NCV7310D [ONSEMI]

LINE TRANSCEIVER, PDSO8, SO-8;
NCV7310D
型号: NCV7310D
厂家: ONSEMI    ONSEMI
描述:

LINE TRANSCEIVER, PDSO8, SO-8

驱动 光电二极管 接口集成电路 驱动器
文件: 总8页 (文件大小:59K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV7310  
Single Wire LIN Transceiver  
with Regulator Control  
NCV7310 provides the physical interface for LIN (Local  
Interconnect Network). The device works in cooperation with a  
microprocessor providing serial data to a single wire network, and  
receiving data over the same network. System design requires a  
master/slave operation. The device is backward compatible with  
ISO9141 while meeting the newer LIN objectives, including slew rate  
control. Applications can be found in the industrial market as well as  
the automotive market. This device includes an inhibit (INH) function  
used to control an external voltage regulator.  
http://onsemi.com  
SO–8  
D SUFFIX  
CASE 751  
Features  
Single–Wire Transceiver Compatible with the LIN Protocol  
Also Compatible with ISO 9141  
20 kbit/s Operation  
Low Current Sleep Mode  
PIN CONNECTION AND  
MARKING DIAGRAM  
Short Circuit Protection  
Thermal Shutdown  
ESD to 4.0 kV All Pins  
Loss of Ground Does Not Affect Bus Activity  
Unpowered Node Does Not Affect Bus Activity  
8
1
RxD  
EN  
INH  
V
S
V
CC  
Bus  
GND  
TxD  
A
WL, L  
YY, Y  
= Assembly Location  
= Wafer Lot  
= Year  
INH  
EN  
V
S
WW, W = Work Week  
V
CC  
V
2
S
ORDERING INFORMATION  
State  
Device  
Package  
Shipping  
Control  
NCV7310D  
95 Units/Rail  
SO–8  
SO–8  
RxD  
BUS  
GND  
NCV7310DR2  
2500 Tape & Reel  
Drive  
Current  
Limit  
TxD  
Wave Shaper  
Thermal  
Shutdown  
Figure 1. Block Diagram  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
November, 2001 – Rev. 5  
NCV7310/D  
NCV7310  
V Power Up  
S
Stand–By  
EN = LOW  
INH = HIGH  
RxD = LOW(1), HIGH(3)  
V
CC  
= ON  
Wake Up  
t > t[wake]  
EN goes high  
Normal Mode  
EN = HIGH  
INH = HIGH  
V
CC  
= ON  
EN goes high  
= ON  
V
CC  
EN goes low  
Sleep Mode  
EN = LOW  
INH = FLOATING  
V
CC  
= OFF(2)  
1. After wake–up via bus.  
2. ON when INH not used to control external voltage regulator.  
3. After V power up.  
S
Figure 2. State Diagram  
MAXIMUM RATINGS*  
Symbol  
Rating  
Value  
–0.3 to 6.0  
–0.3 to 40  
–20 to 28  
40  
Unit  
V
V
V
Logic Power Supply Voltage  
Battery Supply Voltage  
Bus Input Voltage  
CC  
S
V
Bus  
Vdc  
V
Bus  
Bus Input Voltage (t < 1.0 ms)  
Logic Input Voltage  
INHIBIT  
EN, TxD, RxD  
INH  
–0.3 to V + 0.3  
V
CC  
–0.3 to V + 0.3  
V
S
ESD  
ESD Discharge Susceptibility (Human Body Model)  
Operating Junction Temperature  
4.0  
kV  
°C  
°C  
T
J
–40 to 150  
–55 to 150  
Tstg  
Storage Temperature Range  
Package Thermal Resistance  
Junction–to–Case  
Junction–to–Ambient  
R
R
45  
165  
°C/W  
°C/W  
θ
θ
JC  
JA  
*The maximum package power dissipation must be observed.  
http://onsemi.com  
2
NCV7310  
ELECTRICAL CHARACTERISTICS (4.5 V V 5.5 V, 6.0 V V 20 V, R = 1.0 k, EN = V ,  
CC  
