STK541UC62A-E [ONSEMI]

Intelligent Power Module (IPM), 600 V, 10 A;
STK541UC62A-E
型号: STK541UC62A-E
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module (IPM), 600 V, 10 A

文件: 总15页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK541UC62A-E  
Advance Information  
Intelligent Power Module  
(IPM) 600ꢀV, 10 A  
The STK541UC62AE is a fullyintegrated inverter power stage  
consisting of a highvoltage driver, six IGBT’s and a thermistor,  
suitable for driving permanent magnet synchronous (PMSM) motors,  
brushlessDC (BLDC) motors and AC asynchronous motors. The  
IGBT’s are configured in a 3phase bridge.  
www.onsemi.com  
The power stage has a full range of protection functions including  
crossconduction protection, external shutdown and undervoltage  
lockout functions. Output stage uses IGBT/FRD technology and  
implements Under Voltage Protection (UVP) and Over Current  
Protection with a Fault Detection output flag. Internal Boost diodes  
are provided for high side gate boost drive.  
SIP23 62x21.8  
CASE 127VB  
Features  
MARKING DIAGRAM  
ThreePhase 10 A / 600 V IGBT Module With Integrated Drivers  
Typical Values (Upper Side at 10 A): V (sat) = 1.4 V, V = 1.3 V  
62.0 mm x 21.8 mm Single Inline Package  
CrossConduction Protection  
Integrated Bootstrap Diodes and Resistors  
These Devices are PbFree and are RoHS Compliant  
CE  
F
STK541UC62A = Specific Device Code  
Certification  
A
B
C
D
= Year  
= Month  
= Production Plant  
= Ordering Number  
UL1557 (File Number: E339285)  
Typical Applications  
Device Marking in on Package Underside  
Industrial Pumps  
Industrial Fans  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 13 of this data sheet.  
Industrial Automation  
Heat Pumps, Home Appliances  
HS1  
HS2  
HS3  
HS1  
HIN1  
IC Driver  
LS1  
LIN1  
Pre driver  
HS2  
HIN2  
+
LS2  
LIN2  
Level Shifter  
LS1  
LS2  
LS3  
HS3  
HIN3  
with  
protection  
Circuits  
LS3  
LIN3  
Figure 1. Functional Diagram  
1
© Semiconductor Components Industries, LLC, 2017  
Publication Order Number:  
December, 2018 Rev. 1  
STK541UC62AE/D  
STK541UC62AE  
STK541UC62A  
VB1 (7)  
VCC  
+
+
+
CB1  
CB2  
CB3  
P (10)  
U,VS1 (8)  
VB2 (4)  
CS1  
CS2  
+
V,V2 (5)  
VB3 (1)  
N (12)  
W,VS3 (2)  
HIN1 (15)  
HIN2 (16)  
HIN3 (17)  
LIN1 (18)  
LIN2 (19)  
LIN3 (20)  
U, VS1 (8)  
V, VS2 (5)  
W, VS3 (2)  
Control  
Circuit  
(5V)  
ISO (16)  
VTH (13)  
Motor  
FLTEN (21)  
RTH  
RP  
VD4=15V  
VDD (14)  
VSS (23)  
CD4  
Figure 2. Application Schematic  
Function Description  
4. The “ISO” terminal (Pin 22) is current monitor  
terminal. When the pulldown resister is used,  
please select it more than 5.6 kW  
5. As protection of IPM to the unusual current by a  
short circuit etc. it recommends installing shunt  
resistors and an overcurrent protection circuit  
outside. Moreover, for safety, a fuse on Vcc line is  
recommended.  
6. Disconnection of terminals U, V, or W during  
normal motor operation will cause damage to IPM,  
use caution with this connection.  
7. When input pulse width is less than 1 ms, an output  
may not react to the pulse. (Both ON signal and  
OFF signal)  
