UC2844DR2 [ONSEMI]

High Performance Current Mode Controllers; 高性能电流模式控制器
UC2844DR2
型号: UC2844DR2
厂家: ONSEMI    ONSEMI
描述:

High Performance Current Mode Controllers
高性能电流模式控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:617K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC3844, UC3845, UC2844,  
UC2845  
High Performance  
Current Mode Controllers  
The UC3844, UC3845 series are high performance fixed frequency  
current mode controllers. They are specifically designed for OffLine  
and DCtoDC converter applications offering the designer a cost  
effective solution with minimal external components. These integrated  
circuits feature an oscillator, a temperature compensated reference, high  
gain error amplifier, current sensing comparator, and a high current  
totem pole output ideally suited for driving a power MOSFET.  
Also included are protective features consisting of input and  
reference undervoltage lockouts each with hysteresis, cyclebycycle  
current limiting, a latch for single pulse metering, and a flipflop which  
blanks the output off every other oscillator cycle, allowing output dead  
times to be programmed for 50% to 70%.  
http://onsemi.com  
PDIP8  
N SUFFIX  
CASE 626  
8
1
SOIC14  
D SUFFIX  
CASE 751A  
14  
1
These devices are available in an 8pin dualinline plastic package  
as well as the 14pin plastic surface mount (SOIC14). The SOIC14  
package has separate power and ground pins for the totem pole output  
stage.  
SOIC8  
D1 SUFFIX  
CASE 751A  
8
1
The UCX844 has UVLO thresholds of 16 V (on) and 10 V (off),  
ideally suited for offline converters. The UCX845 is tailored for  
lower voltage applications having UVLO thresholds of 8.5 V (on) and  
7.6 V (off).  
PIN CONNECTIONS  
Compensation  
1
2
8
7
V
ref  
Voltage Feedback  
V
CC  
Features  
3
4
6
5
Current Sense  
R /C  
Output  
GND  
Current Mode Operation to 500 kHz Output Switching Frequency  
Output Deadtime Adjustable from 50% to 70%  
Automatic Feed Forward Compensation  
T
T
(Top View)  
Latching PWM for CycleByCycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
Input Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
Direct Interface with ON Semiconductor SENSEFETt Products  
PbFree Packages are Available  
1
14  
13  
Compensation  
NC  
V
ref  
2
NC  
V
3
4
12  
11  
Voltage Feedback  
NC  
CC  
V
C
5
6
10  
9
Current Sense  
NC  
Output  
V
CC  
7(12)  
GND  
R /C  
T
7
8
Power Ground  
T
V
ref  
8(14)  
V
CC  
Undervoltage  
Lockout  
5.0V  
Reference  
(Top View)  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
7(11)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
R C  
T
Output  
6(10)  
T
Flip  
Flop  
&
Oscillator  
4(7)  
Voltage  
Feedback  
PWR GND  
5(8)  
Latching  
PWM  
+
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page page 14 of this data sheet.  
2(3)  
Current  
Sense  
3(5)  
Error  
Amplifier  
1(1)  
Output  
Comp.  
GND 5(9)  
Pin numbers in parenthesis are for the D suffix SOIC14 package.  
Figure 1. Simplified Block Diagram  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
July, 2006 Rev. 7  
UC3844/D  
UC3844, UC3845, UC2844, UC2845  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
30  
Unit  
mA  
A
Total Power Supply and Zener Current  
Output Current, Source or Sink (Note 1)  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
(I + I )  
CC Z  
I
O
1.0  
W
5.0  
0.3 to + 5.5  
10  
mJ  
V
V
in  
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, Case 751A  
Maximum Power Dissipation @ T = 25°C  
P
q
862  
145  
mW  
A
D
JA  
Thermal Resistance JunctiontoAir  
R
°C/W  
N Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 25°C  
P
D
1.25  
100  
W
°C/W  
A
Thermal Resistance JunctiontoAir  
R
q
JA  
Operating Junction Temperature  
T
+ 150  
°C  
°C  
J
Operating Ambient Temperature  
UC3844, UC3845  
T
A
0 to + 70  
25 to + 85  
UC2844, UC2845  
Storage Temperature Range  
T
stg  
65 to + 150  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Maximum Package power dissipation limits must be observed.  
ELECTRICAL CHARACTERISTICS (V = 15 V, (Note 2), R = 10 k, C = 3.3 nF, T = T to T  
(Note 3), unless otherwise noted.)  
CC  
T
T
A
low  
high  
UC284X  
UC384X  
Characteristics  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V = 12 V to 25 V)  
Reg  
CC  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
Reg  
25  
25  
O
Temperature Stability  
T
Total Output Variation over Line, Load, Temperature  
Output Noise Voltage (f = 10 Hz to kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
mV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
85  
5.0  
85  
mV  
mA  
A
Output Short Circuit Current  
I
30  
180  
30  
180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
47  
46  
52  
57  
60  
47  
46  
52  
57  
60  
T = 25°C  
J
T = T  
to T  
high  
A
low  
Frequency Change with Voltage (V = 12 V to 25 V)  
Df  
Df  
D
D
0.2  
5.0  
1.0  
0.2  
5.0  
1.0  
%
%
CC  
osc/  
V
Frequency Change with Temperature  
osc/  
T
T = T  
to T  
A
low  
high  
Oscillator Voltage Swing (PeaktoPeak)  
Discharge Current (V = 2.0 V, T = 25°C)  
V
1.6  
1.6  
V
osc  
I
dischg  
10.8  
10.8  
mA  
osc  
J
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
V
2.45  
2.5  
0.1  
90  
2.55  
1.0  
2.42  
2.5  
0.1  
90  
2.58  
2.0  
V
O
FB  
Input Bias Current (V = 2.7 V)  
I
IB  
mA  
dB  
FB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
65  
O
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
low  
= 0°C for UC3844, UC3845  
25°C for UC2844, UC2845  
T
high  
= +70°C for UC3844, UC3845  
+85°C for UC2844, UC2845  
http://onsemi.com  
2
 
