74LVC1G86GW [PHILIPS]

XOR Gate, CMOS, PDSO5,;
74LVC1G86GW
型号: 74LVC1G86GW
厂家: PHILIPS SEMICONDUCTORS    PHILIPS SEMICONDUCTORS
描述:

XOR Gate, CMOS, PDSO5,

栅 光电二极管 逻辑集成电路 石英晶振
文件: 总16页 (文件大小:72K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74LVC1G86  
2-input EXCLUSIVE-OR gate  
Product specification  
2002 Nov 15  
Supersedes data of 2001 Apr 06  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
FEATURES  
DESCRIPTION  
Wide supply voltage range from 1.65 to 5.5 V  
High noise immunity  
The 74LVC1G86 is a high-performance, low-power,  
low-voltage, Si-gate CMOS device, superior to most  
advanced CMOS compatible TTL families.  
Complies with JEDEC standard:  
– JESD8-7 (1.65 to 1.95 V)  
Inputs can be driven from either 3.3 or 5 V devices. These  
features allow the use of these devices in a mixed  
3.3 and 5 V environment.  
– JESD8-5 (2.3 to 2.7 V)  
– JESD8B/JESD36 (2.7 to 3.6 V).  
• ±24 mA output drive (VCC = 3.0 V)  
CMOS low power consumption  
Latch-up performance exceeds 250 mA  
Direct interface with TTL levels  
Inputs accept voltages up to 5 V  
Multiple package options  
This device is fully specified for partial Power-down  
applications using Ioff. The Ioff circuitry disables the output,  
preventing the damaging backflow current through the  
device when it is powered down.  
The 74LVC1G86 provides the 2-input EXCLUSIVE-OR  
function.  
ESD protection:  
HBM EIA/JESD22-A114-A exceeds 2000 V  
MM EIA/JESD22-A115-A exceeds 200 V.  
Specified from 40 to +125 °C.  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf 2.5 ns.  
SYMBOL  
PARAMETER  
CONDITIONS  
TYPICAL  
3.7  
UNIT  
t
PHL/tPLH  
propagation delay inputs A and B to VCC = 1.8 V; CL = 30 pF; RL = 1 kΩ  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
output Y  
V
CC = 2.5 V; CL = 30 pF; RL = 500 2.5  
VCC = 2.7 V; CL = 50 pF; RL = 500 2.8  
CC = 3.3 V; CL = 50 pF; RL = 500 2.3  
V
VCC = 5.0 V; CL = 50 pF; RL = 500 1.9  
CI  
input capacitance  
5
CPD  
power dissipation capacitance per  
buffer  
VCC = 3.3 V; notes 1 and 2  
25  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW).  
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = output load capacitance in pF;  
VCC = supply voltage in Volts;  
N = total switching outputs;  
Σ(CL × VCC2 × fo) = sum of the outputs.  
2. The condition is VI = GND to VCC  
.
2002 Nov 15  
2
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
FUNCTION TABLE  
See note 1.  
INPUT  
OUTPUT  
A
B
Y
L
L
L
H
L
L
H
H
L
H
H
H
Note  
1. H = HIGH voltage level;  
L = LOW voltage level.  
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
TEMPERATURE  
PINS  
PACKAGE  
MATERIAL  
CODE  
MARKING  
RANGE  
74LVC1G86GW  
74LVC1G86GV  
40 to +125 °C  
40 to +125 °C  
5
5
SC-88A  
SC-74A  
plastic  
plastic  
SOT353  
SOT753  
VH  
V86  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
1
2
3
4
5
B
A
data input B  
data input A  
ground (0 V)  
data output Y  
supply voltage  
GND  
Y
VCC  
2002 Nov 15  
3
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
handbook, halfpage  
B
A
1
2
3
5
4
V
Y
CC  
handbook, halfpage  
B
A
1
2
Y
4
86  
GND  
MNA038  
MNA037  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
handbook, halfpage  
B
handbook, halfpage  
1
2
= 1  
4
Y
MNA039  
A
MNA040  
Fig.3 IEE/IEC logic symbol.  
Fig.4 Logic diagram.  
2002 Nov 15  
4
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
1.65  
MAX.  
5.5  
UNIT  
V
VI  
input voltage  
0
5.5  
VCC  
5.5  
+125  
20  
V
VO  
output voltage  
active mode  
CC = 0 V; Power-down mode  
0
V
V
0
V
Tamb  
tr, tf  
operating ambient temperature  
input rise and fall times  
40  
0
°C  
VCC = 1.65 to 2.7 V  
CC = 2.7 to 5.5 V  
ns/V  
ns/V  
V
0
10  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).  
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT  