1. It is essential that wiring length between terminals  
in the snubber circuit be kept as short as possible  
to reduce the effect of surge voltages.  
Recommended value of “CS” is in the range of 0.1  
to 10 mF.  
2. The “FLTEN” terminal (Pin 21) is I/O terminal;  
Fault output / Enable input. It is used to indicate an  
internal fault condition of the module and also can  
be used to disable the module operation.  
3. Inside the IPM, a thermistor used as the  
temperature monitor for internal substrate is  
connected between VSS terminal and TH terminal  
therefore, an external pull up resistor connected  
between the TH terminal and an external power  
supply should be used.  
This data shows the example of the application circuit,  
does not guarantee a design as the mass production set.  
www.onsemi.com  
2
STK541UC62AE  
P (10)  
VB3 (1)  
W,VS3 (2)  
VB2 (4)  
V,VS2 (5)  
VB1 (7)  
U,VS1 (8)  
BD  
BD BD  
RB  
Shunt  
Resistor  
N (12)  
Level  
Shifter  
Level  
Shifter  
Level  
Shifter  
HIN1 (15)  
HIN2 (16)  
HIN3 (17)  
LIN1 (18)  
LIN2 (19)  
LIN3 (20)  
Logic  
Logic  
Logic  
Thermistor  
VTH (13)  
ISO (22)  
FLTEN (21)  
Latch  
Latch time is about 9ms.  
(Automatic Reset)  
OverCurrent  
VDD (14)  
VSS (23)  
VDDUnderVoltage  
Figure 3. Simplified Block Diagram  
www.onsemi.com  
3
STK541UC62AE  
Table 1. PIN FUNCTION DESCRIPTION  
Pin #  
Label  
Description  
1
VB3  
W, VS3  
VB2  
High Side Floating Supply Voltage 3  
Output 3 High Side Floating Supply Offset Voltage  
High Side Floating Supply Voltage 2  
Output 2 High Side Floating Supply Offset Voltage  
High Side Floating Supply Voltage 1  
Output 1 High Side Floating Supply Offset Voltage  
Positive Bus Input Voltage  
2
4
5
V, VS2  
VB1  
7
8
U, VS1  
P
10  
12  
N
Negative Bus Input Voltage  
13  
VTH  
VDD  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
FLTEN  
ISO  
Temperature Feedback  
14  
+15 V Main Supply  
15  
Logic Input High Side Gate Driver Phase U  
Logic Input High Side Gate Driver Phase V  
Logic Input High Side Gate Driver Phase W  
Logic Input Low Side Gate Driver Phase U  
Logic Input Low Side Gate Driver Phase V  
Logic Input Low Side Gate Driver Phase W  
Fault output and Enable  
16  
17  
18  
19  
20  
21  
22  
Current monitor output  
23  
VSS  
Negative Main Supply  
1. Pins 3, 6, 9, 11 are not present.  
Table 2. ABSOLUTE MAXIMUM RATINGS at T = 25_C, (Note 2)  
C
Symbol  
Parameter  
Min  
Max  
Unit  
Supply voltage  
VCC  
VCE  
P to N, surge < 500 V (Notes 3)  
P to U, V, W or U, V, W, to N  
P,N,U,V,W terminal current  
450  
600  
10  
V
V
A
Collectoremitter voltage  
Output current  
Io  
P,N,U,V,W terminal current,  
5
20  
20  
A
A
V
Tc = 100_C  
Output peak current  
Iop  
P,N,U,V,W terminal current, P.W. = 1ms  
VB1 to U, VB2 to V, VB3 to W, VDD to  
VSS (Notes 4)  
Predriver voltage  
VD1,2,3,4  
Input signal voltage  
VIN  
VFLTEN  
Pd  
HIN1, 2, 3, LIN1, 2, 3  
FLTEN terminal  
0.3 to 7  
0.3 to VDD  
22  
V
V
FLTEN terminal voltage  
Maximum power dissipation  
Junction temperature  
Storage temperature  
Operating case temperature  
Tightening torque  
IGBT per 1 channel  
IGBT, FRD, PreDriver IC  
W
Tj  
150  
_C  
