NCV8881 [ONSEMI]

Automotive Buck Regulator with Watchdog;
NCV8881
型号: NCV8881
厂家: ONSEMI    ONSEMI
描述:

Automotive Buck Regulator with Watchdog

文件: 总33页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8881  
1.5A Automotive Buck  
Regulator with Watchdog  
The NCV8881 consists of a Buck switching regulator (SMPS) with  
a combination SMPS output undervoltage monitor and CPU watchdog  
circuit. In addition, two fixedvoltage low dropout regulator outputs  
are provided, and share an LDO output voltage status output. Once  
enabled, regulator operation continues until the Watchdog signal is no  
longer present. The NCV8881 is intended for Automotive,  
batteryconnected applications that must withstand a 40 V load dump.  
The switching regulator is capable of converting the typical 9 V to  
19 V automotive input voltage range to outputs from 3.3 V to 8 V at a  
constant switching frequency, which can be resistor programmed or  
synchronized to an external clock signal. Enable input threshold and  
hysteresis are programmable, with the enable input state replicated at  
an open drain Ignition Buffer output. The regulators are protected by  
current limiting, input overvoltage and overtemperature shutdown, as  
well as SMPS short circuit shutdown.  
http://onsemi.com  
MARKING  
DIAGRAMS  
16  
SO16W EP  
PW SUFFIX  
CASE 751AG  
NCV8881  
16  
AWLYYWWG  
1
1
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
Features  
1.5 A Switching Regulator (internal power switch)  
100 mA, 5 V LDO Output  
40 mA, 8.5 V LDO Output  
(Note: Microdot may be in either location)  
Operating Range 5 V to 19 V  
Programmable SMPS Frequency  
SMPS can be Synchronized to an External Clock  
Programmable SMPS Output Voltage Down to 0.8 V  
$2% Reference Voltage Tolerance  
PIN CONNECTIONS  
1
16  
IGNBUF  
WDI  
RDLY  
RESB  
EN  
5P0  
LDOMON  
8P5  
VIN  
SW  
Internal SMPS SoftStart  
Voltagemode SMPS Control  
SMPS CyclebyCycle Current Limit and ShortCircuit Protection  
Internal Bootstrap Diode  
SYNC  
ROSC  
GND  
BST  
FB  
COMP  
Logic level Enable Input  
Enable Input Hysteresis Programmable by External Resistor Divider  
Enable Input State is Replicated at an Open Drain Output  
CPU Watchdog with Resistor Programmable Delays  
Watchdog Reset Output also Indicates SMPS Output Out of Regulation  
Battery Input Withstands Load Dump to 40 V  
Low Standby Current  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 32 of this data sheet.  
Thermal Shutdown (TSD)  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Change Controls  
These are PbFree Devices  
Applications  
Audio  
Infotainment  
Safety – Vision Systems  
Instrumentation  
© Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
January, 2011 Rev. 1  
NCV8881/D  
NCV8881  
IGNITION  
BUFFER  
RIGBUF  
REGULATED  
5.0V  
IGNBUF  
WDI  
5P0  
CS5P0  
RMON  
FROM CPU  
WATCHDOG OUT  
LDO  
MONITOR  
LDOMON  
8P5  
REGULATED  
8.5V  
BEAD  
C8P5  
RDLY  
RESB  
EN  
RDLY  
CS8P5  
TO CPU  
RESET  
ENABLE  
SYNC  
RRESB  
BATTERY  
VIN  
SW  
CIN  
REGULATED  
SMPS OUTPUT  
R1  
L1  
R2  
CBST  
COUT  
DFW  
CZ1  
SYNC  
ROSC  
GND  
BST  
FB  
RP2  
RFB1  
ROSC  
CP1  
RZ1  
RFB2  
CP3  
COMP  
Figure 1. Typical Application  
RIGBUF  
S+5  
5P0  
16  
IGNITION  
BUFFER  
BUFFERED  
ENABLE  
IGNBUF  
1
LOGIC  
RMON  
LDO  
MONITOR  
CS5  
LDOMON  
15  
QIB  
QLM  
WATCHDOG  
INPUT  
TEMP  
SENSE  
MONITOR  
TSD  
WDI  
2
8P5  
14  
S+8.5  
BEAD  
NOPULSE  
WATCHDOG  
TIMER  
RDLY  
3
DBST2  
DBST1  
C8P5  
CS8P5  
5V  
REGULATOR  
8.5V  
REGULATOR  
RDLY  
CPU  
RESET  
BATTERY  
VIN  
13  
VIN_OV  
/UVLO  
RRESB  
RESB  
4
CIN  
FAULT(H)  
POWER  
SWITCH  
QRB  
ENABLE  
SWITCHER  
OUT  
EN  
5
SW  
12  
ENABLE  
R1  
R2  
L1  
CBST  
RH  
CLAMP  
BST  
11  
COUT  
DFW  
HYSTERESIS  
QH  
UNDERVOLTAGE  
MONITOR  
CZ1  
RP2  
SW_UV  
RFB1  
SHORT CKT  
MONITOR  
OC  
RUN  
FB  
10  
ERROR  
AMP  
SYNC  
SYNC  
6
PWM  
COMPARATOR  
REF  
OSCILLATOR  
CP1  
RZ1  
ROSC  
7
RFB2  
CP3  
ROSC  
COMP  
GND  
8
9
NCV8881  
Figure 2. NCV8881 Detailed Block Diagram  
http://onsemi.com  
2
NCV8881  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
0.3 to 7  
0.3 to 7  
0.3 to 7  
0.3 to 10  
10  
Unit  
V
Min/Max Voltage on WDI  
Min/Max Voltage on RDLY  
Min/Max Voltage on RESB  
Min/Max Voltage on EN  
Max EN Current  
V
V
V
mA  
mA  
V
Min EN Current (with zero VIN voltage)  
Min/Max Voltage on SYNC  
Min/Max Voltage on ROSC  
Min/Max Voltage COMP  
Min/Max Voltage FB  
10  
0.3 to 7  
0.3 to 7  
0.3 to 7  
0.3 to 7  
V
V
V
Min Voltage SW  
– DC  
20 ns  
0.7  
3  
V
Max Voltage VIN to SW  
40  
V
V
Max Voltage VIN  
40  
Min/Max Voltage BST  
0.3 to 30  
0.3 to 15  
0.3 to 9.5  
70  
V
Min/Max Voltage BST to SW  
Min/Max Voltage on 8P5  
V
V
Max 8P5 Current  
mA  
V
Min/Max Voltage on LDOMON  
Min/Max Voltage on 5P0  
0.3 to 7  
0.3 to 7  
0.3 to 7  
55 to +150  
40 to + 150  
V
Min/Max Voltage IGNBUF  
Storage Temperature range  
Operating Junction Temperature Range  
ESD withstand Voltage Human Body Model  
V
°C  
°C  
T
J
V
ESD  
2.0  
200  
>1.0  
kV  
V
kV  
Machine Model  
Charged Device Model  
Moisture Sensitivity  
MSL  
Level 1  
260  
Peak Reflow Soldering Temperature  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
THERMAL CHARACTERISTICS  
Board/Mounting Conditions Typical Value  
Minimum Pad (Note 1)  
1 sq. inch (Note 2)  
Parameter  
Junctiontocase top (Y , q  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
)
30  
70  
16  
65  
17  
55  
JT JT  
Junctiontopin 1(Y , q  
)
JL1 JL1  
Junctiontoboard (Y , q ) (Note 3)  
15  
JB JB  
Junctiontoambient (R , q  
)
150  
q
JA JA  
Specific Notes on Thermal Characterization Conditions:  
NOTE: All boards are 0.062” thick FR4, 3” square, with varying amounts of copper heat spreader, in still air (free convection) conditions.  
Numerical values are derived from an axisymmetric finiteelement model where active die area, total die area, flag area, pad area,  
and board area are equated to the actual corresponding areas.  
2
1. 1 oz. copper, 17.2 mm spreader area (minimum exposed pad, not including traces which are assumed).  
2
2
2. 1 oz. copper, 645 mm (1 in ) spreader area (includes exposed pad).  
3. “Board” is defined as center of exposed pad soldered to board; this is the recommended number to be used for thermal calculations, as it  
best represents the primary heat flow path and is least sensitive to board and ambient properties.  
http://onsemi.com  
3
 