UC3844, UC3845, UC2844, UC2845  
ELECTRICAL CHARACTERISTICS (V = 15 V, (Note 4), R = 10 k, C = 3.3 nF, T = T to T  
(Note 5), unless otherwise noted.)  
CC  
T
T
A
low  
high  
UC284X  
Typ  
UC384X  
Characteristics  
ERROR AMPLIFIER SECTION (continued)  
Unity Gain Bandwidth (T = 25°C)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
BW  
0.7  
60  
1.0  
70  
0.7  
60  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V = 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V = 2.7 V)  
2.0  
0.5  
12  
1.0  
2.0  
0.5  
12  
1.0  
I
O
FB  
Sink  
Source (V = 5.0 V, V = 2.3 V)  
O
FB  
I
Source  
Output Voltage Swing  
V
High State (R = 15 k to ground, V = 2.3 V)  
5.0  
6.2  
0.8  
1.1  
5.0  
6.2  
0.8  
1.1  
V
V
L
FB  
OH  
Low State (R = 15 k to V , V = 2.7 V)  
L
ref  
FB  
OL  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 6 & 7)  
Maximum Current Sense Input Threshold (Note 6)  
Power Supply Rejection Ratio  
A
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
V/V  
V
V
V
th  
PSRR  
dB  
V
= 12 V to 25 V (Note 6)  
70  
70  
CC  
Input Bias Current  
I
2.0  
150  
10  
300  
2.0  
150  
10  
300  
mA  
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(IN/OUT)  
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
= 20 mA)  
= 200 mA)  
= 20 mA)  
= 200 mA)  
12  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
V
Sink  
Sink  
Sink  
Sink  
OL  
(I  
High State (I  
(I  
V
OH  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
OL(UVLO)  
V
V
CC  
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX844  
UCX845  
V
V
V
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
Minimum Operating Voltage After TurnOn  
V
CC(min)  
UCX844  
UCX845  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
PWM SECTION  
Duty Cycle  
Maximum  
Minimum  
%
46  
48  
50  
0
47  
48  
50  
0
DC  
DC  
max  
min  
TOTAL DEVICE  
Power Supply Current (Note 4)  
Startup:  
I
mA  
V
CC  
(V = 6.5 V for UCX845A,  
0.5  
12  
1.0  
17  
0.5  
12  
1.0  
17  
CC  
(V 14 V for UCX844) Operating  
CC  
Power Supply Zener Voltage (I = 25 mA)  
V
30  
36  
30  
36  
CC  
Z
4. Adjust V above the Startup threshold before setting to 15 V.  
CC  
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
= 0°C for UC3844, UC3845  
25°C for UC2844, UC2845  
T
= +70°C for UC3844, UC3845  
+85°C for UC2844, UC2845  
low  
high  
6. This parameter is measured at the latch trip point with V = 0 V.  
FB  
DV Output Compensation  
7. Comparator gain is defined as: A  
V
DV Current Sense Input  
http://onsemi.com  
3
 
