NCV75215DB001R2G [ONSEMI]

Ultrasonic Parking Distance Measurement ASSP;
NCV75215DB001R2G
型号: NCV75215DB001R2G
厂家: ONSEMI    ONSEMI
描述:

Ultrasonic Parking Distance Measurement ASSP

文件: 总44页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV75215  
Ultrasonic Parking Distance  
Measurement ASSP  
General Description  
The NCV75215 ASSP is intended to operate with a piezoelectric  
ultrasonic transducer to provide time-of-flight measurement of an  
obstacle distance during vehicle parking. The high-sensitivity,  
low-noise operation allows detection from 0.25 m up to 4.5 m for  
a standard 75 mm pole. Actual minimum distance is determined by the  
length of reverberations. Under ideal conditions, with perfectly tuned  
and matched external circuitry, a minimum distance of 0.2 m is  
achievable. Actual detection range depends on a piezoelectric  
ultrasonic transducer and external analog parts.  
www.onsemi.com  
16  
1
TSSOP−16  
CASE 948F  
The device drives the ultrasonic transducer with a programmable  
frequency via a transformer. The received echo is amplified and  
converted to a digital signal, filtered, detected and the magnitude is  
compared to a time-dependent threshold which is stored in an internal  
RAM. Distance to the obstacle is determined by the time measured  
from a transmission burst to echo recognition.  
MARKING DIAGRAM  
In accordance with:  
A bidirectional I/O Line is used to communicate with a master  
(ECU). The master issues I/O Line commands to the NCV75215 and  
data are reported back via the same line.  
US:  
7620021 Mark Specifications − for ceramic,  
plastic and tape−automated bond packages  
Features  
Europe:  
16020 Standard Marking Specification  
Measurement Distance Range from 0.25 m to 4.5 m (depends on  
External Parts)  
Acoustic Noise Monitoring  
PIN CONNECTIONS  
Transducer Resonant Period Measurement  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RXN  
RXP  
TSTEN  
TST0  
TST1  
TST2  
TST3  
GNDIO  
IO  
Diagnosis of Transducer Performance  
Junction Temperature Monitoring and Thermal Shutdown  
Transducer Center Frequency Range from 35 to 90 kHz  
Direct and Indirect Measurement Modes  
GNDA  
N.C.  
NCV75215  
GND  
DRVA  
DRVC  
DRVB  
EEPROM Memory for Configuration Setting and User Data  
Rx Gain Adjustable in 0.5 dB Steps in the Range from 50 to 110 dB  
Time-dependent Threshold Values for the Sensitivity Control  
Dynamic (Time-dependent) Gain Control  
Tx Current Range Adjustable from 50 mA to 350 mA  
Programmable Ultrasonic Burst Length  
On-chip Bidirectional I/O Line  
Small TSSOP16 Package  
VSUP  
ORDERING INFORMATION  
Device  
NCV75215DB001R2G* TSSOP−16 4000 / Tape  
(Pb−Free) & Reel  
Package  
Shipping  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable*  
These are Pb-free Devices  
Typical Applications  
Automotive Park Assist  
Ultrasonic Distance Measurements  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
February, 2017 − Rev. 0  
NCV75215/D  
NCV75215  
Figure 1. Application Schematic Diagram  
Table 1. RECOMMENDED EXTERNAL COMPONENTS  
Name  
Description  
Typical Value  
Units  
Rating  
Tolerance  
Comment  
R1  
Resonator Damping  
Optimal value  
kW  
5 %  
Value depends on used transducer &  
transformer  
R2  
R3  
Battery Filter Resistor  
I/O Line Protection  
100  
470  
W
W
Note  
Note ⇒  
5 %  
5 %  
Power rating according to required EMC  
robustness  
It may be omitted but system ESD robust-  
ness is reduced  
Power rating according to required EMC  
robustness  
R4  
R5  
I/O Line Pull Up  
10  
47  
kW  
100 mW  
5 %  
5 %  
Optional. It is not used if I/O Line internal  
pull-up resistor is enabled  
(see Config RAM item IO_PUP_ENA)  
I/O Line High Frequency  
Protection  
W
Note ⇒  
Optional  
It improves high frequency EMC robust-  
ness  
Power rating according to required EMC  
robustness  
RF1  
RF2  
Input EMC Filter Resistor  
(Note 1)  
100  
W
Note ⇒  
5 %  
Optional  
It improves high frequency EMC  
robustness  
Power rating according to required EMC  
robustness  
C1  
C2  
C3  
Receiver Input Coupling  
Receiver Input Coupling  
680  
680  
pF  
pF  
pF  
100 V  
100 V  
100 V  
10 %  
10 %  
5 %  
Serial and Parallel  
Resonances Matching  
optimal  
value  
Value depends on used transducer &  
transformer  
CF1  
Input EMC Filter Capacitor  
(Note 1)  
10  
pF  
50 V  
10 %  
Optional  
It improves high frequency EMC  
robustness  
C6  
C7  
Battery Filter Capacitor  
100  
22  
nF  
50 V  
35 V  
10 %  
10 %  
Tank Capacitor for  
Transmitting Current  
mF  
2x ceramic type capacitor  
1. Some of RF1, RF2 and CF1 components may be omitted. Use them according to required EMC robustness.  
www.onsemi.com  
2
 
NCV75215  
Table 1. RECOMMENDED EXTERNAL COMPONENTS (continued)  
Name  
C8  
Description  
VBAT HF Filter  
Typical Value  
Units  
nF  
Rating  
50 V  
Tolerance  
10 %  
Comment  
100  
330  
C9  
I/O Line Capacitor  
pF  
50 V  
10 %  
Standard I/O Line slope (60 ms)  
IO_SLP_FAST = 0  
C9  
Tr1  
I/O Line Capacitor  
100  
pF  
mH  
kHz  
50 V  
100V  
100V  
10 %  
5%  
Fast I/O Line slope (20 ms)  
IO_SLP_FAST = 1  
Push-pull Transformer  
Ultrasonic Transducer  
Transducer  
specific  
PZ1  
MA40MF14−1B  
MA55AF15−07NA  
MA48AF15−07N  
the lower muRata series  
the better  
D1  
Reverse Polarity Protection  
BAS321  
50 V  
1. Some of RF1, RF2 and CF1 components may be omitted. Use them according to required EMC robustness.  
Table 2. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
RXN (Note 2)  
RXP  
Type  
Input  
Description  
Analog Receiver Negative Input  
1
2
Input  
Analog Receiver Positive Input  
Analog Ground  
3
GNDA  
n.c.  
Ground  
4
n.c.  
Pin not connected  
5
GND  
Ground  
TX Ground, Digital Ground  
Driver Output A  
6
DRVA  
Output  
7
DRVC  
Output  
Driver Output C (Center of winding)  
Driver Output B  
8
DRVB  
Output  
9
VSUP  
Power Supply  
Input/Output  
Ground  
Main Power Supply  
10  
11  
12  
13  
14  
15  
16  
IO  
I/O Line Bidirectional Interface to Master ECU  
I/O Line Ground  
GNDIO  
TST3  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
Test pin 3/Custom Diagnostic Interface  
Test pin 2/Custom Diagnostic Interface  
Test pin 1/Custom Diagnostic Interface  
Test pin 0/Custom Diagnostic Interface  
Manufacturer Test Mode Enable  
TST2  
TST1  
TST0  
TSTEN (Note 3)  
2. Both receiver inputs are equal. Anyone of them can be used for signal input and the other for ground reference. But, using outer package  
pin for signal input may result in worse EMC robustness.  
3. TSTEN pin has to be always grounded in customer application. There is no customer functionality.  
NCV75215  
R2  
D1  
VSUP  
IO  
IO_CMP  
CMP  
VBAT  
R_PU_IOL  
~320 kW  
~8.5 kΩ  
R4  
C6  
C7 C7 C8  
IO_DRV  
R3  
~500 W  
IO_SLP  
Control  
IO Line  
IO_DRV_ENA  
C9  
Figure 2. I/O Line Driver Structure and External Network  
www.onsemi.com  
3
 
NCV75215  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Units  
V
Supply Voltage Range VSUP (Note 4)  
I/O Line Voltage Range  
V
SUP  
−0.3 to 40  
−5 to 40  
V
IO  
V
I/O Line Voltage Range (T = 25°C)  
V
−15 to 40  
−30 to 40  
V
A
IO,A  
I/O Line Voltage Range (t  
< 1 second, T = 25°C)  
V
IO,PA  
V
PULSE  
A
Transmitter DRVA, DRVB voltage  
Transmitter DRVC voltage  
V
−0.3 to (2 × V  
+ 0.3) or 40  
V
DRV  
DRV  
SUP  
V
−0.3 to (V  
+ 0.3) or 40  
V
SUP  
Receiver Input P, N Voltage  
V , V  
RXP RXN  
−0.3 to 0.3  
V
Testmode Pin Voltage  
V
TST0  
− V  
0 to (V + 0.3) or 3.6  
V
TST3  
DD  
Maximum Junction Temperature  
Storage Temperature Range  
ESD Capability, Human Body Model (Note 5)  
T
125  
−40 to 125  
2
°C  
°C  
kV  
V
J(max)  
TSTG  
ESDHBM  
ESDCDM−O  
ESDCDM−E  
LU25C  
ESD Capability, Charge Device Model, All Pins (Note 5)  
ESD Capability, Charge Device Model, Corner Pins (Note 5)  
Latch-up Immunity at 25°C (Note 5)  
500  
750  
V
200  
mA  
mA  
°C  
Latch-up Immunity at 125°C (Note 5)  
LU125C  
100  
Lead Temperature Soldering  
Reflow (SMD Styles Only), Pb-Free Versions (Note6)  
T
260  
SLD  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
5. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latch-up Current Maximum Rating: per JEDEC standard JESD78  
6. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D  
Table 4. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Units  
Thermal Characteristics, TSSOP16 (Note 7)  
Thermal Resistance, Junction-to-Air (Note 8)  
°C/W  
R
135  
q
JA  
7. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2
2
8. Values based on copper area of 645 mm (or 1 in ) of 1 oz. copper thickness and FR4 PCB substrate.  
Table 5. RECOMMENDED OPERATING RANGES  
Symbol  
VSUP  
VIO  
Description  
Min  
6
Typ  
Max  
Units  
DC Supply Voltage  
I/O Line Voltage  
12  
18  
V
V
0
VSUP  
(Note 9)  
T
Ambient Temperature under Bias  
Junction Temperature under Bias  
−40  
−40  
85  
°C  
°C  
A
T
125  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
9. VSUP minimum voltage level might decrease the transmit burst ultrasonic power, it is external circuitry dependent. Transducer equivalent  
serial resistance is transformed on DRVA,B,C ASSP inputs and might be too high to satisfy both minimum VSUP and maximum TX current.  
In such a case, transmit driving current proportionally declines.  
www.onsemi.com  
4
 