NCV8881  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Symbol  
Description  
1
IGNBUF  
This open drain output is pulled low whenever the EN signal is latched and a low level is recognized at  
the EN input.  
2
3
4
WDI  
RDLY  
RESB  
CMOS compatible Watchdog pulse input from a CPU. To be valid, the time between falling edges of this  
signal must be less than the programmed Watchdog Delay.  
Delay programming pin for POR, BOOT and Watchdog delays. Connect a resistor between this pin and  
ground.  
This is an open drain output for resetting a CPU. RESB goes low if the WDI signal period is longer than  
the programmed Watchdog delay, if VIN is above or below operating voltage, if the SMPS output is out of  
regulation, or if the part is in thermal shutdown.  
5
EN  
Logic compatible Enable input. Once a high is received at the EN pin, the part enters a startup  
sequence. Until expiration of the SoftStart Timer, a low at the EN pin will shut off the part. Upon  
expiration of the SoftStart Timer, a low at the EN pin will shut the part off only if the SMPS output is out  
of regulation, or the signal at the WDI input is not valid.  
6
7
SYNC  
ROSC  
Logic compatible Synchronization input. Grounding this input allows a resistor between the ROSC pin  
and ground to control the switching frequency. Connecting this pin to an external clock synchronizes  
switching to the rising edge of the clock.  
Oscillator frequency programming pin. Connect an external resistor from this pin to GND to set the  
switching frequency. Leave this pin floating to operate at the default frequency of the internal oscillator.  
Switching frequency is not controlled by this resistance if a clock is present at the SYNC pin, but the  
resistance remains in control of the modulator ramp amplitude.  
8
9
GND  
Battery return, and ground reference for output voltages.  
COMP  
Switching Regulator Error Amplifier output for tailoring SMPS transient response with external  
compensation components.  
10  
11  
FB  
Feedback input pin to program Switching Regulator output voltage, and detect a low or shorted SMPS  
output condition.  
BST  
Bootstrap input provides drive voltage higher than VIN to the SMPS Nchannel Power Switch for  
minimum switch R  
and highest efficiency. For a typical application connect a 0.1 mF ceramic  
DS(on)  
capacitor from this pin to the SW pin, in close proximity to both pins.  
12  
SW  
Switching node of the Switching Regulator. Connect the SMPS output inductor and cathode of the SMPS  
freewheeling diode to this pin.  
13  
14  
VIN  
8P5  
Input voltage from battery. Place an input filter capacitor in close proximity to this pin.  
Output of the internal 8.5 V linear regulator. This provides regulated gate drive voltage to the SMPS  
Power Switch. For a typical application connect a 4.7 mF ceramic capacitor in series with 0.5 W from this  
pin to ground.  
15  
16  
LDOMON  
5P0  
This open drain output is pulled low if either the 5P0 or 8P5 output is out of regulation.  
Output of the internal 5 V linear regulator. For a typical application connect a 4.7 mF ceramic capacitor in  
series with 0.5 W from this pin to ground.  
EXPOSED  
PAD  
Solder this to a low thermal impedance path for cooling.  
http://onsemi.com  
4
NCV8881  
GENERAL SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (V  
= 13.2 V, V = 2.0 V, C = 4.7 mF unless specified otherwise) Min/Max values are valid  
for the temperature range 40°C vT v 150 °C unless noted otherwise, and are guaranteed by test, design or statistical correlation.  
VIN  
EN  
IN  
J
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIN UVLO  
START Voltage Threshold  
STOP Voltage Threshold  
VIN UVLO Hysteresis  
VIN OVERVOLTAGE  
STOP Voltage Threshold  
RESTART Voltage Threshold  
QUIESCENT CURRENT  
VIN Quiescent Current  
VIN Shutdown Current  
ENABLE (EN PIN)  
V
5.0  
4.2  
0.7  
5.6  
4.6  
1.1  
6.0  
5.0  
V
V
V
STRT  
V
STP  
V
INHYST  
V
V
19  
18  
20  
21  
V
V
OVSTP  
19.2  
OVSTT  
I
V
= 1 V, T = 25°C, V  
= 0 V  
= 0 V  
2
5
mA  
qMAX  
FB  
J
SW  
I
V
EN  
= 0 V, T = 25°C, V  
10  
15  
mA  
qSBMAX  
J
SW  
EN Logic High Threshold  
EN Logic Low Threshold  
EN Input Current  
V
1.6  
V
V
ENSTHH  
V
1.2  
35  
ENSTHL  
I
V
V
= 1.2 V  
= 1.6 V  
42  
55  
mA  
mA  
ENSWL  
EN  
EN Input Current  
I
0.8  
1.4  
3.0  
ENSWH  
EN  
Response to Open Input  
Enable Delay  
NCV8881 is disabled  
EN high to LDO turnon  
38  
5
50  
ms  
mA  
V
Clamp Current  
V
EN  
= 5 V  
20  
12  
Clamp Voltage  
I
= 10 mA  
9
10.5  
EN  
IGNITION BUFFER (IGNBUF PIN)  
IGNBUF Output leakage  
IGNBUF Output Voltage Low  
THERMAL SHUTDOWN (TSD)  
Thermal Shutdown  
V
> 1.6 V  
0
5
mA  
EN  
V
V
EN  
< 1.2 V, sinking 0.5 mA  
0.02  
0.1  
V
IGBLO  
T
(Note 4)  
(Note 4)  
160  
170  
35  
180  
°C  
°C  
TSD  
Thermal Shutdown Hysteresis  
4. Guaranteed by design.  
http://onsemi.com  
5
 
NCV8881  
LDO REGULATORS  
ELECTRICAL CHARACTERISTICS (V  
= 13.2 V, V = 2.0 V, C = 4.7 mF unless specified otherwise) Min/Max values are valid  
for the temperature range 40°C vT v 150°C unless noted otherwise, and are guaranteed by test, design or statistical correlation.  
VIN  
EN  
IN  
J
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
5P0 OUTPUT  
Output UV START Threshold  
Output UV STOP Threshold  
Output UV Hysteresis  
Output Voltage Range  
Line Regulation  
V
V
Percent of V  
Percent of V  
Percent of V  
No load  
91  
89  
95  
93  
2
99  
97  
%
%
5UVSTT  
O5P0  
5UVSTP  
O5P0  
O5P0  
V
%
5VUVH  
V
4.8  
5.0  
5.2  
4
V
O5P0  
I
= 1 mA, 6 V < V < 19 V  
mV/V  
mA  
mV  
OUT  
IN  
Current Limit  
105  
160  
205  
400  
Dropout Voltage  
I
= 70 mA, DV  
= 2%  
315  
(Note 6)  
5P0  
5P0  
Output Load Capacitance Range  
Output Load Capacitance ESR Range  
Power Supply Ripple Rejection  
C
Output capacitance for stability (Note 5)  
ESR for stability (Note 5)  
3.9  
0.2  
100  
5
mF  
W
O
ESR  
Co  
PSRR  
V
VIN  
= 13.2 V + 0.5 V 100 Hz  
60  
dB  
pp  
sinewave, C  
= 10 mF (Note 5)  
5P0  
Startup Overshoot  
R
= 5 kW; C  
= 10 mF  
3
%
5P0LOAD  
5P0  
(Note 5)  
8P5 OUTPUT  
Output UV START Threshold  
Output UV STOP Threshold  
Output UV Hysteresis  
Output Voltage Range  
Line Regulation  
V
Percent of V  
Percent of V  
Percent of V  
91  
89  
95  
93  
2
99  
97  
%
%
8UVSTT  
O8P5  
O8P5  
O8P5  
V
8UVSTP  
V
%
8VUVH  
V
No load; 9 V < V < 19 V  
8.26  
44  
8.5  
8.74  
7
V
O8P5  
IN  
I
= 1 mA, 9.5 V < V < 19 V  
mV/V  
mA  
mV  
OUT  
8P5  
IN  
Current Limit  
68  
85  
Dropout Voltage  
I
= 20 mA, DV  
= 2%  
165  
(Note 6)  
300  
8P5  
Output Load Capacitance Range  
Output Load Capacitance ESR Range  
Power Supply Ripple Rejection  
C
Output capacitance for stability (Note 5)  
ESR for stability (Note 5)  
3.9  
0.2  
100  
5
mF  
W
O
ESR  
Co  
PSRR  
V
= 13.2 V + 0.5 V 100 Hz sine  
60  
11  
dB  
VIN  
pp  
wave, C  
= 10 mF (Note 5)  
8P5  
Startup Overshoot  
Output Clamp Voltage  
LDOMON OUTPUT  
Output leakage  
R
= 10 kW; C  
= 10 mF (Note 5)  
3
%
V
8P5LOAD  
8P5  
V
I
= 67 mA into the NCV8881  
9
13  
CLP8P5  
8P5  
V
V
> V  
< V  
and V  
> V  
8UVSTT  
0.2  
5
mA  
5P0  
5UVSTT  
8P5  
Output Voltage Low  
V
or V  
< V ,  
8UVSTP  
0.03  
0.1  
V
RBLO  
5P0  
5UVSTP  
8P5  
sinking 0.5 mA  
5. Guaranteed by design.  
6. T = 125°C  
J
http://onsemi.com  
6
 