UC3844, UC3845, UC2844, UC2845  
10  
0
75  
V
T
= 15 V  
= 25°C  
CC  
A
1.0 nF  
50  
70  
65  
60  
55  
50  
2.0 nF  
20  
5.0 nF  
C
T
= 10 nF  
10  
5.0  
2.0  
100  
pF  
NOTE: Output switches  
at one−half the oscillator  
frequency.  
200  
pF  
500  
pF  
1.0  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (Hz)  
f
osc  
, OSCILLATOR FREQUENCY (Hz)  
osc  
Figure 2. Timing Resistor versus  
Oscillator Frequency  
Figure 3. Output Deadtime versus  
Oscillator Frequency  
V
CC  
A = −1.0  
T = 25°C  
A
= 15 V  
V
CC  
A = −1.0  
T = 25°C  
A
= 15 V  
V
V
2.55 V  
3.0 V  
2.5 V  
2.5 V  
2.0 V  
2.45 V  
0.5 ms/DIV  
1.0 ms/DIV  
Figure 4. Error Amp Small Signal  
Transient Response  
Figure 5. Error Amp Large Signal  
Transient Response  
100  
80  
60  
40  
20  
1.2  
0
V
= 15 V  
V = 2.0 V to 4.0 V  
CC  
V
CC  
= 15 V  
O
R = 100 K  
T = 25°C  
A
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
60  
90  
L
Gain  
T = 25°C  
A
T = 125°C  
A
Phase  
T = −55°C  
120  
A
0
150  
180  
−ꢀ20  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
0
2.0  
4.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V , ERROR AMP OUTPUT VOLTAGE (V)  
O
Figure 6. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 7. Current Sense Input Threshold  
versus Error Amp Output Voltage  
http://onsemi.com  
4
 
