = 0.9 V (T = 25°C)  
L
CC  
R = 10 k  
EE A  
0.88  
0.82  
0.85  
0.80  
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 10 k  
0.85  
0.78  
L
R = 2.0 k  
L
= 2.5 V, V = 2.5 V (T = 25°C)  
CC  
EE  
A
R = 600  
2.22  
2.38  
2.10  
2.35  
L
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 600  
2.00  
2.30  
L
R = 2.0 k  
L
= 5.0 V, V = 5.0 V (T = 25°C)  
CC  
EE  
A
R = 600  
4.66  
4.88  
4.40  
4.80  
L
R = 2.0 k  
L
T = T  
to T  
High  
A
Low  
R = 600  
R = 2.0 k  
L
4.35  
4.80  
L
Common Mode Rejection Ratio  
CMRR  
dB  
V
in  
V
in  
= 0 to 10 V  
= 0 to 5.0 V  
65  
60  
http://onsemi.com  
3
NCS7101, NCV7101  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Rejection Ratio  
/V = 10 V/Ground, DV = 2.5 V  
PSRR  
65  
dB  
V
CC EE  
S
Output Short Circuit Current (V Diff = "1.0 V)  
I
mA  
in  
SC  
V
V
V
= +0.9 V, V = 0.9 V  
Source  
Sink  
CC  
EE  
3.0  
3.0  
= +2.5 V, V = 2.5 V  
CC  
EE  
Source  
Sink  
20  
60  
25  
25  
60  
20  
= 5.0 V, V = 5.0 V  
CC  
EE  
Source  
Sink  
50  
140  
72  
72  
140  
50  
Power Supply Current (V = 0 V)  
I
D
mA  
O
V
V
V
= +0.9 V, V = 0.9 V  
CC  
EE  
T = 25°C  
0.97  
1.20  
1.30  
1.60  
A
T = 40°C to 85°C  
A
T = 40°C to 125°C  
A
= +2.5 V, V = 2.5 V  
CC  
EE  
T = 25°C  
1.05  
1.30  
1.40  
1.70  
A
T = 40°C to 85°C  
A
T = 40°C to 125°C  
A
= 5.0 V, V = 5.0 V  
CC  
EE  
T = 25°C  
1.13  
1.40  
1.50  
1.80  
A
T = 40°C to 85°C  
A
T = 40°C to 125°C  
A
AC ELECTRICAL CHARACTERISTICS  
(V = 2.5 V, V = 2.5 V, V  
= V = 0, R to GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
CM  
O L A  
Characteristics  
Slew Rate (V = 2.0 to 2.0 V, R = 2.0 kW, A = 1.0)  
Symbol  
SR  
Min  
0.7  
0.5  
Typ  
1.2  
1.0  
6.5  
60  
Max  
3.0  
3.0  
Unit  
V/ms  
MHz  
dB  
O
L
V
Gain Bandwidth Product (V = 10 V)  
GBW  
Am  
CC  
Gain Margin (R = 10 k, C = 5.0 pF)  
L
L
Phase Margin (R = 10 k, C = 5.0 pF)  
φm  
Deg  
kHz  
%
L
L
Power Bandwidth (V = 4.0 Vpp, R = 2.0 kW, THD v 1.0%)  
BW  
P
130  
O
L
Total Harmonic Distortion (V = 4.0 Vpp, R = 2.0 kW, A = 1.0)  
THD  
O
L
V
f = 1.0 kHz  
f = 10 kHz  
0.02  
0.2  
Differential Input Resistance (V  
= 0 V)  
R
in  
C
in  
e
n
u1.0  
2.0  
tera W  
pF  
CM  
Differential Input Capacitance (V  
= 0 V)  
CM  
Equivalent Input Noise Voltage (Freq = 1.0 kHz)  
140  
nV/Hz  
http://onsemi.com  
4
NCS7101, NCV7101  
0
0
400  
V
CC  
0.4  
V
CC  
V
S
= 2.5 V  
V
=
2.5 V  
S
High State Output  
Sourcing Current  
0.8 R = to GND  
L
800  
R = to GND  
T = 25°C  
A
L
High State Output  
Sourcing Current  
T = 25°C  
A
1.2  
1200  
1200  
800  
Low State Output  
Sinking Current  
1.2  
0.8  
Low State Output  
Sinking Current  
400  
0
V
EE  
0.4  
0
V
EE  
0
2.0  
4.0  
6.0  
8.0  
10  
12  
100  
1.0 k  
10 k  
100 k  
1.0 M  
R , LOAD RESISTANCE (W)  
L
I , LOAD CURRENT (mA)  
L
Figure 2. Output Saturation Voltage versus  
Load Resistance  
Figure 3. Output Saturation Voltage versus  
Load Current  
1000  
100  
10  
100  
80  
V = 5.0 V  
S
R = 100 k  
L
0
GAIN  
T = 25°C  
A
20  
60  
60  
PHASE  
1.0  
0.1  
0
40  
100  
V = 2.5 V  
S
R = ∞  
L
20  
0
C = 0  
140  
180  
L
A = 1.0  
V
0
25  
50  
75  
100  
125  
1.0  
10  
100  
1.0 k  
10 k 100 k 1.0 M 10 M  
T , AMBIENT TEMPERATURE (°C)  
A
f, FREQUENCY (Hz)  
Figure 4. Input Bias Current versus  
Temperature  
Figure 5. Gain and Phase versus Frequency  
V
V
=
2.5 V  
S
= 4.0 V  
O
PP  
R = 10 k  
L
C = 10 pF  
L
A = 1.0  
V
T = 25°C  
A
V
V
=
2.5 V  
S
= 4.0 V  
O
PP  
R = 10 k  
L
C = 10 pF  
L
A = 1.0  
V
T = 25°C  
A
t, time (500 ns/Div)  
t, time (1.0 ms/Div)  
Figure 6. Transient Response  
Figure 7. Slew Rate  
http://onsemi.com  
5
 
