NSVMMBT6517LT1G [ONSEMI]

高压 NPN 双极晶体管;
NSVMMBT6517LT1G
型号: NSVMMBT6517LT1G
厂家: ONSEMI    ONSEMI
描述:

高压 NPN 双极晶体管

高压 小信号双极晶体管
文件: 总8页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBT6517LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon  
Motorola Preferred Device  
COLLECTOR  
3
1
BASE  
3
2
EMITTER  
1
MAXIMUM RATINGS  
2
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
EmitterBase Voltage  
Symbol  
Value  
Unit  
Vdc  
V
CEO  
350  
350  
5.0  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
V
Vdc  
CBO  
EBO  
V
Vdc  
Base Current  
I
250  
500  
mAdc  
mAdc  
B
C
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
MMBT6517LT1 = 1Z  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
CollectorEmitter Breakdown Voltage  
(I = 1.0 mAdc)  
C
V
V
Vdc  
Vdc  
(BR)CEO  
350  
350  
6.0  
50  
50  
CollectorBase Breakdown Voltage  
(I = 100 Adc)  
C
(BR)CBO  
EmitterBase Breakdown Voltage  
(I = 10 Adc)  
E
V
Vdc  
(BR)EBO  
Collector Cutoff Current  
I
nAdc  
nAdc  
CBO  
(V  
CB  
= 250 Vdc)  
Emitter Cutoff Current  
(V = 5.0 Vdc)  
I
EBO  
EB  
1. FR5 = 1.0  
0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
Thermal Clad is a trademark of the Bergquist Company.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
h
FE  
(I = 1.0 mAdc, V  
= 10 Vdc)  
= 10 Vdc)  
= 10 Vdc)  
= 10 Vdc)  
20  
30  
30  
20  
15  
200  
200  
C
CE  
CE  
CE  
CE  
(I = 10 mAdc, V  
C
(I = 30 mAdc, V  
C
(I = 50 mAdc, V  
C
(I = 100 mAdc, V  
CE  
= 10 Vdc)  
C
CollectorEmitter Saturation Voltage (3)  
(I = 10 mAdc, I = 1.0 mAdc)  
V
V
Vdc  
CE(sat)  
0.30  
0.35  
0.50  
1.0  
C
B
(I = 20 mAdc, I = 2.0 mAdc)  
C
C
B
B
B
(I = 30 mAdc, I = 3.0 mAdc)  
(I = 50 mAdc, I = 5.0 mAdc)  
C
BaseEmitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
Vdc  
Vdc  
BE(sat)  
0.75  
0.85  
0.90  
C
C
B
B
B
(I = 20 mAdc, I = 2.0 mAdc)  
(I = 30 mAdc, I = 3.0 mAdc)  
C
BaseEmitter On Voltage  
(I = 100 mAdc, V = 10 Vdc)  
V
BE(on)  
2.0  
C
CE  
SMALLSIGNAL CHARACTERISTICS  
Current Gain — Bandwidth Product  
f
C
C
MHz  
pF  
T
(I = 10 mAdc, V  
C CE  
= 20 Vdc, f = 20 MHz)  
40  
200  
6.0  
80  
Collector–Base Capacitance  
(V = 20 Vdc, f = 1.0 MHz)  
cb  
eb  
CB  
Emitter–Base Capacitance  
(V = 0.5 Vdc, f = 1.0 MHz)  
pF  
EB  
3. Pulse Test: Pulse Width = 300 s, Duty Cycle = 2.0%.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
200  
100  
T
= 125°C  
V
= 10 V  
J
CE  
70  
50  
100  
70  
25°C  
50  
T
= 25°C  
= 20 V  
J
30  
20  
V
CE  
f = 20 MHz  
55°C  
30  
20  
10  
1.0  
10  
2.0 3.0  
5.0 7.0 10  
20  
30  
50 70 100  
1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
20  
30  
50 70 100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 1. DC Current Gain  
Figure 2. Current–Gain — Bandwidth Product  
1.4  
1.2  
2.5  
2.0  
T
= 25°C  
I
J
C
10  
I
B
1.5  
1.0  
1.0  
25°C to 125°C  
0.5  
0
0.8  
0.6  
0.4  
V
@ I /I = 10  