UC3844, UC3845, UC2844, UC2845  
0
−4.0  
−8.0  
−12  
−16  
−20  
−24  
110  
V
= 15 V  
CC  
V
= 15 V  
CC  
R 0.1 W  
L
90  
70  
50  
T = 125°C  
A
T = −55°C  
A
T = 25°C  
A
0
20  
I
40  
60  
80  
100  
120  
−55  
−25  
0
25  
50  
75  
100  
125  
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (°C)  
A
ref  
Figure 8. Reference Voltage Change  
versus Source Current  
Figure 9. Reference Short Circuit Current  
versus Temperature  
V
= 15 V  
I = 1.0 mA to 20 mA  
V
= 12 V to 25 V  
CC  
CC  
T = 25°C  
A
O
T = 25°C  
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 10. Reference Load Regulation  
Figure 11. Reference Line Regulation  
0
−1.0  
−2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
80 ms Pulsed Load  
CC  
V
CC  
V
= 15 V  
C = 1.0 nF  
CC  
120 Hz Rate  
T
= 25°C  
A
L
90%  
T = 25°C  
A
T
= −55°C  
A
3.0  
2.0  
1.0  
0
T
A
= −55°C  
T
A
= 25°C  
10%  
Sink Saturation  
)
GN  
D
(Load to V  
CC  
50 ns/DIV  
0
200  
400  
600  
800  
I , OUTPUT LOAD CURRENT (mA)  
O
Figure 12. Output Saturation Voltage  
versus Load Current  
Figure 13. Output Waveform  
http://onsemi.com  
5
UC3844, UC3845, UC2844, UC2845  
25  
V
= 30 V  
C = 15 pF  
CC  
L
T = 255C  
20  
15  
10  
5
A
R = 10 k  
T
C = 3.3 nF  
T
V
FB  
= 0 V  
I
Sense  
T = 255C  
= 0 V  
A
0
0
10  
20  
30  
40  
100 ns/DIV  
V
CC  
, SUPPLY VOLTAGE (V)  
Figure 14. Output Cross Conduction  
Figure 15. Supply Current versus  
Supply Voltage  
PIN FUNCTION DESCRIPTION  
Pin  
8Pin  
14Pin  
Function  
Description  
1
2
1
3
Compensation  
This pin is Error Amplifier output and is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching  
power supply output through a resistor divider.  
3
4
5
7
Current Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
The Oscillator frequency and maximum Output duty cycle are programmed by connecting  
T
T
resistor R to V and capacitor C to ground. Operation to 1.0 MHz is possible.  
T
ref  
T
5
6
GND  
This pin is combined control circuitry and power ground (8pin package only).  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are  
sourced and sunk by this pin. The output switches at onehalf the oscillator frequency.  
7
8
12  
14  
8
V
This pin is the positive supply of the control IC.  
CC  
V
This is the reference output. It provides charging current for capacitor C through resistor R .  
ref  
T
T
Power Ground  
This pin is a separate power ground return (14pin package only) that is connected back to  
the power source. It is used to reduce the effects of switching transient noise on the control  
circuitry.  
11  
V
C
The Output high state (V ) is set by the voltage applied to this pin (14pin package only).  
With a separate power source connection, it can reduce the effects of switching transient  
noise on the control circuitry.  
OH  
9
GND  
NC  
This pin is the control circuitry ground return (14pin package only) and is connected to back  
to the power source ground.  
2,4,6,13  
No connection (14pin package only). These pins are not internally connected.  
http://onsemi.com  
6
UC3844, UC3845, UC2844, UC2845  
OPERATING DESCRIPTION  
The UC3844, UC3845 series are high performance, fixed  
This occurs when the power supply is operating and the load  
is removed, or at the beginning of a softstart interval  
(Figures 21, 22). The Error Amp minimum feedback  
resistance is limited by the amplifier’s source current  
frequency, current mode controllers. They are specifically  
designed for OffLine and DCtoDC converter  
applications offering the designer a cost effective solution  
with minimal external components. A representative block  
diagram is shown in Figure 16.  
(0.5 mA) and the required output voltage (V ) to reach the  
OH  
comparator’s 1.0 V clamp level:  
3.0 (1.0 V) + 1.4 V  
Rf(min)  
= 8800 W  
Oscillator  
0.5 mA  
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
Current Sense Comparator and PWM Latch  
T
T
T
is charged from the 5.0 V reference through resistor R to  
approximately 2.8 V and discharged to 1.2 V by an internal  
The UC3844, UC3845 operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error  
Amplifier Output/Compensation (Pin 1). Thus the error  
signal controls the inductor current on a cyclebycycle  
basis. The current Sense Comparator PWM Latch  
configuration used ensures that only a single pulse appears  
at the Output during any given oscillator cycle. The inductor  
current is converted to a voltage by inserting the ground  
T
current sink. During the discharge of C , the oscillator  
T
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in  