NCS7101, NCV7101  
100  
14  
12  
R = 10 k  
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
A = 1.0  
V
V
S
=
2.5 V  
T = 25°C  
A
R = ∞  
V
=
5.0 V  
L
S
10  
T = 25°C  
A
A = 1.0  
V
8.0  
6.0  
V
V
=
=
2.5 V  
0.9 V  
S
4.0  
2.0  
0
S
0
10  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 9. Common Mode Rejection versus  
Frequency  
Figure 8. Output Voltage versus Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
140  
120  
100  
80  
Output Pulsed Test  
at 3% Duty Cycle  
V
=
2.5 V  
S
PSR+  
R = ∞  
L
T = 25°C  
A
40°C  
A = 1.0  
V
25°C  
PSR−  
60  
85°C  
40  
20  
0
0
10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M 10 M  
V , SUPPLY VOLTAGE (V)  
S
f, FREQUENCY (Hz)  
Figure 11. Output Short Circuit Sinking  
Current versus Supply Voltage  
Figure 10. Power Supply Rejection versus  
Frequency  
140  
120  
100  
80  
1.4  
1.2  
Output Pulsed Test  
at 3% Duty Cycle  
85°C  
40°C  
25°C  
1.0  
0.8  
25°C  
40°C  
60  
0.6  
0.4  
85°C  
40  
R = ∞  
L
20  
0
A = 1.0  
0.2  
0
V
V
in  
= 0 V  
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V , SUPPLY VOLTAGE (V)  
S
V , SUPPLY VOLTAGE (V)  
S
Figure 12. Output Short Circuit Sourcing  
Current versus Supply Voltage  
Figure 13. Supply Current versus Supply  
Voltage with No Load  
http://onsemi.com  
6
NCS7101, NCV7101  
10  
1.0  
0.1  
10  
A = 1000  
V
A = 1000  
V
1.0  
0.1  
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
V
=
2.5 V  
V
=
5.0 V  
= 8.0 V  
S
S
V
out  
= 4.0 V  
V
out  
PP  
PP  
0.01  
0.01  
R = 2 k  
R = 2 k  
L
L
A = 1.0  
V
T = 25°C  
A
T = 25°C  
A
A = 1.0  
V
0.001  
0.001  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 14. Total Harmonic Distortion versus  
Frequency with 5.0 V Supply  
Figure 15. Total Harmonic Distortion versus  
Frequency with 10 V Supply  
10  
1.0  
0.1  
10  
V
=
2.5 V  
S
V
out  
= 4.0 V  
PP  
R = 10 k  
T = 25°C  
A
L
1.0  
0.1  
A = 1000  
V
A = 1000  
V
A = 100  
V
A = 100  
V
A = 10  
V
V
=
5.0 V  
A = 10  
V
S
0.01  
0.01  
V
out  
= 8.0 V  
PP  
R = 10 k  
L
T = 25°C  
A = 1.0  
A = 1.0  
V
A
V
0.001  
0.001  
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 16. Total Harmonic Distortion versus  
Frequency with 5.0 V Supply  
Figure 17. Total Harmonic Distortion versus  
Frequency with 10 V Supply  
1.6  
3.0  
2.0  
V
S
=
2.5 V  
+Slew Rate, V  
=
=
2.5 V  
2.5 V  
S
R = 10 k  
L
C = 5.3 pF  
L
1.2  
0.8  
Slew Rate, V  
S
R = 10 k  
C = 10 pF  
L
L
A = 1.0  
V
T = 25°C  
A
1.0  
0
0.4  
0
+Slew Rate, V  
Slew Rate, V  
=
=
0.9 V  
0.9 V  
S
S
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 18. Slew Rate versus Temperature (Avg.)  
Figure 19. Gain Bandwidth Product versus  
Temperature  
http://onsemi.com  
7
NCS7101, NCV7101  
50  
40  
30  
20  
10  
0
20  
80  
70  
60  
50  
40  
30  
20  
80  
70  
Phase Margin  
R = 10 k  
L
20  
A = 100  
V
T = 25°C  
A
60  
60  
50  
40  
30  
20  
V
=
2.5 V  
100  
140  
180  
220  
S
R = 10 k  
C = 10 pF  
L
L
10  
Gain Margin  
V
V
=
=
0.9 V  
2.5 V  
S
S
20  
30  
10  
0
125  
260  
300  
10  
0
10 k  
100 k  
1.0 M  
10 M  
100 M  
50 25  
0
25  
50  
75  
100  
f, FREQUENCY (Hz)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 20. Voltage Gain and Phase versus  
Frequency  
Figure 21. Gain and Phase Margin versus  
Temperature  
70  
100  
80  
60  
40  
