NTD20N06G [ONSEMI]

Power MOSFET; 功率MOSFET
NTD20N06G
型号: NTD20N06G
厂家: ONSEMI    ONSEMI
描述:

Power MOSFET
功率MOSFET

晶体 晶体管 开关 脉冲
文件: 总8页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTD20N06  
Power MOSFET  
20 Amps, 60 Volts, N−Channel DPAK  
Designed for low voltage, high speed switching applications in  
power supplies, converters and power motor controls and bridge  
circuits.  
Features  
http://onsemi.com  
Pb−Free Packages are Available  
Lower R  
DS(on)  
V
R
TYP  
I MAX  
D
(BR)DSS  
DS(on)  
Lower V  
Lower Capacitances  
DS(on)  
60 V  
37.5 mW  
20 A  
Lower Total Gate Charge  
N−Channel  
Lower and Tighter V  
SD  
D
Lower Diode Reverse Recovery Time  
Lower Reverse Recovery Stored Charge  
Typical Applications  
Power Supplies  
G
Converters  
Power Motor Controls  
Bridge Circuits  
S
MARKING  
DIAGRAMS  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
Symbol  
Value  
Unit  
4
Drain−to−Source Voltage  
V
DSS  
60  
60  
Vdc  
Vdc  
Vdc  
Drain  
Drain−to−Gate Voltage (R = 10 MW)  
V
DGR  
GS  
4
Gate−to−Source Voltage  
− Continuous  
DPAK  
CASE 369C  
STYLE 2  
V
V
"20  
"30  
GS  
GS  
− Non−repetitive (t v10 ms)  
p
2
1
Drain Current  
Adc  
Apk  
3
− Continuous @ T = 25°C  
I
D
20  
10  
60  
2
A
1
Gate  
3
− Continuous @ T = 100°C  
I
D
Drain  
A
Source  
− Single Pulse (t v10 ms)  
I
DM  
p
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
60  
W
W/°C  
W
A
D
4
0.40  
1.88  
1.36  
Drain  
Total Power Dissipation @ T = 25°C (Note 1)  
A
4
Total Power Dissipation @ T = 25°C (Note 2)  
W
A
DPAK−3  
CASE 369D  
STYLE 2  
Operating and Storage Temperature Range  
T , T  
J
55 to  
175  
°C  
stg  
Single Pulse Drain−to−Source Avalanche  
E
AS  
170  
mJ  
Energy − Starting T = 25°C  
1
J
2
(V = 25 Vdc, V = 10 Vdc,  
DD  
GS  
3
L = 1.0 mH, I (pk) = 18.4 A, V = 60 Vdc)  
L
DS  
1
2
3
Thermal Resistance  
− Junction−to−Case  
− Junction−to−Ambient (Note 1)  
− Junction−to−Ambient (Note 2)  
°C/W  
°C  
Gate Drain Source  
R
R
R
2.5  
80  
110  
q
JC  
JA  
JA  
q
q
20N06  
A
Y
= Device Code  
= Assembly Location  
= Year  
Maximum Lead Temperature for Soldering  
Purposes, 1/8from case for 10 seconds  
T
260  
L
WW  
= Work Week  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits  
are exceeded, device functional operation is not implied, damage may occur  
and reliability may be affected.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
1. When surface mounted to an FR4 board using the minimum recommended  
pad size.  
2. When surface mounted to an FR4 board using the 0.5 sq in drain pad size.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
August, 2004 − Rev. 6  
NTD20N06/D  
 
