935314795557 [NXP]

RISC Microcontroller;
935314795557
型号: 935314795557
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总59页 (文件大小:2011K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K12P64M50SF4  
Rev. 4, 08/2013  
Freescale Semiconductor  
Data Sheet: Technical Data  
K12P64M50SF4  
K12 Sub-Family  
Supports the following:  
MK12DX128VLH5, MK12DX256VLH5,  
MK12DN512VLH5  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
– 128-bit unique identification (ID) number per chip  
Human-machine interface  
– General-purpose input/output  
Performance  
– Up to 50 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Analog modules  
– 16-bit SAR ADC  
– 12-bit DAC  
– Two analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Memories and memory interfaces  
– Up to 512 KB of program flash for devices without  
FlexNVM.  
– Up to 256 KB program flash for devices with  
FlexNVM.  
– 64 KB FlexNVM on FlexMemory devices  
– 4 KB FlexRAM on FlexMemory devices  
– Up to 64 KB RAM  
Timers  
– Programmable delay block  
– Eight-channel motor control/general purpose/PWM  
timer  
– Two 2-channel general purpose timers, one with  
quadrature decoder functionality  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
– Serial programming interface (EzPort)  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
System peripherals  
Communication interfaces  
– USB Device Charger detect  
– SPI module  
– Two I2C modules  
– Four UART modules  
– I2S module  
– Multiple low-power modes to provide power  
optimization based on application requirements  
– 16-channel DMA controller, supporting up to 63  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2012–2013 Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts...........................................................................3  
5.4 Thermal specifications.......................................................20  
5.4.1 Thermal operating requirements...........................21  
5.4.2 Thermal attributes.................................................21  
6 Peripheral operating requirements and behaviors....................22  
6.1 Core modules....................................................................22  
6.1.1 JTAG electricals....................................................22  
6.2 System modules................................................................25  
6.3 Clock modules...................................................................25  
6.3.1 MCG specifications...............................................25  
6.3.2 Oscillator electrical specifications.........................27  
6.3.3 32 kHz oscillator electrical characteristics.............29  
6.4 Memories and memory interfaces.....................................30  
6.4.1 Flash electrical specifications................................30  
6.4.2 EzPort switching specifications.............................33  
6.5 Security and integrity modules..........................................34  
6.6 Analog...............................................................................34  
6.6.1 ADC electrical specifications.................................34  
6.6.2 CMP and 6-bit DAC electrical specifications.........38  
6.6.3 12-bit DAC electrical characteristics.....................41  
6.6.4 Voltage reference electrical specifications............44  
6.7 Timers................................................................................45  
6.8 Communication interfaces.................................................45  
6.8.1 DSPI switching specifications (limited voltage  
1.1 Determining valid orderable parts......................................3  
2 Part identification......................................................................3  
2.1 Description.........................................................................3  
2.2 Format...............................................................................3  
2.3 Fields.................................................................................3  
2.4 Example............................................................................4  
2.5 Small package marking.....................................................4  
3 Terminology and guidelines......................................................5  
3.1 Definition: Operating requirement......................................5  
3.2 Definition: Operating behavior...........................................5  
3.3 Definition: Attribute............................................................6  
3.4 Definition: Rating...............................................................6  
3.5 Result of exceeding a rating..............................................7  
3.6 Relationship between ratings and operating  
requirements......................................................................7  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................8  
3.9 Typical value conditions....................................................9  
4 Ratings......................................................................................9  
4.1 Thermal handling ratings...................................................9  
4.2 Moisture handling ratings..................................................10  
4.3 ESD handling ratings.........................................................10  
4.4 Voltage and current operating ratings...............................10  
5 General.....................................................................................10  
5.1 AC electrical characteristics..............................................11  
5.2 Nonswitching electrical specifications...............................11  
5.2.1 Voltage and current operating requirements.........11  
5.2.2 LVD and POR operating requirements.................12  
5.2.3 Voltage and current operating behaviors..............13  
5.2.4 Power mode transition operating behaviors..........13  
5.2.5 Power consumption operating behaviors..............14  
5.2.6 EMC radiated emissions operating behaviors.......18  
5.2.7 Designing with radiated emissions in mind...........19  
5.2.8 Capacitance attributes..........................................19  
5.3 Switching specifications.....................................................19  
