NL27WZ125USG [ONSEMI]

Dual Buffer with 3−State Outputs; 双缓冲器,具有三态输出
NL27WZ125USG
型号: NL27WZ125USG
厂家: ONSEMI    ONSEMI
描述:

Dual Buffer with 3−State Outputs
双缓冲器,具有三态输出

总线驱动器 总线收发器 逻辑集成电路 光电二极管
文件: 总5页 (文件大小:72K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NL27WZ125  
Dual Buffer with 3−State  
Outputs  
The NL27WZ125 is a high performance dual noninverting buffer  
operating from a 1.65 V to 5.5 V supply.  
Features  
http://onsemi.com  
MARKING  
Extremely High Speed: t 2.6 ns (typical) at V = 5 V  
PD  
CC  
Designed for 1.65 V to 5.5 V V Operation  
CC  
DIAGRAM  
8
8
Over Voltage Tolerant Inputs and Outputs  
LVTTL Compatible − Interface Capability With 5 V TTL Logic with  
1
V
CC  
= 3 V  
M0 M G  
US8  
G
LVCMOS Compatible  
US SUFFIX  
CASE 493  
24 mA Balanced Output Sink and Source Capability  
Near Zero Static Supply Current Substantially Reduces System  
1
Power Requirements  
M0  
M
G
= Device Code  
= Date Code*  
= Pb−Free Package  
3−State OE Input is Active−Low  
Replacement for NC7WZ125  
Chip Complexity = 72 FETs  
Pb−Free Package is Available  
(Note: Microdot may be in either location)  
*Date Code orientation may vary depending upon  
manufacturing location.  
PIN ASSIGNMENT  
Pin  
Function  
OE  
8
7
6
OE  
A
V
CC  
1
2
1
1
1
2
3
4
5
6
7
8
A
1
Y
2
OE  
1
2
GND  
A
2
Y
1
Y
1
Y
3
4
2
OE  
V
2
5
A
2
GND  
CC  
FUNCTION TABLE  
Input  
Figure 1. Pinout (Top View)  
Output  
OE  
L
A
Y
n
n
n
L
L
L
H
X
H
Z
A
1
1
Y
Y
1
H
OE  
EN  
1
X = Don’t Care  
n = 1, 2  
A
2
2
OE  
2
Figure 2. Logic Symbol  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
April, 2006 − Rev. 5  
NL27WZ125/D  
NL27WZ125  
DEVICE ORDERING INFORMATION  
Device Nomenclature  
Logic  
No. of  
Temp  
Device Order  
Number  
Device  
Function  
Package  
Suffix  
Package  
Type  
Tape and  
Reel Size  
Circuit  
Gates per  
Range  
Indicator Package Identifier  
Technology  
NL27WZ125US  
NL  
2
7
WZ  
125  
US  
US8  
178 mm, 3000 Unit  
US8  
(Pb−Free)  
NL27WZ125USG  
NL  
2
7
WZ  
125  
US  
178 mm, 3000 Unit  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V
CC  
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
*0.5 to )7.0  
*0.5 to )7.0  
V
I
V
V
O
V
Output in High Impedance State  
Output in HIGH or LOW State  
*0.5 to )7.0  
−0.5 to V + 0.5  
CC  
I
DC Input Diode Current  
V < GND  
*50  
mA  
mA  
mA  
mA  
mA  
°C  
IK  
I
I
DC Output Diode Current  
V
O
< GND  
*50  
OK  
I
DC Output Sink Current  
$50  
O
I
DC Supply Current per Supply Pin  
DC Ground Current per Ground Pin  
Storage Temperature Range  
$100  
CC  
I
$100  
GND  
T
*65 to )150  
STG  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
260  
°C  
L
T
)150  
°C  
J
q
(Note 1)  
250  
250  
°C/W  
mW  
JA  
P
D
Power Dissipation in Still Air at 85°C  
Moisture Sensitivity  
MSL  
Level 1  
F
R
Flammability Rating  
Oxygen Index: 28 to 34  
UL 94 V−0 @ 0.125 in  
V
ESD  
ESD Withstand Voltage  
Human Body Model (Note 2)  
Machine Model (Note 3)  
Charged Device Model (Note 4)  
> 2000  
> 200  
N/A  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow.  
2. Tested to EIA/JESD22−A114−A.  
3. Tested to EIA/JESD22−A115−A.  
4. Tested to JESD22−C101−A.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
CC  
Supply Voltage  
Operating  
Data Retention Only  
1.65  
1.5  
5.5  
5.5  
V
V
Input Voltage  
(Note 5)  
0
0
5.5  
5.5  
V
V
I
V
O
Output Voltage  
(HIGH or LOW State)  
T
Operating Free−Air Temperature  
Input Transition Rise or Fall Rate  
*40  
)85  
°C  
A
Dt/DV  
V
CC  
V
CC  
V
CC  
= 2.5 V $0.2 V  
= 3.0 V $0.3 V  
= 5.0 V $0.5 V  
0
0
0
20  
10  
5
ns/V  
5. Unused inputs may not be left open. All inputs must be tied to a high− or low−logic input voltage level.  
http://onsemi.com  
2
 
