PT7C4339WE [PERICOM]

Real-time Clock Module;
PT7C4339WE
型号: PT7C4339WE
厂家: PERICOM SEMICONDUCTOR CORPORATION    PERICOM SEMICONDUCTOR CORPORATION
描述:

Real-time Clock Module

文件: 总22页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PT7C4339/4339C  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Real-time Clock Module  
Features  
Description  
Real-Time Clock (RTC) Including Time (Seconds,  
Minutes and Hours) and Calendar (Day, Date,  
Month and Year with Leap-Year Compensation  
Valid Up to 2100) counter functions (BCD code)  
Available in a Surface-Mount Package with an  
Integrated Crystal (Only for PT7C4339C)  
I2C Serial Interface supports I2C-Bus's high speed  
mode (400 kHz)  
The PT7C4339 real-time clock is a low-power  
clock/calendar device with two programmable time-of-  
day alarms and a programmable square-wave output.  
Address and data are transferred serially through an I2C  
bus. The clock/calendar provides seconds, minutes,  
hours, day, date, month, and year information. The date  
at the end of the month is automatically adjusted for  
months with fewer than 31 days, including corrections  
for leap year. The clock operates in either the 24-hour or  
12-hour format with AM/PM indicator. The PT7C4339  
has a build-in power-sense circuit that detects power  
failures and automatically switch to the backup supply,  
maintaining time, date, and alarm operation.  
Programmable square wave output signal, defaults  
to 32 kHz on Power-up  
Two Time-of-Day Alarms  
Oscillator Stop Flag  
Automatic Power-Fail Detect and Switch Circuitry  
Temperature Range: -40°C to +85°C  
Package: MSOP-8L and SOIC-8L for PT7C4339  
TDFN4x4-8L for PT7C4339C  
Pin Configuration  
PT7C4339  
PT7C4339C  
Applications  
1
X1  
8
1
8
VCC  
NC  
NC  
2
3
4
7
6
5
2
3
4
7
6
5
X2  
SQW/INT  
SCL  
VBACKUP  
GND  
SCL  
VBACKUP  
SQW/INT  
VCC  
GND  
SDA  
SDA  
SOIC-8  
MSOP8  
DFN4*4-8L  
Table1. Diverse functions of RTC circuits  
Item  
Function  
PT7C4339  
PT7C4339C  
Source  
External crystal  
External crystal  
Integrated Crystal  
1
Oscillator  
Oscillator enable/disable  
Oscillator fail detect  
12-hour  
24-hour  
Time display  
2
Time  
Century bit  
Time count chain enable/disable  
Alarm interrupt output  
3
4
5
6
Interrupt  
2  
2  
Programmable square wave output (Hz)  
1, 4.096k, 8.192k, 32.768k  
1, 4.096k, 8.192k, 32.768k  
Communication  
2-wire I2C bus  
Power failure detect  
2015-08-0008  
PT0508-1  
08/24/15  
1
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Pin Description  
Pin No  
Pin  
Type  
Description  
Name  
43394339C  
Oscillator Circuit Input. Together with X1, 32.768kHz crystal is connected between them. Or  
external clock input.  
1
2
6
/
/
X1  
X2  
I
O
I
Oscillator Circuit Output. Together with X1, 32.768kHz crystal is connected between them.  
When 32.768kHz external input, X2 must be float.  
Serial Clock Input. SCL is used to synchronize data movement on the I2C serial interface. The  
7
SCL  
pull up voltage may be up to 5.5V regardless of the voltage on VCC  
.
Serial Data Input/Output. SDA is the input/output pin for the 2-wire serial interface. The SDA  
5
4
SDA  
I/O  
pin is open-drain output and requires an external pull-up resistor. The pull up voltage may be up to  
5.5V regardless of the voltage on VCC  
.
Secondary Power Supply. Supply voltage must be held between 1.3V and 3.7V for proper  
operation. This pin can be connected to a primary cell, such as a lithium button cell. Additionally,  
this pin can be connected to a rechargeable cell or a super cap when used in conjunction with the  
trickle-charge feature. Diodes should not be placed in series between the backup source and the  
VBACKUP input, or improper operation will result. If a backup supply is not required, VBACKUP must  
be grounded.  
VBACKU  
3
2
O
P
Square-Wave/Interrupt Output. Programmable square-wave or interrupt output signal. It is an  
open-drain output and requires an external pull up resistor. The pull up voltage may be up to 5.5V  
regardless of the voltage on VCC. If not used, this pin may be left unconnected.  
Power. When voltage is applied within normal limits, the device is fully accessible and data can be  
written and read. When a backup supply is connected and VCC is below VPF, reads and writes are  
inhibited. The timekeeping and alarm functions operate when the device is powered by VCC or  
SQW  
/INT  
7
8
6
5
O
VCC  
P
P
VBACKUP  
.
4
/
3
1,8  
GND  
NC  
Ground.  
No Connect. These pins are not connected internally, but must be grounded for proper operation.  
Maximum Ratings  
StorageTemperature....................................................................................-55 Cto+125 C  
o
o
Note:  
o
o
Stresses greater than those listed under MAXIMUM  
RATINGS may cause permanent damage to the  
device. This is a stress rating only and functional  
operation of the device at these or any other condi-  
tions above those indicated in the operational sec-  