5.3.1 Device clock specifications...................................19  
5.3.2 General switching specifications...........................20  
range)....................................................................45  
6.8.2 DSPI switching specifications (full voltage range).47  
6.8.3 I2C switching specifications..................................49  
6.8.4 UART switching specifications..............................49  
6.8.5 Normal Run, Wait and Stop mode performance  
over the full operating voltage range.....................49  
6.8.6 VLPR, VLPW, and VLPS mode performance  
over the full operating voltage range.....................51  
7 Dimensions...............................................................................53  
7.1 Obtaining package dimensions.........................................53  
8 Pinout........................................................................................53  
8.1 K12 Signal Multiplexing and Pin Assignments..................53  
8.2 K12 Pinouts.......................................................................56  
9 Revision History........................................................................57  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to freescale.com and perform a part number search for the  
following device numbers: PK12 and MK12 .  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K12  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
3
Part identification  
Field  
Description  
Program flash memory size  
Values  
FFF  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
• 2M0 = 2 MB  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
CC  
Maximum CPU frequency (MHz)  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• 18 = 180 MHz  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK12DN512VLH5  
2.5 Small package marking  
In an effort to save space, small package devices use special marking on the chip. These  
markings have the following format:  
Q ## C F T PP  
This table lists the possible values for each field in the part number for small packages  
(not all combinations are valid):  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
4
Freescale Semiconductor, Inc.  
Terminology and guidelines  
Values  
Field  
Description  
Q
Qualification status  
Speed  
• M = Fully qualified, general market flow  
• P = Prequalification  
C
F
• G = 50 MHz  
Flash memory configuration  
• G = 128 KB + Flex  
• H = 256 KB + Flex  
• 9 = 512 KB  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• MC = 121 MAPBGA  
This tables lists some examples of small package marking along with the original part  
numbers:  
Original part number  
Alternate part number  
MK12DX256VLF5  
MK12DN512VLH5  
M12GHVLF  
M12G9VLH  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
7
Terminology and guidelines  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
8
Freescale Semiconductor, Inc.  
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
9
General  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
3
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
IDD  
Digital supply current  
155  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog1, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–0.3  
VAIO  
–0.3  
VDD + 0.3  
25  
V
ID  
–25  
mA  
V
VDDA  
VREGIN  
VBAT  
VDD – 0.3  
–0.3  
VDD + 0.3  
6.0  
USB regulator input  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
10  
Freescale Semiconductor, Inc.  
General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
V
I/O pin DC injection current — single pin  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
1
mA  
-3  
+3  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
11  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater  
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as  
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the  
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.  
5.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
12  
Freescale Semiconductor, Inc.  
General  
Notes  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA  
100  
mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
Input leakage current (per pin)  
• @ full temperature range  
• @ 25 °C  
100  
mA  
1.0  
0.1  
μA  
μA  
1
IOZ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Total Hi-Z (off-state) leakage current (all input pins)  
Internal pullup resistors  
22  
22  
1
4
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
50  
50  
2
3
Internal pulldown resistors  
1. Tested by ganged leakage method  
2. Measured at Vinput = VSS  
3. Measured at Vinput = VDD  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
13  
General  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 50 MHz  
• Bus clock = 50 MHz  
• Flash clock = 25 MHz  
• MCG mode: FEI  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
μs  
1
300  
• 1.71 V/(VDD slew rate) ≤ 300 μs  
1.7 V / (VDD  
slew rate)  
• 1.71 V/(VDD slew rate) > 300 μs  
135  
135  
85  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
85  
6
5.2  
5.2  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
• @ 1.8 V  
• @ 3.0 V  
12.98  
12.93  
14  
mA  
mA  
13.8  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
14  
Freescale Semiconductor, Inc.  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
• @ 1.8 V  
• @ 3.0 V  
• @ 25°C  
• @ 125°C  
17.04  
19.3  
mA  
17.01  
19.8  
7.95  
18.9  
21.3  
9.5  
mA  
mA  
mA  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
2
5
IDD_WAIT Wait mode reduced frequency current at 3.0 V —  
all peripheral clocks disabled  
5.88  
7.4  
mA  
μA  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
• @ 50°C  
320  
360  
410  
610  
754  
436  
489  
620  
1100  
• @ 70°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
μA  
6
7
8
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
1.1  
mA  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
437  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
7.33  
14  
24.2  
32  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
• @ 105°C  
28  
48  
110  
280  
IDD_LLS Low leakage stop mode current at 3.0 V  
μA  
μA  
μA  
3.14  
6.48  
4.8  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