20  
0
100  
70  
V
=
2.5 V  
S
60  
50  
40  
30  
20  
Phase Margin  
Gain Margin  
80  
60  
40  
20  
60  
50  
40  
30  
R = 10 k  
L
Phase Margin  
A = 100  
V
T = 25°C  
A
V
= 2.5 V  
R = 10 k  
C = 5.0 pF  
T = 25°C  
S
0
20  
L
Gain Margin  
10  
10  
0
20  
40  
L
20  
40  
10  
0
A
10  
100  
1.0 k  
10 k  
100 k 1.0M  
1.0  
100  
1000  
R , DIFFERENTIAL SOURCE RESISTANCE (W)  
t
C , CAPACITIVE LOAD (pF)  
L
Figure 22. Gain and Phase Margin versus  
Differential Source Resistance  
Figure 23. Gain and Phase Margin versus  
Output Load Capacitance  
12  
80  
70  
60  
50  
40  
30  
20  
Phase Margin  
10  
8.0  
6.0  
4.0  
A = 100  
V
R = 10 k  
L
C = 0  
L
T = 25°C  
A
R = 10 k  
L
A = 100  
V
T = 25°C  
A
Gain Margin  
2.0  
0
Split Supplies  
10  
0
0
2.0  
V
4.0  
6.0  
8.0  
10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V , SUPPLY VOLTAGE (V)  
S
V , SUPPLY VOLTAGE (V)  
CC  
EE  
Figure 24. Output Voltage Swing versus  
Supply Voltage  
Figure 25. Gain and Phase Margin versus  
Supply Voltage  
http://onsemi.com  
8
NCS7101, NCV7101  
120  
110  
100  
90  
20  
V
=
2.5 V  
S
15  
10  
R = ∞  
C = 0  
L
L
A = 1.0  
V
T = 25°C  
A
5
0
R = 10 k  
C = 0  
L
L
5  
80  
T = 25°C  
A
10  
70  
60  
15  
20  
0
1.0  
2.0  
3.0  
4.0  
5.0  
3.0  
2.0  
1.0  
, COMMON VOLTAGE RANGE (V)  
CM  
0
1.0  
2.0  
3.0  
V , SUPPLY VOLTAGE (V)  
V
S
Figure 26. Open Loop Voltage Gain versus  
Supply Voltage (Split Supplies)  
Figure 27. Input Offset Voltage versus Common  
Mode Input Voltage Range, VS = + 2.5 V  
20  
15  
10  
5
6.0  
4.0  
2.0  
V
=
0.9 V  
S
R = ∞  
C = 0  
L
L
A = 1.0  
V
T = 25°C  
A
DV = 5.0 mV  
IO  
R = ∞  
L
C = 0  
L
0
0
A = 1.0  
T = 25°C  
A
V
5  
10  
2.0  
4.0  
6.0  
15  
20  
1.0 0.8 0.6 0.4 0.2  
0
0.2 0.4 0.6 0.8 1.0  
0.5 1.0  
2.0  
3.0  
4.0  
5.0  
V
CM  
, COMMON MODE INPUT VOLTAGE (V)  
V , SUPPLY VOLTAGE (V)  
S
Figure 28. Input Offset Voltage versus Common  
Figure 29. CommonMode Input Voltage Range  
Mode Input Voltage Range, VS = + 0.9 V  
versus Power Supply Voltage  
http://onsemi.com  
9
NCS7101, NCV7101  
APPLICATION INFORMATION AND OPERATING DESCRIPTION  
C
GENERAL INFORMATION  
fb  
The NCS7101 is a railtorail input, railtorail output  
operational amplifier that features guaranteed 1.8 volt  
operation. This feature is achieved with the use of a modified  
analog CMOS process that allows the implementation of  
depletion MOSFET devices. The amplifier has a 1.0 MHz  
gain bandwidth product, 1.2 V/ms slew rate and is  
operational over a power supply range less than 1.8 V to as  
high as 10 V.  
R
fb  
R
in  
-
+
Input  
Output  
C
in  
C
= Input and printed circuit board capacitance  
in  
Figure 30. Input Capacitance Pole Cancellation  
Inputs  
The input topology of this device series is unconventional  
when compared to most low voltage operational amplifiers.  
It consists of an Nchannel depletion mode differential  
transistor pair that drives a folded cascode stage and current  
mirror. This configuration extends the input common mode  
Output  
The output stage consists of complementary P and N  
channel devices connected to provide railtorail output  
drive. With a 2.0 k load, the output can swing within 100 mV  
of either rail. It is also capable of supplying over 95 mA  
when powered from 10 V and 3.0 mA when powered from  