tions of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended  
periods may affect reliability.  
AmbientTemperaturewithPowerApplied..............................................-40 Cto+85 C  
SupplyVoltagetoGroundPotential(VCCtoGND)..................................-0.3Vto+6.0V  
DCInput(AllOtherImputsexceptVCC&GND)...........................-0.3VtoVCC +0.3V  
DCOutputVoltage(SDA,SQW/INTpins).............................................-0.3Vto+6.0V  
PowerDissipation...................................................................320mW(dependonpackage)  
o
LeadTemperature(soldering,10s)............................................................................+260 C  
o
SolderingTemperature(reflow).................................................................................+260 C  
Recommended Operating Conditions  
Symbol  
Description  
Min  
3.0  
Type  
Max  
5.5  
Unit  
V
VCC  
Supply Voltage  
3.3  
VBACKUP  
VIH  
Backup Supply Voltage  
Input high level  
1.3  
3.0  
3.7  
V
0.7VCC  
-0.3  
-
VCC+0.3  
0.3VCC  
1.88  
V
VIL  
Input low level  
-
1.72  
-
V
VPF  
Power-Fail Voltage  
Operation Temperature  
1.60  
-40  
V
TA  
85  
ºC  
2015-08-0008  
PT0508-1  
08/24/15  
2
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
DC Electrical Characteristics  
Unless otherwise specified, VCC = MIN to MAX, VBACKUP=MIN to MAX, TA = -40 °C to +85 °C  
Item  
Sym.  
ILI  
Pin  
Condition  
Min  
-1  
Typ  
Max  
1
Units  
VIN=VCC or  
GND  
Input Leakage  
I/O Leakage  
SCL  
μA  
ILO  
SDA, SQW/INT  
SQW/INT  
-1  
1
-
μA  
IOL1  
1.0  
3.0  
3.0  
mA  
Logic0 Out VOL= 0.4V; VCC> VCCMIN  
IOL2  
SDA,  
1.5  
-
-
mA  
mA  
Logic 0 Out VOL= 0.2V;  
VBACKUP >= VBACKMIN  
VCC absent,  
BBSQI=1  
IOL1  
SQW/INT  
0.25  
VCC Active Current  
ICCA  
ICCS  
(Note 1)  
80  
40  
250  
100  
150  
μA  
μA  
VCC = 3.3V  
VCC = 5.5V  
VCC Standby Current(Note 2)  
Trickle-Charger Resistor Register10h  
= A5h, VCC = Typ, VBACKUP= 0V  
R1  
R2  
(Note 3)  
200  
Ω
Ω
Trickle-Charger Resistor Register10h  
= A6h, VCC = Typ, VBACKUP = 0V  
2000  
Trickle-Charger Resistor Register10h  
= A7h, VCC = Typ, VBACKUP = 0V  
R3  
4000  
25  
Ω
VBACKUP Leakage Current  
IBKLKG  
VBACKUP  
100  
nA  
DC Electrical Characteristics  
Unless otherwise specified, VCC = 0V, VBACKUP=MIN to MAX, TA = -40 °C to +85 °C  
Item  
Sym.  
Condition  
Min  
Typ  
Max  
Units  
VBACKUP Current, /EOSC=0, SQW Off  
VBACKUP Current, /EOSC=0, SQW On  
IBKOSC  
IBKSQW  
Note 4, Note5  
Note 4  
300  
400  
600  
900  
nA  
nA  
VBACKUP Current, /EOSC=1  
IBKDR  
Note6  
10  
100  
nA  
Note:  
1. SCL clocking at max frequency = 400 kHz, VIL = 0.0V, VIH = VCC, trickle charger disabled.  
2. Specified with 2-wire bus inactive, VIL = 0.0V, VIH = VCC, trickle charger disabled.  
3. VCC must be less than 3.63V if 200Ω resistance is selected.  
4. Using recommended crystal on X1 and X2.  
5. Specified with the SQW function disabled by setting INTCN = 1.  
6. Crystal oscillator is disabled.  
2015-08-0008  
PT0508-1  
08/24/15  
3
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
AC Electrical Characteristics  
Sym  
VHM  
VHL  
Description  
Rising and falling threshold voltage high  
Rising and falling threshold voltage low  
Value  
0.8 VCC  
0.2 VCC  
Unit  
V
V
Signal  
VHM  
VLM  
tr  
tf  
Over the operating range (Figure 1)  
Symbol  
Item  
Min.  
-
Typ.  
Max.  
400  
-
-
-
-
-
-
-
Unit  
kHz  
s  
s  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
fSCL  
SCL clock frequency  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT1  
tHD;DAT2  
tSU;STO  
tBUF  
tLOW  
tHIGH  
tr  
START condition set-up time  
START condition hold time  
Data set-up time (RTC read/write)  
Data hold time (RTC write)  
Data hold time (RTC read)  
STOP condition setup time  
Bus idle time between a START and STOP condition  
When SCL = "L"  
0.6  
0.6  
200  
35  
0
0.6  
1.3  
1.3  
0.6  
-
-
-
When SCL = "H"  
Rise time for SCL and SDA  
Fall time for SCL and SDA  
Allowable spike time on bus  
Capacitance load for each bus line  
I/O Capacitance (SDA, SCL)  
Oscillator Stop Flag (OSF) Delay  
0.3  
0.3  
50  
400  
10  
100  
tf  
tSP*  
CB  
-
-
-
-
ns  
pF  
pF  
ms  
CI/O  
*
TOSF  
-
* Note: only reference for design  
tSU;STA  
S
Sr  
P
SCL  
tLOW  
tHIGH  
tHD;STA  
tSP  
fSCL  
tBUF  
SDA  
tSU;DAT  
tHD;STA  
tSU;STO  
tHD;STA  
tHD;DAT  
tSU;STA  
S
P
Start condition  
Stop condition  
Sr  
Restart condition  
Figure1 I2C Timing  
2015-08-0008  
PT0508-1  
08/24/15  
4
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Functional Block Diagram  
Alarm 1 Register  
VCC  
Power Failure Detect  
Comparator 1  
Comparator 2  
(Sec, Min, Hour, Day/Date)  
Trickle Charger Control  
Alarm 2 Register  
(Min, Hour, Day/Date)  
VBACKUP  
X1  
CD  
32.768  
kHz  
Time Counter  
(Sec,Min,Hour,Day,Date,Month,Year)  
OSC  
Counter Chain  
CG  
X2  
“C” version only  
Address  
Decoder  
Address  