NCV75215  
Table 6. ELECTRICAL CHARACTERISTICS  
(VSUP = 6 V to 18 V, TA = *40_C to 85_C, external devices as in application circuit of Figure 1.)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mA  
I
Total VSUP Current Consumption (Normal Mode, No Transmission)  
Total VSUP Current Consumption (Low Power Mode)  
Wake-up Time from Low Power Mode to Normal Mode  
8
1
1
VSUP  
VSUP, LOW_PWR  
I
mA  
t
ms  
WAKE  
RECEIVER AMPLIFIER  
RX  
RX  
RX  
Receiver Input Resistance  
Receiver Input Capacitance  
Programmable Receiver Gain  
Receiver Gain Step  
87  
kW  
pF  
dB  
dB  
R_IN  
C_IN  
GAIN  
100  
50  
110  
RX  
0.5  
GSTEP  
NSTEP  
RX  
Receiver Number of Gain Steps  
Receiver Sensitivity at Maximum Gain  
Receiver Bandwidth  
127  
RX  
12  
35  
mV  
PP  
SENS  
RX  
90  
kHz  
BW  
TRANSDUCER DRIVER  
TX  
Programmable Transmitter Current  
Transmitter Current Step  
50  
350  
mA  
mA  
CURR  
CSTEP  
NSTEP  
SPREC  
TX  
TX  
TX  
4.76  
63  
Transmitter Number of Current Steps  
Transmitter Current Tolerance  
−20  
20  
%
SUPPLY VOLTAGE AND ITS MONITORING  
VDD  
VDD  
Internal VDD Supply Voltage  
VDD Level for Power-on-Reset  
3.15  
2.7  
3.3  
3.5  
3.1  
5.7  
V
V
V
POR  
VSUP  
VSUP Level for Power-on-Reset Release at Start-up,  
Under-voltage Threshold  
5.1  
UV  
VSUP  
VSUP Level for TX Driver Disable (to Protect Drivers),  
Over-voltage Threshold  
18  
20  
V
OV  
INTERNAL OSCILLATOR  
Internal Oscillator Frequency  
I/O LINE INTERFACE  
F
OSC  
9.7  
10  
10.3  
MHz  
IO  
Threshold Voltage for Digital Low  
Threshold Voltage for Digital High  
Output Voltage Low at I/O Pin  
0.3  
0.62  
0.4  
0.33  
0.66  
0.65  
0.36  
0.7  
1
VSUP  
VSUP  
V
ILV  
IHV  
OLV  
IO  
IO  
(I  
OUT  
= 1 mA, Internal Pull-up Activated, R4 Not Used)  
IO  
Output Slew Rate (Standard I/O Line Slope)  
Output Slew Rate (Fast I/O Line Slope)  
I/O Short Circuit Current  
0.2  
1
0.5  
1.7  
0.8  
2.5  
50  
V/ms  
V/ms  
mA  
kW  
SR, STD  
IO  
SR, FAST  
IO  
10  
200  
6
SCC  
IO  
Fixed Internal Pull-up Resistor (R_PU_IOL)  
Selectable Internal Pull-up Resistor  
320  
8.5  
450  
11  
PU  
PU, SEL  
IO  
kW  
TEMPERATURE MEASUREMENT AND SHUTDOWN  
T
Temperature Measurement Range  
−60  
150  
°C  
°C  
°C  
°C  
°C  
°C  
MR  
T
MRES  
Temperature Measurement Resolution  
1
T
A41  
Temperature Measurement Accuracy at T = 42°C  
−7  
7
J
T
A125  
Temperature Measurement Accuracy at T = 125°C  
−10  
−10  
140  
10  
J
T
A40−  
Temperature Measurement Accuracy at T = −40°C  
10  
J
T
Thermal Shutdown  
190  
SD  
EEPROM  
EE  
Data Retention Time  
Write Endurance  
15  
100  
1M  
year  
RT  
EE  
cycles  
cycles  
WE  
EE  
Refresh and Read Endurance  
RE  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
5
NCV75215  
DIGITAL FUNCTIONALITY DESCRIPTION  
The digital circuitry consists of the following blocks:  
RST_GEN − based on POR (power-on reset) signals,  
generates internal reset of digital blocks  
EEPROM_CTRL − EEPROM controller for accessing  
EEPROM memory  
I/O_LINE_CTRL − protocol and application layer for  
communication with I/O Line master (ECU) via  
I/O Line  
CLK_GEN − generates CLK_IO_LINE and  
CLK_EEPROM from internal oscillator  
CFG_MEM − configuration parameters storage for the  
chip functionality (EEPROM shadow RAM)  
DSP_TOP − ultrasonic receiver and transmitter control,  
digital signal processing for ultrasonic receiver  
Configuration  
commands  
CFG_MEM  
Measurement  
data  
Configuration  
data  
IO_TXD  
IO_RXD  
IO_LINE_CTRL  
EEPROM Meas.  
commands  
EEPROM Control  
EEPROM DATA  
commands  
Ultrasonic receiver control  
Ultrasonic transmitter control  
ADC_DATA  
DSP_TOP  
EEPROM_CTRL  
CLK_EEPROM  
CLK_OSC  
CLK_IO_LINE  
CLK  
CLK_GEN  
POR_VDD_B  
RST_CLK_GEN_B  
RST_B  
RST_GEN  
Figure 3. Digital Block Diagram  
CLK_GEN (Clock Generator)  
RST_GEN (Reset Generator)  
It generates internal reset signals according to VSUP and  
VDD levels. In case of thermal shutdown all major blocks,  
such as RX, TX, and IO_LINE, go to power-down mode.  
This means that the chip doesn’t communicate via I/O Line  
and its functionality is blocked. Functionality is restored  
when temperature falls back to a safe level.  
This block generates the timing and internal clock signals  
based on an on-chip clock oscillator nominally running at  
10 MHz (100 ns period).  
www.onsemi.com  
6
NCV75215  
DSP_TOP (Digital Signal Processing)  
This block contains the core of the digital functionality of  
the NCV75215. The signal from ultrasonic transducer is  
amplified, converted to digital and fed to DSP_TOP. Then,  
it is digitally processed and compared to a time-dependent  
threshold. The echo is reported on I/O Line when the signal  
magnitude exceeds the threshold. Distance to the obstacle  
can be determined from the time of the echo arrival. This  
block also controls transmission and reception at the  
ultrasonic transducer frequency. A simplified internal  
diagram of DSP_TOP module is depicted in Figure 4.  
Magnitude  
Memory  
ADC_DATA  
ADC_DATA  
Digital Magnitude  
Detector  
DSP  
filter  
TST3  
Analog Signal  
Debug  
Output  
External  
Low-pass  
Threshold  
Magnitude  
I/O Line  
I/O Line  
Digital  
comparator  
I/O Line  
driver  
Threshold  
Threshold  
RAM  
Figure 4. Block Diagram of DST TOP Module (Simplified)  
Figure 5. Understanding Internal Digital Magnitude, Thresholds and Debug Amplitude  
(the Processing is Fully Digital; Voltages Apply to PDM Debugging Outputs TST2 and TST3)  
www.onsemi.com  
7
NCV75215  
Figure 6. Block Diagram from Signal Processing Point of View  
www.onsemi.com  
8
NCV75215  
CFG_MEM (Configuration Memory)  
when available. For CFG_MEM locations not associated to  
the EEPROM, default value is preloaded after reset.  
Data is transferred over I/O Line LSBit first and  
lowest sub-index first (in case of data arrays).  
Bit structure of configuration memory is described in  
Table7. EEPROM Refresh is executed during reset and reset  
values of CFG_MEM cells are preloaded from EEPROM  
Table 7. STRUCTURE OF CONFIGURATION MEMORY  
Conf.  
Memory  
index  
No  
EEPROM  
of  
(Note 11)  
bits  
Name  
Short Name  
Description  
Default  
R/W  
0
1
Measured Junction  
Temperature  
TEMP [7:0]  
8
8
Junction temperature code  
Actual  
value  
R
only  
Sensor Status  
(sub-index 0)  
SENSOR_STATUS  
[7:0]  
Refer to Encoding of Sensor  
Status Section  
Actual  
value  
R
only  
Measured  
Reverberation Period  
(sub-index 1)  
MEASURED_  
REVERB_PER [10:0]  
11  
1−LSB ~ 25 ns  
0
R
(Note 12)  
only  
Carrier TX / RX  
Period  
CARRIER_PER [10:0]  
11  
1−LSB ~ 25 ns  
Yes  
R/W  
Transmission & Reverberation:  
TX_CARRIER_PER =  
CARRIER_PER + 2 ×  
DTX_PER  
Reception:  
RX_CARRIER_PER =  
CARRIER_PER + 2 ×  
DRX_PER  
Valid range: <30 kHz, 95 kHz>  
1−LSB ~ 50 ns  
Delta TX Period  
(sub-index 0)  
DTX_PER [7:0]  
8
0
R/W  
Two’s complement signed  
number  
Range: <−6.4 ms, 6.35 ms>  
See CARRIER_PER for  
explanation  
Delta Rx Period  
(sub-index 1)  
DRX_PER [7:0]  
8
5
The same coding as DTX_PER  
0
R/W  
R/W  
See CARRIER_PER for  
explanation  
3
4
TX Burst Pulse Count  
BURST_PULSE_  
CNT [4:0]  
Number of TX pulses (0...31)  
0: TX driver is not activated  
1: 1 × TX pulse  
16  
31: 31 × TX pulses  
Measurement  
Duration  
MEAS_DUR [3:0]  
4
0 – T  
and T  
I/O Line  
0
R/W  
SNDx  
RECx  
commands disabled (default)  
1 – 6 ms, 2 – 12 ms  
3 – 18 ms,  
5 – 30 ms,  
7 – 42 ms,  
9 – 54 ms,  
4 – 24 ms  
6 – 36 ms  
8 – 48 ms  
10 – 60 ms  
other values – 60 ms  
5
6
THR1  
THR2  
THR1_LVL0 [5:0] /  
DT0 [3:0]  
120  
120  
Thresholds – THR1 table  
See section THRESHOLDS  
THR1_  
LVLx  
= 32  
R/W  
R/W  
THR1_LVL11 / DT11  
DTx = 0  
THR2_LVL0 [5:0] /  
DT0 [3:0]  
Thresholds – THR2 table  
See section THRESHOLDS  
THR2_  
LVLx  
= 32  
THR2_LVL11 / DT11  
DTx = 0  
www.onsemi.com  
9
 