NTD20N06  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−to−Source Breakdown Voltage (Note 3)  
V
Vdc  
(BR)DSS  
(V = 0 Vdc, I = 250 mAdc)  
Temperature Coefficient (Positive)  
60  
71.7  
79.4  
GS  
D
mV/°C  
mAdc  
Zero Gate Voltage Drain Current  
I
DSS  
GSS  
(V = 60 Vdc, V = 0 Vdc)  
1.0  
10  
DS  
GS  
(V = 60 Vdc, V = 0 Vdc, T = 150°C)  
DS  
GS  
J
Gate−Body Leakage Current (V = ±20 Vdc, V = 0 Vdc)  
I
±100  
nAdc  
Vdc  
GS  
DS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage (Note 3)  
(V = V , I = 250 mAdc)  
V
GS(th)  
2.0  
2.91  
6.9  
4.0  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
mV/°C  
mW  
Static Drain−to−Source On−Resistance (Note 3)  
R
V
DS(on)  
(V = 10 Vdc, I = 10 Adc)  
37.5  
46  
GS  
D
Static Drain−to−Source On−Voltage (Note 3)  
(V = 10 Vdc, I = 20 Adc)  
Vdc  
DS(on)  
0.78  
1.57  
1.10  
GS  
D
(V = 10 Vdc, I = 10 Adc, T = 150°C)  
GS  
D
J
Forward Transconductance (Note 3) (V = 7.0 Vdc, I = 6.0 Adc)  
g
FS  
13.2  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
725  
213  
58  
1015  
300  
iss  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
Output Capacitance  
C
oss  
f = 1.0 MHz)  
Transfer Capacitance  
C
120  
rss  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
Rise Time  
t
9.5  
60.5  
27.1  
37.1  
21.2  
5.6  
20  
120  
60  
80  
30  
ns  
d(on)  
(V = 30 Vdc, I = 20 Adc,  
DD  
D
t
r
V
GS  
= 10 Vdc,  
Turn−Off Delay Time  
Fall Time  
t
d(off)  
R
= 9.1 W) (Note 3)  
G
t
f
Gate Charge  
Q
T
Q
1
Q
2
nC  
(V = 48 Vdc, I = 20 Adc,  
DS  
D
V
GS  
= 10 Vdc) (Note 3)  
7.3  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage  
(I = 20 Adc, V = 0 Vdc) (Note 3)  
V
SD  
1.0  
0.87  
1.2  
Vdc  
ns  
S
GS  
(I = 20 Adc, V = 0 Vdc, T = 150°C)  
S
GS  
J
Reverse Recovery Time  
t
rr  
42.9  
33  
(I = 20 Adc, V = 0 Vdc,  
S
GS  
t
a
dI /dt = 100 A/ms) (Note 3)  
S
t
b
9.9  
Reverse Recovery Stored Charge  
Q
0.084  
mC  
RR  
3. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
4. Switching characteristics are independent of operating junction temperatures.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NTD20N06  
DPAK  
75 Units/Rail  
75 Units/Rail  
NTD20N06G  
DPAK  
(Pb−Free)  
NTD20N06−1  
DPAK−3  
75 Units/Rail  
75 Units/Rail  
NTD20N06−1G  
DPAK  
(Pb−Free)  
NTD20N06T4  
DPAK  
2500 Tape & Reel  
2500 Tape & Reel  
NTD20N06T4G  
DPAK  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
2
 