Register  
Control Register  
SCL  
SDA  
I /O  
Interface  
(I2C)  
Interrupt Control  
Square Wave Output Control  
Shift Register  
SQW/INT  
Oscillator Circuit  
PT7C4339  
The PT7C4339 uses an external 32.768 kHz crystal. Table1 specifies several crystal parameters for the external crystal. The  
Block Diagram shows a functional schematic of the oscillator circuit. The startup time is usually less than 1 second when using a  
crystal with the specified characteristics.  
Table1 Crystal Specifications  
Parameter  
Symbol  
fO  
ESR  
CL  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
k  
Nominal Frequency  
Series Resistance  
Load Capacitance  
-
-
-
-
70  
-
-
6
pF  
Note: The crystal, traces, and crystal input pins should be isolated from RF generating signals.  
Clock Accuracy  
The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match between the capacitive  
load of the oscillator circuit and the capacitive load for which the crystal was trimmed. Crystal frequency drift caused by  
temperature shifts creates additional error. External circuit noise coupled into the oscillator circuit can result in the clock running  
fast. Figure 2 shows a typical PC board layout for isolating the crystal and oscillator from noise.  
PT7C4339C  
The PT7C4339C integrates a standard 32,768Hz crystal in the package. Typical accuracy at nominal VCC and +25°C is  
approximately ±10ppm.  
2015-08-0008  
PT0508-1  
08/24/15  
5
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Recommended Layout for Crystal (only for PT7C4339)  
Figure 2 typical PC board layout for isolating the crystal and oscillator from noise  
2015-08-0008  
PT0508-1  
08/24/15  
6
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Functional Description  
1. Overview of Functions  
1.1. Clock function  
CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit)  
year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2100.  
For PT7C4339 on a power-on reset (POR), the time and date are set to 00:00:00 01/01/00 (hh:mm:ss DD/MM/YY) and the  
Day register is set to 01.  
1.2. Alarm function  
This device has two alarm system (Alarm 1 and Alarm 2) that outputs interrupt signals from SQW/INT to CPU when the  
date, day of the week, hour, minute or second correspond to the setting. Each of them may output interrupt signal separately at a  
specified time. The alarm is be selectable between on and off for matching alarm or repeating alarm.  
1.3. Programmable square wave output  
A square wave output enable bit controls square wave output at pin 7. Frequencies are selectable: 1, 4.096k, 8.192k, 32.768  
kHz.  
1.4. Interface with CPU  
Data is read and written via the I2C bus interface using two signal lines: SCL (clock) and SDA (data).  
Since the output of the I/O pin SDA is open drain, a pull-up resistor should be used on the circuit board if the CPU output I/O  
is also open drain.  
The SCL's maximum clock frequency is 400 kHz, which supports the I2C bus's high-speed mode.  
1.5. Oscillator fail detect  
When oscillator fail, PT7C4339 OSF bit will be set.  
1.6. Oscillator enable/disable  
Oscillator can be enabled or disabled at the same time by /EOSC bit.  
2. Operation  
The PT7C4339 operates as a slave device on the serial bus. Access is obtained by implementing a START condition and  
providing a device identification code followed by data. Subsequent registers can be accessed sequentially until a STOP condition  
is executed. The device is fully accessible and data can be written and read when VCC is greater than VPF. However, when VCC falls  
below VPF, the internal clock registers are blocked from any access. If VPF is less than VBACKUP, the device power is switched from  
VCC to VBACKUP when VCC drops below VPF. If VPF is greater than VBACKUP, the device power is switched from VCC to VBACKUP  
when VCC drops below VBACKUP. The registers are maintained from the VBACKUP source until VCC is returned to nominal levels.  
3. Power Control  
The power-control function is provided by a precise, temperature-compensated voltage reference and a comparator circuit  
that monitors the VCC level. The device is fully accessible and data can be written and read when VCC is greater than VPF. However,  
when VCC falls below VPF, the internal clock registers are blocked from any access. If VPF is less than VBACKUP, the device power is  
switched from VCC to VBACKUP when VCC drops below VPF. If VPF is greater than VBACKUP, the device power is switched from VCC  
to VBACKUP when VCC drops below VBACKUP. The registers are maintained from the VBACKUP source until VCC is returned to nominal  
levels (Table 2). After VCC returns above VPF, read and write access is allowed after tREC (Figure 1). On the first application of  
power to the device the time and date registers are reset to 01/01/00 01 00:00:00 (MM/DD/YY DOW HH:MM:SS).  
Table 2:  
Power Control Supply Condition  
VCC < VPF, VCC < VBACKUP  
VCC < VPF, VCC > VBACKUP  