NL27WZ125  
DC ELECTRICAL CHARACTERISTICS  
T
A
= 255C  
Typ  
*405C v T v 855C  
A
V
(V)  
CC  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Condition  
Unit  
V
IH  
High−Level Input Voltage  
1.65  
2.3 to 5.5  
0.75 V  
0.75 V  
0.7 V  
V
CC  
CC  
CC  
0.7 V  
CC  
V
Low−Level Input Voltage  
High−Level Output Voltage  
1.65  
2.3 to 5.5  
0.25 V  
0.3 V  
0.25 V  
0.3 V  
V
V
IL  
CC  
CC  
CC  
CC  
V
OH  
I
I
= 100 mA  
= −3 mA  
= −8 mA  
= −12 mA  
= −16 mA  
= −24 mA  
= −32 mA  
1.65 to 5.5  
1.65  
2.3  
V
CC  
− 0.1  
1.29  
V
V
CC  
−0.1  
OH  
OH  
CC  
V
IN  
= V or V  
1.52  
2.1  
2.4  
2.7  
2.5  
4.0  
1.29  
1.9  
2.2  
2.4  
2.3  
3.8  
IL  
IH  
I
1.9  
2.2  
2.4  
2.3  
3.8  
OH  
I
2.7  
3.0  
3.0  
4.5  
OH  
I
OH  
I
OH  
I
OH  
V
OL  
Low−Level Output Voltage  
= V  
I
= 100 mA  
= 3 mA  
= 8 mA  
= 12 mA  
= 16 mA  
= 24 mA  
= 32 mA  
1.65 to 5.5  
0.1  
0.24  
0.3  
0.4  
0.4  
0.55  
0.55  
0.1  
0.24  
0.3  
0.4  
0.4  
0.55  
0.55  
V
OL  
V
I
OL  
0.08  
0.20  
0.22  
0.28  
0.38  
0.42  
IN  
IL  
I
OL  
2.3  
2.7  
3.0  
3.0  
4.5  
I
OL  
I
OL  
I
OL  
I
OL  
I
Input Leakage Current  
V
= V or GND  
5.5  
0
$0.1  
$1.0  
mA  
mA  
IN  
IN  
CC  
I
Power Off  
Leakage Current  
V
V
= 5.5 V  
= 5.5 V  
1.0  
10  
OFF  
OUT  
IN  
IN  
IN  
I
Quiescent Supply Current  
3−State Output Leakage  
V
V
= V or GND  
5.5  
1.0  
10  
mA  
mA  
CC  
CC  
I
= V or V  
2.3 to 5.5  
$0.5  
$5  
OZ  
IL  
IH  
0V v V  
v 5.5 V  
OUT  
AC ELECTRICAL CHARACTERISTICS (t = t = 3.0 ns)  
R
F
T
A
= 255C  
Typ  
*405C v T v 855C  
A
V
(V)  
CC  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Condition  
R = 1 MW C = 15 pF  
Unit  
t
Propagation Delay  
AN to YN  
(Figures 3 and 4)  
1.8 $ 0.15  
2.5 $ 0.2  
2.0  
1.0  
12  
7.5  
2.0  
1.0  
13  
8
ns  
PLH  
L
L
t
PHL  
3.3 $ 0.3  
5.0 $ 0.5  
3.3 $ 0.3  
0.8  
1.2  
0.5  
0.8  
5.2  
5.7  
4.5  
5.0  
1.0  
0.8  
0.8  
1.2  
0.5  
0.8  
5.5  
6.0  
4.8  
5.3  
1.0  
0.8  
R = 1 MW  
L
C = 15 pF  
L
R = 500 W  
L
C = 50 pF  
L
R = 1 MW  
L
C = 15 pF  
L
R = 500 W  
L
C = 50 pF  
L
t
t
Output to Output Skew  
(Note 6)  
ns  
ns  
R = 500 W  
L
C = 50 pF  
L
OSLH  
OSHL  
R = 500 W  
L
C = 50 pF 5.0 $ 0.5  
L
t
t
Output Enable Time  
(Figures 5, 6 and 7)  
1.8 $ 0.15  
2.5 $ 0.2  
3.0  
1.8  
14  
8.5  
3.0  
1.8  
15  
9.0  
PZH  
t
PZL  
3.3 $ 0.3  
5.0 $ 0.5  
1.2  
0.8  
6.2  
5.5  
1.2  
0.8  
6.5  
5.8  
Output Enable Time  
(Figures 5, 6 and 7)  
1.8 $ 0.15  
2.5 $ 0.2  
2.5  
1.5  
12  
8.0  
2.5  
1.5  
13  
8.5  
ns  
PHZ  
t
PLZ  
3.3 $ 0.3  
5.0 $ 0.5  
0.8  
0.3  
5.7  
4.7  
0.8  
0.3  
6.0  
5.0  
6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.  
This specification applies to any outputs switching in the same direction, either HIGH−to−LOW (t  
) or LOW−to−HIGH (t  
); parameter  
OSHL  
OSLH  
guaranteed by design.  
http://onsemi.com  
3
 
