NTP75N03RG [ONSEMI]

功率 MOSFET,25 V,75A,8mΩ,单 N 沟道,D2PAK;
NTP75N03RG
型号: NTP75N03RG
厂家: ONSEMI    ONSEMI
描述:

功率 MOSFET,25 V,75A,8mΩ,单 N 沟道,D2PAK

局域网 开关 脉冲 晶体管 功率场效应晶体管
文件: 总8页 (文件大小:77K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTB75N03R, NTP75N03R  
Power MOSFET  
75 Amps, 25 Volts  
N−Channel D2PAK, TO−220  
Features  
http://onsemi.com  
Planar HD3e Process for Fast Switching Performance  
75 AMPERES  
25 VOLTS  
RDS(on) = 5.6 m(Typ)  
Low R  
to Minimize Conduction Loss  
DS(on)  
Low C to Minimize Driver Loss  
iss  
Low Gate Charge  
MAXIMUM RATINGS (T = 25°C Unless otherwise specified)  
J
4
Parameter  
Drain−to−Source Voltage  
Symbol Value Unit  
4
V
25  
V
dc  
V
dc  
DSS  
1
2
Gate−to−Source Voltage − Continuous  
V
±20  
GS  
3
Thermal Resistance − Junction−to−Case  
R
P
1.68  
74.4  
°C/W  
W
q
JC  
2
D PAK  
TO−220AB  
CASE 221A  
STYLE 5  
Total Power Dissipation @ T = 25°C  
C
D
CASE 418AA  
STYLE 2  
Drain Current  
− Continuous @ T = 25°C  
I
75  
225  
A
A
C
D
1
− Single Pulse (t = 10 ms)  
I
2
p
DM  
3
Thermal Resistance − Junction−to−Ambient  
(Note 1)  
R
60  
°C/W  
MARKING DIAGRAMS  
& PIN ASSIGNMENTS  
q
JA  
Total Power Dissipation @ T = 25°C  
P
2.08  
12.6  
W
A
A
D
4
Drain Current − Continuous @ T = 25°C  
I
D
A
4
Drain  
Drain  
Thermal Resistance − Junction−to−Ambient  
(Note 2)  
R
100  
°C/W  
q
JA  
Total Power Dissipation @ T = 25°C  
P
1.25  
9.7  
W
A
A
D
Drain Current − Continuous @ T = 25°C  
I
D
A
75N03R  
YWW  
Operating and Storage Temperature Range  
Single Pulse Drain−to−Source Avalanche  
T , T  
−55 to  
150  
°C  
J
stg  
P75N03R  
YWW  
E
AS  
71.7  
mJ  
2
1
Gate  
3
Energy − Starting T = 25°C  
1
Gate  
3
J
Drain  
(V = 30 V , V = 10 V , I = 12 A ,  
Source  
DD  
dc  
GS  
dc  
L
pk  
Source  
L = 1 mH, R = 25 W)  
G
2
Maximum Lead Temperature for Soldering  
Purposes, 1/8from Case for 10 Seconds  
T
L
260  
°C  
75N03  
Y
= Device Code  
= Year  
Drain  
WW  
= Work Week  
1. When surface mounted to an FR4 board using 1 inch pad size,  
2
(Cu Area 1.127 in ).  
2. When surface mounted to an FR4 board using minimum recommended pad  
2
size, (Cu Area 0.412 in ).  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NTP75N03R  
NTB75N03R  
NTB75N03RT4  
TO−220AB  
50 Units/Rail  
50 Units/Rail  
2
D PAK  
2
D PAK  
800/Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
October, 2003 − Rev. 2  
NTB75N03R/D  
 