28.3  
44.6  
71.3  
13.85  
55.53  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
2.19  
4.35  
3.4  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
4.35  
24.6  
45.3  
8.92  
• @ 105°C  
35.33  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
1.77  
2.81  
3.1  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
13.8  
22.3  
34.2  
5.20  
• @ 105°C  
19.88  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
15  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
μA  
1.03  
1.92  
1.8  
7.5  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
• @ 105°C  
4.03  
15.9  
28.7  
17.43  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
μA  
μA  
μA  
0.543  
1.36  
1.1  
with POR detect circuit enabled  
• @ –40 to 25°C  
• @ 50°C  
7.58  
14.3  
24.1  
3.39  
• @ 70°C  
• @ 105°C  
16.52  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
0.359  
1.03  
0.95  
6.8  
with POR detect circuit disabled  
• @ –40 to 25°C  
• @ 50°C  
2.87  
15.4  
25.3  
• @ 70°C  
• @ 105°C  
15.20  
IDD_VBAT Average current when CPU is not accessing RTC  
9
0.91  
1.1  
1.5  
4.3  
1.1  
1.35  
1.85  
5.7  
registers at 3.0 V  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral  
clocks disabled.  
3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral  
clocks enabled, and peripherals are in active operation.  
4. Max values are measured with CPU executing DSP instructions  
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.  
6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
Code executing from flash.  
7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled  
but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
9. Includes 32 kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
16  
Freescale Semiconductor, Inc.  
General  
Figure 2. Run mode supply current vs. core frequency  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
17  
General  
Figure 3. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors 1  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
19  
21  
19  
11  
L
dBμV  
dBμV  
dBμV  
dBμV  
2, 3  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
3, 4  
1. This data was collected on a MK20DN128VLH5 64pin LQFP device.  
2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
18  
Freescale Semiconductor, Inc.  
General  
3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz  
4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
50  
50  
25  
25  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fERCLK  
fLPTMR_pin  
Flash clock  
1
External reference clock  
LPTMR clock  
16  
25  
16  
12.5  
4
fLPTMR_ERCLK LPTMR external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
19  
General  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all pins configured for:  
• GPIO signaling  
• Other peripheral module signaling not explicitly stated elsewhere  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
50  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
Port rise and fall time (high drive strength)  
• Slew disabled  
100  
3
4
• 1.71 ≤ VDD ≤ 2.7V  
13  
7
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
36  
24  
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. 15 pF load  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
20  
Freescale Semiconductor, Inc.  
General  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
Die junction temperature  
Ambient temperature  
°C  
°C  
TA  
105  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
64 LQFP  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
65  
°C/W  
1, 2  
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
46  
53  
40  
°C/W  
°C/W  
°C/W  
1, 3  
1,3  
1,3  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance, junction  
to board  
28  
15  
3
°C/W  
°C/W  
°C/W  
4
5
6
Thermal  
resistance, junction  
to case  
Thermal  
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
1.  
2.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the  
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
21  
Peripheral operating requirements and behaviors  
3.  
4.  
5.  
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental  
Conditions—Forced Convection (Moving Air) with the board horizontal.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
6.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 JTAG electricals  
Table 12. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 13. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 4. Test clock input timing  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 5. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 6. Test Access Port timing  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TRST  
J14  
J13  
Figure 7. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 14. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.3  
2
1
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
fintf_ft  
fintf_t  
floc_low  
floc_high  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
3, 4  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
8
8
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
9
9
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
1.49  
4.47  
2.98  
5.97  
%
%
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. MCG specifications (continued)  
Symbol Description  
tpll_lock Lock detector detection time  
Min.  
Typ.  
Max.  
Unit  
Notes  
150 × 10-6  
+ 1075(1/  
s
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. 2 V <= VDD <= 3.6 V.  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
6.3.2.1 Oscillator DC electrical specifications  
Table 15. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
Table 15. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDOSC  
Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other device.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.3.2.2 Oscillator frequency specifications  
Table 16. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
32  
Typ.  
Max.  
40  
Unit  
Notes  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that—it remains within the limits of  
DCO input clock frequency when divided by FRDIV.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between oscillator being enabled and OSCINIT bit in the MCG_S register being  
set.  