C B  
R
for V  
VC CE(sat)  
BE(sat)  
θ
55°C to 25°C  
V
@ V = 10 V  
CE  
BE(on)  
0.5  
1.0  
1.5  
2.0  
2.5  
55°C to 125°C  
0.2  
R
for V  
VB BE  
θ
V
@ I /I = 10  
C B  
CE(sat)  
V
@ I /I = 5.0  
C B  
50 70 100  
CE(sat)  
20 30  
0
1.0  
2.0 3.0  
5.0 7.0 10  
1.0  
2.0  
3.0  
I
5.0 7.0 10  
20  
30  
50 70 100  
I
, COLLECTOR CURRENT (mA)  
C
, COLLECTOR CURRENT (mA)  
C
Figure 3. “On” Voltages  
Figure 4. Temperature Coefficients  
100  
70  
50  
T
= 25°C  
J
C
eb  
30  
20  
10  
7.0  
5.0  
C
cb  
3.0  
2.0  
1.0  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100 200  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 5. Capacitance  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
10 k  
7.0 k  
5.0 k  
1.0 k  
700  
V
I
= 100 V  
CE(off)  
/I = 5.0  
t
500  
s
t
@ V = 2.0 V  
BE(off)  
C B  
d
T
= 25°C  
3.0 k  
2.0 k  
J
300  
200  
t
V
I
= 100 V  
/I = 5.0  
r
CE(off)  
C B  
= I  
1.0 k  
700  
500  
t
100  
f
I
T
B1 B2  
70  
50  
= 25°C  
J
300  
200  
30  
20  
100  
10  
1.0  
1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50 70 100  
2.0 3.0  
5.0 7.0 10  
20  
30  
50 70 100  
I
, COLLECTOR CURRENT (mA)  
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 7. Turn–Off Time  
Figure 6. Turn–On Time  
+V  
CC  
2.2 k  
V
ADJUSTED  
CC  
FOR V  
20 k  
= 100 V  
CE(off)  
1.0 k  
+10.8 V  
50  
SAMPLING SCOPE  
50  
1/2MSD7000  
–9.2 V  
100  
1.0%  
PULSE WIDTH  
t , t 5.0 ns  
DUTY CYCLE  
µs  
f
r
APPROXIMATELY  
–1.35 V  
(ADJUST FOR V  
(BE)off  
= 2.0 V)  
FOR PNP TEST CIRCUIT,  
REVERSE ALL VOLTAGE POLARITIES  
Figure 8. Switching Time Test Circuit  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
SINGLE PULSE  
SINGLE PULSE  
0.05  
0.1  
0.1  
0.07  
0.05  
Z
Z
= r(t)  
= r(t)  
R
T
T
– T = P  
Z
θJC(t)  
θJA(t)  
θ
θ
JC(t)  
JA(t)  
θ
JC  
JA  
J(pk)  
J(pk)  
C
(pk)  
(pk)  
0.03  
0.02  
R
– T = P  
Z
θ
A
0.01  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0 k  
2.0 k  
5.0 k  
10 k  
t, TIME (ms)  
Figure 9. Thermal Response  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
FIGURE A  
t
P
P
P
P
P
t
1
1/f  
DUTY CYCLE  
PEAK PULSE POWER = P  
t
1
t
f
1
t
P
P
Design Note: Use of Transient Thermal Resistance Data  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBT6517LT1/D  

相关型号:

NSVMMBT6520L

High Voltage Transistor
ONSEMI

NSVMMBT6520LT1G

High Voltage Transistor
ONSEMI

NSVMMBTA05LT1G

NPN 双极晶体管
ONSEMI

NSVMMBTA28LT1G

NPN 达林顿晶体管
ONSEMI

NSVMMBTH10L

VHF/UHF Transistor
ONSEMI

NSVMMBTH10LT1G

VHF/UHF Transistor
ONSEMI

NSVMMBTH81LT1G

50 mA, 20 V PNP RF Bipolar Junction Transistor
ONSEMI

NSVMMBTH81LT3G

50 mA, 20 V PNP RF Bipolar Junction Transistor
ONSEMI

NSVMMUN2112LT1G

PNP Bipolar Digital Transistor (BRT)
ONSEMI

NSVMMUN2113LT3G

PNP 双极数字晶体管 (BRT)
ONSEMI

NSVMMUN2114LT3G

PNP 双极数字晶体管 (BRT)
ONSEMI

NSVMMUN2130LT1G

PNP Bipolar Digital Transistor (BRT)
ONSEMI