a low state, thus producing a controlled amount of output  
deadtime. An internal flipflop has been incorporated in the  
UCX844/5 which blanks the output off every other clock  
cycle by holding one of the inputs of the NOR gate high. This  
in combination with the C discharge period yields output  
T
deadtimes programmable from 50% to 70%. Figure 2 shows  
referenced sense resistor R in series with the source of  
S
R
T
versus Oscillator Frequency and Figure 3, Output  
output switch Q1. This voltage is monitored by the Current  
Sense Input (Pin 3) and compared a level derived from the  
Error Amp Output. The peak inductor current under normal  
operating conditions is controlled by the voltage at pin 1  
where:  
Deadtime versus Frequency, both for given values of C .  
T
Note that many values of R and C will give the same  
T
T
oscillator frequency but only one combination will yield a  
specific output deadtime at a given frequency.  
In many noise sensitive applications it may be desirable to  
frequencylock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 18. For reliable locking, the  
freerunning oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi unit  
synchronization is shown in Figure 19. By tailoring the  
clock waveform, accurate Output duty cycle clamping can  
be achieved to realize output deadtimes of greater than 70%.  
V(Pin 1) 1.4 V  
Ipk  
=
3 RS  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
RS  
Ipk(max)  
=
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 90 dB, and a unity gain bandwidth of  
1.0 MHz with 57 degrees of phase margin (Figure 6). The  
noninverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is 2.0 mA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provide for external loop  
compensation (Figure 29). The output voltage is offset by  
two diode drops (1.4 V) and divided by three before it  
connects to the inverting input of the Current Sense  
Comparator. This guarantees that no drive pulses appear at  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 20. The two external diodes are used to compensate  
the internal diodes yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with  
a time constant that approximates the spike duration will  
usually eliminate the instability; refer to Figure 24.  
the Output (Pin 6) when Pin 1 is at its lowest state (V ).  
OL  
http://onsemi.com  
7
UC3844, UC3845, UC2844, UC2845  
V
in  
V
CC  
V
CC  
7(12)  
36V  
V
+
ref  
Reference  
Regulator  
8(14)  
V
CC  
UVLO  
+
R
R
Internal  
Bias  
2.5V  
+
V
C
+
R
T
7(11)  
V
ref  
UVLO  
3.6V  
Q1  
Output  
6(10)  
Oscillator  
4(7)  
2(3)  
T Q  
+
C
T
1.0mA  
Power Ground  
5(8)  
S
R
+
Q
+
Voltage Feedback  
Input  
PWM  
Latch  
2R  
Error  
Amplifier  
R
Current Sense Input  
3(5)  
1.0V  
Output  
Compensation  
1(1)  
Current Sense  
Comparator  
R
S
GND 5(9)  
+
Sink Only  
Positive True Logic  
=
Pin numbers in parenthesis are for the D suffix SOIC−14 package.  
Figure 16. Representative Block Diagram  
Capacitor C  
T
Latch  
‘‘Set’’ Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
‘‘Reset’’ Input  
Output  
Large R /Small C  
T
Small R /Large C  
T T  
T
Figure 17. Timing Diagram  
http://onsemi.com  
8
UC3844, UC3845, UC2844, UC2845  
Undervoltage Lockout  
designer added flexibility in tailoring the drive voltage  
independent of V A zener clamp is typically connected  
to this input when driving power MOSFETs in systems  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional  
before the output stage is enabled. The positive power  
supply terminal (V and the reference output (V ) are  
CC.  
where V is greater the 20 V. Figure 23 shows proper  
CC  
power and control ground connections in a current sensing  
power MOSFET application.  
CC  
ref  
each monitored by separate comparators. Each has builtin  
hysteresis to prevent erratic output behavior as their  
respective thresholds are crossed. The V  
upper and lower thresholds are 16 V/10 V for the UCX844,  
comparator  
CC  
Reference  
The 5.0 V bandgap reference is trimmed to ± 1.0%  
tolerance at T = 25°C on the UC284X, and ± 2.0% on the  
and 8.4 V/7.6 V for the UCX845. The V comparator upper  
ref  
J
and lower thresholds are 3.6 V/3/4 V. The large hysteresis  
and low startup current of the UCX844 makes it ideally  
suited in offline converter applications where efficient  
bootstrap startup techniques later required (Figure 30). The  
UCX845 is intended for lower voltage DCtoDC converter  
applications. A 36 V zener is connected as a shunt regulator  
