NGTB40N120S3WG [ONSEMI]

IGBT,1200V,40A,低 VF FSIII;
NGTB40N120S3WG
型号: NGTB40N120S3WG
厂家: ONSEMI    ONSEMI
描述:

IGBT,1200V,40A,低 VF FSIII

双极性晶体管
文件: 总12页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NGTB40N120S3WG  
IGBT - Ultra Field Stop  
This Insulated Gate Bipolar Transistor (IGBT) features a robust and  
cost effective Ultra Field Stop Trench construction, and provides  
superior performance in demanding switching applications, offering  
low switching losses. The IGBT is well suited for applications that  
require fast switching IGBT with low V diodes, e.g. phase−shifted full  
bridge, etc. Incorporated into the device is a free wheeling diode with a  
low forward voltage.  
F
www.onsemi.com  
40 A, 1200 V  
Features  
V
CEsat = 1.7 V  
Extremely Efficient Trench with Field Stop Technology  
Eoff = 1.1 mJ  
T  
= 175°C  
Jmax  
Low V Reverse Diode  
F
C
Optimized for High Speed Switching  
These are Pb−Free Devices  
Typical Applications  
Welding  
G
Uninterruptible Power Inverter Supplies (UPS)  
Motor Control  
E
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Collector−emitter voltage  
V
CES  
1200  
Collector current  
@ TC = 25°C  
I
A
C
160  
40  
G
@ TC = 100°C  
TO−247  
CASE 340AL  
C
E
Pulsed collector current, T  
I
160  
A
A
pulse  
CM  
limited by T  
Jmax  
Diode forward current  
@ TC = 25°C  
I
F
MARKING DIAGRAM  
160  
40  
@ TC = 100°C  
Diode pulsed current, T  
limited  
I
160  
A
V
pulse  
FM  
by T  
Jmax  
Gate−emitter voltage  
Transient gate−emitter voltage  
(T = 5 ms, D < 0.10)  
V
20  
30  
GE  
40N120S3  
AYWWG  
pulse  
Power Dissipation  
P
D
W
@ TC = 25°C  
@ TC = 100°C  
454  
227  
Operating junction temperature range  
Storage temperature range  
T
−55 to +175  
−55 to +175  
260  
°C  
°C  
°C  
J
T
stg  
Lead temperature for soldering, 1/8″  
from case for 10 seconds  
T
SLD  
A
Y
= Assembly Location  
= Year  
WW  
G
= Work Week  
= Pb−Free Package  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
ORDERING INFORMATION  
Device  
NGTB40N120S3WG  
Package  
Shipping  
TO−247 30 Units / Rail  
(Pb−Free)  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
March, 2018 − Rev. 0  
NGTB40N120S3W/D  
NGTB40N120S3WG  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
0.34  
0.5  
Unit  
°C/W  
°C/W  
°C/W  
Thermal resistance junction−to−case, for IGBT  
Thermal resistance junction−to−case, for Diode  
Thermal resistance junction−to−ambient  
R
q
JC  
q
JC  
q
JA  
R
R
40  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
STATIC CHARACTERISTIC  
Collector−emitter breakdown voltage,  
gate−emitter short−circuited  
V
= 0 V, I = 500 mA  
V
(BR)CES  
1200  
V
V
GE  
C
Collector−emitter saturation voltage  
V
= 15 V, I = 40 A  
V
CEsat  
1.7  
2.3  
1.95  
GE  
C
V
GE  
= 15 V, I = 40 A, T = 175°C  
C J  
Gate−emitter threshold voltage  
V
GE  
= V , I = 400 mA  
V
GE(th)  
4.5  
5.5  
6.5  
V
CE  
C
Collector−emitter cut−off current, gate−  
emitter short−circuited  
V
= 0 V, V = 1200 V  
I
0.5  
0.4  
mA  
GE  
CE  
CES  
V
GE  
= 0 V, V = 1200 V, T 175°C  
CE  
J =  
Gate leakage current, collector−emitter  
short−circuited  
V
= 20 V , V = 0 V  
I
200  
nA  
pF  
GE  
CE  
GES  
Input capacitance  
C
4912  
140  
80  
ies  
Output capacitance  
C
oes  
V
= 20 V, V = 0 V, f = 1 MHz  
GE  
CE  
Reverse transfer capacitance  