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
RX Gain Code  
1−LSB ~ 0.476 dB  
Default  
R/W  
7
Static RX Gain Code  
(sub-index 0)  
RX_GAIN_CODE  
[6:0]  
7
1
Yes  
Yes  
R/W  
Dynamic Gain  
Control Enable  
(sub-index 1)  
DYN_GAIN_ENA  
Enables / disables dynamic  
gain  
R/W  
Noise Threshold  
(sub-index 2)  
NOISE_THR [5:0]  
6
6
Threshold applied during noise  
monitoring  
32  
4
R/W  
R/W  
Noise Floor  
NOISE_FLOOR [5:0]  
All thresholds below  
(sub-index 3)  
NOISE_FLOOR[5:0] are  
clamped to  
NOISE_FLOOR[5:0]. Signal be-  
low NOISE_FLOOR[5:0] is con-  
sidered as noise.  
The same coding as thresh-  
olds.  
8
Dynamic Gain –  
Delta Gain #0  
(sub-index 0)  
DELTA_GAIN0 [6:0]  
DELTA_GAIN0_SIGN  
DELTA_GAIN1 [6:0]  
DELTA_GAIN1_SIGN  
DELTA_GAIN2 [6:0]  
DELTA_GAIN2_SIGN  
DELTA_GAIN3 [6:0]  
DELTA_GAIN3_SIGN  
DELTA_GAIN4 [6:0]  
DELTA_GAIN4_SIGN  
7
1
7
1
7
1
7
1
7
1
4
4
4
4
4
See DYNAMIC GAIN section.  
Range 0127  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Dynamic Gain –  
Delta Gain Sign #0  
(sub-index 1)  
See DYNAMIC GAIN section.  
0positive, 1negative  
Dynamic Gain –  
Delta Gain #1  
(sub-index 2)  
See DYNAMIC GAIN section.  
Range 0127  
Dynamic Gain –  
Delta Gain Sign #1  
(sub-index 3)  
See DYNAMIC GAIN section.  
0positive, 1negative  
Dynamic Gain –  
Delta Gain #2  
(sub-index 4)  
See DYNAMIC GAIN section.  
Range 0127  
Dynamic Gain –  
Delta Gain Sign #2  
(sub-index 5)  
See DYNAMIC GAIN section.  
0positive, 1negative  
Dynamic Gain –  
Delta Gain #3  
(sub-index 6)  
See DYNAMIC GAIN section.  
Range 0127  
Dynamic Gain –  
Delta Gain Sign #3  
(sub-index 7)  
See DYNAMIC GAIN section.  
0positive, 1negative  
Dynamic Gain –  
Delta Gain #4  
(sub-index 8)  
See DYNAMIC GAIN section.  
Range 0127  
Dynamic Gain –  
Delta Gain Sign #4  
(sub-index 9)  
See DYNAMIC GAIN section.  
0positive, 1negative  
Dynamic Gain –  
Delta Time Code #0  
(sub-index 10)  
DELTA_GAIN_DT0  
[3:0]  
See DYNAMIC GAIN section.  
See DYNAMIC GAIN section.  
See DYNAMIC GAIN section.  
See DYNAMIC GAIN section.  
See DYNAMIC GAIN section.  
Dynamic Gain –  
Delta Time Code #1  
(sub-index 11)  
DELTA_GAIN_DT1  
[3:0]  
Dynamic Gain –  
Delta Time Code #2  
(sub-index 12)  
DELTA_GAIN_DT2  
[3:0]  
Dynamic Gain –  
Delta Time Code #3  
(sub-index 13)  
DELTA_GAIN_DT3  
[3:0]  
Dynamic Gain –  
Delta Time Code #4  
(sub-index 14)  
DELTA_GAIN_DT4  
[3:0]  
www.onsemi.com  
10  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
Default  
R/W  
8
Dynamic Gain  
Control Start  
(sub-index 15)  
DYN_GAIN_START  
[3:0]  
4
2
DYN_GAIN_START × 204.8 ms  
0
R/W  
Dynamic Gain – Filter  
BW  
DYN_GAIN_BW [1:0]  
USER_DATA [119:0]  
See DYNAMIC GAIN section.  
0
R/W  
R/W  
(sub-index 16)  
9
Generic User Data  
120  
120 bits of user data.  
User can select any structure.  
The chip doesn’t internally use  
this data.  
Yes  
Yes  
10  
Reverberation /  
Decay Monitoring  
Window Duration  
(sub-index 0)  
REVERB_MON_DUR  
[7:0]  
8
1−LSB ~ 25.6 ms  
R/W  
Current Adjustment  
(sub-index 1)  
TX_CURR [5:0]  
6
2
Default value is  
pre-loaded after POR.  
Yes  
Yes  
R/W  
R/W  
Reverberation Period  
Variation Limit  
REVERB_PER_  
VAR_LIMIT [1:0]  
0 – 2.34 %  
1 – 5.4 %  
2 – 8.2 %  
3 – 12.5 %  
(sub-index 2)  
Monitoring Window  
Start  
MON_WIN_START  
[11:0]  
12  
2
Start time of echo magnitude  
logging into measurement  
memory  
0
1
R/W  
R/W  
(sub-index 3)  
1−LSB ~ 25.6 ms  
Monitoring Window  
Step  
MON_WIN_STEP  
[1:0]  
Magnitude sampling period  
0: 25.6 ms  
1: 51.2 ms  
(sub-index 4)  
2: 102.4 ms  
3: 204.8 ms  
Automatic Carrier  
Period Control  
(sub-index 5)  
CARRIER_PER_  
AUTO_ENA  
1
When 1:  
Yes  
R/W  
CARRIER_PER is used as car-  
rier period for 1 ultrasonic  
st  
measurement only resp. each  
time CARRIER_PER is updat-  
ed.  
Following measurements will  
drive TX with measured MEA-  
SURED_REVERB_PER auto-  
matically only if difference be-  
tween CARRIER_PER and  
measured reverberation period  
is less than RE-  
VERB_PER_VAR_LIMIT other-  
wise CARRIER_PER is used.  
In case of indirect measure-  
ment the CARRIER_PER will  
be exclusively used for echo re-  
ception.  
When 0:  
TX_CARRIER_PER resp.  
RX_CARRIER_PER is used.  
Noise Suppression  
Enable  
NOISE_SUPP_ENA  
TOF_CALIB [5:0]  
1
6
Echo magnitude is suppressed  
if it is below noise background  
level  
Yes  
Yes  
R/W  
R/W  
(sub-index 6)  
10  
ToF Calibration  
(sub-index 7)  
The time is subtracted from  
measured ToF prior storing it in-  
to the measurement result reg-  
isters.  
It needs to be adjusted for se-  
lected Q factor.  
1−LSB ~ 25.6 ms  
www.onsemi.com  
11  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
Default  
R/W  
Reverberation  
Debounce Time  
(sub-index 8)  
END_OF_REVERB  
[1:0]  
2
Debounce time is improving ro-  
bustness towards chattering  
phenomena  
1
R/W  
0: 60 ms  
1: 100 ms  
2: 140 ms  
3: 180 ms  
DSP Filter Q Factor  
Selection  
QF_SEL [1:0]  
2
0: Q = 5  
1: Q = 10  
2: Q = 20  
1
R/W  
(sub-index 9)  
3: Q = depending on number  
of TX pulses  
TX pulses  
011  
Q
5
1223  
2431  
10  
20  
DSP Filter Auto Q  
Factor Control Enable  
(sub-index 10)  
AUTO_QF_CTRL_  
ENA  
1
0: Fixed Q factor according to  
QF_SEL [1:0]  
1: Q is automatically switched  
at 14.8 ms after start of  
measurement  
0
R/W  
QF_SEL Q start Q after  
14.8 ms  
0
1
2
3
5
5
10  
5
10  
20  
20  
Depends  
on TX  
pulses  
Automatic Echo  
Debounce Time  
Control Enable  
(sub-index 11)  
AUTO_ECHO_DEB_  
CTRL_ENA  
1
1
0: Fixed 60 ms  
0
R/W  
R/W  
1: Fixed 60 ms is automatically  
switched to 200 ms at  
14.8 ms after start of  
measurement  
Internal I/O Line  
Pull-up Enable  
(sub-index 12)  
IO_PUP_ENA  
0: Internal I/O Line pull-up  
disabled  
1: Internal I/O Line pull-up  
enabled  
Yes  
Yes  
I/O Line Slope  
Control  
(sub-index 13)  
IO_SLP_FAST  
ADV_IO_ENA  
1
1
0: Standard I/O Line slope  
(60 ms)  
1: Fast I/O Line slope (20Ăms)  
R/W  
R/W  
Advance I/O Line  
Protocol Enable  
(sub-index 14)  
0: Standard I/O Line protocols  
1: Advanced I/O Line protocol  
Please, see index 13 & 14 for  
more details.  
0
0
T
Threshold  
TREC1_THR_CTRL_  
ENA  
1
0:  
1:  
T
T
utilizes THR1 curve  
utilizes fixed  
R/W  
REC1  
REC1  
REC1  
Control Enable  
(sub-index 15)  
threshold NOISE_THR and  
fixed static gain  
RX_GAIN_CODE.  
SENSOR_STATUS [0]  
(Acoustic Noise Flag) is ORed  
with SENSOR_STATUS[0] of  
following T  
/T  
resp.  
SND1 SND2  
T
REC2  
.
www.onsemi.com  
12  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
Time-out of  
end-of-reverberation.  
Default  
R/W  
10  
End of Reverberation  
Time-out  
END_OF_REVERB_  
TOUT [5:0]  
6
39  
(~2 ms)  
R/W  
(sub-index 16)  
In presence of high noise, the  
signal magnitude at analog  
front-end may avoid proper de-  
tection of end-of-reverberation.  
Detection of end-of-reverbera-  
tion is mandatory prior to start  
of echo detection. This function  
stops end-of-reverberation  
measurement by time-out. Im-  
proper use may lead to fake  
echo detection (reverberation  
detected as echo).  
1−LSB ~ 51.2 ms  
It is measured from TX end,  
end-of-reverberation time-out =  
TX end + END_OF_RE-  
VERB_TOUT[5:0]× 51.2 ms  
SENSOR_STATUS[5] is set in  
case the reverberation time-out  
is detected.  
st  
Advanced I/O Line  
Indirect Measurement  
Skip First Echo  
ADV_IO_IND_SFE  
1
0: ToF1 = 1 echo;  
1
R/W  
nd  
ToF2 = 2 echo  
nd  
1: ToF1 = 2 echo;  
rd  
(sub-index 17)  
ToF2 = 3 echo (valid for  
advanced I/O Line indirect  
measurement mode only)  
Comment: In case of indirect  
st  
measurement, 1 echo is echo  
from sensor performing direct  
measurement. This option is  
valid for indirect measurement  
only.  
I/O Line Transducer  
Diagnostic Reporting  
Enable  
IO_TRANS_DIAG_  
ENA  
1
0: Reporting of transducer  
diagnostic at I/O Line  
disabled  
1: Reporting of transducer  
diagnostic at I/O Line  
enabled  
1
R/W  
(sub-index 18)  
Comment: Transducer diagnos-  
tic is always enabled when Ad-  
vanced I/O Line protocol is en-  
abled (ADV_IO_ENA = 1)  
End of Reverberation  
Threshold  
END_OF_REVERB_  
THR  
1
0: 75% of full-scale  
1: 50% of full-scale  
0
R/W  
(sub-index 19)  
www.onsemi.com  
13  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
0: Disabled  
1: Enabled, valid only when  
ADV_IO_ENA = 0.  
Default  
R/W  
10  
I/O Line 99.2 ms Echo  
Duration Enabled  
(sub-index 20)  
IO_ECHO_PULSE_  
ENA  
1
0
R/W  
When enabled, echo is always  
reported by 99.2 ms pulse on  
I/O Line.  
Measurement is stopped If I/O  
Line is pulled low for at least  
350 ms during active measure-  
ment.  
Once active measurement is  
stopped, I/O Line has to be re-  
leased to idle state (high) for at  
least T  
time to re-enable the  
DEB  
detection of next I/O Line com-  
mand.  
In case of T  
, I/O Line is  
SNDx  
driven low for 99.2 ms at the de-  
tected end of reverberations,  
then I/O Line is again driven  
low for 99.2 ms each time when  
valid echo is detected (this is  
identical with T  
).  
RECx  
Min. time is 99.2 ms between  
two echoes in this mode. If dis-  
tance between echoes is less  
than 99.2 ms just single echo is  
reported.  
Comment: This mode enables  
fully programmable measure-  
ment duration (by stopping of  
on-going measurement) while it  
is still transparently propagating  
detected echo (ToF) on I/O  
Line.  
Parasitic Echo Peak  
Magnitude to  
Suppress at the End  
of Reverberations  
(sub-index 21)  
PARASITIC_PEAK_  
MAG [1:0]  
2
0: Parasitic echo peak  
suppression is disabled at  
the end of reverberations  
1: Parasitic echo peak low  
suppression  
0
R/W  
2: Parasitic echo peak  
medium suppression  
3: Parasitic echo peak high  
suppression  
Index 2 Format  
Selection  
(sub-index 22)  
TX_RX_PER_ENA  
WIDTH_PEAK_ENA  
1
1
0: Selects format 2a  
1: Selects format 2b  
0
0
R/W  
R/W  
R/W  
Index 14 Format  
Selection  
(sub-index 23)  
0: Selects format 14a  
1: Selects format 14b  
11  
Super Read/Write  
Index  
n.a.  
(Note 10)  
READ:  
n.a.  
Sequential read of the following  
indexes in the following order:  
2a, 7. RX_GAIN_CODE, 7.  
DYN_GAIN_ENA, 10 (items ini-  
tialized from EEPROM only)  
WRITE:  
Sequential write to the following  
indexes in the following order:  
2a, 3, 4, 7, 10  
www.onsemi.com  
14  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
Default  
R/W  
12  
Magnitude Data  
MEAS_DATA0 [5:0]  
MEAS_DATA59 [5:0]  
360  
Sampled echo magnitude.  
n.a.  
R
Echo magnitude logging is con-  
trolled by parameters  
only  
MON_WIN_START  
and MON_WIN_STEP.  
MEAS_DATA0 =  
echo magnitude at time  
MON_WIN_START × 25.6 ms  
MEAS_DATA59 =  
echo magnitude at time  
MON_WIN_START × 25.6 ms  
+ 59 × LUT[MON_WIN_STEP]  
13  
Measurement  
Results – Short  
MEAS_RES_SHR_  
SENSOR_STATUS  
[7:0]  
8
Refer to Encoding of Sensor  
Status Section  
n.a.  
0
R
only  
This index is only  
functional when  
ADV_IO_ENA = 1.  
(sub-index 0)  
st  
MEAS_RES_SHR_  
TOF1 [9:0]  
10  
ToF1 – time of 1 echo  
R
1−LSB ~ 51.2 ms  
only  
Otherwise, there is  
no response for this  
index.  
(sub-index 1)  
ToF =  
floor (echo detection time) –  
(TOF_CALIB × 25.6 ms)  
st  
Echo time − 1 (ToF1) rising  
edge of ECHO_DET signal af-  
ter detected end of reverbera-  
tion  
ToF1 = 0  
in case the echo is not detected  
Measurement  
Results – Long  
MEAS_RES_LNG_  
SENSOR_STATUS  
[7:0]  
8
Refer to Encoding of Sensor  
Status Section  
n.a  
0
R
only  
This index is only  
functional when  
ADV_IO_ENA = 1.  
Otherwise, there is  
no response for this  
index.  
(sub-index 0)  
st  
MEAS_RES_LNG_  
TOF1 [9:0]  
10  
ToF1 – time of 1 echo  
R
1−LSB ~ 51.2 ms  
only  
(sub-index 1)  
See index 13.  
ToFx = 0  
in case when any echo is not  
detected  
nd  
MEAS_RES_LNG_  
TOF2 [9:0]  
10  
ToF2 – time of 2 echo  
0
R
only  
(sub-index 2)  
www.onsemi.com  
15  
NCV75215  
Table 7. STRUCTURE OF CONFIGURATION MEMORY (continued)  
Conf.  
Memory  
index  
No  
of  
EEPROM  
(Note 11)  
bits  
Name  
Short Name  
Description  
Default  
R/W  
Measurement  
Results – Long  
MEAS_RES_LNG_  
SENSOR_STATUS  
[7:0]  
8
Refer to Encoding of Sensor  
Status Section  
n.a  
R
only  
This index is only  
functional when  
ADV_IO_ENA = 1.  
Otherwise, there is  
no response for this  
index.  
(sub-index 0)  
st  
MEAS_RES_LNG_  
TOF1 [9:0]  
10  
ToF1 – time of 1 echo  
0
R
1−LSB ~ 51.2 ms  
only  
(sub-index 1)  
See index 13.  
ToFx = 0  
in case when any echo is not  
detected  
st  
MEAS_RES_LNG_  
PEAK1 [5:0]  
6
Maximal magnitude of 1 echo.  
0
0
R
The same encoding as echo  
magnitude in MEAS_DATA.  
In case of no echo, it is 0.  
only  
(sub-index 2)  
st  
MEAS_RES_LNG_  
WIDTH1 [5:0]  
6
8
Width of 1 echo.  
R
1−LSB ~ 12.8 ms  
only  
(sub-index 3)  
In case of no echo, it is 0.  
15  
Command Byte  
(Write)  
CMD[7:0] /  
IC_ID_xx[7:0]  
See Data communication sec-  
tion.  
IC_ID_xx  
[7:0]  
R/W  
IC Revision ID  
(Read)  
WRITE:  
CMD [7:0] command byte  
READ:  
IC_ID_xx [7:4]:  
Full mask version  
Allowed range from 1 to15.  
IC_ID_xx [3:0]:  
Metal tune version  
Allowed range from 1 to15.  
st  
Comment: 1 silicon version is  
IC_ID_xx = 0x11 hex  
10.n.a. = not applicable  
11. Configuration memory start-up values:  
EEPROM Column Value in Table 1  
Configuration Memory Item Start-up Value  
The value is preloaded from EEPROM at start-up.  
Yes  
Default value is loaded at start-up or actual value is reported (read only items).  
12.MEASURED_REVERB_PER values:  
MEASURED_REVERB_PER Value  
Value Meaning  
The period not measured.  
0
1
The period measurement failed because of low signal.  
Measured period.  
Others  
www.onsemi.com  
16  
 