VCC > VPF, VCC < VBACKUP  
VCC > VPF, VCC > VBACKUP  
Read/Write Access  
Power by  
VBACKUP  
VCC  
No  
No  
Yes  
Yes  
VCC  
VCC  
2015-08-0008  
PT0508-1  
08/24/15  
7
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
4. Registers  
4.1. Allocation of registers  
Register definition  
Addr.  
Function  
Seconds (00-59)  
Minutes (00-59)  
Hours (00-23 / 01-12)  
Days of the week (01-07)  
Dates (01-31)  
(hex) *1  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
0
S40  
S20  
S10  
S8  
S4  
S2  
S1  
0
M40  
12, /24  
0
M20  
M10  
H10  
0
M8  
H8  
0
M4  
H4  
M2  
H2  
M1  
H1  
H20 or  
P, /A  
0
0
0
W4  
D4  
W2  
D2  
W1  
D1  
0
0
D20  
0
D10  
MO10  
Y10  
S10  
D8  
MO8  
Y8  
S8  
Months (01-12)  
Years (00-99)  
Century  
Y80  
0
MO4  
Y4  
MO2  
Y2  
MO1  
Y1  
Y40  
S40  
M40  
12, /24  
Y20  
S20  
M20  
Alarm 1: Seconds  
Alarm 1: Minutes  
Alarm 1: Hours  
Alarm 1: Day, Date  
Alarm 2: Minutes  
Alarm 2: Hours  
Alarm 2: Day, Date  
Control  
A1M1*2  
A1M2*2  
A1M3*2  
A1M4*2  
A2M2*3  
A2M3*3  
A2M4*3  
/EOSC*4  
OSF*9  
TCS3  
S4  
S2  
S1  
M10  
H10  
M8  
H8  
M4  
H4  
M2  
H2  
M1  
H1  
H20 or  
P, /A  
0,  
Day,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
/Date  
D20  
D10  
D8  
M40  
M20  
M10  
H10  
M8  
H8  
M4  
H4  
M2  
H2  
M1  
H1  
H20 or  
P, /A  
0,  
12, /24  
Day,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
/Date  
D20  
D10  
D8  
0
0
BBSQI  
0
RS2*5  
RS1*5  
INTCN*6 A2IE*7  
A1IE*7  
Status  
0
0
0
A2F*8  
A1F*8  
Trickle charger  
TCS2  
TCS1  
TCS0  
DS1  
DS0  
ROUT1  
ROUT0  
Caution points:  
*1. PT7C4339 uses 8 bits for address. For excess 10H address, PT7C4339 will not respond (no acknowledge signal was given).  
*2. Alarm 1 mask bits. Select alarm repeated rate when an alarm occurs.  
*3. Alarm 2 mask bits. Select alarm repeated rate when an alarm occurs.  
*4. Oscillator enable/disable bit.  
*5. Square wave output frequency select.  
*6. Interrupt output pin select bit.  
*7. Alarm 1 and alarm 2 enable bits.  
*8. Alarm 1 and alarm 2 flag bits.  
*9. Oscillators stop flag.  
*10. All bits marked with "0" are read-only bits. Their value when read is always "0".  
2015-08-0008  
PT0508-1  
08/24/15  
8
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
4.2. Control and status register  
Addr.  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(hex)  
Control  
/EOSC  
0
0
0
BBSQI  
0
RS2  
1
RS1  
1
INTCN  
0
A2IE  
0
A1IE  
0
0E  
(default)  
Status  
OSF  
1
0
0
0
0
0
0
0
0
0
0
A2F  
A1F  
0F  
(default)  
Undefined Undefined  
1) Oscillator related bits  
/EOSC  
Enable oscillator bit.  
/EOSC  
Data  
Description  
Default  
0
1
Starts the oscillator.  
The oscillator is stopped.  
Read / Write  
2) BBSQI  
Battery-Backed Square-Wave and Interrupt Enable bit.  
BBSQI  
Data  
Description  
Default  
0
The SQW/INT pin goes high impedance when VCC falls below the power-fail trip point.  
Read /  
Write  
Enables the square wave or interrupt output when VCC is absent and the PT7C4339 is being powered by  
the VBACKUP pin.  
1
3) Square wave frequency selection bits  
RS2, RS1  
Square wave Rate Select. These bits control the frequency of the square-wave output when the square wave has been enabled.  
RS2, RS1  
Data  
00  
SQW output freq. (Hz)  
1
01  
4.096k  
8.192k  
32.768k  
Read / Write  
10  
Default  
11  
4) OSF  
Oscillator Stop Flag  
Logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period of time and may be used to judge  
the validity of the clock and calendar data. This bit is set to logic 1 anytime that the oscillator stops. The following are examples of  
conditions that can cause the OSF bit to be set:  
1) The first time power is applied.  
2) The voltage present on VCC is insufficient to support oscillation.  
3) The /EOSC bit is turned off.  
4) External influences on the crystal (e.g., noise, leakage, etc.).  
This bit remains at logic 1 until written to logic 0.  
2015-08-0008  
PT0508-1  
08/24/15  
9
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
5) Interrupt related bits  
INTCN  
Interrupt Output pin select bit. This bit controls the relationship between the two alarms and the interrupt output pins.  
INTCN  
Data  
Description  
A match between the timekeeping registers and the alarm 1 or alarm 2 registers activate the SQW/INT  
pin (provided that the alarm is enabled).  
1
Read/write  
Default  
0
In this configuration, a square wave is output on the SQW/INT pin.  
A1IE  
Alarm 1 Interrupt Enable.  
A1IE  
Data  
Description  
Default  
0
The A1F bit does not initiate the SQW/INT signal.  
Read/write  
1
Permits the alarm 1 flag (A1F) bit in the status register to assert SQW/INT.  
A1F  
Alarm 1 Flag.  
A1F  
Data  
Description  
Default  
Read / Write  
0
The time does not match the alarm 1 registers.  
A logic 1 in the Alarm 1 Flag bit indicates that the time matched the alarm 1 registers. If the A1IE bit is  