CC  
S
T
–40°C T 125°C; unless otherwise specified. Note 1. See Figures 4 and 5.)  
J
Characteristic  
Test Conditions  
Min  
Typ  
2.0  
Max  
4.0  
4.0  
2.0  
8.0  
50  
Unit  
mA  
mA  
mA  
mA  
µA  
V
I
Quiescent Current Recessive State  
Quiescent Current Dominant State  
TxD = V , Note 2.  
CC  
CC  
I
TxD = 0 V, Note 2.  
2.0  
CC  
I
S
Quiescent Current Recessive State  
Quiescent Current Dominant State  
TxD = V  
1.0  
CC  
I
S
TxD = 0 V  
6.0  
Quiescent Current Sleep Mode  
RxD High Level Output Voltage  
RxD Low Level Output Voltage  
V
S
12 V. Note 3.  
0.8 × V  
0
35  
I
= –400 µA  
= 400 µA  
V
CC  
RxD  
RxD  
CC  
I
0.2 × V  
V
CC  
Receiver Threshold Voltage,  
recessive to dominant edge  
0.4 × V  
0.46 × V  
V
S
S
Receiver Threshold Voltage,  
dominant to recessive edge  
0.54 × V  
0.08 × V  
0.6 × V  
V
S
S
Receiver Hysteresis  
V
V
S
TxD High Level Threshold Voltage  
0.5 × V  
0.7 × V  
CC  
CC  
+0.4 V  
TxD Low Level Threshold Voltage  
0.3 × V  
0.5 × V  
–0.4 V  
CC  
CC  
TxD Hysteresis  
800  
–80  
mV  
µA  
V
TxD Pull Up Current  
TxD = 0 V  
TxD = V  
–150  
0.8 × V  
0
–100  
Bus Recessive Output Voltage  
Bus Dominant Output Voltage  
Bus Short Circuit Current  
Bus Leakage Current  
V
S
CC  
S
TxD = 0 V  
0.2 × V  
V
S
Bus = 13.5 V  
40  
70  
110  
mA  
µA  
V
CC  
V
CC  
= 0 V, V = 0 V, Bus = –12 V  
= 0 V, V = 0 V, Bus = 20 V  
–750  
–350  
0
5.0  
S
S
Bus Pull Up Resistance  
20  
0.4 × V  
30  
47  
kΩ  
V
Bus Wake–up Threshold Voltage  
EN High Level Threshold Voltage  
0.7 × V  
S
S
0.5 × V  
0.7 × V  
V
CC  
CC  
+0.4 V  
EN Low Level Threshold Voltage  
0.3 × V  
0.5 × V  
V
CC  
CC  
–0.4 V  
EN Pull Down Resistance  
15  
30  
60  
kΩ  
INH High Level Drop Voltage,  
I
= –0.15 mA  
0.05  
0.5  
V
INH  
INH = V – INH  
S
INH Leakage Current  
Sleep Mode, INH = 0 V  
–5.0  
0
5.0  
µA  
1. Designed to meet these characteristics over the stated voltage and temperature ranges, though may not be 100% parametrically tested  
in production.  
2. Sum of current into V and EN pins.  
CC  
3. Sum of current into Bus and V pins. V = V  
12 V, I = I + I  
.
S
S
BUS  
Q
S
BUS  
http://onsemi.com  
3
NCV7310  
SWITCHING CHARACTERISTICS (4.5 V V 5.5 V, 6.0 V V 20 V, R = 1.0 k, EN = V ,  
CC  
CC  
S
T
–40°C T 125°C; unless otherwise specified. Note 4. See Figures 4 and 5.)  
J
Characteristic  
Test Conditions  
80% to 20%, C = 3.3 nF,  
Min  
Typ  
Max  
Unit  
Bus Falling Edge Slew Rate  
–3.0  
–2.0  
–1.0  
V/µs  
Bus  
V
CC  
= 5.0 V, V = 13.5 V  
s
Bus Rising Edge Slew Rate  
20% to 80%, C  
= 3.3 nF,  
1.0  
2.0  
1.5  
5.0  
3.0  
10  
V/µs  
µs  
Bus  
V
CC  
= 5.0 V, V = 13.5 V  
s
Propagation Delay, TxD Low to RxD  
C
C
= 3.3 nF, C  
V = 13.5 V  
S
= 20 pF, V = 5.0 V,  
CC  
Bus  
RxD  
Low, t  
d(L)TR  
(Recessive to Dominant)  
Propagation Delay, TxD High to RxD  
= 3.3 nF, C  
V = 13.5 V  
S
= 20 pF, V = 5.0 V,  
2.0  
5.0  
10  
µs  
Bus  
RxD  
CC  
High, t  
d(H)TR  
(Dominant to Recessive)  