NTB75N03R, NTP75N03R  
ELECTRICAL CHARACTERISTICS (T = 25°C Unless otherwise specified)  
J
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−to−Source Breakdown Voltage (Note 3)  
V
V
dc  
(br)DSS  
(V = 0 V , I = 250 mA )  
dc  
25  
28  
20.5  
GS  
dc  
D
Temperature Coefficient (Positive)  
mV/°C  
Zero Gate Voltage Drain Current  
I
mA  
dc  
DSS  
(V = 20 V , V = 0 V )  
dc  
1.0  
10  
DS  
dc  
GS  
(V = 20 V , V = 0 V , T = 150°C)  
DS  
dc  
GS  
dc  
J
Gate−Body Leakage Current  
(V = ±20 V , V = 0 V )  
dc  
I
nA  
dc  
GSS  
±100  
GS  
dc  
DS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage (Note 3)  
V
V
dc  
GS(th)  
(V = V , I = 250 mA )  
1.0  
1.5  
4.0  
2.0  
DS  
GS  
D
dc  
Threshold Temperature Coefficient (Negative)  
mV/°C  
mW  
Static Drain−to−Source On−Resistance (Note 3)  
R
DS(on)  
(V = 4.5 V , I = 20 A )  
dc  
8.1  
5.6  
13  
8.0  
GS  
dc  
D
(V = 10 V , I = 20 A )  
GS  
dc  
D
dc  
Forward Transconductance (Note 3)  
(V = 10 V , I = 15 A  
g
Mhos  
pF  
FS  
)
dc  
27  
DS  
dc  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
1333  
600  
iss  
(V = 20 V , V = 0 V,  
DS  
dc  
GS  
Output Capacitance  
Transfer Capacitance  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
Rise Time  
C
oss  
f = 1 MHz)  
C
218  
rss  
t
6.9  
1.3  
ns  
d(on)  
t
r
(V = 10 V , V = 10 V ,  
dc  
GS  
dc  
DD  
I
D
= 30 A , R = 3 W)  
dc G  
Turn−Off Delay Time  
Fall Time  
t
18.4  
5.5  
d(off)  
t
f
Gate Charge  
Q
Q
Q
13.2  
3.3  
nC  
T
1
2
(V = 5 V , I = 30 A ,  
dc  
GS  
dc  
D
V
DS  
= 10 V ) (Note 3)  
dc  
6.2  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage  
V
SD  
V
dc  
(I = 20 A , V = 0 V ) (Note 3)  
0.86  
0.73  
1.2  
S
dc  
GS  
dc  
(I = 20 A , V = 0 V , T = 125°C)  
S
dc  
GS  
dc  
J
Reverse Recovery Time  
t
15.6  
13.8  
ns  
rr  
t
a
(I = 35 A , V = 0 V ,  
dc  
dI /dt = 100 A/ms) (Note 3)  
S
S
dc  
GS  
t
1.78  
b
Reverse Recovery Stored Charge  
Q
0.004  
mC  
RR  
3. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%.  
4. Switching characteristics are independent of operating junction temperatures.  
http://onsemi.com  
2
 