NCV75215  
ENCODING OF SENSOR_STATUS [7:0] REGISTER  
SENSOR_STATUS [0] = Acoustic Noise Flag  
SENSOR_STATUS [7] = EEPROM Two-Bit Error or  
EEPROM CRC Error or POR flag  
Flag is set if an acoustic noise is above the noise threshold  
(NOISE_THR) in noise monitoring time window.  
Flag is automatically cleared by any measurement.  
EEPROM Two-Bit Error Flag:  
Flag is updated by refreshing Configuration RAM from  
EEPROM (at start-up or initialized by Refresh  
Configuration RAM from EEPROM command). Flag is set  
if two-bit error is detected at any EEPROM address  
(single-bit error is automatically corrected by ECC code).  
SENSOR_STATUS [1] = VSUP Under-voltage or  
Over-voltage during TX  
Flag is set if VSUP voltage is below under-voltage  
threshold or crosses the over-voltage threshold during TX.  
If the VSUP voltage is higher than over-voltage threshold  
before TX, then the flag is not set.  
EEPROM CRC Error Flag:  
Flag is updated by refreshing Configuration RAM from  
EEPROM (at start-up or initialized by Refresh  
Configuration RAM from EEPROM command). EEPROM  
data (ECC bits not included) CRC code is automatically  
calculated and stored into EEPROM as a part of Program  
EEPROM process. CRC stored in EEPROM is compared  
with CRC calculated during Refresh Configuration RAM  
from EEPROM process. Flag is set if stored and calculated  
CRC don’t match. CRC is also protected by ECC.  
In any case when over-voltage was detected during TX,  
transmission is automatically stopped, but measurement  
normally continues.  
Flag is automatically cleared by direct measurement only.  
SENSOR_STATUS [2] = TX Period Update Required  
Flag is set if MEASURED_REVERB_PER is outside the  
range set by REVERB_PER_VAR_LIMIT and  
CARRIER_PER. Flag is updated by direct measurement  
only. Flag is automatically cleared by direct measurement  
only.  
8
5
3
2
The CRC8−C2 polynomial is x +x +x +x +x+1. The  
initial value is “1111_1111” binary.  
Flag is set after POR.  
POR Flag:  
The flag is set at POR and it is cleared-by-read.  
SENSOR_STATUS [3] = TX Period Update Direction  
Flag indicates if MEASURED_REVERB_PER is greater  
than CARRIER_PER.  
Flag is updated by direct measurement only. Flag is  
automatically cleared by direct measurement only.  
NOTES: a.) If flags are updated in case of direct (transmit  
and receive) measurement only, they are kept  
unchanged in case of indirect (receive only)  
measurement.  
SENSOR_STATUS [4] = Unexpected Decay Time  
(decay time too short)  
Flag is set if transducer decay time (reverberation) is  
shorter than REVERB_MON_DUR time.  
b.) Clear-by-read flags are cleared by reading of  
Configuration RAM index 1.  
Flag is updated by direct measurement only. Flag is  
automatically cleared by direct measurement only.  
SENSOR_STATUS [5] = End of Reverberation Time-out  
Flag is set if transducer decay time is longer than  
end-of-reverberation  
time-out  
(TX  
end  
+
END_OF_REVERB_TOUT * 51.2 ms). Flag is updated by  
direct measurement only. Flag is automatically cleared by  
direct measurement only.  
SENSOR_STATUS [6] = THS_ERROR Flag  
(Thermal Shutdown Error)  
Flag is set if thermal shutdown is detected. Flag is  
automatically cleared by any measurement.  
www.onsemi.com  
17  
NCV75215  
CONFIGURATION MEMORY DETAILED DATA STRUCTURES  
Table 8. INDEX 0 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
TEMPERATURE_CODE [0]  
0
0
7
TEMPERATURE_CODE [7]  
Table 9. INDEX 1 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
SENSOR_STATUS [0]  
0
0
7
SENSOR_STATUS [7]  
MEASURED_REVERB_PER [0]  
1
2
8
15  
16  
17  
18  
MEASURED_REVERB_PER [7]  
MEASURED_REVERB_PER [8]  
MEASURED_REVERB_PER [9]  
MEASURED_REVERB_PER [10]  
Table 10. INDEX 2A DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
CARRIER_PER [0]  
0
0
7
CARRIER_PER [7]  
CARRIER_PER [8]  
CARRIER_PER [9]  
CARRIER_PER [10]  
1
8
9
10  
Table 11. INDEX 2B DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
DTX_PER [0]  
0
0
7
DTX_PER [7]  
DRX_PER [0]  
1
8
15  
DRX_PER [7]  
Table 12. INDEX 7 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
RX_GAIN_CODE [0]  
0
0
6
RX_GAIN_CODE [6]  
DYN_GAIN_ENA  
7
www.onsemi.com  
18  
 