NL27WZ125  
CAPACITIVE CHARACTERISTICS  
Symbol  
Parameter  
Condition  
Typical  
7.0  
Unit  
pF  
C
Input Capacitance  
Output Capacitance  
V
V
= 5.5 V, V = 0 V or V  
I
IN  
CC  
CC  
CC  
C
= 5.5 V, V = 0 V or V  
7.0  
pF  
OUT  
CC  
I
C
Power Dissipation Capacitance  
(Note 7)  
10 MHz, V = 3.3 V, V = 0 V or V  
18  
27  
pF  
PD  
CC  
I
CC  
10 MHz, V = 5.5 V, V = 0 V or V  
CC  
I
CC  
7. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
power consumption; P = C V  
) = C V f + I . C is used to determine the no−load dynamic  
CC(OPR  
PD CC in CC PD  
2
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
t = 3 ns  
f
t = 3 ns  
f
OE = GND  
V
CC  
90%  
50%  
90%  
50%  
INPUT  
OUTPUT  
INPUT  
A and B  
10%  
10%  
C *  
L
R
L
GND  
t
t
PHL  
PLH  
V
V
OH  
*Includes all probe and jig capacitance.  
A 1 MHz square input wave is recommended for  
50%  
50%  
OUTPUT Y  
propagation delay tests.  
OL  
Figure 3. Switching Waveform  
Figure 4. TPLH or TPHL  
V
CC  
50%  
50%  
OE  
0 V  
t
t
PHZ  
PZH  
V
CC  
V
− 10%  
OH  
50%  
50%  
On  
0 V  
t
t
PLZ  
PZL  
V  
CC  
On  
V
+ 10%  
OL  
GND  
Figure 5. AC Output Enable and Disable Waveform  
2   V  
CC  
INPUT  
INPUT  
R = 500 W  
1
V
CC  
OUTPUT  
R = 500 W  
OUTPUT  
R = 250 W  
C = 50 pF  
L
C = 50 pF  
L
L
L
A 1 MHz square input wave is recommended for  
propagation delay tests.  
A 1 MHz square input wave is recommended for  
propagation delay tests.  
Figure 7. TPZH or TPHZ  
Figure 6. TPZL or TPL  
http://onsemi.com  
4
 