NCV8881  
SMPS REGULATOR  
ELECTRICAL CHARACTERISTICS (V  
= 13.2 V, V = 2.0 V, V  
= V  
+ 8.2 V, C  
= 0.1 mF, C = 4.7 mF unless specified  
VIN  
EN  
BST  
SW  
BST IN  
otherwise) Min/Max values are valid for the temperature range 40°C vT v 150 °C unless noted otherwise, and are guaranteed by test,  
J
design or statistical correlation.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
ms  
V
SOFTSTART  
SoftStart Completion Time  
t
SS  
3
5
7
VOLTAGE REFERENCE (FB Pin)  
FB Voltage (COMP connected to FB)  
V
FBR  
T = 25°C  
J
0.792  
0.784  
0.8  
0.8  
0.808  
0.816  
40°C vT v 150°C  
J
FB PIN MONITOR (SMPS Output Monitor)  
FB Monitor High Threshold  
FB Monitor Low Threshold  
FB Monitor Hysteresis  
V
V
V
increasing; Percent of V  
FBR  
91  
89  
10  
95  
93  
20  
2.5  
99  
97  
%
%
FBMONH  
FB  
V
decreasing; Percent of V  
FBR  
FBMONL  
FBMONY  
FB  
V
mV  
ms  
FB Low to RESB Output Delay  
ERROR AMPLIFIER  
t
10  
FBLDLY  
FB Bias Current  
I
V
= V  
FBR  
0.1  
70  
8
0.1  
mA  
dB  
FBBIAS  
FB  
DC Gain  
A
V
(Note 7)  
(Note 7)  
GainBandwidth Product  
Slew Rate COMP Rising  
GBW  
MHz  
V/ms  
V
COMP  
= V  
25 mV, C = 50 pF,  
COMP  
6
FB  
FBR  
I
= 1 mA, V  
within ramp  
COMP  
voltage levels. (Note 7)  
Slew Rate COMP Falling  
V
COMP  
voltage levels. (Note 7)  
= V  
+25 mV, C = 50 pF,  
COMP  
6
V/ms  
FB  
FBR  
I
= 1 mA, V  
within ramp  
COMP  
COMP Source Current  
COMP Sink Current  
I
V
V
= 2.2 V  
= 3.2 V  
1.5  
1.8  
4
4
10  
10  
mA  
mA  
SOURCE  
COMP  
COMP  
I
V
COMP  
V
COMP  
= 2.2 V  
= 1.1 V  
1.3  
0.6  
3
1.6  
10  
10  
mA  
mA  
SINK  
Ramp Peak Voltage  
Ramp Valley Voltage  
Ramp Amplitude  
OSCILLATOR  
2.8  
1.1  
1.6  
3.1  
1.2  
1.9  
3.2  
1.3  
2.0  
V
V
V
Frequency  
F
OSC  
R
= open  
ROSC  
154  
337  
170  
186  
429  
kHz  
ROSC = 36 kW  
Maximum ROSC Controlled Frequency  
ROSC Pin Voltage  
F
Resistor from ROSC to GND  
= open  
500  
700  
850  
kHz  
V
OSCMAX  
V
R
0.970  
1.02  
1.080  
ROSC  
ROSC  
SYNCHRONIZATION  
Frequency Range  
f
(Note 7)  
160  
200  
6.6  
600  
500  
10  
kHz  
ns  
SYNCMX  
Synchronization Delay  
DeSynchronization Delay  
t
From rising SYNC edge  
370  
7.8  
SNCDLY  
t
From last rising SYNC edge;  
ROSC = open  
ms  
USNCDLY  
Input Current  
V
= 5.0 V  
5
10  
2
mA  
V
SYNC  
SYNC Logic High Threshold  
SYNC Logic Low Threshold  
Response to Input Held High  
V
SNCTHH  
V
0.8  
V
SNCTHL  
Reverts to internal oscillator  
(Note 7)  
7. Guaranteed by design.  
http://onsemi.com  
7
NCV8881  
SMPS REGULATOR  
ELECTRICAL CHARACTERISTICS (V  
= 13.2 V, V = 2.0 V, V  
= V  
+ 8.2 V, C  
= 0.1 mF, C = 4.7 mF unless specified  
VIN  
EN  
BST  
SW  
BST IN  
otherwise) Min/Max values are valid for the temperature range 40°C vT v 150 °C unless noted otherwise, and are guaranteed by test,  
J
design or statistical correlation.  
Parameter  
SYNCHRONIZATION  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Minimum High Pulse Width  
Minimum Low Pulse Width  
DUTY CYCLE LIMITATIONS  
Minimum Off Time  
t
time V  
time V  
is above 2 V (Note 7)  
is below 0.8 V (Note 7)  
50  
50  
ns  
ns  
PWHIMIN  
SYNC  
t
PWLIMIN  
SYNC  
t
SW falling to SW rising  
SW rising to SW falling  
50  
120  
330  
200  
550  
ns  
ns  
MINOFF  
Minimum On Time  
t
100  
MINON  
CURRENT LIMIT  
Current Limit  
1.75  
2.2  
76  
3
A
Current Limit Response Time (Note 7)  
SHORT CIRCUIT DETECTOR  
FB Pin Threshold  
From time of power switch turnon  
200  
ns  
V
% of V  
70  
85  
%
%
FBSC  
FBR  
SoftStart Timer  
t
From start of Softstart, % of t (Note 7)  
100  
250  
SSTIMR  
SS  
POWER SWITCH  
ON Resistance  
R
V
= V  
+ 6.0 V, T = 25°C  
360  
mW  
ns  
DSON  
BST  
SW  
J
(Note 7)  
SW Risetime  
Inductor current = 1 A, T = 25°C  
(Note 7)  
30  
30  
J
SW Falltime  
Inductor current = 1 A, T = 25°C  
(Note 7)  
ns  
J
7. Guaranteed by design.  
http://onsemi.com  
8
 
NCV8881  
WATCHDOG  
ELECTRICAL CHARACTERISTICS (V  
= 13.2 V, V = 2 V, C = 4.7 mF unless specified otherwise) Min/Max values are valid for  
the temperature range 40°C vT v 150°C unless noted otherwise, and are guaranteed by test, design or statistical correlation.  
VIN  
EN  
IN  
J
Parameter  
WATCHDOG INPUT (WDI pin)  
Input High Voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
2.0  
V
V
Input Low Voltage  
0.8  
10  
Input Current  
V
WDI  
= 5.0 V  
5
mA  
Hz  
Threshold Frequency  
f
to prevent RESB low  
WDTH  
R
R
R
= 10 kW  
= 20 kW  
= 30 kW  
20.85  
10.42  
6.95  
DLY  
DLY  
DLY  
RDLY INPUT  
Output Voltage  
Output Voltage  
RESB OUTPUT  
Output Voltage Low  
Output leakage  
POR Delay Time  
R
R
= 10 kW  
= 30 kW  
0.917  
0.940  
0.99  
1.02  
1.067  
1.092  
V
V
DLY  
DLY  
V
V
V
V
< V  
, sinking 0.5 mA  
to RESB high;  
0.03  
0.4  
0.1  
5
V
RBLO  
FB  
FBMONL  
FBMONH  
FBMONH  
> V  
mA  
ms  
FB  
FB  
> V  
= 10 kW  
R
R
R
R
R
4.0  
8
12  
5
10  
15  
6.0  
12  
DLY  
DLY  
DLY  
DLY  
DLY  
= 20 kW (Note 8)  
= 30 kW (Note 8)  
= open; R  
= open; R  
t
POR  
18  
50  
= 36 kW (Note 8)  
OSC  
OSC  
110  
= open  
Boot Delay Time  
RESB high to low;  
ms  
ms  
R
R
R
R
R
= 10 kW  
40  
80  
50  
100  
150  
60  
120  
180  
500  
1100  
DLY  
DLY  
DLY  
DLY  
DLY  
t
BD  
= 20 kW (Note 8)  
= 30 kW (Note 8)  
120  
= open; R  
= open; R  
= 36 kW (Note 8)  
OSC  
OSC  
= open  
Watchdog Delay Time  
8. Guaranteed by design.  
WDI low to RESB low;  
R
R
R
R
R
= 10 kW  
= 20 kW (Note 8)  
= 30 kW (Note 8)  
= open; R  
= open; R  
48  
96  
144  
60  
120  
180  
72  
144  
216  
550  
1300  
DLY  
DLY  
DLY  
DLY  
DLY  
t
WD  
= 36 kW (Note 8)  
= open  
OSC  
OSC  
http://onsemi.com  
9
 