Propagation Delay, TxD Low to Bus  
C
C
C
C
= 3.3 nF, V = 5.0 V  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
4.0  
4.0  
µs  
µs  
µs  
µs  
Bus  
Bus  
Bus  
Bus  
CC  
Low, t  
d(L)T  
Propagation Delay, TxD High to Bus  
High, t  
= 3.3 nF, V = 5.0 V  
CC  
d(H)T  
Propagation Delay, Bus Dominant  
(Low) to RxD Low, t  
= 3.3 nF, C  
= 3.3 nF, C  
= 20 pF, V = 5.0 V  
CC  
RxD  
RxD  
d(L)R  
Propagation Delay, Bus Recessive  
(High) to RxD High, t  
= 20 pF, V = 5.0 V  
CC  
d(H)R  
Receiver Delay Symmetry  
Transmitter Delay Symmetry  
Wake–up Delay Time  
–2.0  
–2.0  
30  
2.0  
2.0  
110  
µs  
µs  
µs  
70  
4. Designed to meet these characteristics over the stated voltage and temperature ranges, though may not be 100% parametrically tested  
in production.  
PIN FUNCTION DESCRIPTION  
PACKAGE PIN #  
8 Lead SOIC  
PIN SYMBOL  
FUNCTION  
1
2
RxD  
Receive data output. Transmit data also loops back on this pin.  
EN  
Enable input. Internal 30 kpull down resistor. Transceiver  
in normal mode when high.  
3
4
5
6
V
5.0 V supply input.  
CC  
TxD  
GND  
Bus  
Transmit data input. Internal pull up current source (100µA).  
Ground.  
Bus Input/Output. Internal pull up resistor (30 kΩ) through a  
diode (protection when V is low).  
S
7
8
V
Battery supply input.  
S
INH  
Inhibit Output. For use with external regulator. Goes high  
with wakeup signal on Bus.  
http://onsemi.com  
4
NCV7310  
V
BATT  
LIN bus  
Ground  
NCV7310  
RxD INH  
EN  
V
S
V
CC  
Bus  
TxD GND  
1.0 k  
Voltage  
Regulator  
Master Node  
V
BATT  
LIN bus  
Ground  
NCV7310  
RxD INH  
EN  
V
S
V
CC  
Bus  
TxD GND  
Voltage  
Regulator  
with ENABLE  
Slave Node  
Figure 3. Application Diagram  
http://onsemi.com  
5
NCV7310  
RxD  
V
CC  
TxD EN  
INH  
V
S
BUS  
NCV7310  
1
4
8
RxD INH  
R
T
EN  
V
S
C
RXD  
V
CC  
BUS  
C
5
BUS  
TxD GND  
47 nF  
47 nF  
Figure 4. Test Circuit  
V
V
CC  
TxD  
GND  
t
t
d(H)T  
d(L)T  
V
S
V
V
DR  
RD  
BUS  
GND  
t
t
d(H)R  
d(L)R  
V
CC  
0.7 V  
CC  
RxD  
0.3 V  
CC  
GND  
t
t
t
d(H)TR  
d(L)TR  
Figure 5. Switching Characteristics Timing Diagram  
http://onsemi.com  
6
NCV7310  
PACKAGE DIMENSIONS  
SO–8  
D SUFFIX  
CASE 751–07  
ISSUE V  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.004  
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
http://onsemi.com  
7
NCV7310  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NCV7310/D  

相关型号:

NCV7321

Stand Alone LIN Transceiver
ONSEMI

NCV7321D10G

Stand Alone LIN Transceiver
ONSEMI

NCV7321D10R2G

Stand Alone LIN Transceiver
ONSEMI

NCV7321D11G

Stand Alone LIN Transceiver
ONSEMI

NCV7321D11R2G

Stand Alone LIN Transceiver
ONSEMI

NCV7321D12R2G

Stand-alone LIN Transceiver
ONSEMI

NCV7321MW2R2G

Stand-alone LIN Transceiver
ONSEMI

NCV7321_15

Stand-alone LIN Transceiver
ONSEMI

NCV7321_16

Stand-alone LIN Transceiver
ONSEMI

NCV7327

LIN Transceiver, Stand-alone
ONSEMI

NCV7327D10R2G

LIN Transceiver, Stand-alone
ONSEMI

NCV7327MW0R2G

LIN Transceiver, Stand-alone
ONSEMI