UC384X. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has short  
circuit protection and is capable of providing in excess of  
20 mA for powering additional control system circuitry.  
Design Considerations  
from V to ground. Its purpose is to protect the IC from  
CC  
Do not attempt to construct the converter on  
wirewrap or plugin prototype boards. High frequency  
circuit layout techniques are imperative to prevent  
pulsewidth jitter. This is usually caused by excessive noise  
pickup imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with lowcurrent signal and  
highcurrent switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
excessive voltage that can occur during system startup. The  
minimum operating voltage for the UCX844 is 11 V and  
8.2 V for the UCX845.  
Output  
These devices contain a single totem pole output stage that  
was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ± 1.0 A peak drive current  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever and undervoltage  
lockout is active. This characteristic eliminates the need for  
an external pulldown resistor.  
bypass capacitors (0.1 mF) connected directly to V , V ,  
CC  
C
and V may be required depending upon circuit layout.  
ref  
This provides a low impedance path for filtering the high  
frequency noise. All high current loops should be kept as  
short as possible using heavy copper runs to minimize  
radiated EMI. The Error Amp compensation circuitry and  
the converter output voltage divider should be located close  
to the IC and as far as possible from the power switch and  
other noise generating components.  
The SOIC14 surface mount package provides separate  
pins for V (output supply) and Power Ground. Proper  
C
implementation will significantly reduce the level of  
switching transient noise imposed on the control circuitry.  
This becomes particularly useful when reducing the I  
pk(max)  
clamp level. The separate V supply input allows the  
C
V
ref  
8(14)  
R
R
8(14)  
4(7)  
R
R
Bias  
R
A
R
T
Bias  
4
8
R
B
5.0k  
6
OSC  
+
External  
Sync  
Input  
OSC  
+
4(7)  
R
S
C
T
3
0.01  
+
5
2
Q
+
+
+
2R  
7
EA  
47  
2(3)  
1(1)  
2R  
R
5.0k  
1
EA  
2(3)  
1(1)  
C
MC1455  
R
5(9)  
5(9)  
To  
Additional  
UCX84XA’s  
R
B
1.44  
(R + 2R )C  
The diode clamp is required if the Sync amplitude is large enough to  
cause the bottom side of CT to go more than 300 mV below ground.  
f =  
D
max  
=
R
A
+ 2R  
B
A
B
Figure 18. External Clock Synchronization  
Figure 19. External Duty Cycle Clamp and  
MultiUnit Synchronization  
http://onsemi.com  
9
UC3844, UC3845, UC2844, UC2845  
V
CC  
V
in  
7(12)  
+
5.0V  
ref  
+
8(14)  
4(7)  
R
R
Bias  
+
+
5.0V  
ref  
7(11)  
6(10)  
5(8)  
8(14)  
R
R
Q1  
OSC  
Bias  
+
T
+
V
+
Clamp  
1.0mA  
2R  
S
+
Q
R2  
R
OSC  
+
EA  
T
2(3)  
1(1)  
+
Comp/Latch  
4(7)  
2(3)  
R
S
1.0V  
1.0mA  
2R  
3(5)  
+
Q
+
R
S
R
R1  
EA  
5(9)  
R
1.0V  
1.67  
2
R
R
2
V
1
Clamp  
R
S
−3  
1(1)  
t
V
Clamp  
+ 0.33 x 10  
I
C
pk(max)  
R
1
+ R  
2
R
R
5(9)  
+ 1  
3600C in mF  
Where: 0 V  
1.0 V  
Soft−Start  
Clamp  
1
Figure 20. Adjustable Reduction of Clamp Level  
Figure 21. SoftStart Circuit  
V
CC  
V
in  
7(12)  
V
CC  
+
R
I r  
S pk DS(on)  
5.0V  
ref  
V
in  
+
V
Pin  
5 ≈  
(12)  
8(14)  
R
R
r
+ R  
S
DM(on)  
Bias  
+
If: SENSEFET = MTP10N10M  
= 200  
+
+
7(11)  
6(10)  
5(8)  
R
S
5.0V  
ref  
+
Q1  
Then: V 5 = 0.075 I  
pin  
pk  
OSC  
T
+
D
SENSEFET  
+
4(7)  
V
Clamp  
+
S
(11)  
(10)  
(8)  
1.0mA  
2R  
+
S
Q
R
+
EA  
2(3)  
1(1)  
Comp/Latch  
G
T
R
K
M
R2  
1.0V  
3(5)  
S
Q
R
S
R
+
5(9)  
Power Ground  
To Input Source  
Return  
MPSA63  
Comp/Latch  
C
1.67  
2
R1  
R
R
2
(5)  
1
V
Clamp  
−3  
R
+ 0.33 x 10  
S
R
1
+ R  
2
R
R
1/4 W  
+ 1  
Control CIrcuitry  
Ground:  
To Pin (9)  
1
V
Clamp  
R
I
Where: 0 V  
1.0 V  
pk(max)  
Clamp  
S
Virtually lossless current sensing can be achieved with the implement of a SENSEFET  
power switch. For proper operation during over current conditions, a reduction of the  
V
R R  
1 2  
C
t
= − In  
1 −  
C
Softstart  
3V  
Clamp  
R + R  
1 2  
I
clamp level must be implemented. Refer to Figures 20 and 22.  
pk(max)  
Figure 22. Adjustable Buffered Reduction of  
Figure 23. Current Sensing Power MOSFET  
Clamp Level with SoftStart  
V
CC  
V
in  
7(12)  
+
5.0V  
ref  
+
+
+
7(11)  
Q1  
T
6(10)  
5(8)  
S
Q
R
+
R
Comp/Latch  
3(5)  
The addition of the RC filter will eliminate  
instability caused by the leading edge spike on  
the current waveform.  
C
R
S
Figure 24. Current Waveform Spike Suppression  
http://onsemi.com  
10  
 