NCV8881  
FAULT RESPONSES  
INPUTS  
RESPONSE TO A SINGLE FAULT EVENT  
FULL OPERATION  
RESTORED BY:  
FAULT EVENT  
EN  
EN Latch  
UNLATCH  
UNLATCH  
5P0  
8P5  
SMPS  
RESB  
VIN > UVLO, EN  
High  
VIN Undervoltage  
L
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
LOW  
VIN Undervoltage  
VIN Overvoltage  
H
L
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
Stays ON  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
Stays ON  
LOW  
LOW  
VIN > UVLO  
VIN < OV Threshold  
VIN < OV Threshold  
Decrease Temp  
Decrease Temp  
Remove Overload  
Remove Overload  
Remove Overload  
Remove Overload  
EN High  
Stays Latched SHUTDOWN  
Stays Latched SHUTDOWN  
Stays Latched SHUTDOWN  
Stays Latched SHUTDOWN  
Stays Latched Current limited  
Stays Latched Current limited  
VIN Overvoltage  
H
L
LOW  
Thermal Shutdown  
LOW  
Thermal Shutdown  
H
L
LOW  
5P0 Out of Regulation  
5P0 Out of Regulation  
8P5 Out of Regulation  
8P5 Out of Regulation  
SMPS Out of Regulation  
SMPS Out of Regulation  
SMPS shorted to ground  
SMPS shorted to ground  
Watchdog Signal Invalid  
Watchdog Signal Invalid  
No Effect  
No Effect  
No Effect  
No Effect  
LOW  
H
L
Stays ON  
Stays ON  
Stays Latched  
Stays Latched  
UNLATCH  
Stays ON  
Stays ON  
Current limited  
Current limited  
SHUTDOWN  
Stays ON  
Stays ON  
H
L
Stays ON  
SHUTDOWN  
Stays ON  
SHUTDOWN  
Stays ON  
H
L
Stays Latched  
UNLATCH  
LOW  
Remove Overload  
EN High  
SHUTDOWN  
Stays ON  
SHUTDOWN  
Stays ON  
SHUTDOWN  
Latched OFF  
SHUTDOWN  
Stays ON  
LOW  
H
L
UNLATCH  
LOW  
EN Low, then High  
EN High  
UNLATCH  
SHUTDOWN  
Stays ON  
SHUTDOWN  
Stays ON  
LOW  
H
Stays Latched  
Pulses Low  
Apply Valid WDI  
http://onsemi.com  
10  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0  
2.5  
14.0  
12.0  
10.0  
8.0  
13.2 V SUPPLY  
13.2 V SUPPLY  
6.0 V SUPPLY  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0 V SUPPLY  
6.0  
4.0  
2.0  
0.0  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Supply Current (EN Low) vs.  
Temperature  
Figure 4. Supply Current (EN High) vs.  
Temperature  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
0.0  
40 20  
9.0  
40 20  
0
20  
40 60 80 100 120 140 160  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. EN Clamp Voltage vs. Temperature  
Figure 5. En Delay vs. Temperature  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VIN UVLO START Voltage vs.  
Temperature  
Figure 8. VIN UVLO STOP Voltage vs.  
Temperature  
http://onsemi.com  
11  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
20.8  
20.7  
20.6  
20.5  
20.4  
20.3  
20.2  
20.1  
20.0  
19.9  
19.8  
19.8  
19.7  
19.6  
19.5  
19.4  
19.3  
19.2  
19.1  
19.0  
18.9  
18.8  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. VIN OV STOP Voltage vs.  
Temperature  
Figure 10. VIN OV RESTART Voltage vs.  
Temperature  
810  
808  
806  
804  
802  
800  
798  
796  
794  
792  
790  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
5.0  
10.0  
15.0  
VOLTAGE (V)  
20.0  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
Figure 11. Reference Voltage vs. Temperature  
Figure 12. 5P0 Output Voltage vs. Input  
Voltage  
189  
187  
185  
183  
181  
179  
177  
175  
350  
300  
250  
200  
150  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. 5P0 Output Current Limit vs.  
Temperature  
Figure 14. 5P0 Dropout Voltage Limit vs.  
Temperature  
http://onsemi.com  
12  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
8.500  
8.495  
8.490  
8.485  
8.480  
8.475  
8.470  
75.0  
74.0  
73.0  
72.0  
71.0  
70.0  
69.0  
68.0  
67.0  
66.0  
65.0  
40 20  
0
20 40 60 80 100 120 140 160  
9.0  
12.0  
15.0  
VOLTAGE (V)  
18.0  
TEMPERATURE (°C)  
Figure 15. 8P5 Output Voltage vs. Input  
Voltage  
Figure 16. 8P5 Output Current Limit vs.  
Temperature  
200  
180  
160  
140  
120  
100  
80  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
60  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. 8P5 Dropout Voltage vs.  
Temperature  
Figure 18. 8P5 Output Clamp vs. Temperature  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
40 20  
0
20 40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. LDOMON Low Voltage vs.  
Temperature  
Figure 20. LDOMON Leakage vs. Temperature  
http://onsemi.com  
13  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. RESB Low Voltage vs. Temperature  
Figure 22. RESB Leakage vs. Temperature  
1.050  
1.045  
1.040  
1.035  
1.030  
1.025  
1.020  
1.015  
1.010  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
0.975  
0.970  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. ROSC Voltage vs. Temperature  
Figure 24. RDLY Voltage vs. Temperature  
180  
178  
176  
174  
172  
170  
168  
166  
164  
162  
160  
400  
395  
390  
385  
380  
375  
370  
365  
360  
355  
350  
ROSC Open  
ROSC = 36 kW  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. Switching Frequency vs.  
Temperature  
Figure 26. Switching Frequency vs.  
Temperature  
http://onsemi.com  
14  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
750  
740  
730  
720  
710  
700  
690  
680  
670  
660  
650  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
ROSC = 0  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Maximum Switching Frequency vs.  
Temperature  
Figure 28. SMPS Current Limit vs.  
Temperature  
2.00  
80.0  
79.0  
78.0  
77.0  
76.0  
75.0  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. SMPS ShortCircuit Threshold vs.  
Figure 30. SMPS Ramp Amplitude vs.  
Temperature  
Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 2.2 V  
V
COMP  
V
= 2.2 V  
= 3.2 V  
COMP  
COMP  
V
= 1.1 V  
COMP  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. Error Amp Source Current vs.  
Temperature  
Figure 32. Error Amp Sink Current vs.  
Temperature  
http://onsemi.com  
15  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
40 20  
0
20  
40 60 80 100 120 140 160  
40 20  
0
20  
40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. SoftStart Time vs. Temperature  
Figure 34. IGNBUF Low Voltage vs.  
Temperature  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
0
4
10  
100  
1000  
10  
15  
20  
25  
R RESISTANCE (kW)  
DLY  
30  
35  
40  
45  
50  
ROSC RESISTANCE (kW)  
Figure 35. Switching Frequency vs. ROSC  
Resistance  
Figure 36. POR Delay vs. RDLY Resistance  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
50  
50  
10  
15  
20  
25  
30  
35  
40  
45  
50  
10  
15  
20  
25  
30  
35  
40  
45  
50  
R
RESISTANCE (kW)  
R
RESISTANCE (kW)  
DLY  
DLY  
Figure 37. Boot Delay vs. RDLY Resistance  
Figure 38. Watchdog Delay vs. RDLY  
Resistance  
http://onsemi.com  
16  
NCV8881  
TYPICAL PERFORMANCE CHARACTERISTICS  
250  
350  
300  
250  
200  
150  
100  
50  
T = 25°C  
J
T = 25°C  
J
200  
150  
100  
50  
0
0
0
10 20 30 40 50 60 70 80 90 100  
0
5
10  
15  
20  
25  
30  
35  
40  
LOAD CURRENT (kW)  
LOAD CURRENT (kW)  
Figure 39. 5P0 Dropout Voltage vs. Load  
Current  
Figure 40. 8P5 Dropout Voltage vs. Load  
Current  
http://onsemi.com  
17  
NCV8881  
OPERATING DESCRIPTION  
INPUT VOLTAGE  
VIN is the power supply input for all NCV8881 functions.  
Prior to the appearance of a valid high at the Enable input  
(EN pin), VIN voltage above the V  
a low level at the Reset output (RESB).  
reset, and the LDOs are shut off. Upon dropping below the  
threshold, the LDOs will powerup and the SMPS  
will begin a softstart sequence regardless of the state of the  
V
OVSTT  
threshold produces  
EN signal.  
STRT  
STATE DIAGRAM  
INPUT UNDERVOLTAGE SHUTDOWN  
An Undervoltage Lockout (UVLO) circuit monitors the  
voltage at the VIN pin. If the voltage is below the V  
threshold it pulls RESB low, inhibits switching, and shuts  
Figure 41 shows the State Diagram for the NCV8881.  
States within numbered ellipses have common responses  
(such as to input overvoltage and high temperature  
shutdown) which force an exit from all states within.  
STP  
down the LDOs.  
INPUT OVERVOLTAGE SHUTDOWN  
If input voltage is above the V  
threshold, RESB is  
OVSTP  
pulled low, switching is inhibited, the Softstart circuit is  
http://onsemi.com  
18  
NCV8881  
5
VIN < 19V &  
POWER  
ON  
RESET  
VIN > Vstrt  
RESB LOW  
LDOS ON,  
SMPS OFF  
Temp<Shutdown  
RESB LOW  
LDOS OFF,  
SMPS OFF  
VIN > 19V or  
Temp > Shutdown  
Enable = 0  
Enable = 1  
VIN < Vstp  
RESB LOW  
LDOS, SMPS OFF  
LDOMON ACTIVE  
RESB LOW  
LDOS, SMPS OFF  
LDOMON OFF  
Enable = 0  
VIN < 19V &  
Temp<Shutdown  
VIN > 19V or  
Temp > Shutdown  
RESB LOW  
LDOS ON, SMPS OFF  
LDOMON ACTIVE  
INIT SS TIMER  
Enable = 0  
5P0 or 8P5  
in regulation  
LATCH  
ENABLE  
UNLATCH  
ENABLE  
UNLATCH  
ENABLE  
RESB LOW  
LDOS, SMPS OFF  
VIN < 19V &  
Temp<Shutdown  
VIN > 19V or  
Temp > Shutdown  
1
RESB LOW  
LDOS ON, SMPS OFF  
INIT SS TIMER  
5P0 or 8P5  
in regulation  
RESB LOW  
LDOS, SMPS ON  
SS TIMER GOING  
SS Timer Expired  
VFB > SC  
Threshold  
VFB < SC  
Threshold  
RESB LOW  
LDOS, SMPS ON  
INIT DELAYS  
2
Enable = 0 &  
SS Timer Expired  
SMPS in  
regulation  
SMPS out of  
regulation  
POR DELAY  
LDOS, SMPS ON  
RESB LOW  
3
BOOT DELAY  
LDOS, SMPS ON  
RESB HIGH  
4
WDI  
Invalid  
RESB HIGH  
LDOS, SMPS ON  
Figure 41. State Diagram  
http://onsemi.com  
19  
 