VCC supply voltage 0.5 +6.5  
V
IIK  
input diode current  
input voltage  
VI < 0  
note 1  
50  
mA  
V
VI  
0.5  
+6.5  
±50  
IOK  
VO  
output diode current  
output voltage  
VO > VCC or VO < 0  
mA  
V
active mode; notes 1 and 2  
0.5  
VCC + 0.5  
+6.5  
±50  
Power-down mode; notes 1 and 2 0.5  
V
IO  
output source or sink current  
VCC or GND current  
VO = 0 to VCC  
mA  
mA  
°C  
mW  
ICC, IGND  
±100  
+150  
250  
Tstg  
PD  
storage temperature  
65  
power dissipation per package  
for temperature range from  
40 to +125 °C  
Notes  
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
2. When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.  
2002 Nov 15  
5
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
DC CHARACTERISTICS  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.(1)  
MAX.  
UNIT  
OTHER  
VCC (V)  
Tamb = 40 to +85 °C  
VIH HIGH-level input voltage  
1.65 to 1.95 0.65 × VCC  
V
V
V
V
V
V
V
V
2.3 to 2.7  
2.7 to 3.6  
4.5 to 5.5  
1.65 to 1.95  
2.3 to 2.7  
2.7 to 3.6  
4.5 to 5.5  
1.7  
2.0  
0.7 × VCC  
VIL  
LOW-level input voltage  
0.35 × VCC  
0.7  
0.8  
0.3 × VCC  
VOL  
LOW-level output  
voltage  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
1.65 to 5.5  
1.65  
2.3  
0.1  
V
V
V
V
V
V
0.45  
0.3  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
2.7  
0.4  
3.0  
0.55  
0.55  
4.5  
VOH  
HIGH-level output  
voltage  
1.65 to 5.5  
1.65  
2.3  
V
CC 0.1  
V
1.2  
1.9  
2.2  
2.3  
3.8  
V
V
2.7  
V
3.0  
V
4.5  
V
ILI  
input leakage current  
VI = 5.5 V or GND 5.5  
VI or VO = 5.5 V  
±0.1  
±0.1  
±5  
±10  
µA  
µA  
Ioff  
power OFF leakage  
current  
0
ICC  
quiescent supply current VI = VCC or GND; 5.5  
IO = 0  
0.1  
5
10  
µA  
µA  
ICC  
additional quiescent  
supply current per pin  
VI = VCC 0.6 V;  
IO = 0  
2.3 to 5.5  
500  
2002 Nov 15  
6
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
MIN.  
TYP.(1)  
MAX.  
UNIT  
OTHER  
VCC (V)  
Tamb = 40 to +125 °C  
VIH HIGH-level input voltage  
1.65 to 1.95 0.65 × VCC  
V
V
V
V
V
V
V
V
2.3 to 2.7  
2.7 to 3.6  
4.5 to 5.5  
1.65 to 1.95  
2.3 to 2.7  
2.7 to 3.6  
4.5 to 5.5  
1.7  
2.0  
0.7 × VCC  
VIL  
LOW-level input voltage  
0.35 × VCC  
0.7  
0.8  
0.3 × VCC  
VOL  
LOW-level output  
voltage  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
1.65 to 5.5  
1.65  
2.3  
0.1  
V
V
V
V
V
V
0.70  
0.45  
0.60  
0.80  
0.80  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
VI = VIH or VIL  
IO = 100 µA  
IO = 4 mA  
IO = 8 mA  
IO = 12 mA  
IO = 24 mA  
IO = 32 mA  
2.7  
3.0  
4.5  
VOH  
HIGH-level output  
voltage  
1.65 to 5.5  
1.65  
2.3  
V
CC 0.1  
V
0.95  
1.7  
1.9  
2.0  
3.4  
V
V
2.7  
V
3.0  
V
4.5  
V
ILI  
input leakage current  
VI = 5.5 V or GND 5.5  
VI or VO = 5.5 V  
±100  
±200  
µA  
µA  
Ioff  
power OFF leakage  
current  
0
ICC  
quiescent supply current VI = VCC or GND; 5.5  
IO = 0  
200  
µA  
µA  
ICC  
additional quiescent  
supply current per pin  
VI = VCC 0.6 V;  
IO = 0  
2.3 to 5.5  
5000  
Note  
1. All typical values are measured at VCC = 3.3 V and Tamb = 25 °C.  
2002 Nov 15  
7
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
AC CHARACTERISTICS  
GND = 0 V; tr = tf 2.0 ns.  
TEST CONDITIONS  
WAVEFORMS VCC (V)  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Tamb = 40 to +85 °C  
tPHL/tPLH propagation delay  
inputs A and B to  
output Y  
see Figs 5 and 6 1.65 to 1.95 1.0  
3.7  
2.5  
2.8  
2.3  
1.9  
9.9  
V
V
V
V
V
2.3 to 2.7  
2.7  
0.5  
0.5  
0.5  
0.5  
5.5  
5.8  
5.0  
4.0  
3.0 to 3.6  
4.5 to 5.5  
Tamb = 40 to +125 °C  
tPHL/tPLH propagation delay  
inputs A and B to  
output Y  
see Figs 5 and 6 1.65 to 1.95 1.0  
13.0  
7.0  
7.5  
6.5  
5.5  
V
V
V
V
V
2.3 to 2.7  
2.7  
0.5  
0.5  
0.5  