1.8 V.  
voltage range to encompass the V and V power supply  
EE  
CC  
rails, even when powered from a combined total of less than  
1.8 volts. Figures 27 and 28 show the input common mode  
voltage range versus power supply voltage.  
The differential input stage is laser trimmed in order to  
minimize offset voltage. The Nchannel depletion mode  
MOSFET input stage exhibits an extremely low input bias  
current of less than 40 pA. The input bias current versus  
temperature is shown in Figure 4. Either one or both inputs  
When connected as a unity gain follower, the NCS7101  
can directly drive capacitive loads in excess of 390 pF at  
room temperature without oscillating but with significantly  
reduced phase margin. The unity gain follower  
configuration exhibits the highest bandwidth and is most  
prone to oscillations when driving a high value capacitive  
load. The capacitive load in combination with the  
amplifier’s output impedance, creates a phase lag that can  
result in an underdamped pulse response or a continuous  
oscillation. Figure 32 shows the effect of driving a large  
capacitive load in a voltage follower type of setup. When  
driving capacitive loads exceeding 390 pF, it is  
recommended to place a low value isolation resistor  
between the output of the op amp and the load, as shown in  
Figure 31. The series resistor isolates the capacitive load  
from the output and enhances the phase margin. Refer to  
Figure 33. Larger values of R will result in a cleaner output  
waveform but excessively large values will degrade the  
large signal rise and fall time and reduce the output’s  
amplitude. Depending upon the capacitor characteristics,  
the isolation resistor value will typically be between 50 to  
500 ohms. The output drive capability for resistive and  
capacitive loads is shown in Figures 2, 3, and 23.  
can be biased as low as V minus 300 mV to as high as 10 V  
EE  
without causing damage to the device. If the input common  
mode voltage range is exceeded, the output will not display  
a phase reversal but it may latch in the appropriate high or  
low state. The device can then be reset by removing and  
reapplying power. If the maximum input positive or  
negative voltage ratings are to be exceeded, a series resistor  
must be used to limit the input current to less than 2.0 mA.  
The ultra low input bias current of the NCS7101 allows  
the use of extremely high value source and feedback resistor  
without reducing the amplifier’s gain accuracy. These high  
value resistors, in conjunction with the device input and  
printed circuit board parasitic capacitances C , will add an  
in  
additional pole to the single pole amplifier shown in  
Figure 30. If low enough in frequency, this additional pole  
can reduce the phase margin and significantly increase the  
output settling time. The effects of C , can be canceled by  
in  
placing a zero into the feedback loop. This is accomplished  
R
+
Input  
Output  
with the addition of capacitor C . An approximate value for  
fb  
-
C
C
fb  
can be calculated by:  
L
R
  C  
in  
fb  
in  
C
+
fb  
R
Isolation resistor R = 50 to 500  
Figure 31. Capacitance Load Isolation  
Note that the lowest phase margin is observed at cold  
temperature and low supply voltage.  
http://onsemi.com  
10  
 