NCV8881  
ENABLE (EN PIN)  
After VIN rises above V  
, EN below V  
will  
ENSTHL  
regulator. Once either the 5P0 or 8P5 LDO reaches  
regulation, EN dropping below V has no effect until  
the SS Timer expires. Thereafter, if the SMPS output voltage  
STRT  
maintain a standby mode which keeps the switching  
regulator, Watchdog Circuit, and LDO outputs off, and  
minimizes supply current. In this state the RESB output is  
low. A high logic level at the EN input activates all functions.  
ENSTHL  
is out of regulation, or WDI pulse period exceeds the  
Watchdog Delay time t , EN below V  
puts the  
WD  
ENSTHL  
Upon EN exceeding V  
, 5P0 and 8P5 voltages are  
part in standby mode.  
ENSTHH  
established, followed by softstart of the switching  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5 Regulation Monitor Threshold  
5P0 Regulation Monitor Threshold  
8P5  
5P0  
SMPS  
OUTPUT  
Figure 42. Enable High Time Insufficient to be Latched  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5 Regulation Monitor Threshold  
5P0 Regulation Monitor Threshold  
8P5  
5P0  
SMPS  
OUTPUT  
Figure 43. Enable High Time Long Enough to be Latched  
http://onsemi.com  
20  
NCV8881  
ENABLE  
SIGNAL  
THRESHOLD  
R1  
NCV8881  
EN  
PIN  
EXTERNAL  
RESISTORS  
R2  
RHYST  
30K  
COMPARATOR  
CLAMP  
RPDOWN  
1MEG  
Figure 44. Enable Input Hysteresis Mechanism  
When the EN pin is below V  
parallel with RPDOWN making the internal resistance from  
, RHYST is in  
battery is the enable signal. Given the lowest voltage that  
must enable the part VIH , and the highest voltage that  
ENSTHL  
MIN  
the EN pin to ground lower than when the EN pin is above  
must disable the part VIL  
the divider resistor values  
MAX  
V
. This produces hysteresis in the Enable function  
are:  
ENSTHH  
when there is resistance between the source of the Enable  
signal and the EN pin. A resistive divider from the Enable  
signal source to the EN pin (Figure 44) allows a wide range  
of activation/deactivation voltages. Note that this divider is  
also used in conjunction with an internal zener clamp to keep  
the EN pin voltage below the maximum voltage rating when  
R1 = 0.7874 * (VIL  
[R2 in kW]  
– 1.27)/(0.0005556 * 1/R2) [kW]  
MAX  
R2 = 1800*(1.2283 * VIL  
VIH  
)/( VIH  
MAX  
MIN  
MIN  
86.823 * VIL  
+ 108.7) [kW]  
MAX  
Minimum hysteresis is: 0.0415 * R1 [V] [R1 in kW]  
NCV8881 Enable Input VILmax Programming Range versus VIHmin Setting  
7
6
5
4
3
2
1
0
MUST BE OFF  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
VIHmin Setting (V)  
Figure 45. Enable Input VILmax Programming Range versus VIHmin Setting  
http://onsemi.com  
21  
 