NCV75215  
Table 12. INDEX 7 DATA STRUCTURE (Data are transferred LSBit first.) (continued)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
NOISE_THR [0]  
1
8
13  
14  
15  
16  
17  
18  
19  
NOISE_THR [5]  
NOISE_FLOOR [0]  
NOISE_FLOOR [1]  
NOISE_FLOOR [2]  
NOISE_FLOOR [3]  
NOISE_FLOOR [4]  
NOISE_FLOOR [5]  
2
Table 13. INDEX 10 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
REVERB_MON_DUR [0]  
0
0
7
REVERB_MON_DUR [7]  
TX_CURR [0]  
1
8
13  
14  
15  
16  
23  
24  
27  
28  
29  
30  
31  
32  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
TX_CURR [5]  
REVERB_PER_VAR_LIMIT [0]  
REVERB_PER_VAR_LIMIT [1]  
MON_WIN_START [0]  
2
3
MON_WIN_START [7]  
MON_WIN_START [8]  
MON_WIN_START [11]  
MON_WIN_STEP [0]  
MON_WIN_STEP [1]  
CARRIER_PER_AUTO_ENA  
NOISE_SUPP_ENA  
TOF_CALIB [0]  
4
5
TOF_CALIB [5]  
END_OF_REVERB [0]  
END_OF_REVERB [1]  
QF_SEL [0]  
QF_SEL [1]  
AUTO_QF_CTRL_ENA  
AUTO_ECHO_DEB_CTRL_ENA  
IO_PUP_ENA  
IO_SLP_FAST  
ADV_IO_ENA  
TREC1_THR_CTRL_ENA  
www.onsemi.com  
19  
 
NCV75215  
Table 13. INDEX 10 DATA STRUCTURE (Data are transferred LSBit first.) (continued)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
END_OF_REVERB_TOUT [0]  
6
48  
53  
54  
55  
56  
57  
58  
59  
60  
61  
END_OF_REVERB_TOUT [5]  
ADV_IO_IND_SFE  
IO_TRANS_DIAG_ENA  
END_OF_REVERB_THR  
IO_ECHO_PULSE_ENA  
PARASITIC_PEAK_MAG [0]  
PARASITIC_PEAK_MAG [1]  
TX_RX_PER_ENA  
7
WIDTH_PEAK_ENA  
Table 14. INDEX 12 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
MEAS_DATA0 [0]  
0
0
5
MEAS_DATA0 [5]  
MEAS_DATA1 [0]  
MEAS_DATA1 [1]  
MEAS_DATA1 [2]  
6
7
1
8
11  
12  
15  
16  
17  
18  
23  
352  
353  
354  
359  
MEAS_DATA1 [5]  
MEAS_DATA2 [0]  
MEAS_DATA2 [3]  
MEAS_DATA2 [4]  
MEAS_DATA2 [5]  
MEAS_DATA3 [0]  
2
MEAS_DATA3 [5]  
44  
MEAS_DATA58 [4]  
MEAS_DATA58 [5]  
MEAS_DATA59 [0]  
MEAS_DATA59 [5]  
NOTES:  
The content of registers MEAS_DATA0..59 is  
undefined and lost if I/O Line short to  
VBAT/GND is detected during reading from  
configuration memory index 12.  
The registers are updated during measurement.  
They can be read as many times as required, but  
their content is lost when any index data write  
transfer is issued on I/O Line.  
www.onsemi.com  
20  
NCV75215  
Actual  
TX  
Current  
TX driver  
current mode.  
VSUP = 12V  
350  
300  
[mA]  
Desired operation.  
VSUP = 9V  
TX driver voltage  
saturation !  
200  
VSUP = 7V  
VSUP = 5V  
Lower TX power.  
Narrower bandwidth.  
100  
50  
0
0
32  
63 TX_CURR[5:0] Code  
Figure 7. An EXAMPLE of TX Driver Current Characteristics  
Figure 7 depicts an EXAMPLE of TX driver current  
characteristic. The characteristic doesn’t depend on  
NCV75215 but it depends on utilized transformer and the  
piezo impedance transformed to primary winding.  
Table 15. INDEX 13 DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
SENSOR_STATUS [0]  
0
0
7
SENSOR_STATUS [7]  
MEAS_RES_SHR_TOF1 [0]  
1
2
8
15  
16  
17  
MEAS_RES_SHR_TOF1 [7]  
MEAS_RES_SHR_TOF1 [8]  
MEAS_RES_SHR_TOF1 [9]  
Table 16. INDEX 14A DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
SENSOR_STATUS [0]  
0
0
7
SENSOR_STATUS [7]  
MEAS_RES_LNG_TOF1 [0]  
1
2
8
15  
16  
17  
18  
..  
MEAS_RES_LNG_TOF1 [7]  
MEAS_RES_LNG_TOF1 [8]  
MEAS_RES_LNG_TOF1 [9]  
MEAS_RES_LNG_TOF2 [0]  
23  
24  
...  
MEAS_RES_LNG_TOF2 [5]  
MEAS_RES_LNG_TOF2 [6]  
3
27  
MEAS_RES_LNG_TOF2 [9]  
www.onsemi.com  
21  
 
NCV75215  
Table 17. INDEX 14B DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
SENSOR_STATUS [0]  
0
0
7
SENSOR_STATUS [7]  
MEAS_RES_LNG_TOF1 [0]  
1
2
8
15  
16  
17  
18  
..  
MEAS_RES_LNG_TOF1 [7]  
MEAS_RES_LNG_TOF1 [8]  
MEAS_RES_LNG_TOF1 [9]  
MEAS_RES_LNG_PEAK1 [0]  
23  
24  
...  
MEAS_RES_LNG_PEAK1 [5]  
MEAS_RES_LNG_WIDTH1 [0]  
3
29  
MEAS_RES_LNG_WIDTH1 [5]  
www.onsemi.com  
22  
NCV75215  
TEMPERATURE MEASUREMENT  
It is possible to monitor junction temperature by reading  
configuration memory index 0.  
Table 18. JUNCTION TEMPERATURE CONVERSION  
Junction Temperature  
TEMP[7:0] − Config. Mem. Idx 0  
−60  
−40  
−20  
0
16  
36  
56  
76  
20  
95  
40  
116  
136  
156  
176  
197  
217  
238  
248  
60  
80  
100  
120  
140  
160  
170  
200  
180  
160  
140  
120  
100  
80  
y = 0.9915x − 75.225  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
−20  
−40  
−60  
−80  
Temperature Code (−)  
Figure 8. Junction Temperature Transfer Function  
www.onsemi.com  
23  
NCV75215  
THRESHOLDS  
DSP Filter Threshold (signal magnitude threshold) is  
controlled by values in 1 of 2 threshold Look-Up Tables  
(THR1 or THR2). The last threshold interval ends at 60ms  
(measured from the beginning of TX Ultrasonic  
transmission). Each threshold table consists of 12 data pairs.  
Each pair contains threshold level (6 bit) and delta time code  
(4 bit), which defines a time for linear interpolation to the  
particular threshold level. Threshold levels are interpreted  
using linear scale.  
Table 21. THRESHOLD DELTA TIME THRx_DTy[3:0]  
(Note 13)  
THRx_DTy  
Code  
Delta Time  
THRx_DTy  
Code  
Delta Time  
[ms]  
[ms]  
0
1
2
3
4
5
6
7
100  
200  
8
1600  
2000  
2400  
3200  
4000  
5200  
6400  
8000  
9
300  
10  
11  
12  
13  
14  
15  
400  
600  
Table 19. THRESHOLD TABLE SELECTION  
Command Pulse  
800  
(Measurement Type)  
1000  
1200  
Threshold Table Used  
T
SND1  
T
SND2  
or T  
or T  
THR1  
THR2  
REC1  
REC2  
13.x stands for index 1 or 2  
y stands for index from 0 to 11  
Table 20. THRESHOLD LEVELS THRx_LVLy[5:0]  
(Note 13)  
Value  
0
Interpretation  
Lowest threshold level  
63  
Highest threshold level  
(0x3F)  
(equivalent of full ADC range signal)  
THRx_LVL 1  
Threshold  
THRx_LVL 4  
level  
THRx_LVL 3  
THRx_LVL 2  
THRx_LVL 5  
THRx_LVL 6  
THRx_LVL0  
THRx_LVL 7  
THRx_LVL 8  
THRx_LVL 9  
THRx_LVL 10  
THRx_LVL 11  
Time  
THRx_ DT6  
THRx_ DT3  
THRx_ DT9  
THRx_ DT11  
THRx_ DT10  
Figure 9. Threshold Curve Example  
Threshold levels are piecewise approximated inside the  
thresholds intervals.  
THR1_LVL11[5:0] resp. THR2_LVL11[5:0] threshold is  
applied until end of measurement if last delta time expires  
prior end of measurement.  
NOISE_THR[5:0] is used during noise monitoring  
(the same threshold for both direct and indirect  
measurement).  
www.onsemi.com  
24  
 