NL27WZ125  
PACKAGE DIMENSIONS  
US8  
US SUFFIX  
CASE 493−02  
ISSUE B  
−X−  
−Y−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
J
8
5
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSION OR GATE BURR.  
MOLD FLASH. PROTRUSION AND GATE  
BURR SHALL NOT EXCEED 0.140 MM  
(0.0055”) PER SIDE.  
DETAIL E  
4. DIMENSION “B” DOES NOT INCLUDE  
INTER−LEAD FLASH OR PROTRUSION.  
INTER−LEAD FLASH AND PROTRUSION  
SHALL NOT E3XCEED 0.140 (0.0055”) PER  
SIDE.  
B
L
5. LEAD FINISH IS SOLDER PLATING WITH  
THICKNESS OF 0.0076−0.0203 MM.  
(300−800 “).  
6. ALL TOLERANCE UNLESS OTHERWISE  
SPECIFIED 0.0508 (0.0002 “).  
1
4
R
S
G
P
U
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
P
MIN  
1.90  
2.20  
0.60  
0.17  
0.20  
0.50 BSC  
0.40 REF  
0.10  
MAX  
2.10  
2.40  
0.90  
0.25  
0.35  
MIN  
MAX  
0.083  
0.094  
0.035  
0.010  
0.014  
C
0.075  
0.087  
0.024  
0.007  
0.008  
0.020 BSC  
0.016 REF  
0.004  
H
−T−  
SEATING  
PLANE  
0.10 (0.004)  
T
K
N
D
R 0.10 TYP  
M
M
0.10 (0.004)  
T
X Y  
0.18  
0.10  
3.20  
6
0.007  
0.004  
0.126  
6
V
0.00  
3.00  
0
0.000  
0.118  
0
_
_
_
_
5
10  
5
10  
_
_
_
_
0.23  
0.23  
0.37  
0.60  
0.34  
0.33  
0.47  
0.80  
0.010  
0.009  
0.015  
0.024  
0.013  
0.013  
0.019  
0.031  
F
R
S
U
V
DETAIL E  
0.12 BSC  
0.005 BSC  
SOLDERING FOOTPRINT*  
3.8  
0.15  
1.8  
0.07  
0.50  
0.0197  
0.30  
0.012  
1.0  
0.0394  
mm  
inches  
ǒ
Ǔ
SCALE 8:1  
*For additional information on our Pb−Free strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NL27WZ125/D  

相关型号:

NL27WZ125USG-F22190

双缓冲器,3 态低启用
ONSEMI

NL27WZ125_06

Dual Buffer with 3−State Outputs
ONSEMI

NL27WZ125_12

Dual Buffer with 3-State Outputs
ONSEMI

NL27WZ126

Dual Buffer with 3−State Outputs
ONSEMI

NL27WZ126/D

Dual Buffer with 3-State Outputs
ETC

NL27WZ126US

Dual Buffer with 3−State Outputs
ONSEMI

NL27WZ126USG

Dual Buffer with 3−State Outputs
ONSEMI

NL27WZ126_06

Dual Buffer with 3−State Outputs
ONSEMI

NL27WZ126_12

Dual Buffer with 3-State Outputs
ONSEMI

NL27WZ14

Dual Schmitt-Trigger Inverter
ONSEMI

NL27WZ14/D

Dual Schmitt-Trigger Inverter
ETC

NL27WZ14DBVT1G

Dual Inverter with Schmitt Trigger Input
ONSEMI