NCV8881  
IGNITION BUFFER  
8P5 OUTPUT  
The Ignition Buffer output IGNBUF reports the EN pin  
voltage level (high or low) detected by the EN input circuitry  
when the EN signal is latched. The NCV8881 will pull the  
IGNBUF output low if the Enable signal is low, and release  
the IGNBUF output if the Enable signal is high. The  
IGNBUF output is an open drain device which requires an  
external pullup resistor to a logic supply. IGNBUF is no  
longer controlled by EN when EN transitions low if the EN  
signal is not latched.  
The regulated voltage provided by the 8P5 output is used  
to power the internal gate drive circuitry, but can also  
provide current to modest external circuit loads that can  
tolerate significant spike noise at the SMPS switching  
frequency.  
CURRENT LIMIT  
8P5 output current is limited above the specified output  
current capability in order to limit inrush current at turnon  
and also minimize power dissipation in the event of an  
output short circuit.  
THERMAL SHUTDOWN  
A thermal shutdown circuit will inhibit switching, reset  
the Softstart circuit, and power down the 5P0 and 8P5  
outputs if internal die temperature exceeds a safe level.  
Operation is automatically restored when die temperature  
has dropped below the thermal restart threshold regardless  
of the state of the EN signal.  
OUTPUT UNDERVOLTAGE MONITOR  
Either the 8P5 output voltage must exceed V  
or the  
before the SMPS  
8UVSTT  
5P0 output voltage must exceed V  
5UVSTT  
will begin softstart. The LDOMON output will be pulled  
low if the 8P5 output voltage is below V  
.
8UVSTP  
OUTPUT OVERVOLTAGE CLAMP  
5P0 OUTPUT  
If current is forced into the 8P5 output, a clamp will limit  
the voltage in order to protect the gate driver circuit from  
excessive voltage.  
CURRENT LIMIT  
5P0 output current is limited above the specified output  
current capability in order to limit inrush current at turnon  
and also minimize power dissipation in the event of an  
output short circuit.  
STABILITY CONSIDERATIONS  
The output capacitor helps determine three main  
performance characteristics of a linear regulator: starting  
delay, load transient response, and loop stability. The  
optimum capacitor type and value will depend on these three  
characteristics, as well as cost, availability, size and  
temperature constraints. Tantalum, aluminum electrolytic,  
film, and ceramic are all acceptable capacitor types for most  
applications. Values of 1 mF or more work in many cases,  
however attention must be paid to the Equivalent Series  
Resistance (ESR). Aluminum electrolytic capacitors are the  
least expensive solution but both the value and ESR of this  
type of capacitor change considerably at low temperatures  
(25°C or 40°C). The capacitor manufacturer’s data sheet  
must be consulted for this information. Stability under all  
load and temperature conditions is guaranteed by a capacitor  
value greater than or equal to 4.7 mF and ESR between 0.2 W  
and 5 W.  
OUTPUT UNDERVOLTAGE MONITOR  
Either the 5P0 output voltage must exceed V  
8P5 output voltage must exceed V  
will begin softstart. If the output is below V  
or the  
before the SMPS  
5UVSTT  
8UVSTT  
, the  
5UVSTP  
LDOMON output will be pulled low.  
STABILITY CONSIDERATIONS  
The output capacitor helps determine three main  
performance characteristics of a linear regulator: starting  
delay, load transient response, and loop stability. The  
optimum capacitor type and value will depend on these three  
characteristics, as well as cost, availability, size and  
temperature constraints. Tantalum, aluminum electrolytic,  
film, and ceramic are all acceptable capacitor types for most  
applications. Values of 1 mF or more work in many cases,  
however attention must be paid to the Equivalent Series  
Resistance (ESR). Aluminum electrolytic capacitors are the  
least expensive solution but both the value and ESR of this  
type of capacitor change considerably at low temperatures  
(25°C or 40°C). The capacitor manufacturer’s data sheet  
must be consulted for this information. Stability under all  
load and temperature conditions is guaranteed by a capacitor  
value greater than or equal to 4.7 mF and ESR between 0.2  
and 5 W.  
SMPS OPERATION  
LDO OUTPUT UNDERVOLTAGE MONITOR  
Besides requiring the input voltage to be above V  
STRT  
, either the 5P0  
or the 8P5 output  
and the EN input to be above V  
ENSTHH  
output voltage must exceed V  
5UVSTT  
voltage must exceed V  
before the SMPS will begin  
8UVSTT  
softstart.  
Besides powering external loads, the 5P0 output can be  
used to provide a regulated voltage to an ROSC pullup  
resistor as a convenient way to decrease the factoryset  
switching frequency.  
SOFTSTART  
Upon being enabled and released from all fault  
conditions, and after one of the LDO outputs reaches  
http://onsemi.com  
22  
NCV8881  
regulation, a softstart circuit slowly raises the switching  
programmed switching frequency should be no higher than  
regulator error amplifier reference to V  
overloading the input supply.  
in order to avoid  
the highest synchronization frequency if synchronization is  
used.  
FBR  
VOLTAGE REFERENCE  
SMPS SYNCHRONIZATION  
An internal, temperature compensated Bandgap voltage  
reference provides the SMPS Error Amplifier and the 5P0  
and 8P5 linear regulators with a stable, precision reference  
voltage.  
Applying a clock signal to the SYNC pin will cause power  
switch turnon edges to coincide with rising edges of the  
applied clock signal. When synchronization will be  
significantly higher than the default frequency, an ROSC  
resistor which sets the internal oscillator frequency at (but  
no higher than) the synchronization frequency can be used  
to maintain the switching frequency approximately the same  
as the synchronization frequency in the absence of the  
SYNC signal.  
Besides controlling the switching frequency, the ROSC  
resistor controls the internal ramp slope, and can be used to  
adjust the gain of the pulse width modulator.  
A steady low or high SYNC input will restore SMPS  
operation to the factoryset default or ROSC programmed  
frequency after the Desynchronization delay.  
SMPS ERROR AMPLIFIER  
The error amplifier is an operational amplifier. The  
Voltage Mode control method employed by the NCV8881  
requires Type III compensation for optimum regulator  
response to load and line transients.  
The output voltage of the error amplifier controls the duty  
cycle of the power switch by controlling the moment at  
which the power switch shuts off (power switch turnons  
occur at a fixed rate).  
SMPS OSCILLATOR  
With no connections to the ROSC or SYNC pins, the  
NCV8881 switching frequency will be the factoryset  
OUTPUT VOLTAGE REGULATION MONITOR  
When the FB voltage is below V , RESB is pulled  
FBMONL  
default frequency f  
of the internal oscillator.  
OSC  
low, and the POR, BOOT and Watchdog Delays are  
initialized. When FB voltage exceeds V the POR  
FBMONH  
ROSC SMPS FREQUENCY CONTROL  
Delay begins to time out. If, when the FB voltage is below  
, the SoftStart Timer has expired and the EN  
Connection of a resistor between the ROSC pin and  
ground will raise the switching frequency above the  
factoryset default according to the following equation.  
V
FBMONL  
input is low, the NCV8881 will completely shut off (see  
Figures 46 through 48).  
FSW + 6840   RROSC 0.97 ) 170  
Connection of a resistor between the ROSC pin and 5P0 will  
lower the switching frequency below the default. The  
0
1
2
3
4
5
6
7
8
9
10  
11  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
Current is Limited  
OUTPUT  
Figure 46. SMPS Overload During Startup  
http://onsemi.com  
23  
 