a logic 1 and the INTCN bit is set to a logic 1, the SQW/INT pin is also asserted. A1F is cleared when  
Read  
1
written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves the value  
unchanged.  
A2IE  
Alarm 2 Interrupt Enable.  
A2IE  
Data  
Description  
Default  
0
The A2F bit does not initiate an interrupt signal.  
Read/write  
1
Permits the alarm 2 flag (A2F) bit in the status register to assert SQW/INT (when INTCN = 1).  
A2F  
Alarm 2 Flag.  
A1F  
Data  
Description  
Default  
Read / Write  
Read  
0
The time does not match the alarm 2 registers.  
A logic 1 in the Alarm 2 Flag bit indicates that the time matched the alarm 2 registers. If the A2IE bit  
is a logic 1 and the INTCN bit is set to a logic 1, the SQW/INT pin is also asserted. A2F is cleared  
1
when written to logic 0. This bit can only be written to logic 0. Attempting to write to logic 1 leaves  
the value unchanged.  
2015-08-0008  
PT0508-1  
08/24/15  
10  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
4.3. Time Counter  
Time digit display (in BCD code):  
Second digits: Range from 00 to 59 and carried to minute digits when incremented from 59 to 00.  
Minute digits: Range from 00 to 59 and carried to hour digits when incremented from 59 to 00.  
Hour digits: See description on the /12, 24 bit. Carried to day and day-of-the-week digits when incremented from 11 p.m. to  
12 a.m. or 23 to 00.  
Addr.  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(hex)  
Seconds  
(default)  
0
0
S40  
S20  
S10  
S8  
S4  
S2  
S1  
00  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
M40 M20 M10 M8 M4 M2 M1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
12, /24 H20 or P,/A H10 H8 H4 H2 H1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
Minutes  
(default)  
0
0
01  
02  
Hours  
0
0
(default)  
Note: Any registered imaginary time should be replaced with correct time, otherwise it will cause the clock counter malfunction.  
12, /24 bit  
This bit is used to select between 12-hour clock system and 24-hour clock system.  
12, /24  
Data  
Description  
0
1
24-hour system  
12-hour system  
Read / Write  
This bit is used to select between 12-hour clock operation and 24-hour clock operation.  
12, /24  
Description  
Hours register  
24-hour clock  
12-hour clock  
24-hour clock  
12-hour clock  
72 ( PM 12)  
61 ( PM 01 )  
62 ( PM 02 )  
63 ( PM 03 )  
64 ( PM 04 )  
65 ( PM 05 )  
66 ( PM 06 )  
67 ( PM 07 )  
68 ( PM 08 )  
69 ( PM 09 )  
70 ( PM 10 )  
71 ( PM 11 )  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
52 ( AM 12 )  
41 ( AM 01 )  
42 ( AM 02 )  
43 ( AM 03 )  
44 ( AM 04 )  
45 ( AM 05 )  
46 ( AM 06 )  
47 ( AM 07 )  
48 ( AM 08 )  
49 ( AM 09 )  
50 ( AM 10 )  
51 ( AM 11 )  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
24-hour time display  
1
12-hour time display  
* Be sure to select between 12-hour and 24-hour clock operation before writing the time data.  
4.4. Days of the week Counter  
The day counter is a divide-by-7 counter that counts from 01 to 07 and up 07 before starting again from 01. Values that  
correspond to the day of week are user defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on).  
Illogical time and date entries result in undefined operation.  
Addr.  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(hex)  
Days of the week  
(default)  
0
0
0
0
0
0
0
0
0
0
W4  
W2  
W1  
03  
Undefined Undefined Undefined  
2015-08-0008  
PT0508-1 08/24/15  
11  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
4.5. Calendar Counter  
The data format is BCD format.  
Day digits: Range from 1 to 31 (for January, March, May, July, August, October and December).  
. Range from 1 to 30 (for April, June, September and November).  
. Range from 1 to 29 (for February in leap years).  
. Range from 1 to 28 (for February in ordinary years).  
. Carried to month digits when cycled to 1.  
Month digits: Range from 1 to 12 and carried to year digits when cycled to 1.  
Year digits: Range from 00 to 99 and 00, 04, 08, , 92 and 96 are counted as leap years.  
Addr.  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(hex)  
Dates  
0
0
0
0
D20  
D10  
D8  
D4  
D2  
D1  
04  
(default)  
Undefined Undefined Undefined Undefined Undefined Undefined  
Months  
Century*1  
Undefined  
0
0
0
0
M10  
Undefined Undefined Undefined Undefined Undefined  
Y10 Y8 Y4 Y2 Y1  
M8  
M4  
M2  
M1  
05  
06  
(default)  
Years  
Y80  
Y40  
Y20  
(default)  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
*1: The century bit is toggled when the years register overflows from 99 to 00.  
4.6. Alarm Register  
Alarm 1, Alarm 2 Register  
Addr.  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Alarm 1: Seconds  
(default)  
A1M1*1  
S40  
S20  
S10  
S8  
S4  
S2  
S1  
07  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
A1M2*1  
M40 M20 M10 M8 M4 M2 M1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
A1M3*1  
12, /24 H20 or P,/A H10 H8 H4 H2 H1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