UC3844, UC3845, UC2844, UC2845  
V
CC  
I
B
V
in  
V
in  
7(12)  
+
0
+
5.0V  
Base  
Charge  
Removal  
ref  
+
+
C
1
+
7(11)  
6(10)  
5(8)  
R
g
Q1  
Q1  
T
6(1)  
5(8)  
S
Q
R
+
Comp/Latch  
3(5)  
3(5)  
R
S
R
S
The totem−pole output can furnish negative base current for enhanced  
transistor turn−off, with the addition of capacitor C .  
1
Series gate resistor R will damp any high frequency parasitic oscillations  
g
caused by the MOSFET input capacitance and any series wiring inductance  
in the gate−source circuit.  
Figure 25. MOSFET Parasitic Oscillations  
Figure 26. Bipolar Transistor Drive  
8(14)  
4(7)  
R
R
Bias  
V
CC  
V
in  
OSC  
7(12)  
+
1.0mA  
2R  
+
+
Isolation  
Boundary  
5.0V  
ref  
+
EA  
2(3)  
1(1)  
R
+
V
Waveforms  
GS  
Q1  
+
7(11)  
6(10)  
5(8)  
+
0
+
0
2N  
3905  
MCR  
101  
5(9)  
T
50% DC  
V
25% DC  
2N  
3903  
S
− 1.4  
N
N
(pin 1)  
P
Q
I
=
pk  
R
+
S
3 R  
S
R
Comp/Latch  
3(5)  
C
N
S
R
S
N
p
The MCR101 SCR must be selected for a holding of less than 0.5 mA at T  
.
A(min)  
The simple two transistor circuit can be used in place of the SCR as shown. All  
resistors are 10 k.  
Figure 27. Isolated MOSFET Drive  
Figure 28. Latched Shutdown  
From V  
O
From V  
2.5V  
O
+
2.5V  
+
R
1.0mA  
2R  
i
2(3)  
1.0mA  
2R  
+
R
p
2(3)  
R
i
+
EA  
R
d
C
I
R
f
EA  
R
C
I
R
R
f
d
R
C
p
1(1)  
1(1)  
5(9)  
R 8.8 k  
f
5(9)  
Error Amp compensation circuit for stabilizing any current−mode topology except  
for boost and flyback converters operating with continuous inductor current.  
Error Amp compensation circuit for stabilizing current−mode boost and flyback  
topologies operating with continuous inductor current.  
Figure 29. Error Amplifier Compensation  
http://onsemi.com  
11  
UC3844, UC3845, UC2844, UC2845  
L1  
MBR1635  
2200  
+
4.7W  
3300pF  
MDA  
202  
4.7k  
250  
5.0V/4.0A  
T1  
+
+
+
+
1000  
56k  
115VA  
C
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935  
68  
1N4935  
L2  
10  
7(12)  
+
+
±12V RTN  
47  
100  
1000  
10  
L3  
8(14)  
+
+
+
5.0V  
ref  
−12V/0.3A  
+
0.01  
MUR110  
680pF  
1N4937  
Bias  
+
+
33k  
7(11)  
1N4937  
2.7k  
4(7)  
2(3)  
22W  
OSC  
T
S
6(10)  
+
MTP  
4N50  
1.0nF  
1N5819  
18k  
+
Q
+
5(8)  
3(5)  
R
EA  
Comp/Latch  
4.7k  
1.0k  
470pF  
1(1)  
0.5W  
5(9)  
T1 − Primary: 45 Turns # 26 AWG  
T1 − Secondary ± 12 V: 9 Turns # 30 AWG  
T1 − (2 strands) Bifiliar Wound  
Figure 30. 27 Watt OffLine Flyback Regulator  
T1 − Secondary 5.0 V: 4 Turns (six strands)  
T1 − #26 Hexfiliar Wound  
T1 − Secondary Feedback: 10 Turns #30 AWG  
T1 − (2 strands) Bifiliar Wound  
T1 − Core: Ferroxcube EC35−3C8  
Test  
Conditions  
Results  
T1 − Bobbin: Ferroxcube EC35PCB1  
T1 − Gap 0.01" for a primary inductance of 1.0 mH  
Line Regulation:  
5.0 V  
± 12 V  
V
in  
= 95 VAC to 130 VAC  
D = 50 mV or ± 0.5%  
D = 24 mV or ± 0.1%  
L1 − 15 mH at 5.0 A, Coilcraft Z7156.  
L2, L3 − 25 mH at 1.0 A, Coilcraft Z7157.  
Load Regulation: 5.0 V  
V
V
= 115 VAC, I = 1.0 A to 4.0 A  
D = 300 mV or ± 3.0%  
D = 60 mV or ± 0.25%  
in  
out  
± 12 V  
= 115 VAC, I = 100 mA to 300  
in  
mA  
out  
Output Ripple:  
Efficiency  
5.0 V  
± 12 V  
V
= 115 VAC  
40 mV  
80 mV  
in  
pp  
pp  
V
in  
= 115 VAC  
70%  
All outputs are at nominal load currents, unless otherwise noted.  
http://onsemi.com  
12  
UC3844, UC3845, UC2844, UC2845  
V = 15V  
in  
+
UC3845  
Output Load Regulation  
(open loop configuration)  
7(12)  
47  
I
O
(mA)  
V (V)  
O
34V  
8(14)  
+
Reference  
Regulator  
ꢂ0  
ꢂ2  
ꢂ9  
18  
36  
29.9  
28.8  
28.3  
27.4  
24.4  
V
CC  
UVLO  
+
1N5819  
R
R
Internal  
Bias  
2.5V  
+
7(11)  
6(10)  
5(8)  
+
10k  
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
4(7)  
Oscillator  
V
O
2 (V )  
in  
+
+
T
47  
+
1.0nF  
Connect to  
Pin 2 for  
closed loop  
operation.  
0.5mA  
S
R2  
2R  
+
Q
2(3)  
1(1)  
+
R
PWM  
Latch  
Error  
Amplifier  
R
1.0V  
3(5)  
R2  
R2  
V
R1  
O = 2.5  
+ 1  
Current Sense  
Comparator  
5(9)  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series  
resistor may be required when using tantalum or other low ESR capacitors. The converter’s output can provide  
excellent line and load regulation by connecting the R2/R1 resistor divider as shown.  
Figure 31. StepUp Charge Pump Converter  
V = 15V  