Tstg  
Tc  
40 to +125  
40 to +100  
0.9  
_C  
IPM case  
_C  
A screw part (Notes 5)  
50 Hz sine wave AC 1 minute (Notes 6)  
Nm  
VRMS  
Withstand voltage  
Vis  
2000  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
3. Surge voltage developed by the switching operation due to the wiring inductance between P and N terminal.  
4. VD1=VB1 to U, VD2=VB2 to V, VD3=VB3 to W, VD4=VDD to VSS terminal voltage.  
5. Flatness of the heatsink should be less than 50 mm to +100 mm.  
6. Test conditions : AC2500V, 1 second  
7. Reference voltage is “VSS” terminal voltage unless otherwise specified.  
www.onsemi.com  
4
STK541UC62AE  
Table 3. RECOMMENDED OPERATING RANGES (at T = 25°C)  
C
Characteristic  
Symbol  
Conditions  
Min  
0
Typ  
280  
15  
15  
Max  
450  
17.5  
16.5  
0.3  
5.0  
20  
Unit  
Supply voltage  
V
CC  
P to N  
VB1 to U, VB2 to V, VB3 to W  
V to V (Note 8)  
DD  
V
VD1, 2, 3  
12.5  
13.5  
0
V
V
Predriver supply voltage  
VD4  
SS  
ONstate input voltage  
OFFstate input voltage  
PWM frequency  
VIN(ON)  
VIN(OFF)  
fPWM  
DT  
HIN1,HIN2,HIN3,  
LIN1,LIN2,LIN3  
V
3.0  
1.0  
2.0  
1.0  
0.6  
kHz  
ms  
Dead time  
Turnoff to turnon (external)  
ON and OFF  
Allowable input pulse width  
Package mounting torque  
PWIN  
ms  
¡M3’ type screw  
0.9  
Nm  
8. Predrive power supply (VD4 = 15 1.5 V) must have the capacity of Io = 20 mA (DC), 0.5 A (Peak).  
Table 4. ELECTRICAL CHARACTERISTICS T = 25°C, VD1, VD2, VD3, VD4 = 15 V (Note 9)  
C
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Power output section  
Collectoremitter leakage  
current  
V
CE  
= 600 V  
I
100  
mA  
CE  
Bootstrap diode reverse current VR(BD) = 600 V  
IR(BD)  
100  
2.3  
2.6  
mA  
V
V
V
V
V
V
V
V
Upper side  
1.4  
1.7  
1.3  
1.6  
1.3  
1.6  
1.2  
1.5  
Ic = 10 A, Tj = 25_C  
Lower side (Note 9)  
Upper side  
Collector to emitter saturation  
voltage  
V
CE  
(sat)  
Ic = 5A, Tj = 100_C  
Lower side (Note 9)  
Upper side  
2.2  
2.5  
IF = 10 A, Tj = 25_C  
Diode forward voltage  
Lower side (Note 9)  
Upper side  
VF  
IF = 5 A, Tj = 100_C  
Lower side (Note 9)  
IGBT  
qjc(T)  
qjc(D)  
5.5  
6.5  
Junction to case thermal  
resistance  
_C/W  
FRD  
Switching Character  
t ON  
t OFF  
Eon  
Eoff  
Etot  
Eon  
Eoff  
Etot  
Erec  
Trr  
0.2  
0.4  
0.5  
200  
130  
330  
240  
160  
400  
17  
1.1  
1.2  
ms  
ms  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
ns  
Io = 10 A  
Switching time  
Inductive load  
Turnon switching loss  
Ic=5 A, P = 300 V,  
DD  
Tc = 25_C  
Turnoff switching loss  
Total switching loss  
V
= 15 V, L = 3.9 mH  
Turnon switching loss  
Turnoff switching loss  
Total switching loss  
Ic = 5 A, P = 300 V,  
DD  
Tc = 100_C  
V
= 15 V, L = 3.9 mH  
Diode reverse recovery energy  
Diode reverse recovery time  
I = 5 A, P = 400 V, V = 15 V,  
L = 0.5 mH, Tc = 100_C  
F
DD  
62  
Reverse bias safe operating  
area  
Io = 20_, VCE = 450 V  
RBSOA  
SCSOA  
Full Square  
Short circuit safe operating area VCE = 400 V, Tc=100_C  
Control (Predriver) section  
4.0  
ms  
VD1,2,3 = 15 V  
0.08  
1.6  
0.4  
4.0  
Predriver power dissipation  
ID  
mA  
VD4 = 15 V  
www.onsemi.com  
5
 