Alarm 1: Minutes  
(default)  
08  
09  
Alarm 1: Hours  
(default)  
Day,  
/Date*1  
0,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
Alarm 1: Day, Date A1M4*1  
D20  
D10  
D8  
0A  
(default)  
Alarm 2: Minutes  
(default)  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
A2M2*2  
M40 M20 M10 M8 M4 M2 M1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
A2M3*2  
12, /24 H20 or P,/A H10 H8 H4 H2 H1  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
0B  
0C  
Alarm 2: Hours  
(default)  
Day,  
/Date*2  
0,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
Alarm 2: Day, Date A2M4*2  
D20  
D10  
D8  
0D  
(default)  
Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined  
*1 Note: Alarm mask bit, using to select Alarm 1 alarm rate.  
*2 Note: Alarm mask bit, using to select Alarm 2 alarm rate.  
2015-08-0008  
PT0508-1  
08/24/15  
12  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
4.7. Alarm Function  
Related register  
Register definition  
Addr.  
(hex)  
Function  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
03  
04  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
Seconds  
Minutes  
Hours  
0
S40  
S20  
S10  
S8  
S4  
S2  
S1  
0
M40  
12, /24  
0
M20  
M10  
H10  
0
M8  
H8  
0
M4  
H4  
W4  
D4  
S4  
M2  
H2  
W2  
D2  
S2  
M1  
H1  
W1  
D1  
S1  
H20 or  
A, /P  
0
Days of the week  
Dates  
0
0
0
0
D20  
S20  
M20  
D10  
S10  
M10  
H10  
D8  
S8  
M8  
H8  
Alarm 1: Seconds  
Alarm 1: Minutes  
Alarm 1: Hours  
Alarm 1: Day, Date  
Alarm 2: Minutes  
Alarm 2: Hours  
Alarm 2: Day, Date  
Control  
A1M1  
A1M2  
A1M3  
A1M4  
A2M2  
A2M3  
A2M4  
/EOSC  
OSF  
S40  
M40  
12, /24  
M4  
H4  
M2  
H2  
M1  
H1  
H20 or  
A, /P  
0,  
Day,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
/Date  
D20  
D10  
D8  
M40  
M20  
M10  
H10  
M8  
H8  
M4  
H4  
M2  
H2  
M1  
H1  
H20 or  
A, /P  
0,  
12, /24  
Day,  
0,  
0,  
W4,  
D4  
W2,  
D2  
W1,  
D1  
/Date  
D20  
D10  
D8  
0
0
BBSQI  
0
RS2  
0
RS1  
0
INTCN  
0
A2IE  
A2F  
A1IE  
A1F  
Status  
Note: Alarm function does not support different hour system adopted in time and alarm register.  
The PT7C4339 contains two time-of-day/date alarms. The alarms can be programmed (by the INTCN bit of the control  
register) to operate in two different modes - each alarm can drive a common interrupt output. Bit 7 of each of the time-of-day/date  
alarm registers are mask bits.  
When all of the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers 00h ~  
04h match the values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second,  
minute, hour, day, or date. Table3 and Table4 show the possible settings.  
The Day, /Date bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits 0 ~ 5 of that register  
reflects the day of the week or the date of the month. If the bit is written to logic 0, the alarm is the result of a match with date of  
the month. If the bit is written to logic 1, the alarm is the result of a match with day of the week.  
When the PT7C4339 register values match alarm register settings, the corresponding alarm flag (A1F or A2F) bit is set to  
logic 1. If the corresponding alarm interrupt enable (A1IE or A2IE) is also set to logic 1, the alarm condition activates one of the  
interrupt output (SQW/INT) signals. The match is tested on the once-per-second update of the time and date registers.  
2015-08-0008  
PT0508-1  
08/24/15  
13  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Table3. Alarm 1 Mask Bits  
Alarm 1 register mask bits  
Day,  
Alarm rate  
/Date  
A1M4 A1M3 A1M2 A1M1  
1
1
1
1
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
Alarm once per second  
0
1
1
Alarm when seconds match  
1
Alarm when minutes and seconds match  
Alarm when hours, minutes, and seconds match  
Alarm when date, hours, minutes, and seconds match  
Alarm when day, hours, minutes, and seconds match  
Ignored.  
0
0
0
Others  
Table4. Alarm 2 Mask Bits  
Alarm 2 register mask bits  
Day,  
Alarm rate  
/Date  
A2M4  
A2M3  
A2M2  
1
1
1
0
0
1
1
0
0
0
1
0
0
0
0
Alarm once per minute (00 seconds of every minute)  
Alarm when minutes match  
0
1
Alarm when hours, minutes  
Alarm when date, hours, and minutes match  
Alarm when day, hours, and minutes match  
Ignored.  
Others  
4.8. Trickle Charger Register (10h)  
The simplified schematic in Figure 5 shows the basic components of the trickle charger. The trickle-charge select (TCS) bits (bits  
4 to 7) control the selection of the trickle charger. To prevent accidental enabling, only a pattern on 1010 enables the trickle  
charger. All other patterns disable the trickle charger. The trickle charger is disabled when power is first applied. The diode-select  
(DS) bits (bits 2 and 3) select whether or not a diode is connected between VCC and VBACKUP. The ROUT bits (bits 0 and 1)  
select the value of the resistor connected between VCC and VBACKUP. Table 5 shows the bit values.  
Table5. Trickle Charger Register (10h)  