in  
+
UC3845  
7(12)  
47  
34V  
8(14)  
+
Reference  
Regulator  
V
CC  
UVLO  
+
R
R
Internal  
Bias  
2.5V  
+
7(11)  
+
10k  
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
+
4(7)  
6(10)  
+
Oscillator  
V
− (V )  
O
in  
T
1N5819  
47  
+
1.0nF  
0.5mA  
5(8)  
S
2R  
+
Q
2(3)  
1(1)  
+
R
PWM  
Latch  
Output Load Regulation  
Error  
Amplifier  
R
1.0V  
3(5)  
I
O
(mA)  
V (V)  
O
ꢂ0  
ꢂ2  
ꢂ9  
18  
32  
−14.4  
−13.2  
−12.5  
−11.7  
−10.6  
Current Sense  
Comparator  
5(9)  
The capacitor’s equivalent series resistance must limit the Drive Output current to 1.0 A.  
An additional series resistor may be required when using tantalum or other low ESR capacitors.  
Figure 32. VoltageInverting Charge Pump Converter  
http://onsemi.com  
13  
UC3844, UC3845, UC2844, UC2845  
ORDERING INFORMATION  
Device  
UC3844D  
Operating Temperature Range  
Package  
Shipping  
SOIC14  
55 Units/Rail  
55 Units/Rail  
UC3844DG  
SOIC14  
(PbFree)  
UC3844DR2  
SOIC14  
2500 Tape & Reel  
2500 Tape & Reel  
UC3844DR2G  
SOIC14  
(PbFree)  
UC3844N  
PDIP8  
50 Units/Rail  
50 Units/Rail  
UC3844NG  
PDIP8  
(PbFree)  
T = 0° to +70°C  
A
UC3845D  
SOIC14  
55 Units/Rail  
55 Units/Rail  
UC3845DG  
SOIC14  
(PbFree)  
UC3845DR2  
SOIC14  
2500 Tape & Reel  
2500 Tape & Reel  
UC3845DR2G  
SOIC14  
(PbFree)  
UC3845N  
PDIP8  
50 Units/Rail  
50 Units/Rail  
UC3845NG  
PDIP8  
(PbFree)  
UC2844D  
SOIC14  
55 Units/Rail  
55 Units/Rail  
UC2844DG  
SOIC14  
(PbFree)  
UC2844DR2  
SOIC14  
2500 Tape & Reel  
2500 Tape & Reel  
UC2844DR2G  
SOIC14  
(PbFree)  
UC2844N  
PDIP8  
50 Units/Rail  
50 Units/Rail  
UC2844NG  
PDIP8  
(PbFree)  
T = 25° to +85°C  
A
UC2845D  
SOIC14  
55 Units/Rail  
55 Units/Rail  
UC2845DG  
SOIC14  
(PbFree)  
UC2845DR2  
SOIC14  
2500 Tape & Reel  
2500 Tape & Reel  
UC2845DR2G  
SOIC14  
(PbFree)  
UC2845N  
PDIP8  
50 Units/Rail  
50 Units/Rail  
UC2845NG  
PDIP8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MARKING DIAGRAMS  
PDIP8  
N SUFFIX  
CASE 626  
SOIC14  
D SUFFIX  
CASE 751A  
SOIC8  
D1 SUFFIX  
CASE 751  
8
14  
8
UC384xN  
AWL  
YYWWG  
384x  
ALYW  
G
UC384xDG  
AWLYWW  
1
1
1
8
14  
x
= 4 or 5  
UC284xN  
AWL  
YYWWG  
A
= Assembly Location  
UC284xDG  
AWLYWW  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
G or G = PbFree Package  
1
1
http://onsemi.com  
14  
UC3844, UC3845, UC2844, UC2845  
PACKAGE DIMENSIONS  
PDIP8  
N SUFFIX  
CASE 62605  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B−  
1
4
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
A−  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
0.040  
_
J
T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
SOIC14  
D SUFFIX  
CASE 751A03  
ISSUE G  
NOTES:  
A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
14  
8
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
B−  
P 7 PL  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
M
M
B
0.25 (0.010)  
7
1
G
F
R X 45  
_
C
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
T−  
SEATING  
PLANE  
J
M
K
D 14 PL  
M
S
S
0.25 (0.010)  
T B  
A
1.27 BSC  
0.19  
0.10  
0
7
0
7
_
_
_
_
5.80  
6.20 0.228 0.244  
0.50 0.010 0.019  
0.25  
http://onsemi.com  
15  
UC3844, UC3845, UC2844, UC2845  
PACKAGE DIMENSIONS  
SOIC8  
D1 SUFFIX  
CASE 75107  
ISSUE AG  
NOTES:  
X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
Z−  
0.10 (0.004)  
1.27 BSC  
0.050 BSC  
M
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
J
H
D
8
0
_
_
_
_
M
S
S
X
0.25 (0.010)  
Z
Y
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
UC3844/D  

相关型号:

UC2844DR2G

High Performance Current Mode Controllers
ONSEMI

UC2844DTR

Current Mode PWM Controller
TI

UC2844DTRG4

CURRENT MODE PWM CONTROLLER
TI

UC2844G-S08-R

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS
UTC

UC2844G-S08-T

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS
UTC

UC2844J

Current-Mode SMPS Controller
ETC

UC2844L-S08-R

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS
UTC

UC2844L-S08-T

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS
UTC

UC2844N

Current Mode PWM Controller
TI

UC2844N

CURRENTMODE PWM CONTROLLER
STMICROELECTR

UC2844N

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844N

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
MOTOROLA