Gate charge total  
C
res  
Q
212  
43  
nC  
ns  
g
Gate to emitter charge  
Gate to collector charge  
Q
Q
V
CE  
= 600 V, I = 40 A, V = 15 V  
ge  
gc  
C
GE  
102  
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD  
Turn−on delay time  
Rise time  
t
12  
25  
d(on)  
t
r
Turn−off delay time  
t
145  
107  
2.2  
1.1  
3.3  
13  
T = 25°C  
d(off)  
J
V
= 600 V, I = 40 A  
CC  
C
Fall time  
t
f
R = 10 W  
g
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
Turn−on delay time  
Rise time  
V
= 15V  
E
E
mJ  
ns  
GE  
on  
off  
E
ts  
t
t
d(on)  
t
r
24  
Turn−off delay time  
153  
173  
2.8  
1.6  
4.4  
T = 175°C  
d(off)  
J
V
= 600 V, I = 40 A  
CC  
C
Fall time  
t
f
R = 10 W  
g
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
V
= 15 V  
E
E
mJ  
V
GE  
on  
off  
E
ts  
DIODE CHARACTERISTIC  
Forward voltage  
V
= 0 V, I = 40 A  
V
F
2.0  
2.55  
2.6  
GE  
F
V
= 0 V, I = 40 A, T = 175°C  
GE  
F
J
Reverse recovery time  
Reverse recovery charge  
Reverse recovery current  
t
163  
2.9  
30  
ns  
mc  
rr  
Q
rr  
T = 25°C  
J
I = 40 A, V = 400 V  
F
R
I
A
rrm  
di /dt = 500 A/ms  
F
Diode peak rate of fall of reverse recovery  
current during tb  
dI /dt  
rrm  
137  
A/ms  
www.onsemi.com  
2
NGTB40N120S3WG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DIODE CHARACTERISTIC  
Reverse recovery time  
t
250  
5.3  
40  
ns  
mc  
rr  
Reverse recovery charge  
Reverse recovery current  
Q
rr  
T = 175°C  
J
I = 40 A, V = 400 V  
F
R
I
A
rrm  
di /dt = 500 A/ms  
F
Diode peak rate of fall of reverse recovery  
current during tb  
dI /dt  
rrm  
482  
A/ms  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
NGTB40N120S3WG  
TYPICAL CHARACTERISTICS  
160  
160  
140  
120  
100  
80  
V
GE  
= 20 to 13 V  
V
GE  
= 20 to 13 V  
T = 25°C  
J
T = 150°C  
J
140  
120  
100  
80  
11 V  
10 V  
11 V  
10 V  
60  
40  
60  
9 V  
8 V  
40  
9 V  
8 V  
20  
0
20  
0
7 V  
5
7 V  
7
0
0
0
1
2
3
4
6
7
8
0
1
2
3
4
5
6
8
V
, COLLECTOR−EMITTER VOLTAGE (V)  
V
, COLLECTOR−EMITTER VOLTAGE (V)  
CE  
CE  
Figure 1. Output Characteristics  
Figure 2. Output Characteristics  
160  
140  
160  
140  
V
GE  
= 20 to 13 V  
T = −55°C  
V
GE  
= 20 to 13 V  
J
11 V  
10 V  
120  
100  
80  
120  
100  
80  
11 V  
10 V  
T = 175°C  
J
60  
60  
9 V  
8 V  
40  
40  
9 V  
20  
0
20  
0
7 V  
7−8 V  
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 3. Output Characteristics  
Figure 4. Output Characteristics  
160  
140  
120  
100  
80  
3.5  
3.0  
2.5  
2.0  
I
C
= 75 A  
I
I
= 40 A  
= 20 A  
C
60  
C
40  
1.5  
1.0  
T = 175°C  
J
20  
0
T = 25°C  
J
2
4
6
8
10  
12  
14  
−75 −50 −25  
0
25 50 75 100 125 150 175 200  
V
GE  
, GATE−EMITTER VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Typical Transfer Characteristics  
Figure 6. VCE(sat) vs. TJ  
www.onsemi.com  
4
NGTB40N120S3WG  
TYPICAL CHARACTERISTICS  
10,000  
1000  
100  
90  
T = 25°C  
J
C
T = 175°C  
J
ies  
80  
70  
T = 25°C  
J
60  
50  
40  
30  
20  
C
oes  
100  
10  
C
res  
10  
0
0
0
0
10  
20 30 40 50 60 70 80 90 100  
0
0.5 1.0 1.5 2.0 2.5 3.0  
V , FORWARD VOLTAGE (V)  
3.5 4.0 4.5  
V
, COLLECTOR−EMITTER VOLTAGE (V)  
CE  
F
Figure 7. Typical Capacitance  
Figure 8. Diode Forward Characteristics  
16  
14  
12  
3.3  
2.8  
2.3  
V
V
I
= 600 V  
= 15 V  
= 40 A  
CE  
GE  
E
on  
C