NCS7101, NCV7101  
Figure 32. Small Signal Transient Response with Large Capacitive Load  
Figure 33. Small Signal Transient Response with Large  
Capacitive Load and Isolation Resistor.  
http://onsemi.com  
11  
NCS7101, NCV7101  
R
T
470 k  
V
CC  
Output Voltage  
0
V
CC  
0.67 V  
C
CC  
CC  
Timing Capacitor  
Voltage  
T
1.0 nF  
0.33 V  
-
f
O
= 1.5 kHz  
+
The noninverting input threshold levels are set so that  
the capacitor voltage oscillates between 1/3 and 2/3 of  
R
470 k  
1a  
V
CC  
. This requires the resistors R , R and R to be of  
1a 1b 2  
equal value. The following formula can be used to ap-  
proximate the output frequency.  
0.9 V  
R
470 k  
2
R
1b  
470 k  
1
f
+
O
1.39 RTCT  
Figure 34. Square Wave Oscillator  
D
1
1N4148  
V
10 k  
CC  
cww  
cw  
Output Voltage  
0
CC  
CC  
1.0 M  
D
2
0.67 V  
0.33 V  
Timing Capacitor  
Voltage  
1N4148  
10 k  
Clockwise, Low Duty Cycle  
V
CC  
C
T
V
CC  
1.0 nF  
Output Voltage  
-
+
0
CC  
CC  
f
O
Timing Capacitor  
Voltage  
0.67 V  
0.33 V  
R
1a  
470 k  
CounterClockwise, High Duty Cycle  
V
CC  
R
470 k  
2
The timing capacitor C will charge through diode D and discharge  
T
2
R
through diode D , allowing a variable duty cycle. The pulse width of the  
1b  
1
470 k  
signal can be programmed by adjusting the value of the trimpot. The ca-  
pacitor voltage will oscillate between 1/3 and 2/3 of V , since all the  
CC  
resistors at the noninverting input are of equal value.  
Figure 35. Variable Duty Cycle Pulse Generator  
R
1
1.0 M  
2.5 V  
R
3
1.0 k  
+
-
10,000 mF  
C
in  
10 mF  
2.5 V  
R
R
1
3
C
+
C
in  
eff.  
R
2
1.0 M  
Figure 36. Positive Capacitance Multiplier  
http://onsemi.com  
12  
NCS7101, NCV7101  
A
f
C
f
400 pF  
R
f
100 k  
f
L
f
H
0.9 V  
1
R
10 k  
2
f +  
[ 200 Hz  
[ 4.0 kHz  
L
2 p R C  
1 1  
-
V
O
1
+
f
+
V
in  
H
2 p R C  
f f  
C
1
R
10 k  
1
80 nF  
0.9 V  
R
f
R
A + 1 )  
+ 11  
f
2
Figure 37. Voice Band Filter  
V
supply  
V
CC  
V
in  
V
+
-
in  
I
+
sink  
R
sense  
R
sense  
Figure 38. High Compliance Current Sink  
I