NCV8881  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
Current is Limited  
OUTPUT  
Figure 47. SMPS Overload after Successful Startup #1  
SMPS OVERLOAD AFTER SUCCESSFUL STARTUP #2  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
Current is Limited  
OUTPUT  
Figure 48. SMPS Overload after Successful Startup #2  
SMPS CURRENT LIMIT AND SHORT CIRCUIT  
PROTECTION  
Every cycle, the power switch will be shut off if switch  
current exceeds the internal, fixed, current limit. After the  
SoftStart Timer has expired, an extreme overload is  
prevented from producing switch current in excess of the  
current limit by detecting excessively low voltage at the FB  
pin and latching the SMPS regulator off. Toggling the EN  
input low then high, or cycling input voltage off and on is  
required to restart the SMPS (see bubble 5 of Figure 41, and  
Figures 49 51).  
http://onsemi.com  
24  
NCV8881  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
Current is Limited  
OUTPUT  
SMPS LATCHED OFF  
Figure 49. SMPS ShortCircuit during Startup  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
Current is Limited  
OUTPUT  
SMPS LATCHED OFF  
Figure 50. SMPS ShortCircuit after Successful Startup #1  
http://onsemi.com  
25  
NCV8881  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
VIN  
ENABLE  
8P5  
5P0  
SOFTSTART TIMER  
Regulation Threshold  
ShortCircuit Threshold  
SMPS  
OUTPUT  
SMPS LATCHED OFF  
Figure 51. SMPS ShortCircuit After Successful Startup #2  
WATCHDOG  
Watchdog Delay period is initiated. Otherwise the  
NCV8881 enters another POR Delay period and the RESB  
pin is pulled low, while the SMPS and LDO outputs continue  
to regulate. If EN is low when the Watchdog Delay expires  
(no falling edge has occurred at the WDI input), RESB is  
pulled low and the NCV8881 shuts off all power outputs  
(SMPS and LDOs) and minimizes supply current.  
WATCHDOG FUNCTION  
The Watchdog function monitors the WDI input to check  
that WDI pulses arrive more frequently than the  
programmed minimum rate. Monitoring commences after  
two sequential time periods (the POR and BOOT Delays)  
which start when the SMPS output reaches regulation. After  
these initial time periods, time between WDI falling edges  
exceeding the Watchdog Delay indicates abnormal  
microcontroller activity, and the NCV8881 responds by  
pulling the open drain RESB output low. A single external  
resistor from the RDLY pin to ground programs the POR,  
BOOT and Watchdog Delays.  
In order to ensure that WDI pulses keep RESB from being  
pulled low, they must never occur further apart than the  
minimum specified t . However, RESB is not guaranteed  
WD  
to be pulled low unless pulses occur further apart than the  
maximum specified t  
.
WD  
Removal of other conditions that cause RESB to go low  
(V > V , temperature > T , and SMPS output  
IN  
OVSTP  
TSD  
When enabled and upon the SMPS output reaching  
regulation, the NCV8881 enters the POR Delay period  
voltage low) also initiate POR and BOOT Delays prior to  
resumption of WDI monitoring.  
Figures 52 through 57 illustrate the action of RESB and  
the POR, BOOT, and Watchdog Delays during startup and  
shutdown.  
The Watchdog Delay is internally limited to a maximum  
value proportional to the switching period in case the  
resistance at the RDLY pin becomes excessively high, such  
as would occur if the path from the RDLY pin through the  
RDLY resistance becomes an open circuit.  
t
, during which the RESB pin is held low. When the  
POR  
POR Delay expires, the NCV8881 enters the BOOT Delay  
period t during which the RESB output is allowed to be  
BD  
pulled up by the external resistance. When the BOOT Delay  
expires, the Watchdog circuit begins monitoring the WDI  
pin for a falling edge (from a microprocessor or other signal  
source). If a falling edge arrives before the Watchdog Delay  
period t  
expires, RESB remains high and a new  
WD  
http://onsemi.com  
26  
NCV8881  
2
0
1
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VIN  
ENABLE  
RESB  
POR  
DELAY  
POR  
DELAY  
POR  
DELAY  
POR  
DELAY  
BOOT DELAY  
BOOT DELAY  
BOOT DELAY  
WATCHDOG  
DELAY  
WATCHDOG  
DELAY  
WATCHDOG  
DELAY  
WDI  
3.3V  
5V  
Figure 52. Watchdog Never Appears; EN Input HIGH  
WATCHDOG STUCK HIGH, THEN RECOVERS; ENABLE = HIGH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VIN  
ENABLE  
RESB  
POR  
DELAY  
POR  
DELAY  
POR  
DELAY  
BOOT DELAY  
WATCHDOG  
DELAY  
BOOT DELAY  
WATCHDOG  
DELAY  
BOOT DELAY  
WDI  
WDI STUCK HIGH  
NORMAL RESPONSE  
NORMAL RESPONSE  
3.3V  
5V  
Figure 53. Watchdog Stuck HIGH, Then Normal; EN Input HIGH  
http://onsemi.com  
27  
NCV8881  
WATCHDOG STUCK LOW, THEN RECOVERS; ENABLE = HIGH  
0
1
2
3
4
5
6
7
8
9
10  
11  
VIN  
ENABLE  
RESB  
POR  
DELAY  
POR  
DELAY  
P
D
BOOT DELAY  
WATCHDOG  
DELAY  
BOOT DELAY  
WATCHDOG  
DELAY  
WDI  
WDI STUCK LOW  
NORMAL RESPONSE  
3.3V  
5V  
Figure 54. Watchdog Stuck LOW, Then Normal; EN Input HIGH  
0
1
2
3
4
5
6
7
8
9
10  
11  
VIN  
ENABLE  
RESB  
POR  
DELAY  
POR  
DELAY  
PO  
DELA  
WATCHDOG  
DELAY  
WATCHDOG  
DELAY  
BOOT DELAY  
BOOT DELAY  
WDI  
WDI TOO SLOW  
WDI TOO SLOW  
3.3V  
5V  
Figure 55. Watchdog is Too Slow; EN Input HIGH  
http://onsemi.com  
28  
NCV8881  
WATCHDOG STUCK HIGH; ENABLE = LOW, THEN EN = HIGH RESTARTS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VIN  
ENABLE  
RESB  
POR  
DELAY  
POR  
DELAY  
WATCHDOG  
DELAY  
BOOT DELAY  
BOOT DELAY  
WDI  
NORMAL RESPONSE  
NORMAL RESPONSE  
WDI STUCK HIGH  
3.3V  
5V  
Figure 56. Watchdog Stuck HIGH, EN Input LOW; then EN Goes HIGH to Restart the Regulators  
SMPS OUTPUT OUT OF REGULATION TO RESB LOW DELAY  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
VFBMONL  
THRESHOLD  
3.3V  
tFBLDLY  
RESB  
Figure 57. RESB Pulled Low as the SMPS Output Voltage (pullup source for RESB) Drops Out of Regulation  
APPLICATION INFORMATION  
Input Capacitors  
requirements. Tantalum, Aluminum or Polymer  
Electrolytic, capacitors can be used. Ceramic capacitors  
should have series resistance added to be within the  
recommended ESR range. There are many capacitor  
vendors which supply automotive rated parts that fall within  
these ranges. For example, the SUNCON EPseries  
Aluminum Electrolytic capacitors are well suited well for  
automotive radio applications.  
The primary input capacitor should be a ceramic of at least  
4.7 mF placed between the VIN pin and the ground terminal  
of the SMPS freewheeling diode in order to reduce input  
voltage perturbations present when the NCV8881 SMPS is  
heavily loaded. A secondary 0.1 mF ceramic capacitor  
positioned as closely as possible between the VIN and GND  
pins of the NCV8881 provides greater reduction of input  
perturbations than further increasing the value of the  
primary ceramic capacitor, and can be more effectively  
positioned than the larger 4.7 mF capacitor without  
compromising PCB thermal conductivity.  
Setting the SMPS Output Voltage  
To set the output voltage of the switching regulator, use  
the following equation:  
  ǒ1 ) R1Ǔ  
is the Reference voltage, R1 is the resistor  
to the FB pin and R2 is the resistor  
connected from the FB pin to ground. To reduce the effect  
(eq. 1)  
VSWOUT + VREF  
LDO Output Capacitor Selection  
R2  
The LDOs have been compensated to work with output  
capacitors above 3.3 mF having an ESR from 200 mW up to  
5 W over the full range of output current and temperature.  
Lower capacitance and ESR can be used for lighter load  
where V  
REF  
connected from V  
SWOUT  
http://onsemi.com  
29  
NCV8881  
of input offset current error, it is customary to calculate R1  
with R2 set at 1 kW.  
the necessary capacitance, at the expense of higher ripple  
current.  
In continuous conduction mode, the peaktopeak ripple  
current is calculated using the following equation:  
SMPS Snubber  
A resistor and ceramic capacitor must be connected in  
series between the SW pin and ground. Typical values are  
10 W and 1 nF.  
VSWOUT  
VSWOUT  
ǒ1 * Ǔ  
VIN  
(eq. 4)  
IPP + TSW  
 
 
L
Where T is the switching period. From this equation it  
SW  
SMPS Freewheeling Diode Selection  
is clear that the ripple current increases as L decreases,  
emphasizing the tradeoff between dynamic response and  
ripple current. For most applications, the inductor value falls  
in the range between 10 mH and 22 mH. There are many  
magnetic component suppliers providing energy storage  
inductor product lines suitable such as the Wurth TPC series  
or TOKO DSH104C series inductors, which are  
recommended for the automotive radio applications.  
The freewheeling diode in the SMPS provides the  
inductor current path when the power switch turns off, and  
is sometimes referred to as the commutation diode. The  
diode peak inverse voltage must exceed the maximum  
operating input voltage in order to accommodate any higher  
peak voltage produced by switchnode ringing. The peak  
conducting current is determined by the internal current  
limit. The average diode current can be calculated from the  
output current I  
, the input voltage V and the output  
by:  
OUT  
IN  
SMPS Output Capacitor Selection  
voltage V  
SWOUT  
The output capacitor is a basic component for the fast  
response of the power supply. In fact, during load transient,  
it supplies the current to the load for first few microseconds,  
where after the controller recognizes the load transient and  
proceeds to increase the duty cycle. Neglecting the effect of  
the ESL, the output voltage has a first drop due to the ESR  
of the capacitor.  
VSWOUT  
ǒ1 * Ǔ  
VIN  
(eq. 2)  
ID(avg) + IOUT  
 