Rg = 10 W  
10  
8
1.8  
1.3  
E
off  
6
V
V
= 600 V  
= 15 V  
4
CE  
GE  
0.8  
0.3  
2
0
I
C
= 40 A  
50  
100  
150  
200  
250  
0
20 40 60 80 100 120 140 160 180 200  
Q , GATE CHARGE (nC)  
G
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Typical Gate Charge  
Figure 10. Switching Loss vs. Temperature  
7
6
5
4
3
2
1000  
100  
V
V
= 600 V  
= 15 V  
T = 175°C  
CE  
GE  
E
on  
off  
t
f
J
Rg = 10 W  
t
t
d(off)  
t
r
E
10  
1
d(on)  
V
V
= 600 V  
= 15 V  
CE  
GE  
1
0
I
C
= 40 A  
Rg = 10 W  
20 40 60 80 100 120 140 160 180 200  
10  
20  
30  
40  
50  
60  
70  
80  
90  
T , JUNCTION TEMPERATURE (°C)  
J
I , COLLECTOR CURRENT (A)  
C
Figure 11. Switching Loss vs. Temperature  
Figure 12. Switching Loss vs. IC  
www.onsemi.com  
5
NGTB40N120S3WG  
TYPICAL CHARACTERISTICS  
10  
1000  
100  
V
V
= 600 V  
= 15 V  
CE  
9
8
7
6
5
4
3
GE  
t
E
on  
f
T = 175°C  
J
I
C
= 40 A  
t
t
d(off)  
t
r
d(on)  
10  
1
V
V
= 600 V  
= 15 V  
CE  
E
off  
2
1
0
GE  
T = 175°C  
J
Rg = 10 W  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
I , COLLECTOR CURRENT (A)  
C
Rg, GATE RESISTOR (W)  
Figure 13. Switching Time vs. IC  
Figure 14. Switching Loss vs. RG  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1000  
V
= 15 V  
= 40 A  
E
GE  
on  
t
d(off)  
I
C
Rg = 10 W  
T = 175°C  
J
t
f
t
r
t
100  
d(on)  
E
off  
V
V
= 600 V  
= 15 V  
CE  
GE  
T = 175°C  
J
0.5  
0
I
C
= 40 A  
10  
0
10  
20  
30  
40  
50  
60  
70  
350 400 450 500 550 600 650 700 750 800  
, COLLECTOR−EMITTER VOLTAGE (V)  
Rg, GATE RESISTOR (W)  
V
CE  
Figure 15. Switching Time vs. RG  
Figure 16. Switching Loss vs. VCE  
1000  
1000  
100  
V
= 15 V  
= 40 A  
GE  
I
C
Rg = 10 W  
T = 175°C  
J
t
f
t
t
dc operation  
d(off)  
10  
100  
50 ms  
100 ms  
Single Nonrepetitive  
Pulse T = 25°C  
C
1
1 ms  
Curves must be derated  
linearly with increase  
in temperature  
t
r
d(on)  
10  
0.1  
350 400 450 500 550 600 650 700 750 800  
, COLLECTOR−EMITTER VOLTAGE (V)  
1
10  
100  
1000  
10,000  
V
CE  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 17. Switching Time vs. VCE  
Figure 18. Safe Operating Area  
www.onsemi.com  
6
NGTB40N120S3WG  
TYPICAL CHARACTERISTICS  
400  
350  
300  
250  
200  
1000  
100  
V
R
= 400 V  
T = 175°C, I = 40 A  
J
F
T = 25°C, I = 40 A  
J
F
150  
100  
10  
1
V
GE  
= 15 V, T = 175°C  
C
50  
0
1
10  
100  
1000  
10,000  
100  
300  
500  
700  
900  
1100  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
Figure 19. Reverse Bias Safe Operating Area  
Figure 20. trr vs. diF/dt  
6
5
4
3
2
60  
50  
40  
30  
20  
T = 175°C, I = 40 A  
J
F
T = 175°C, I = 40 A  
J
F
T = 25°C, I = 40 A  
J
F
T = 25°C, I = 40 A  
J
F
10  
0
1
0
V
= 400 V  
R
V
= 400 V  
R
100  
300  
500  
700  
900  
1100  
100  
300  
500  
700  
900  
1100  
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
Figure 21. Qrr vs. diF/dt  
Figure 22. Irm vs. diF/dt  
3.5  
3.0  
I = 80 A  
F
2.5  
2.0  
I = 40 A  
F
I = 20 A  
F
1.5  
1.0  
−75 −50 −25  
0
25 50 75 100 125 150 175 200  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. VF vs. TJ  
www.onsemi.com  
7
NGTB40N120S3WG  
TYPICAL CHARACTERISTICS  
180  
160  
140  
Ramp, T = 110°C  
C
Square, T = 80°C  
C
Ramp, T = 80°C  
C
120  
100  
80  
Square, T = 110°C  
C
60  
40  
V
CE  
= 600 V, R = 10 W, V = 15 V  
G GE  
20  
0