NCV75215  
Table 22. THRESHOLD TABLE DATA IN CONFIGURATION MEMORY (INDEX 5 AND 6)  
(Data are transferred LSBit first)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
THRx_LVL0 [0]  
0
0
5
THRx_LVL0 [5]  
THRx_LVL3 [0]  
THRx_LVL3 [1]  
THRx_LVL1 [0]  
6
7
1
2
8
13  
14  
15  
16  
21  
22  
23  
48  
53  
54  
55  
56  
61  
62  
63  
64  
69  
70  
71  
72  
75  
76  
79  
112  
115  
116  
119  
THRx_LVL1 [5]  
THRx_LVL3 [2]  
THRx_LVL3 [3]  
THRx_LVL2 [0]  
THRx_LVL2 [5]  
THRx_LVL3 [4]  
THRx_LVL3 [5]  
6
THRx_LVL8 [0]  
THRx_LVL8 [5]  
THRx_LVL11 [0]  
THRx_LVL11 [1]  
THRx_LVL9 [0]  
7
8
9
THRx_LVL9 [5]  
THRx_LVL11 [2]  
THRx_LVL11 [3]  
THRx_LVL10 [0]  
THRx_LVL10 [5]  
THRx_LVL11 [4]  
THRx_LVL11 [5]  
THRx_DT0 [0]  
THRx_DT0 [3]  
THRx_DT1 [0]  
THRx_DT1 [3]  
14  
THRx_DT10 [0]  
THRx_DT10 [3]  
THRx_DT11 [0]  
THRx_DT11 [3]  
www.onsemi.com  
25  
NCV75215  
DYNAMIC GAIN  
Dynamic gain curve principle is depicted in Figure 10. It  
is similar to threshold interpolation algorithm.  
See Table 1 index 8 for dynamic gain parameters. Other  
details are depicted in Figure 10.  
Figure 10. Dynamic Gain Principle  
Table 23. DYNAMIC GAIN DELTA TIME DELTA_GAIN_DTz[3:0] CODE LUT (LOOK-UP TABLE)  
DELTA_GAIN_DTz[3:0] Code  
Delta Time [ms]  
102.4  
DELTA_GAIN_DTz[3:0] Code  
Delta Time [ms]  
3276.8  
0
8
1
204.8  
9
4505.6  
2
409.6  
10  
11  
12  
13  
14  
15  
5939.2  
3
819.2  
7987.2  
4
1228.8  
1638.4  
2048  
10035.2  
12697.6  
15974.4  
20070.4  
5
6
7
2457.6  
14.z stands for index from 0 to 4  
Dynamic gain curve is smoothed in low-pass filter which  
runs at 2.5 MHz. The filter formula is:  
where:  
y = output dynamic gain curve  
x = input signal from dynamic gain interpolator  
s = shift coefficient which defines filter bandwidth  
1
2s  
1
+ ǒ1 *  
Ǔ
yn)1  
  yn )   xn  
2s  
www.onsemi.com  
26  
 