The freewheeling diode should have a current rating equal  
to the maximum NCV8881 current limit, such as the  
MBRA340T3.  
(eq. 5)  
DVSWOUT(ESR) + DISWOUT   ESR  
Inductor Selection  
Mechanical and electrical considerations, as well as cost  
influence the selection of an output inductor. From a  
mechanical perspective, smaller inductor values generally  
correspond to smaller physical size. Since the inductor is  
often one of the largest components in SMPS system, a  
minimum inductor value is particularly important in  
spaceconstrained applications. From an electrical  
perspective, smaller inductor values correspond to faster  
transient response. The maximum current slew rate through  
the output inductor for a buck regulator is given by:  
A lower ESR produces a lower DV during load transient.  
In addition, a lower ESR produces a lower output voltage  
ripple. The voltage drop due to the output capacitance  
discharge can be approximated using the following  
equation:  
DVSWOUT(CHARGE)  
(eq. 6)  
ǒ
Ǔ2  
DISWOUT   L  
+
ǒ
Ǔ
2   CSWOUT   VIN(MIN)   DMAX * VSWOUT  
dIL  
dt  
VL  
L
(eq. 3)  
Where, D  
is the maximum duty cycle value, which is  
Inductor Slew Rate +  
+
MAX  
90%. Although the ESR effect is not in phase with the  
discharging of the output voltage, DV can be  
Where I is the inductor current, L is the output inductance,  
SWOUT(ESR)  
L
added to DV  
the maximum DV  
to give a rough indication of  
during a transient condition.  
and V is the voltage drop across the inductor.  
SWOUT(CHARGE)  
L
This equation indicates that larger inductor values limit  
the regulator’s ability to slew current through the output  
inductor in response to output load transients.  
Consequently, output capacitors must supply sufficient  
charge to maintain regulation while the inductor current  
“catches up” to the load. This results in larger values of  
output capacitance to maintain tight output voltage  
regulation. In contrast, smaller values of inductance increase  
the regulator’s maximum achievable slew rate and decrease  
SWOUT  
Simulation can also help determine the maximum  
DV ; however, it will ultimately have to be verified  
SWOUT  
with the actual load since the ESL effect is dependent on  
layout and the actual load’s di/dt.  
SMPS Input Capacitor Selection  
Besides voltage rating, a primary consideration for  
selecting the input capacitor is input RMS current rating.  
http://onsemi.com  
30  
NCV8881  
2
ȡ
ȣ
 ǒV  
FǓ  
T
)V  
SW  
SWOUT  
L
(
)
ǒ
1 * D   
Ǔȧ  
ȧ
ȧ
Ǹ
2
2
 
ISWOUT )  
(eq. 7)  
(
)
(
)
IIN(RMS) + D   1 * D   I  
)
1 * D  
ȧ
ȧ
ȧ
ȧ
SWOUT  
12  
ȧ
ȧ
Ȣ
Ȥ
Where D is the Duty Cycle = t /(t +t ), and V is the  
forward voltage of the freewheeling diode.  
voltage initially rises past the Undervoltage Lockout  
threshold.  
ON ON OFF  
F
Another consideration for the value of the input capacitor  
is the ability to supply enough input charge to satisfy sudden  
increases in output current (such as produced at startup, or  
upon maximum load step) without an unacceptable drop in  
input voltage. This is sometimes important when the input  
SMPS Compensation  
The NCV8855 utilizes voltage mode control. The control  
loop regulates V  
by monitoring it and controlling the  
SWOUT  
power switch duty cycle. Inherent with all voltagemode  
control loops is a compensation network.  
VIN  
POWER  
SWITCH  
VOLTAGE  
RAMP  
DCR  
VOUT  
LOUT  
DFW  
C1  
R1  
C2  
R2  
C3  
R3  
VREF  
COMP  
ERROR  
AMP  
ESR  
COUT  
Figure 58.  
The compensation network consists of the internal error  
amplifier and the impedance networks Z (R1, R3 and C3)  
in DC conditions to minimize the load regulation. The  
open-loop gain magnitude versus frequency plot of a stable  
control loop crosses zero dB with close to 20 dB/decade  
slope and a phase margin greater than 45°.  
IN  
and Z (R2, C1 and C2). The compensation network has to  
FB  
provide a loop transfer function with the highest 0 dB  
crossing frequency to have fast response and the highest gain  
http://onsemi.com  
31  
NCV8881  
dB  
1
wZ1  
=
R C2  
2
1
wZ 2  
= (R + R )C3  
1
3
1
wP1  
=
C C2  
1
R ‧  
2
C + C2  
1
1
wP2  
=
R C3  
3
w
1
wLC  
=
Error Amplifier  
Compensation Network  
Modulator Gain  
LOUT COUT  
Closed Loop Gain  
1
wESR  
=
ESRCOUT  
Figure 59.  
To reiterate, there are 3 primary goals to compensating.  
Goal 1 is to have a high a unity gain bandwidth (UGB) that  
crossover frequency cannot exceed 1/2 F and the phase  
SW  
margin has to be greater than 0° at crossover. However, a  
SMPS operating towards these absolutes will experience  
severe ringing before it dampens out.  
To achieve the above goals, the following guidelines  
should be adopted.  
is greater than 1/10 the switching frequency F , but less  
SW  
than 1/2 the switching frequency. UGB is also known as the  
crossover frequency. This is the point where the loop gain =  
0 dB or a gain of 1. In the plot above, the UGB is the point  
where the red line crosses the TBD axis. Goal 2 is to have the  
loop gain cross 0 dB with a 20 dB/decade slope also known  
as a 1 slope. Goal 3 is to achieve over 45° of phase margin  
when the gain crosses 0 dB. These are just goals. Sometimes  
Place w at half the resonance of w  
Z1  
LC  
Place w at or around w  
Z2  
LC  
Place w at w  
P1  
ESR  
Place w at half the switching frequency  
P2  
the crossover frequency is reduced below 1/10 F in order  
to meet goal 3.  
Conversely, some designs will push the crossover  
Performing these calculations will take some amount of  
iteration and bench testing is needed to verify results.  
ON Semiconductor has developed a tool to speed up the  
design process tremendously with great ease and accuracy.  
This tool can be downloaded by following the link below:  
http://www.onsemi.com/pub/Collateral/COMPCALC.ZIP  
SW  
frequency as high as it can (as long as it is below 1/2 F  
)
SW  
with a reduced phase margin of 30° in order to get a faster  
transient response. The only two absolutes are that the  
ORDERING INFORMATION  
Device  
Package  
SOIC16W EP  
Shipping  
NCV8881PWR2G  
1000 / Tape & Reel  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
32  
NCV8881  
PACKAGE DIMENSIONS  
SOIC16 WIDE BODY EXPOSED PAD  
CASE 751AG01  
U−  
ISSUE A  
A
M
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
16  
1
9
P
B
M
M
W
0.25 (0.010)  
R x 45  
_
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
W−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL BE  
0.13 (0.005) TOTAL IN EXCESS OF THE D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
6. 751R-01 OBSOLETE, NEW STANDARD 751R-02.  
G
14 PL  
PIN 1 I.D.  
DETAIL E  
TOP SIDE  
MILLIMETERS  
INCHES  
MIN  
0.400  
DIM MIN  
MAX  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
C
A
B
C
D
F
10.15  
7.40  
2.35  
0.35  
0.50  
10.45  
F
7.60 0.292  
2.65 0.093  
0.49 0.014  
0.90 0.020  
T−  
0.10 (0.004)  
T
SEATING  
K
D16 PL  
0.25 (0.010)  
H
PLANE  
G
H
J
1.27 BSC  
0.050 BSC  
M
S
S
T
U
W
J
3.45  
0.25  
0.00  
4.72  
0
3.66 0.136  
0.32 0.010  
0.10 0.000  
4.93 0.186  
0.144  
0.012  
0.004  
0.194  
7
DETAIL E  
K
L
M
P
R
7
10.55  
0
0.395  
_
_
_
_
10.05  
0.25  
0.415  
0.029  
1
8
9
0.75 0.010  
EXPOSED PAD  
SOLDERING FOOTPRINT*  
L
0.350  
Exposed  
Pad  
16  
0.175  
0.050  
BACK SIDE  
C
L
0.188  
0.200  
0.376  
C
L
0.074  
0.024  
0.150  
DIMENSIONS: INCHES  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8881/D  

相关型号:

NCV8881PWR2G

1.5A Automotive Buck Regulator with Watchdog
ONSEMI

NCV8881_11

1.5A Automotive Buck Regulator with Watchdog
ONSEMI

NCV890100

1.2A, 2MHz Automotive Buck Switching Regulator
ONSEMI

NCV890100MWTXG

1.2A, 2MHz Automotive Buck Switching Regulator
ONSEMI

NCV890100PDR2G

1.2A, 2MHz Automotive Buck Switching Regulator
ONSEMI

NCV890101

1.2A, 2MHz Automotive Buck Switching Regulator
ONSEMI

NCV890101MWTXG

汽车开关稳压器,降压,1.2 A,2 MHz
ONSEMI

NCV890103

Automotive Buck Switching Regulator
ONSEMI

NCV890103MWTXG

Automotive Buck Switching Regulator
ONSEMI

NCV890104

Adjustable Front End Overvoltage Protection Controller
ONSEMI

NCV890104MWR2G

Adjustable Front End Overvoltage Protection Controller
ONSEMI

NCV890104MWTXG

IC SWITCHING REGULATOR, Switching Regulator or Controller
ONSEMI