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 24. Collector Current vs. Switching Frequency  
1
0.1  
R
= 0.34  
q
JC  
50% Duty Cycle  
20%  
10%  
5%  
Duty Factor = t /t  
1
2
0.01  
2%  
Peak T = P  
x Z  
+ T  
C
q
J
DM  
JC  
R (°C/W) Ci (J/W)  
i
R
C
R
C
R
Junction  
C = t /R  
Case  
1
1
2
2
n
0.0065  
0.0811  
0.0186  
0.1007  
0.1115  
0.0172  
0.0154  
0.0039  
0.0539  
0.0314  
0.0897  
1.8437  
0.001  
i
i
i
Single Pulse  
C
n
0.0001  
0.000001  
0.00001  
0.0001  
0.001  
ON−PULSE WIDTH (s)  
0.01  
0.1  
1
Figure 25. IGBT Transient Thermal Impedance  
1
R
= 0.50  
q
JC  
50% Duty Cycle  
20%  
10%  
5%  
R (°C/W) Ci (J/W)  
0.1  
i
0.017265 0.000058  
0.023397 0.000427  
0.025095 0.001260  
0.073345 0.001363  
0.093146 0.003395  
0.043705 0.022881  
0.060153 0.052571  
0.127694 0.078312  
0.246682 0.128193  
0.070293 1.422617  
Duty Factor = t /t  
1
2
Peak T = P  
x Z  
+ T  
JC C  
q
J
DM  
2%  
R
C
R
C
R
Junction  
C = t /R  
Case  
1
1
2
2
n
0.01  
Single Pulse  
i
i
i
C
n
0.001  
0.000001  
0.00001  
0.0001  
0.001  
ON−PULSE WIDTH (s)  
0.01  
0.1  
1
Figure 26. Diode Transient Thermal Impedance  
www.onsemi.com  
8
NGTB40N120S3WG  
Figure 27. Test Circuit for Switching Characteristics  
Figure 28. Definition of Turn On Waveform  
www.onsemi.com  
9
NGTB40N120S3WG  
Figure 29. Definition of Turn Off Waveform  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO247  
CASE 340AL  
ISSUE D  
DATE 17 MAR 2017  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. SLOT REQUIRED, NOTCH MAY BE ROUNDED.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.  
MOLD FLASH SHALL NOT EXCEED 0.13 PER SIDE. THESE  
DIMENSIONS ARE MEASURED AT THE OUTERMOST  
EXTREME OF THE PLASTIC BODY.  
5. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY  
L1.  
6. P SHALL HAVE A MAXIMUM DRAFT ANGLE OF 1.5° TO THE  
TOP OF THE PART WITH A MAXIMUM DIAMETER OF 3.91.  
7. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED  
BY L1.  
SCALE 1:1  
SEATING  
PLANE  
M
M
B A  
0.635  
B
A
NOTE 4  
E
NOTE 6  
P
A
E2/2  
Q
S
E2  
NOTE 4  
D
NOTE 3  
4
MILLIMETERS  
DIM MIN  
MAX  
5.30  
2.60  
1.33  
2.35  
3.40  
0.68  
21.34  
16.25  
5.49  
1
2
3
A
A1  
b
4.70  
2.20  
1.07  
1.65  
2.60  
0.45  
20.80  
15.50  
4.32  
2X  
F
L1  
b2  
b4  
c
NOTE 5  
L
D
E
E2  
e
5.45 BSC  
2X b2  
c
F
2.655  
19.80  
3.81  
---  
20.80  
4.32  
b4  
3X b  
A1  
L
NOTE 7  
L1  
P
3.55  
3.65  
M
M
0.25  
B A  
e
Q
S
5.40  
6.20  
6.15 BSC  
GENERIC  
MARKING DIAGRAM*  
XXXXXXXXX  
AYWWG  
XXXXX = Specific Device Code  
A
Y
= Assembly Location  
= Year  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer  
to device data sheet for actual part  
marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON16119F  
TO247  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NGTB40N120SWG

IGBT,1200V/40A - 焊接
ONSEMI

NGTB40N135IHRWG

IGBT 1350V 40A FS2-RC 电感加热
ONSEMI

NGTB40N60FL2WG

IGBT - Field Stop II
ONSEMI

NGTB40N60FL2WG_16

IGBT - Field Stop II
ONSEMI

NGTB40N60FLWG

IGBT 600V 40A FS1 太阳能/UPS
ONSEMI

NGTB40N60IHLWG

Insulated Gate Bipolar Transistor (IGBT)
ONSEMI
ONSEMI

NGTB40N65FL2WG

IGBT - Field Stop II
ONSEMI

NGTB40N65FL2WG_16

IGBT - Field Stop II
ONSEMI

NGTB40N65IHL2WG

IGBT, 650V 40A FS2 Induction Heating
ONSEMI

NGTB40N65IHRTG

IGBT, Monolithic with Reverse Conducting Diode, 650 V, 40 A
ONSEMI