STK541UC62AE  
Table 4. ELECTRICAL CHARACTERISTICS T = 25°C, VD1, VD2, VD3, VD4 = 15 V (Note 9)  
C
High level Input voltage  
Low level Input voltage  
Vin H  
Vin L  
2.5  
V
V
0.8  
HIN1,HIN2,HIN3,  
LIN1,LIN2,LIN3 to VSS  
Input threshold voltage  
hysteresis  
Vinth(hys)  
0.5  
0.8  
V
Logic 1 input leakage current  
Logic 0 input leakage current  
FLTEN terminal sink current  
FLTEN clearance delay time  
VIN = +3.3V  
I
I
76  
97  
118  
150  
2.0  
9.0  
160  
203  
mA  
mA  
mA  
ms  
V
IN+  
VIN = 0 V  
IN−  
FAULT:ON / VFLTEN = 0.1 V  
From time fault condition clear  
VEN rising  
IoSD  
FLTCLR  
VEN+  
VEN−  
6.0  
2.5  
12.0  
FLTEN Threshold  
VEN falling  
0.8  
V
V
and V supply  
V
V
CC  
BS  
CCUV+  
BSUV+  
10.5  
10.3  
11.1  
11.7  
11.5  
V
V
undervoltage protection reset  
V
CC  
and V supply  
V
V
BS  
CCUV−  
BSUV−  
10.9  
undervoltage protection set  
V
and V supply  
V
V
CC  
BS  
CCUVH  
BSUVH  
0.14  
0.30  
0.2  
V
V
undervoltage hysteresis  
Output level for current monitor Io = 10 A  
ISO  
0.33  
0.36  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
9. Reference voltage is “VSS” terminal voltage unless otherwise specified.  
www.onsemi.com  
6
STK541UC62AE  
APPLICATIONS INFORMATION  
Input / Output Timing Chart  
VBS undervoltage protection reset signal  
OFF  
HIN1,2,3  
ON  
LIN1,2,3  
VDD  
VDD undervoltage protection reset voltage  
*2  
VBS undervoltage protection reset voltage  
*3  
VB1,2,3  
*4  
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−ISDoperation current level−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
N terminal  
(BUS line)  
Current  
FLTEN terminal  
Voltage  
(at pulledup)  
ON  
*1  
*1  
Upper  
U, V, W  
OFF  
Lower  
U ,V, W  
Automatically reset after protection  
(typ.9ms)  
Figure 4. Input/Output Timing Chart  
NOTES:  
1. Shows the prevention of shootthru via control logic, however, more dead time must be added to account for  
switching delay externally.  
2. When VDD decreases all gate output signals will go low and cut off all 6 IGBT outputs. When VDD rises the  
operation will resume immediately.  
3. When the upper side voltage at VB1, VB2 and VB3 drops only the corresponding upper side output is turned off.  
The outputs return to normal operation immediately after the upper side gate voltage rises.  
4. In case of over current detection, all IGBT’s are turned off and the FAULT output is asserted. Normal operation  
resumes in typ. 9ms after the over current condition is removed.  
www.onsemi.com  
7
STK541UC62AE  
Table 5. LOGIC LEVEL TABLE  
INPUT  
OUTPUT  
Low side IGBT  
HIN  
H
LIN  
L
OCP  
OFF  
OFF  
OFF  
OFF  
ON  
High side IGBT  
U,V,W  
FLTEN  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
ON  
P
N
L
H
OFF  
OFF  
OFF  
OFF  
L
L
OFF  
OFF  
OFF  
High Impedance  
High Impedance  
High Impedance  
H
H
X
X
Table 6. THERMISTOR CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min  
99  
Typ  
100  
5.38  
4250  
Max  
Unit  
R
Tc = 25℃  
101  
5.66  
4335  
+125  
kW  
kW  
K
25  
Resistance  
R
Tc = 100℃  
5.12  
4160  
40  
100  
BConstant (25 to 50)  
B
Temperature Range  
°C  
Case Temperature(Tc)Thermal resistance(RTH)  
10000  
1000  
100  
10  
min  
typ  
max  
1
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
Case temperature, TcdegC  
Figure 5. Thermistor Resistance versus Case Temperature  
www.onsemi.com  
8
STK541UC62AE  