NTD20N06  
40  
32  
40  
32  
V
= 10 V  
7 V  
GS  
6.5 V  
6 V  
V
DS  
10 V  
9 V  
8 V  
24  
16  
8
24  
5.5 V  
16  
8
5 V  
T = 25°C  
J
4.5 V  
T = 100°C  
J
T = −55°C  
J
0
0
0
1
2
3
4
5
2.6  
3.4  
4.2  
5
5.8  
6.6  
7.4  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
V
GS  
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.065  
0.055  
0.065  
0.055  
0.045  
0.035  
V
GS  
= 10 V  
V
GS  
= 15 V  
T = 100°C  
J
T = 100°C  
J
0.045  
0.035  
0.025  
0.015  
T = 25°C  
J
T = 25°C  
J
0.025  
0.015  
T = −55°C  
J
T = −55°C  
J
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus  
Gate−to−Source Voltage  
Figure 4. On−Resistance versus Drain Current  
and Gate Voltage  
10000  
1000  
2
1.8  
1.6  
V
GS  
= 0 V  
I
V
= 10 A  
D
= 10 V  
GS  
T = 150°C  
J
T = 125°C  
1.4  
1.2  
1
J
100  
10  
T = 100°C  
J
0.8  
1
0.6  
−50 −25  
0
25  
50  
75 100 125 150 175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (°C)  
J
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−to−Source Leakage Current  
versus Voltage  
http://onsemi.com  
3
NTD20N06  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
a voltage corresponding to the off−state condition when  
iss  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
2000  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
1600  
1200  
800  
C
iss  
C
rss  
C
iss  
400  
0
C
oss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
V
GS  
V
DS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
NTD20N06  
1000  
12  
10  
8
V
I
= 30 V  
= 20 A  
DS  
Q
D
T
V
GS  
= 10 V  
100  
V
GS  
t
f
Q
Q
2
1
6
t
r
t
d(off)  
4
10  
1
t
d(on)  
2
0
I
= 20 A  
D
T = 25°C  
J
0
4
8
12  
16  
20  
24  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL GATE CHARGE (nC)  
G
G
Figure 8. Gate−To−Source and Drain−To−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
20  
V
GS  
= 0 V  
T = 25°C  
J
16  
12  
8
4
0
0.6  
0.7  
0.8  
0.9  
1
V
SD  
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain−to−source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance −  
General Data and Its Use.”  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry custom.  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10 ms. In addition the total  
power averaged over a complete switching cycle must not  
The energy rating must be derated for temperature as shown  
in the accompanying graph (Figure 12). Maximum energy at  
r f  
exceed (T  
− T )/(R ).  
currents below rated continuous I can safely be assumed to  
J(MAX)  
C
qJC  
D
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
equal the values indicated.  
http://onsemi.com  
5
NTD20N06  
SAFE OPERATING AREA  
100  
10  
180  
V
= 20 V  
I
D
= 18.4 A  
GS  
160  
SINGLE PULSE  
10 ms  
T
C
= 25°C  
140  
120  
100  
80  
100 ms  
1 ms  
10 ms  
1
60  
40  
dc  
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
20  
0
0.1  
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
0.05  
0.02  
P
(pk)  
0.1  
R
(t) = r(t) R  
q
JC  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.01  
SINGLE PULSE  
t
1
1
t
2
T
J(pk)  
− T = P  
R
q
(t)  
JC  
C
(pk)  
DUTY CYCLE, D = t /t  
1
2
0.01  
0.00001  
0.0001  
0.001  
0.01  
t, TIME (s)  
0.1  
1
10  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
NTD20N06  
PACKAGE DIMENSIONS  
DPAK  
CASE 369C−01  
ISSUE O  
SEATING  
PLANE  
−T−  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
E
V
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.22  
6.73  
2.38  
0.88  
0.58  
1.14  
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.090 BSC  
4
2
Z
A
K
S
1
3
4.58 BSC  
U
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
K
L
2.29 BSC  
F
J
R
S
U
V
Z
0.180 0.215  
0.025 0.040  
4.57  
0.63  
0.51  
0.89  
3.93  
5.45  
1.01  
−−−  
1.27  
−−−  
L
H
0.020  
0.035 0.050  
0.155 −−−  
−−−  
D 2 PL  
M
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
G
0.13 (0.005)  
T
3. SOURCE  
4. DRAIN  
SOLDERING FOOTPRINT*  
6.20  
3.0  
0.244  
0.118  
2.58  
0.101  
5.80  
0.228  
1.6  
0.063  
6.172  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
7
NTD20N06  
PACKAGE DIMENSIONS  
DPAK−3  
CASE 369D−01  
ISSUE B  
NOTES:  
C
B
R
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
S
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
0.58  
1.14  
4
2
Z
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.090 BSC  
0.034 0.040  
0.018 0.023  
0.350 0.380  
0.180 0.215  
0.025 0.040  
0.035 0.050  
A
K
1
3
−T−  
SEATING  
PLANE  
2.29 BSC  
0.87  
0.46  
8.89  
4.45  
0.63  
0.89  
3.93  
1.01  
0.58  
9.65  
5.45  
1.01  
1.27  
−−−  
J
F
H
0.155  
−−−  
D 3 PL  
STYLE 2:  
PIN 1. GATE  
G
M
T
0.13 (0.005)  
2. DRAIN  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NTD20N06/D  

相关型号:

NTD20N06L

Power MOSFET 20 Amps, 60 Volts, Logic Level
ONSEMI

NTD20N06L-001

20A, 60V, 0.048ohm, N-CHANNEL, Si, POWER, MOSFET, CASE 369D-01, DPAK-3
ONSEMI

NTD20N06L-1

Power MOSFET 20 Amps, 60 Volts, Logic Level
ONSEMI

NTD20N06L-1G

Power MOSFET 20 Amps, 60 Volts Logic Level, N−Channel DPAK
ONSEMI

NTD20N06LG

Power MOSFET 20 Amps, 60 Volts Logic Level, N−Channel DPAK
ONSEMI

NTD20N06LT4

Power MOSFET 20 Amps, 60 Volts, Logic Level
ONSEMI

NTD20N06LT4G

Power MOSFET 20 Amps, 60 Volts Logic Level, N−Channel DPAK
ONSEMI

NTD20N06T4

Power MOSFET
ONSEMI

NTD20N06T4G

Power MOSFET
ONSEMI

NTD20N08/D

80 V Power MOSFET
ETC

NTD20P06L

Power MOSFET −60 V, −15.5 A, Single P−Channel, DPAK
ONSEMI

NTD20P06L-1

Power MOSFET −60 V, −15.5 A, Single P−Channel, DPAK
ONSEMI