NTB75N03R, NTP75N03R  
140  
120  
100  
80  
140  
10 V  
5 V  
4.5 V  
4 V  
V
DS  
10 V  
120  
100  
80  
8 V  
6 V  
3.5 V  
60  
60  
T = 25°C  
J
3 V  
40  
40  
T = 125°C  
J
20  
0
20  
0
V
GS  
= 2.5 V  
T = −55°C  
J
0
2
4
6
8
10  
0
1
2
3
4
5
6
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
V
GS  
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.022  
0.018  
0.014  
0.010  
0.022  
0.018  
0.014  
0.010  
V
GS  
= 10 V  
V
GS  
= 4.5 V  
T = 150°C  
J
T = 125°C  
J
T = 150°C  
J
T = 25°C  
J
T = 125°C  
J
0.006  
0.002  
0.006  
0.002  
T = 25°C  
J
T = −55°C  
J
T = −55°C  
J
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120 140  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus Drain Current  
and Temperature  
Figure 4. On−Resistance versus Drain Current  
and Temperature  
100,000  
10,000  
1.8  
1.6  
1.4  
1.2  
1.0  
V
GS  
= 0 V  
I
V
= 30 A  
D
= 10 V  
GS  
T = 150°C  
J
T = 125°C  
J
1000  
100  
0.8  
0.6  
−50 −25  
0
25  
50  
75  
100  
125 150  
0
5
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
10  
15  
20  
25  
T , JUNCTION TEMPERATURE (°C)  
V
J
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−to−Source Leakage Current  
versus Voltage  
http://onsemi.com  
3
NTB75N03R, NTP75N03R  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (t)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
a voltage corresponding to the off−state condition when  
iss  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
2400  
T = 25°C  
J
C
iss  
2000  
1600  
1200  
800  
C
rss  
C
iss  
C
oss  
400  
0
C
rss  
V
5
= 0 V V = 0 V  
GS  
DS  
10  
0
5
10  
15  
20  
V
GS  
V
DS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
NTB75N03R, NTP75N03R  
8
6
4
1000  
V
GS  
100  
Q
T
Q
Q
2
1
t
d(off)  
10  
1
t
d(on)  
2
0
V
= 10 V  
= 35 A  
= 10 V  
DS  
t
t
f
I
= 35 A  
I
D
D
T = 25°C  
V
GS  
J
r
0
4
8
12  
16  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL GATE CHARGE (nC)  
G
G
Figure 8. Gate−To−Source and Drain−To−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
70  
V
GS  
= 0 V  
60  
50  
40  
30  
20  
T = 150°C  
J
10  
0
T = 25°C  
J
0
0.2  
0.4  
0.6  
0.8  
1.0  
V
SD  
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain−to−source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance −  
General Data and Its Use.”  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry custom.  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10 µs. In addition the total  
power averaged over a complete switching cycle must not  
The energy rating must be derated for temperature as shown  
in the accompanying graph (Figure 12). Maximum energy at  
r f  
exceed (T  
− T )/(R ).  
currents below rated continuous I can safely be assumed to  
J(MAX)  
C
θJC  
D
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
equal the values indicated.  
http://onsemi.com  
5
NTB75N03R, NTP75N03R  
SAFE OPERATING AREA  
1000  
100  
V
= 20 V  
GS  
SINGLE PULSE  
= 25°C  
T
C
10 µs  
100 µs  
10  
1 ms  
10 ms  
dc  
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
1
0.1  
1
10  
100  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
R
(t) = r(t) R  
θ
JC  
θ
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.05  
t
1
1
0.01  
t
2
T
J(pk)  
− T = P  
R
θ
(t)  
JC  
C
(pk)  
DUTY CYCLE, D = t /t  
SINGLE PULSE  
1
2
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
t, TIME (s)  
Figure 12. Thermal Response  
http://onsemi.com  
6
NTB75N03R, NTP75N03R  
PACKAGE DIMENSIONS  
D2PAK  
CASE 418AA−01  
ISSUE O  
NOTES:  
C
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
E
V
−B−  
W
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
MIN  
MAX  
A
B
C
D
E
F
G
J
K
M
S
V
0.340 0.380  
0.380 0.405  
0.160 0.190  
0.020 0.036  
0.045 0.055  
8.64  
9.65 10.29  
4.06  
0.51  
1.14  
7.87  
9.65  
4.83  
0.92  
1.40  
−−−  
A
S
1
2
3
0.310  
0.100 BSC  
0.018 0.025  
−−−  
2.54 BSC  
0.46  
2.29  
7.11  
0.64  
2.79  
−−−  
−T−  
SEATING  
PLANE  
K
0.090  
0.110  
W
0.280  
−−−  
0.575 0.625 14.60 15.88  
0.045 0.055 1.14 1.40  
J
G
STYLE 2:  
PIN 1. GATE  
D 3 PL  
M
M
T B  
0.13 (0.005)  
2. DRAIN  
3. SOURCE  
4. DRAIN  
VARIABLE  
CONFIGURATION  
ZONE  
U
M
M
M
F
F
F
VIEW W−W  
1
VIEW W−W  
2
VIEW W−W  
3
http://onsemi.com  
7
NTB75N03R, NTP75N03R  
PACKAGE DIMENSIONS  
TO−220  
CASE 221A−09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
−T−  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
B
F
T
S
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
−−−  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
−−−  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
−−−  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
−−−  
2
3
U
H
G
H
J
K
L
L
R
N
Q
R
S
T
V
J
G
D
U
V
Z
N
0.080  
2.04  
STYLE 5:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NTB75N03R/D  

相关型号:

NTP75N06

Power MOSFET
ONSEMI

NTP75N06/D

Power MOSFET 75 Amps, 60 Volts
ETC

NTP75N06D

Power MOSFET
ONSEMI

NTP75N06G

Power MOSFET
ONSEMI

NTP75N06L

POWER MOSFET 75 AMPS, 60 VOLTS, LOGIC LEVEL
ONSEMI

NTP75N06L/D

Power MOSFET 75 Amps, 60 Volts, Logic Level
ETC

NTP7D3N15MC

MOSFET - N-Channel Shielded Gate PowerTrench® 150 V, 7.3 mΩ, 101 A
ONSEMI

NTP7N40

7A, 400V, 1.1ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, CASE 221A-09, 3 PIN
ONSEMI

NTP7N40/D

Power MOSFET 7 Amps, 400 Volts
ETC

NTP8000

韩国NeoFidelity公司系列:NTP-8010,NTP-8130,NTP-8230. Applications:PDPTV or LCDTV,docking station.mini Audio.
ETC

NTP8230

Applications:1.PDP TV or LCD TV,2.dockingstation,3.Mini-Component-Audio Solution. datasheet:2 CH Stereo (30W x 2 @28V,8Ω)  2.1 channel (10W x 2 + 25W @24V,8Ω) tel:18928487876  Wide Operating Supply Voltage Range (7V to 28V)  3D surround
ETC

NTP85N03

Power MOSFET 85 Amps, 28 Volts
ONSEMI