Case Temperature(Tc)TH terminal voltage(VTH)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
min  
typ  
max  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
Case temperature, TcdegC  
Figure 6. Thermistor Voltage versus Case Temperature Condition: Pullup resistor = 4.7 kphm,  
Pullup voltage of TH = 5 V  
Fault Output  
Once activated by a fault condition the FAULT signal  
The FLTEN terminal is an open drain output requiring a  
pullup resistor. If the pullup voltage is 5 V, use a pullup  
resistor with a value of 6.8 kW or higher. If the pullup  
voltage is 15 V, use a pullup resistor with a value of 20 kW  
or higher. The FAULT output is triggered if there is a VDD  
under voltage or an overcurrent condition.  
The terminal has a function of enable output, this pin is  
used to enable or shut down the builtin driver. If the voltage  
on the FLTEN pin rises above the ENABLE ONstate  
voltage, the output drivers are enabled. If the voltage on the  
FLTEN pin falls below the ENABLE OFFstate voltage, the  
drivers are disabled.  
output returns to inactive (and is pulled high by the external  
resistor) when the fault condition is over and the fault clear  
time (FLTCLR) has passed. This implies that the system  
microcontroller needs to disable all input signals to the  
module by driving them low upon detection of a fault  
condition. An additional fuse is recommended to protect  
against system level or abnormal overcurrent fault  
conditions.  
Capacitors on High Voltage and VDD supplies  
Both the high voltage and V  
supplies require an  
DD  
electrolytic capacitor and an additional high frequency  
capacitor.  
Under Voltage Lockout Protection.  
Minimum input pulse width  
When input pulse width is less than 1.0 ms, an output may  
not react to the pulse. (Both ON signal and OFF signal)  
If VDD goes below the VDD supply under voltage  
lockout falling threshold, the FAULT output is switched on.  
The FAULT output stays on until VDD rises above the VDD  
supply under voltage lockout rising threshold. After VDD  
has risen above the threshold to enable normal operation, the  
driver waits to receive an input signal on the LIN input  
before enabling the driver for the HIN signal.  
Calculation of bootstrap capacitor value  
The bootstrap capacitor value CB is calculated using the  
following approach. The following parameters influence the  
choice of bootstrap capacitor:  
VBS : Bootstrap power supply.  
15 V is recommended.  
QG : Total gate charge of IGBT at VBS = 15 V.  
89nC  
Overcurrent Protection  
Over current protection is implemented by measuring the  
voltage across a shunt resistor to negative supply terminal.  
In case of an OCP fault the gate drivers are shut down  
internally and the external Fault signal becomes active  
(low).  
www.onsemi.com  
9
STK541UC62AE  
If the low side IGBT is held on for a long period of time  
(more than one second for example), the bootstrap voltage  
on the high side MOSFET will slowly discharge.  
UVLO : Falling threshold for UVLO.  
Specified as 12 V.  
ID  
: High side drive consumption current.  
Specified as 400 mA  
MAX  
100  
10  
t  
: Maximum ON pulse width of high side  
ONMAX  
IGBT.  
Capacitance calculation formula  
1
CB = (QG + IDMAX * tONMAX) / (VBS UVLO)  
CB is recommended to be approximately 3 times the value  
calculated above. The recommended value of CB is in the  
range of 1 to 47 mF, however, the value needs to be verified  