NCV75215  
Table 24. DYNAMIC GAIN FILTER COEFFICIENT DYN_GAIN_BW[1:0] CODE LUT (LOOK-UP TABLE):  
DYN_GAIN_BW[1:0]  
Filter Bandwidth  
Coefficient “s”  
0
1
2
3
No filter, pass through  
0
8
Fast  
Normal  
Slow  
9
10  
Dynamic Gain Start Delay  
The range is from 0 ms to 3072 ms. Equivalent  
Dynamic gain curve starts at begin of measurement cycle  
approximate distance is from 0 cm to 52.2 cm.  
but it is delayed by the time:  
“Dyn. Gain Start Time” = DYN_GAIN_START[3:0] *  
204.8 ms  
Table 25. DYNAMIC GAIN IN CONFIGURATION MEMORY (INDEX 8) (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Data Bit  
DELTA_GAIN0 [0]  
0
0
6
DELTA_GAIN0 [6]  
DELTA_GAIN0_SIGN  
DELTA_GAIN1 [0]  
7
1
8
14  
15  
32  
38  
39  
40  
43  
44  
47  
48  
51  
52  
55  
56  
59  
60  
63  
64  
65  
DELTA_GAIN1 [6]  
DELTA_GAIN1_SIGN  
4
DELTA_GAIN4 [0]  
DELTA_GAIN4 [6]  
DELTA_GAIN4_SIGN  
DELTA_GAIN_DT0 [0]  
5
6
7
8
DELTA_GAIN_DT0 [3]  
DELTA_GAIN_DT1 [0]  
DELTA_GAIN_DT1 [3]  
DELTA_GAIN_DT2 [0]  
DELTA_GAIN_DT2 [3]  
DELTA_GAIN_DT3 [0]  
DELTA_GAIN_DT3 [3]  
DELTA_GAIN_DT4 [0]  
DELTA_GAIN_DT4 [3]  
DYN_GAIN_START [0]  
DYN_GAIN_START [3]  
DYN_GAIN_BW [0]  
DYN_GAIN_BW [1]  
15.DELTA_GAINx_SIGN = 0 positive DELTA_GAINx  
16.DELTA_GAINx_SIGN = 1 negative DELTA_GAINx  
www.onsemi.com  
27  
NCV75215  
SUPER READ, SUPER WRITE  
Super read data transfer is very useful at ultrasonic system  
Then, the communication master (ECU) can use super  
write data transfer to initialize most of configuration  
memory items.  
startup. It enables to read all configuration memory items in  
one transaction which are initialized from EEPROM  
memory at power-on reset.  
Table 26. INDEX 11 READ DATA STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
CARRIER_PER [0]  
0
0
7
CARRIER_PER [7]  
CARRIER_PER [8]  
CARRIER_PER [9]  
CARRIER_PER [10]  
RX_GAIN_CODE [0]  
1
2
3
4
8
9
10  
11  
15  
16  
17  
18  
19  
23  
24  
25  
26  
27  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
RX_GAIN_CODE [4]  
RX_GAIN_CODE [5]  
RX_GAIN_CODE [6]  
DYN_GAIN_ENA  
REVERB_MON_DUR [0]  
REVERB_MON_DUR [4]  
REVERB_MON_DUR [5]  
REVERB_MON_DUR [6]  
REVERB_MON_DUR [7]  
TX_CURR [0]  
TX_CURR [4]  
TX_CURR [5]  
REVERB_PER_VAR_LIMIT [0]  
REVERB_PER_VAR_LIMIT [1]  
CARRIER_PER_AUTO_ENA  
NOISE_SUPP_ENA  
TOF_CALIB [0]  
TOF_CALIB [1]  
TOF_CALIB [2]  
5
TOF_CALIB [3]  
TOF_CALIB [4]  
TOF_CALIB [5]  
IO_PUP_ENA  
IO_SLP_FAST  
Index 11 write data structure. Data are transferred LSBit  
first.  
It is a sequential write to the following indexes in the  
following order: 2a, 3, 4, 7 and 10.  
www.onsemi.com  
28  
NCV75215  
COMMAND BYTE  
The chip is commanded to requested action by writing the  
protected by 8-bits coding, Hamming distance, checksum  
and number of message bits. Unwanted execution is  
practically impossible.  
particular Command Code to the command byte item in  
configuration memory at index 15. The Command Byte  
cannot be read back, it is write only access. Commands are  
Table 27. COMAND BYTE  
Command Code  
Action  
hex: 29  
bin: 0010 1001  
Unlock EEPROM – unlocks EEPROM for next I/O Line command. EEPROM has to be unlocked first  
to successfully execute Program EEPROM and Refresh Configuration RAM. EEPROM is automati-  
cally locked after the finishing of any following command.  
hex: D6  
bin: 1101 0110  
Program EEPROM − store data in configuration memory marked “Yes” in EEPROM column in Table 1  
into EEPROM  
hex: 73  
bin: 0111 0011  
Refresh Configuration RAM from EEPROM (items stored in EEPROM only)  
Write TP_ENA bits − TP_ENA[3:0] <= CommandByte[3:0]  
hex: Ax  
bin: 1010 xxxx  
hex: E7  
bin: 1110 0111  
Unlock reading from Conf. RAM index <5012> – enables reading from Conf. RAM indexes <512>,  
otherwise there will be no response to I/O Line read command for Conf. RAM indexes <512>  
hex: 18  
bin: 0001 1000  
Lock reading from Conf. RAM index <5012> – disables reading from Conf. RAM indexes <512>  
hex: 92  
bin: 1001 0010  
Activate low power mode − The chip enters low consumption mode and it only accepts IO Line com-  
mand bytes “De-activate low power mode” and “SW reset”. Normal operation is not possible.  
hex: 5  
bin: 0000 0101  
De-activate low power mode − Normal mode is re-entered from low power mode and normal opera-  
tion is restored. See Electrical Characteristic section for required wake time (t  
) to re-enter normal  
wake  
mode.  
hex: 5A  
SW reset – Software activation of power-on reset (POR). This command effect is equal to POR.  
bin: 0101 1010  
others  
no reaction  
17.Reading from Conf. RAM indexes <512> is enabled after POR.  
Store Data to EEPROM:  
Refresh Data from EEPROM:  
st  
st  
1 command Unlock EEPROM  
1 command Unlock EEPROM  
nd  
nd  
2
command Program EEPROM  
2
command Refresh Configuration RAM  
CHIP ID  
The chip ID can be read from index 15. It is read only  
access.  
Table 28. INDEX 15 DATA READ STRUCTURE (Data are transferred LSBit first.)  
Data Frame Byte  
Data Frame Bit  
Threshold Table Bit  
IC_ID_MT [0]  
0
0
3
IC_ID_MT [3]  
IC_ID_FM [0]  
4
7
IC_ID_FM [3]  
18.IC_ID_FM: Full mask silicon version. Completely modified silicon version.  
19.IC_ID_MT: Metal tune silicon subversion. Small bugs can be fixed by different active components interconnection. Metal layers are modified  
but active silicon components remain the same.  
20.The first silicon version is: IC_ID_FM = 1, IC_ID_MT = 1  
21.The second silicon version is: IC_ID_FM = 2, IC_ID_MT = 1  
www.onsemi.com  
29  
NCV75215  
CUSTOMER TEST OUTPUTS, TP_ENA  
Custom diagnostic test (debugging) output/input  
(TST1...4) signals are selected by TP_ENA bits. TP_ENA  
bits are set via appropriate Command byte. DSP internal  
“analog” signals are PDM modulated. External low-pass  
filters are required. See table below for valid test signal  
combinations.  
Table 29. CUSTOMER TEST OUTPUTS, TP_ENA  
TP_ENA[3:0]  
TST0  
TST1  
TST2  
TST3  
0000  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
(Default)  
0001  
0010  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
THRESHOLD[9:0]  
PDM2  
ECHO_MAG[9:0]  
PDM1  
ECHO_ENVELOPE  
PDM2  
ECHO_MAG[9:0]  
PDM1  
0011  
0100  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Not Defined  
ECHO_DET  
Not Defined  
ECHO_MAG[9:0]  
PDM1  
0101  
0110  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
Not Defined  
Not Defined  
GAIN[7:0]  
PDM2  
ECHO_MAG[9:0]  
PDM1  
0111  
1000  
Hi−Z / 4 kW  
Hi−Z / 4 kW  
IO_RXD  
IO_DRV (input)  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
Hi−Z / 4kΩ  
Hi−Z / 4kΩ  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
THRESHOLD[9:0]  
PDM2  
ECHO_MAG[9:0]  
PDM1  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
ECHO_ENVELOPE  
PDM2  
ECHO_MAG[9:0]  
PDM1  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
Not Defined  
ECHO_DET  
Not Defined  
Not Defined  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
ECHO_MAG[9:0]  
PDM1  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
Not Defined  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
GAIN[7:0]  
PDM2  
ECHO_MAG[9:0]  
PDM1  
Single Ended Analog  
RX Output  
Permanent Digital  
Output Set to “1”  
IO_RXD  
IO_DRV (Input)  
22.Hi−Z / 4 kW = IO is not driven but pull down active  
23.VGA_Gain = (analog(PDM2) / 20 mV) * (30 / 63) dB  
24.Initial/POR value shall be 0 decimal (“0000” binary) – test outputs are disabled  
25.GAIN[7:0] is effectively using half of the full-scale of PDM output  
26.Threshold[9:0] is effectively using half of the full-scale of PDM output  
Recommended External Low-pass Filter  
TST2 or 3  
(PDM1 or 2)  
10 kΩ  
10 kΩ  
to scope probe  
470 pF  
470 pF  
Figure 11. Recommended PDM External Low-pass Filter  
www.onsemi.com  
30  
NCV75215  
EEPROM PROGRAMMING SEQUENCE  
EEPROM programming operation is performed in 12  
successive steps:  
1. Power-on the device.  
7. Wait 25 ms. It is needed to complete programming  
of the EEPROM memory.  
8. Unlock EEPROM – Write Command Code  
0x29hex into Configuration RAM index 15.  
9. Refresh Configuration RAM − Write Command  
Code 0x73hex into Configuration RAM index 15.  
10. Read Configuration RAM index 1 to get  
SENSOR_STATUS. SENSOR_STATUS[7]  
(EEPROM ERROR or HW_ERROR) should be 0.  
If SENSOR_STATUS[7] is 1, EEPROM failure  
occurred, then, go-to step 3.  
11. Verify EEPRPOM shadow registers content by  
reading back Configuration RAM index 11 (super  
read) and index 9. If mismatch detected, go-to step  
3.  
2. Read Configuration RAM index 1 to clear  
SENSOR_STATUS (SENSOR_STATUS[7] =  
HW ERROR).  
3. Write data into Configuration RAM  
(EEPROM shadow registers).  
4. Verify EEPRPOM shadow registers content by  
reading back Configuration RAM index 11  
(super read) and index 9. If mismatch detected,  
go-to step 2.  
5. Unlock EEPROM – Write Command Code  
0x29hex into Configuration RAM index 15.  
6. Program EEPROM − Write Command Code  
0xD6hex into Configuration RAM index 15.  
12. Power-off the device.  
EEPROM ERROR CORRECTION BLOCK  
The error correction block utilizes SECDED coding for  
one bit error correction and 2 bits error detection. As data are  
split in words 16 bits long each, 5 extra bits are required for  
encoding ECC (Hamming code) and one extra bit for parity  
check (two bits error detection). The encoding bits are  
spread into the bit matrix accordingly to the Tab.2.  
Figure 12. 16-bits Word SECDED Encoding  
Error correction is based on the calculation of the parity  
bits. The parity bits are spread in such a way, that if the parity  
fails, the position of the error bit is defined directly by the  
position of the failing bits.  
Example 2:  
Error is on parity bit P4 – the word is 10000 = bit 16  
decimal (that is directly the parity bit P4).  
If two bits error is detected, invalid data of the impacted  
address in the shadow registers will not be updated.  
Example 1:  
If the failure appears on bit 9 (D4), the parity of P0 and P3  
will be wrong (column for bit 9, X’s are for P0 and P3).  
Putting one on the wrong positions of the parity when  
writing parity word would be:  
P4, P3, P2, P1, P0 = 01001 binary = 9 decimal.  
www.onsemi.com  
31  
NCV75215  
IO_LINE_CTRL (COMMAND PULSE, MEASUREMENT CONTROL, DATA COMMUNICATION)  
I/O Line is a master-slave point-to-point communication  
link. If more than one chip is connected to master (ECU)  
unit, it creates star topology.  
Every I/O Line communication starts with particular  
command pulse. Its length and meaning is in table below:  
Table 30. IO_LINE COMMAND PULSE  
Command  
Pulse  
Min. Pulse  
Length [ms]*  
Typ. Pulse  
Length [ms]  
Max. Pulse  
Length [ms]*  
Addressing  
Description  
T
T
T
T
328  
503  
697  
920  
1172  
400  
580  
472  
657  
TX+RX (direct measurement with THR1 table)  
RX only (indirect measurement with THR2 table)  
RX only (indirect measurement with THR1 table)  
TX+RX (direct measurement with THR2 table)  
Data communication  
SND1  
REC2  
REC1  
SND2  
780  
863  
1010  
1270  
1100  
1368  
T
R/nW, xxxx  
DATA  
*I/O Line command pulse, which is generated by ECU master, has to be always in range from minimal pulse length to maximal pulse length under  
any applicable condition (especially EMC disturbance, which may shift I/O Line edges by tens of microseconds). It is strongly recommended  
to generate command pulses as close as possible to typical pulse length to keep maximal command recognition margin.  
400  
580  
780  
1010  
I/O Line  
1270  
Figure 13. I/O Line Command Pulses  
IO LINE SHORT TO VBAT/GND DETECTION  
If the chip detects that I/O Line logical value (dominant or  
recessive level) differs from the value driven by the chip for  
time 350 ms then I/O Line short circuit condition is  
detected. In this case, the chip immediately stops driving the  
I/O Line.  
On-going measurement respective I/O Line data  
communication is immediately interrupted. I/O Line has to  
be in recessive level for at least T  
I/O Line command.  
time to accept the next  
DEB  
www.onsemi.com  
32  
NCV75215  
MEASUREMENT CONTROL  
The measurement can be started by T  
, T  
, T  
selected in Configuration Memory. The figure below depicts  
these modes.  
SND1 REC2 REC1  
or T  
command pulse. Measured ultrasonic echoes can  
SND2  
be reported on I/O Line in 3 different modes. Modes are  
Figure 14. I/O Line Measurement Modes Comparison  
Table 31. I/O LINE MEASUREMENT MODES COMPARISON  
Measurement  
IO Line Mode  
Diagnostic Pulse  
IO_TRANS_DIAG_ENA  
Echo Width  
Information  
Measurement  
Can be Stopped  
Echo IO Line Reporting  
Standard  
Yes  
(optional)  
Dominant pulse  
Yes  
No  
IO_ECHO_PULSE_ENA = 0  
ADV_IO_ENA = 0  
Pulse Echo Reporting  
Yes  
(optional)  
Dominant pulse  
No  
Yes  
of 99,2 ms  
IO_ECHO_PULSE_ENA = 1  
ADV_IO_ENA = 0  
by at least 350 ms  
dominant pulse which is  
generated by the I/O Line  
master.  
Advanced IO Line  
Yes  
IO Line is idle during  
measurement =>  
No  
Yes  
(always, it is used for  
acknowledge)  
IO_ECHO_PULSE_ENA = 0  
ADV_IO_ENA = 1  
by 100 ms dominant  
pulse or any command  
pulse which is generated  
by the I/O Line master.  
No Disturbance  
Echoes times are  
reported in configuration  
memory index 13 and 14.  
www.onsemi.com  
33  
NCV75215  
TSND1/TSND2 Command (Direct Measurement); ADV_IO_ENA = 0  
reveberation time  
valid echo detected :  
Corresponds to echo  
duration (ECHO >=  
THRESHOLD), min. low  
pulse is corresponding to  
Td  
TSNDx  
Tve  
ECU Transmitt request  
Normal state  
(140 ms)  
Td  
IO  
ECHO_DET  
(Td+Tve...Td+Tdly)  
BURST_PULSE_CNT[4:0]  
Tdly  
TX DRVA/B  
ADC_DATA  
Noise  
monitoring  
Max level  
Noise  
monitoring  
min Tve  
ECHO  
start  
THRESHOLD  
0
valid  
echo  
detected  
Noise free Rx input  
Tx overdrives Rx  
ms  
Tve = typ 60  
Tdly = Tve+Tfilt (max 280  
Td = IO LINE debounce time  
ms)  
ECHO_DET signal is identifying that echo magnitude is above threshold (signal is debounced with  
Tve time)  
Figure 15. Send Command Sequence with Threshold Table 1 (TSND1) and Threshold Table 2 (TSND2  
)
Noise Free and Defect Free Case  
www.onsemi.com  
34  
NCV75215  
TSND1/TSND2 Command (Direct Measurement); ADV_IO_ENA = 1  
No communication during measurement.  
Measured echo times are read−out from  
Configuration RAM at index 13 resp. 14.  
Measurement is stopped when  
MEAS_DUR[3:0] time elapsed or  
when IO LINE is pulled low.  
reveberation time  
Diag.  
pulse  
TSNDx  
Diagnostic  
response  
(140 ms)  
ECU Transmitt request  
Td  
IO  
ECHO_DET  
Reported ToF1  
Tdly  
BURST_PULSE_CNT[4:0]  
TX DRVA/B  
ADC_DATA  
Noise  
monitoring  
end  
Max level  
ECHO  
Noise  
monitoring  
start  
min Tve  
THRESHOLD  
0
valid  
echo  
detected  
Noise free Rx input  
Tve = typ 60  
ms  
Tx overdrives Rx  
Tdly = Tve+Tfilt (max 280 ms)  
Td = IO LINE debounce time  
ECHO_DET signal is identifying that echo magnitude is above threshold (signal is debounced with  
Tve time)  
Figure 16. Send Command Sequence with Threshold Table 1 (TSND1) and Threshold Table 2 (TSND2  
)
Noise Free and Defect Free Case  
www.onsemi.com  
35  
NCV75215  
TREC1/TREC2 Command (Indirect Measurement); ADV_IO_ENA = 0  
Trec  
valid echo detected :  
Corresponds to echo  
duration (ECHO >=  
THRESHOLD), min. low  
pulse is corresponding  
Normal state (140 ms)  
ECU Receive request  
to Tve  
Td  
Td  
IO  
Tve  
ECHO_DET  
Tdly  
TX DRVA/B  
ECHO  
min Tve  
NOISE monitoring end  
THRESHOLD  
0
valid echo  
detected  
Noise free Rx input  
ms  
Tve = typ 60  
ms)  
Tdly = Tve+Tfilt (max 280  
Td = IO LINE debounce time  
ECHO_DET signal is identifying that echo magnitude is above threshold (signal is debounced with Tve time)  
Figure 17. Receive Command Sequence  
Noise Free and Defect Free Case  
www.onsemi.com  
36  
NCV75215  
TREC1/TREC2 Command (Indirect Measurement); ADV_IO_ENA = 1  
No communication during measurement. Measured echo times are  
read−out from Configuration RAM at index 13 resp. 14.  
Measurement is stopped when MEAS_DUR[3:0] time elapsed or  
when IO LINE is pulled low.  
Trec  
Diag.  
pulse  
Diagnostic response (140 ms)  
ECU Receive request  
Td  
99.2us  
IO  
ECHO_DET  
Reported ToF1  
Tdly  
NOISE monitoring start  
TX DRVA/B  
ECHO  
min Tve  
NOISE monitoring end  
THRESHOLD  
0
valid echo  
detected  
Noise free Rx input  
Tve = typ 60  
ms  
Tdly = Tve+Tfilt (max 280 ms)  
Td = IO LINE debounce time  
ECHO_DET signal is identifying that echo magnitude is above threshold (signal is debounced with Tve time)  
Figure 18. Receive Command Sequence  
Noise Free and Defect Free Case  
www.onsemi.com  
37  
NCV75215  
I/O Line  
Driven by ECU  
/T  
T
Driven by ASSP  
SNDX RECX  
T
deb  
= 51.2 ms  
Noise: (60 ms)  
OK: (140 ms)  
Direct,  
TD1: (230 ms)  
Indirect  
TX period updated required OR  
Unexpected decay time OR  
Reverberation time-out  
TD2: (320 ms)  
Under/Overvoltage OR  
Thermal Shutdown OR  
HW Error/EEPROM Error  
T
rev  
− reverberation time  
T
TX  
= <period> * <number of pulses>  
“Known Deterministic Time”  
Note: All NCV75215 generated timing has accuracy of 3%.  
Figure 19. I/O Line Noise Reporting and Sensor Defect Reporting (Diagnostic Pulse)  
for TSNDx and TRECx Commands  
www.onsemi.com  
38  
NCV75215  
DATA COMMUNICATION  
Every I/O Line data communication starts by T  
DATA  
command pulse. The chip supports index data read and write  
transfers.  
Read index data:  
1
I/O Line  
R/nW  
1 bit  
Index  
4 bits  
Data payload  
up to 120 (360) bits  
Checksum  
8 bits  
TDATA  
I/O Line Driven by Master (ECU)  
I/O Line Driven by the Chip  
Write index data:  
I/O Line  
0
R/nW  
1 bit  
Index  
4 bits  
Data payload  
up to 120 bits  
Checksum  
8 bits  
ACK  
1 bit  
TDATA  
I/O Line Driven by the Chip  
I/O Line Driven by Master (ECU)  
Figure 20. Read and Write Index Data  
Table 32. I/O LINE DATA COMMUNICATIONS COMMAND  
Command Part  
Command pulse T  
No. of Bits  
Typical Time [ms]  
1270  
Note  
I/O Line low  
I/O Line high (idle)  
DATA  
Data separator*  
R/nW bit  
100  
1
300  
0 write operation, 1 read  
4 address bits  
Configuration memory index  
Data payload  
4
1200  
x
300 * x  
2400  
x number of bits  
Enhanced check sum  
Acknowledge bit  
8
(1)  
(300)  
Write operation only  
I/O Line high (idle)  
Command separator  
> 100  
*When reception of data separator is finished (identified by I/O Line falling edge of R/nW bit) temperature measurement is executed. Typical  
duration of temperature measurement is 10 ms.  
Total data write command time in [ms] :  
The ECU should drive I/O Line low for t  
[ms]  
= 2/3 * T , where  
typ  
T
(DATA_WRITE) = 5670 + 300 * <number of data  
(T  
= 1/3 * T , T  
BIT BIT_HIGH  
DATA  
BIT_LOW  
BIT  
payload bits>  
T
= 300 ms).  
BIT  
Data rate is accepted from 2.7 kbit/s to 4.4 kbit/s  
(typically 3.3 kbit/s).  
Every data bit is modulated as I/O Line PWM pulse  
according to the Figure 21.  
www.onsemi.com  
39  
NCV75215  
BIT 0  
~1/3 * T  
~2/3 * T  
BIT  
BIT  
T
> 75 ms  
T
BIT_HIGH  
BIT_LOW  
BIT 1  
~2/3 * T  
~1/3 * T  
BIT  
BIT  
T
T
> 75 ms  
BIT_LOW  
BIT_HIGH  
T
BIT  
= 225300375 ms  
Figure 21. BIT0/BIT1 Coding  
Meaning of R/nW + Address bits and overview of  
Configuration Memory indexes is in table below:  
Table 33.  
Addressing: R/nW + 4 Index  
Address Bits  
Config Memory Index  
Configuration Memory Index Description  
Temperature  
R 0000  
0
1
R 0001  
Status byte + Reverberation period  
Carrier Period  
R/nW 0010  
R/nW 0011  
R/nW 0100  
R/nW 0101  
R/nW 0110  
R/nW 0111  
R/nW 1000  
R/nW 1001  
R/nW 1010  
R/nW 1011  
R 1100  
2
3
TX burst pulse count  
4
Measurement duration  
5
Threshold table #1  
6
Threshold table #2  
7
Gain + Noise measurement setting  
Dynamic gain  
8
9
User data  
10  
11  
12  
13  
14  
15  
Reverberation + TX current + other setting  
Super read / write  
Measurement echo magnitude data (sampled echo magnitude)  
Measurement results − short  
Measurement results − long  
Command Byte/Chip ID  
R 1101  
R 1110  
R/nW 1111  
www.onsemi.com  
40  
NCV75215  
CHECKSUM  
Validity of data transferred over I/O Line is ensured by  
Enhanced 8-bit Checksum. The checksum calculation is  
explained in example below.  
Example:  
R/nW = 1 (read operation)  
Index = 2 = 0010 bin  
CARRIER_PER [10:0] = 3EA hex  
11 data payload bits => 2 bytes for checksum calculation  
1. 8-bit Checksum Initial Value  
Bit  
7
R/nW  
1
6
Index bit 3  
0
5
Index bit 2  
0
4
Index bit 1  
1
3
Index bit 0  
0
2
0
0
1
0
0
0
0
0
Data  
Example = 0x90  
2. Data  
Byte  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
CP7  
CP6  
CP5  
CP4  
CP3  
CP2  
CP1  
CP0  
(Note 28)  
Example = 0xEA  
1
1
1
0
1
0
1
0
1
0
0
0
0
0
CP10  
CP9  
CP8  
(Note 27)  
(Note 27)  
(Note 27)  
(Note 27)  
(Note 27)  
Example = 0x03  
0
0
0
0
0
0
1
1
27.Incomplete byte is padded by 0 s.  
28.CP” stands for CARRIER_PER.  
3. Checksum Calculation  
Algorithm:  
4. Checksum Inversion  
check_sum = 0x7E xor 0xFF = 0x81  
unsigned int check_sum =  
Checksum to transmit is inversion of final checksum  
accumulator (not 0x7E => 0x81 to transmit/check as  
checksum).  
(RnW << 7) | (index << 3);  
for (i=0; i<byte_count; i++)  
{ check_sum = check_sum + data_byte[i];  
if (check_sum > 255)  
check_sum = check_sum – 255;  
}
check_sum = check_sum ^ 0xFF;  
Example:  
check_sum = 0x90 (initial value in this example)  
byte #0:  
check_sum = 0x90 + 0xEA = 0x17A  
check_sum = 0x17A – 0xFF = 0x7B  
byte #1:  
check_sum = 0x7B + 0x03 = 0x7E  
www.onsemi.com  
41  
 