BIT 7  
TCS3  
X
X
X
1
1
1
1
1
BIT 6  
TCS2  
X
X
X
0
0
0
0
0
BIT 5  
TCS1  
X
X
X
1
1
1
1
1
BIT 4  
TCS0  
X
X
X
0
0
0
0
0
BIT 3  
DS1  
0
1
X
0
1
0
1
0
BIT 2  
DS0  
0
1
X
1
0
1
0
1
BIT 1  
ROUT1  
BIT 0  
ROUT0  
Function  
X
X
0
0
0
1
1
1
1
0
X
X
0
1
1
0
0
1
1
0
Disabled  
Disabled  
Disabled  
No diode, 200Ω resistor  
One diode, 200Ω resistor  
No diode, 2kΩ resistor  
One diode, 2kΩ resistor  
No diode, 4kΩ resistor  
One diode, 4kΩ resistor  
Initial power-up values  
1
0
0
0
1
0
0
0
1
0
0
0
Warning: The ROUT value of 200Ω must not be selected whenever VCC is greater than 3.63V.  
The user determines diode and resistor selection according to the maximum current desired for battery or super cap charging.  
The maximum charging current can be calculated as illustrated in the following example. Assume that a 3.3V system power  
supply is applied to VCC and a super cap is connected to VBACKUP. Also assume that the trickle charger has been enabled with  
a diode and resistor R2 between VCC and VBACKUP. The maximum current IMAX would therefore be calculated as follows:  
IMAX = (3.3V - diode drop) / R2 ≈ (3.3V - 0.7V) / 2kΩ ≈ 1.3mA  
As the super cap or battery charges, the voltage drop between VCC and VBACKUP decreases and therefore the charge  
current decreases.  
2015-08-0008  
PT0508-1  
08/24/15  
14  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Figure 5: Programmable Trickle Charger  
5. I2C Bus Interface  
5.1. Overview of I2C-BUS  
The I2C bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination  
of these two signals is used to transmit and receive communication start/stop signals, data signals, acknowledge signals, and so on.  
Both the SCL and SDA signals are held at high level whenever communications are not being performed. The starting and  
stopping of communications is controlled at the rising edge or falling edge of SDA while SCL is at high level. During data  
transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the  
data is captured while the SCL line is at high level. In either case, the data is transferred via the SCL line at a rate of one bit per  
clock pulse. The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a  
chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its  
slave address matches the slave address in the received data.  
5.2. System Configuration  
All ports connected to the I2C bus must be either open drain or open collector ports in order to enable AND connections to  
multiple devices.  
SCL and SDA are both connected to the VCC line via a pull-up resistance. Consequently, SCL and SDA are both held at high  
level when the bus is released (when communication is not being performed).  
2015-08-0008  
PT0508-1  
08/24/15  
15  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Vcc  
RP  
RP  
SDA  
SCL  
Master  
MCU  
Slave  
RTC  
Other Peripheral  
Device  
Note: When there is only one master, the MCU is ready for driving SCL to "H" and RP of SCL may not required.  
Fig2. System configuration  
5.3. Starting and Stopping I2C Bus Communications  
Fig3. Starting and stopping on I2C bus  
1) START condition, repeated START condition, and STOP condition  
a) START condition  
SDA level changes from high to low while SCL is at high level  
b) STOP condition  
SDA level changes from low to high while SCL is at high level  
c) Repeated START condition (RESTART condition)  
In some cases, the START condition occurs between a previous START condition and the next STOP condition, in which  
case the second START condition is distinguished as a RESTART condition. Since the required status is the same as for the  
START condition, the SDA level changes from high to low while SCL is at high level.  
2) Data Transfers and Acknowledge Responses during I2C-BUS Communication  
a) Data transfers  
Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount  
(bytes) of data that are transferred between the START condition and STOP condition.  
The address auto increment function operates during both write and read operations.  
Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level.  
2015-08-0008  
PT0508-1  
08/24/15  
16  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
The receiver (receiving side) captures data while the SCL line is at high level.  
*Note: with caution that if the SDA data is changed while the SCL line is at high level, it will be treated as a START, RESTART,  
or STOP condition.  
b) Data acknowledge response (ACK signal)  
When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8-bit data  
segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established.  
(This does not include instances where the master device intentionally does not generate an ACK signal.)  
Immediately after the falling edge of the clock pulse corresponding to the 8th bit of data on the SCL line, the transmitter  
releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level.  
SCL from Master  
8
9
2
1