0.5  
3.0 to 3.6  
4.5 to 5.5  
AC WAVEFORMS  
handbook, halfpage  
A, B input  
V
M
t
t
PHL  
PLH  
V
Y output  
M
MNA041  
INPUT  
VCC  
VM  
VI  
tr = tf  
1.65 to 1.95 V  
2.3 to 2.7 V  
2.7 V  
0.5 × VCC VCC  
0.5 × VCC VCC  
2.0 ns  
2.0 ns  
2.5 ns  
2.5 ns  
2.5 ns  
1.5 V  
1.5 V  
2.7 V  
2.7 V  
3.0 to 3.6 V  
4.5 to 5.5 V  
0.5 × VCC VCC  
VOL and VOH are typical output voltage drop that occur with the output load.  
Fig.5 The inputs A and B to output Y propagation delay times.  
8
2002 Nov 15  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
V
EXT  
V
CC  
R
L
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
R
R
L
L
T
MNA616  
VEXT  
tPLH/tPHL tPZH/tPHZ tPZL/tPLZ  
VCC  
VI  
VCC  
CL  
RL  
1.65 to 1.95 V  
2.3 to 2.7 V  
2.7 V  
30 pF  
30 pF  
50 pF  
50 pF  
50 pF  
1 kΩ  
open  
GND  
GND  
GND  
GND  
GND  
2 × VCC  
2 × VCC  
6 V  
VCC  
500 Ω  
500 Ω  
500 Ω  
500 Ω  
open  
open  
open  
open  
2.7 V  
2.7 V  
VCC  
3.0 to 3.6 V  
4.5 to 5.5 V  
6 V  
2 × VCC  
Definitions for test circuit:  
RL = Load resistor.  
CL = Load capacitance including jig and probe capacitance.  
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.  
Fig.6 Load circuitry for switching times.  
2002 Nov 15  
9
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
PACKAGE OUTLINES  
Plastic surface mounted package; 5 leads  
SOT353  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
1
2
3
c
e
1
b
p
L
p
w
M B  
e
detail X  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
1
(2)  
UNIT  
A
b
c
D
E
e
e
H
L
Q
v
w
y
p
p
1
E
max  
0.30  
0.20  
1.1  
0.8  
0.25  
0.10  
2.2  
1.8  
1.35  
1.15  
2.2  
2.0  
0.45  
0.15  
0.25  
0.15  
mm  
0.1  
1.3  
0.65  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
EIAJ  
SC-88A  
97-02-28  
SOT353  
2002 Nov 15  
10  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
Plastic surface mounted package; 5 leads  
SOT753  
D
B
E
A
X
y
H
v
M
A
E
5
4
Q
A
A
1
c
L
p
1
2
3
detail X  
e
b
p
w
M B  
0
1
2 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
b
c
D
E
e
H
L
Q
v
w
y
p
1
p
E
0.100  
0.013  
0.40  
0.25  
1.1  
0.9  
0.26  
0.10  
3.1  
2.7  
1.7  
1.3  
3.0  
2.5  
0.6  
0.2  
0.33  
0.23  
mm  
0.95  
0.2  
0.2  
0.1  
REFERENCES  
JEDEC JEITA  
EUROPEAN  
PROJECTION  
OUTLINE  
VERSION  
ISSUE DATE  
IEC  
SOT753  
SC-74A  
02-04-16  
2002 Nov 15  
11  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Manual soldering  
Wave soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2002 Nov 15  
12  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, HVSON, SMS  
not suitable(3)  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2002 Nov 15  
13  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2002 Nov 15  
14  
Philips Semiconductors  
Product specification  
2-input EXCLUSIVE-OR gate  
74LVC1G86  
NOTES  
2002 Nov 15  
15  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2002  
SCA74  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613508/03/pp16  
Date of release: 2002 Nov 15  
Document order number: 9397 750 10077  

相关型号:

74LVC1G86GW,118

74LVC1G86 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP

74LVC1G86GW,125

74LVC1G86 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP

74LVC1G86GW,165

74LVC1G86 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP

74LVC1G86GW-G

暂无描述
NXP

74LVC1G86GW-Q100

2-input EXCLUSIVE-OR gate
NEXPERIA

74LVC1G86GW-Q100H

74LVC1G86-Q100 - 2-input EXCLUSIVE-OR gate TSSOP 5-Pin
NXP

74LVC1G86GX

2-input EXCLUSIVE-OR gateProduction
NEXPERIA

74LVC1G86SE

SINGLE 2 INPUT EXCLUSIVE OR GATE
DIODES

74LVC1G86SE-7

SINGLE 2 INPUT EXCLUSIVE OR GATE
DIODES

74LVC1G86W5

SINGLE 2 INPUT EXCLUSIVE OR GATE
DIODES

74LVC1G86W5-7

SINGLE 2 INPUT EXCLUSIVE OR GATE
DIODES

74LVC1G86Z-7

SINGLE 2 INPUT EXCLUSIVE OR GATE
DIODES