NCV75215  
ACKNOWLEDGE BIT  
Meaning of Acknowledge bit is explained in Figure 22.  
Negative ACK (Error, Data Ignored)  
~1/3 * T  
BIT  
~100 ms  
Positive ACK (Data Accepted)  
~2/3 * T  
BIT  
~ 200 ms  
Figure 22. I/O Data Communication − Meaning of Acknowledge Bit  
The chip transmits acknowledge bit after reception of the  
last checksum bit. Acknowledge bit is transmitted after data  
write transfer only.  
www.onsemi.com  
42  
 
NCV75215  
PACKAGE DIMENSIONS  
TSSOP−16  
CASE 948F  
ISSUE B  
16X KREF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
0.10 (0.004)  
T
U
V
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
S
U
0.15 (0.006) T  
K
K1  
16  
9
2X L/2  
J1  
SECTION N−N  
B
−U−  
L
J
PIN 1  
IDENT.  
N
8
0.25 (0.010)  
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
M
S
0.15 (0.006) T  
U
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
N
−V−  
A
B
C
4.90  
4.30  
−−−  
5.10 0.193 0.200  
4.50 0.169 0.177  
F
1.20  
−−− 0.047  
DETAIL E  
D
F
0.05  
0.50  
0.15 0.002 0.006  
0.75 0.020 0.030  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
−W−  
C
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
−T−  
6.40 BSC  
0.252 BSC  
D
G
M
0
8
0
8
_
_
_
_
SOLDERING FOOTPRINT  
7.06  
1
0.65  
PITCH  
16X  
0.36  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
www.onsemi.com  
43  
NCV75215  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV75215/D  

相关型号:

NCV7535

SPI Controlled H-bridge and Dual-Half Bridge Pre-Driver
ONSEMI

NCV7535DBR2G

SPI Controlled H-bridge and Dual-Half Bridge Pre-Driver
ONSEMI

NCV7544MWTXG

FLEXMOS™ Four Channel Half-Bridge MOSFET Pre-Driver for Motor Control Application
ONSEMI

NCV7546MWTXG

FLEXMOS™ Six Channel Half-Bridge MOSFET Pre-Driver for Motor Control Application
ONSEMI

NCV7547MWTXG

七沟道半桥 MOSFET 预驱动器,用于电机控制应用
ONSEMI

NCV7601

Quad Driver
ONSEMI

NCV7601/D

Quad Driver
ETC

NCV7601P

Quad Driver
ONSEMI

NCV7601PG

Quad Driver
ONSEMI

NCV7601_06

Quad Driver
ONSEMI

NCV7608

Octal Configurable Low/High Side Driver
ONSEMI

NCV7608DQR2G

Octal Configurable Low/High Side Driver
ONSEMI