prior to production. When not using the bootstrap circuit,  
each high side driver power supply requires an external  
independent power supply.  
0,1  
0,01  
0,1  
1
10  
tONMAX [ms]  
100  
1000  
The internal bootstrap circuit uses a MOSFET. The turn  
on time of this MOSFET is synchronized with the turn on of  
the low side IGBT. The bootstrap capacitor is charged by  
turning on the low side IGBT.  
Figure 7. Bootstrap capacitance versus tONMAX  
Table 7. MOUNTING INSTRUCTIONS  
Item  
Recommended Condition  
Pitch  
56.0 0.1 mm (Please refer to Package Outline Diagram)  
Diameter : M3  
Screw head types: pan head, truss head, binding head  
Screw  
Plane washer  
Washer  
The size is D : 7 mm, d : 3.2 mm and t : 0.5 mm JIS B 1256  
Material: Aluminum or Copper  
Warpage (the surface that contacts IPM) : 50 to +100 mm  
Heat sink  
Screw holes must be countersunk  
No contamination on the heat sink surface that contacts IPM  
Final tightening : 0.6 to 0.9 Nm  
Torque  
Grease  
Temporary tightening : 20 to 30 % of final tightening  
Silicone grease  
Thickness : 100 to 200 mm  
Uniformly apply silicone grease to whole back  
www.onsemi.com  
10  
STK541UC62AE  
Figure 8. Module Mounting Details: Components; Washer Drawing; Need for Even  
Spreading of Thermal Grease  
V (sat) (Test by pulse)  
CE  
I  
CE  
ICE  
U+  
10  
V+  
10  
W+  
10  
U−  
V−  
W−  
M
1
A
VD3=15V  
VD2=15V  
VD1=15V  
V4D=15V  
M
N
8
5
2
2
4
8
5
2
12  
12  
12  
VCE  
6
7
U(DB) V(DB) W(DB)  
8
7
4
1
M
N
14  
23  
23  
23  
N
23  
U+, V+, W+ : High side phase  
U, V, W: Low side phase  
Figure 9. Test Circuit for ICE  
www.onsemi.com  
11  
STK541UC62AE  
V (sat) (Test by pulse)  
CE  
M
1
VD3=15V  
2
4
U+  
10  
V+  
10  
W+  
10  
U−  
V−  
W−  
VD2=15V  
VD1=15V  
VD4=15V  
M
N
8
5
2
5
7
V
VCE  
(sat)  
IC  
8
5
2
12  
18  
12  
19  
12  
8
m
15  
16  
17  
14  
m
N
Figure 10. Test Circuit for VCE (sat)  
V (Test by pulse)  
F
M
U+  
V+  
10  
W+  
10  
U−  
V−  
W−  
M
N
10  
8
8
5
2
V
IF  
VF  
5
2
12  
12  
12  
N
Figure 11. Test Circuit for VCE (sat)  
ID  
M
A
VD1  
VD2  
VD3  
VD4  
14  
M
N
7
8
4
5
1
2
VD*  
23  
N
Figure 12. Test Circuit for ID  
www.onsemi.com  
12  
STK541UC62AE  
Switching time (The circuit is a representative example of the low side U phase)  
10  
8
1
VS3=15V  
2
4
Input signal  
(0 to 5V)  
VS2=15V  
VCC  
5
7
VS1=15V  
Input signal  
VDD=15V  
90%  
8
18  
14  
Io  
10%  
12  
23  
A
tOFF  
tON  
Figure 13. Switching Time Test Circuit  
Table 8. ORDERING INFORMATION  
Device  
Marking  
STK541UC62A  
Package  
Shipping  
8 Unit / Tube  
SIP23 62x21.8  
(PbFree)  
STK541UC62AE  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SIP23 56x21.8  
CASE 127BV  
ISSUE O  
DATE 30 APR 2012  
missing pin:3,6,9,11  
56.0  
R 1.7  
9DF 00  
S IP 1  
23  
1
not e1  
2.0  
2.0  
+0 . 2  
0.6  
0.05  
3.2  
22×2.0=44.0  
6.7  
46.2  
50.0  
62.0  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON79788E  
SIP23 56X21.8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

STK541UC62K-E

智能功率模块 (IPM),600V,10A
ONSEMI

STK5421

Analog IC
ETC

STK5422

Analog IC
ETC

STK5431SL

Analog IC
ETC

STK5434

Analog IC
ETC

STK5441

STK5441
SANYO

STK544UC62K-E

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

STK544UC63K-E

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

STK5451

3-Output Series Regulator for VTR Use
SANYO

STK5464

STK5464
SANYO

STK5486

STK5486
ETC

STK551U362A-E

智能功率模块 (IPM),600V,10A
ONSEMI