s
V
L
5.0 V  
1.0 W  
R
1.0 k  
3
R
sense  
R
R
1.0 k  
4
1
R
L
I
V
O
s
1.0 k  
R
+
5
V
O
1.00 A  
0.50 A  
67.93 mV  
78.67 mV  
-
2.4 k  
For best performance, use low  
tolerance resistors.  
R
2
3.3 k  
Figure 39. High Side Current Sense  
http://onsemi.com  
13  
NCS7101, NCV7101  
k R  
2
V
CC  
k R  
1
+
-
V
R
S
1
V
O
i
L
+
, Note that i is independent of R  
L
L
R
1
V
S
R
2
i
L
R
L
Figure 40. Current Source  
R
1
V
CC  
i
S
-
+
V
O
V
O
= i  
R
1
S
Figure 41. Current to Voltage Converter  
V
CC  
i = 0  
R
L
-
+
V
R
1
V
R
S
R1  
1
V
O
i
+ i  
+
+
R1  
L
V
S
i
L
i
R
R1  
1
Figure 42. Voltage to Current Converter  
http://onsemi.com  
14  
NCS7101, NCV7101  
R
2
V
CC  
R
R
R
ƪR ) 1ƫ* V  
4
2
2
1
2 ƪR ) R ƫ R  
1
V
+ V  
O
1
3
4
R
1
-
+
V
V
1
V
O
If R = R , and R = R , the equation simplifies to:  
1
3
2
4
2
R
3
R
R
2
1
V
+ (V * V )  
2 1  
O
R
4
Figure 43. Differential Amplifier  
R
4
R
1
V
CC  
V
2
V
1
V
2
R
2
-
+
V
V
R
V
R
3
3
1
1
2
2
R
2 ƪ  
R ƫ  
V
O
V
+ * R  
)
)
3
O
To minimize input offset current take:  
R = R // R // R // R  
R
5
5
1
2
3
4
Figure 44. Summing Amplifier  
http://onsemi.com  
15  
NCS7101, NCV7101  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
C
D
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
0.90  
1.10  
0.50  
C
0.25  
SEATING  
PLANE  
0.05  
G
H
J
K
L
M
S
0.95 BSC  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
10  
3.00  
T
_
_
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCS7101/D  

相关型号:

NCV7101SN2T1G

1.8 Volt Rail-to-Rail Operational Amplifier
ONSEMI

NCV7120FP0R2G

六路电磁电流控制器,带 N-FET 预驱动器
ONSEMI

NCV7240

Octal Low-Side Relay Driver
ONSEMI

NCV7240A

Octal Low-Side Relay Driver
ONSEMI

NCV7240ADPR2G

Octal Low-Side Relay Driver
ONSEMI

NCV7240B

Octal Low-Side Relay Driver
ONSEMI

NCV7240BDPR2G

Octal Low-Side Relay Driver
ONSEMI

NCV7240DPR2G

Octal Low-Side Relay Driver
ONSEMI

NCV7240_16

Octal Low-Side Relay Driver
ONSEMI

NCV7240_17

Octal Low-Side Relay Driver
ONSEMI

NCV7310D

LINE TRANSCEIVER, PDSO8, SO-8
ONSEMI

NCV7321

Stand Alone LIN Transceiver
ONSEMI