SDA from transmitter  
(sending side)  
Release SDA  
Low active  
ACK signal  
SDA from receiver  
(receiving side)  
After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the  
falling edge of the clock corresponding to the 9th bit of data on the SCL line. Data transfer resumes when the Master becomes the  
transmitter.  
When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave,  
that indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits  
a STOP condition from the Master.  
5.4. Slave Address  
The I2C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select  
pin, slave addresses are allocated to each device.  
All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving  
device responds to this communication only when the specified slave address it has received matches its own slave address.  
Slave addresses have a fixed length of 7 bits. See table for the details.  
An R/W bit is added to each 7-bit slave address during 8-bit transfers.  
Table  
Slave address  
bit 4  
R / W bit  
bit 0  
Operation  
Transfer data  
bit 7  
bit 6  
bit 5  
bit 3  
bit 2  
bit 1  
Read  
D1 h  
D0 h  
1 (= Read)  
0 (= Write)  
1
1
0
1
0
0
0
Write  
2015-08-0008  
PT0508-1  
08/24/15  
17  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
5.5. I2C Bus’s Basic Transfer Format  
S
Start indication  
P
Stop indication  
A
A
RTC Acknowledge  
Sr  
Restart indication  
Master Acknowledge  
1) Write via I2C bus  
Addr. setting  
bit bit bit  
bit bit bit bit bit  
Slave address (7 bits)  
S
A
A
A
P
write  
0
7
6
5
4
3
2
1
0
1
1
0
1
0
0
0
Start  
Stop  
A
C
K
A
C
K
A
C
K
Slave address + write specification  
Address  
Specifies the write start address.  
Write data  
2) Read via I2C bus  
(1) Standard read  
Slave address (7 bits)  
Addr. setting  
S
A
A
write  
1
1
0
1
0
0
0
0
Start  
A
C
K
A
C
K
Slave address + write specification  
Address  
Specifies the read start address.  
bit bit bit bit bit bit bit bit  
bit bit  
bit bit bit bit bit bit  
Slave address (7 bits)  
Sr  
A
A
/A  
P
Read  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
0
1
0
0
0
1
Restart  
A
C
K
A
C
K
Stop  
N
O
Data read (1)  
Data is read from the specified start  
address and address auto increment.  
Data read (2)  
Address auto increment to set the  
address for the next data to be read.  
Slave address + read specification  
A
C
K
2015-08-0008  
PT0508-1  
08/24/15  
18  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
(2) Simplified read  
bit bit bit bit bit bit bit bit  
bit bit  
bit bit bit bit bit bit  
Slave address (7 bits)  
S
A
A
/A  
P
Read  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
1
1
0
1
0
0
0
1
Start  
A
C
K
A
C
K
Stop  
N
O
Data read (2)  
Data read (1)  
Slave address + read specification  
Address register auto increment to set  
the address for the next data to be  
read.  
Data is read from the address pointed  
by the internal address register and  
address auto increment.  
A
C
K
Note:  
1. The above steps are an example of transfers of one or two bytes only. There is no limit to the number of bytes transferred  
during actual communications.  
2. 49H, 4AH are used as test mode address. Customer should not use the addresses.  
2015-08-0008  
PT0508-1  
08/24/15  
19  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Mechanical Information  
MSOP-8L  
2015-08-0008  
PT0508-1  
08/24/15  
20  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
SOIC-8L  
2015-08-0008  
PT0508-1  
08/24/15  
21  
PT7C4339/4339C  
Real-time Clock Module  
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
TDFN4.0x4.0-8L  
Ordering Information  
Part No.  
Package Code  
Package  
PT7C4339UE  
U
U
Lead free and Green 8-pin MSOP  
Lead free and Green 8-pin MSOP Tape/Reel  
Lead free and Green 8-pin SOIC  
PT7C4339UEX  
PT7C4339WE  
PT7C4339WEX  
PT7C4339CZSAE*  
W
W
Lead free and Green 8-pin SOIC Tape/Reel  
Lead free and Green 8-pin TDFN4.0x4.0  
ZSA  
Note:  
E = Pb-free and Green  
Adding X Suffix= Tape/Reel  
* Pls connect Pericom for available.  
Pericom Semiconductor Corporation 1-800-435-2336 www.pericom.com  
Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply  
the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The  
company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.  
2015-08-0008  
PT0508-1  
08/24/15  
22  

相关型号:

PT7C4339WEX

IC RTC CLK I2C 8SOIC
DIODES

PT7C4339WEX

Real-time Clock Module
PERICOM

PT7C4363

Real-time Clock Module (I2C Bus)
PERICOM

PT7C4363BZEEX

Real Time Clock,
DIODES

PT7C4363P

Real-time Clock Module (I2C Bus)
PERICOM

PT7C4363PE

暂无描述
PERICOM

PT7C4363W

Real-time Clock Module (I2C Bus)
PERICOM

PT7C4363WE

Real Time Clock, Non-Volatile, 1 Timer(s), CMOS, PDSO8, GREEN, MS-012E/AA, SOIC-8
PERICOM

PT7C4363WEX

Real Time Clock, Non-Volatile, 1 Timer(s), CMOS, PDSO8, GREEN, MS-012E/AA, SOIC-8
PERICOM

PT7C4372A

Real-time Clock Module
PERICOM

PT7C4372ALE

Real-time Clock Module
PERICOM

PT7C4372AWE

Real-time Clock Module
PERICOM