NOTE  
The 32 kHz oscillator works in low power mode by default and  
cannot be moved into high power/gain mode.  
6.3.3 32 kHz oscillator electrical characteristics  
6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 17. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
Parasitical capacitance of EXTAL32 and XTAL32  
100  
5
MΩ  
pF  
Cpara  
7
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
29  
Peripheral operating requirements and behaviors  
Table 17. 32kHz oscillator DC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
6.3.3.2 32 kHz oscillator frequency specifications  
Table 18. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
vec_extal32 Externally provided input clock amplitude  
700  
VBAT  
mV  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
6.4 Memories and memory interfaces  
6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 19. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk256k Erase Block high-voltage time for 256 KB  
13  
113  
904  
ms  
ms  
1
1
104  
1. Maximum time based on expectations at cycling end-of-life.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.4.1.2 Flash timing specifications — commands  
Table 20. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk64k  
• 64 KB data flash  
0.9  
1.7  
ms  
ms  
trd1blk256k  
• 256 KB program flash  
trd1sec2k Read 1s Section execution time (flash sector)  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 64 KB data flash  
30  
tpgm4  
145  
2
tersblk64k  
58  
580  
985  
ms  
ms  
tersblk256k  
• 256 KB program flash  
122  
tersscr  
Erase Flash Sector execution time  
Program Section execution time  
• 512 bytes flash  
14  
114  
ms  
2
tpgmsec512  
tpgmsec1k  
tpgmsec2k  
2.4  
4.7  
9.3  
ms  
ms  
ms  
• 1 KB flash  
• 2 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
μs  
ms  
μs  
trdonce  
1
tpgmonce Program Once execution time  
65  
250  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
2000  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Program Partition for EEPROM execution time  
• 64 KB FlexNVM  
tpgmpart64k  
138  
ms  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
70  
0.8  
1.3  
μs  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
1.2  
1.9  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
Table 20. Flash command timing specifications (continued)  
Symbol Description  
Byte-write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr8b32k  
teewr8b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
385  
475  
1800  
2000  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
385  
475  
1800  
2000  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
630  
810  
2050  
2250  
μs  
μs  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash high voltage current behaviors  
Table 21. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 22. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
5
50  
years  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 22. NVM reliability specifications (continued)  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
years  
cycles  
Notes  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
20  
10 K  
100  
50 K  
2
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
Write endurance  
5
50  
years  
years  
20  
100  
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ °C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40 °C ≤Tj ≤ °C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.2 EzPort switching specifications  
Table 23. EzPort switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 8. EzPort Timing Diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 24. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
0
Delta to VDD (VDD – VDDA  
)
+100  
+100  
mV  
mV  
2
2
Delta to VSS (VSS – VSSA  
)
0
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 24. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VREFH  
VREFL  
VADIN  
ADC reference  
voltage high  
1.13  
VDDA  
VDDA  
V
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
VREFL  
VREFL  
31/32 *  
VREFH  
• All other modes  
• 16-bit mode  
VREFH  
CADIN  
Input capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 9. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1.  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
-1.1 to +1.9  
-0.3 to 0.5  
• <12-bit modes  
• 12-bit modes  
0.2  
1.0  
INL  
EFS  
Integral non-  
linearity  
-2.7 to +1.9  
-0.7 to +0.5  
LSB4  
LSB4  
5
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.5  
-4  
Full-scale error  
-5.4  
-1.8  
VADIN =  
VDDA  
-1.4  
5
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1.  
Min.  
Typ.2  
-1 to 0  
Max.  
Unit  
Notes  
EQ  
Quantization  
error  
• 16-bit modes  
• ≤13-bit modes  
LSB4  
0.5  
ENOB  
Effective number 16-bit differential mode  
6
of bits  
• Avg = 32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
–94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
dB  
16-bit single-ended mode  
• Avg = 32  
90  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
37  
Peripheral operating requirements and behaviors  
8. ADC conversion clock < 3 MHz  
Figure 10. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 26. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 27. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
3.6  
V
1
Operating temperature  
range of the device  
°C  
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
2
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
41  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 28. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
330  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
1200  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 14. Typical INL error vs. digital code  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
43  
Peripheral operating requirements and behaviors  
Figure 15. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 29. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 30. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Bandgap only current  
80  
µA  
µV  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 31. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 32. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
45  
Peripheral operating requirements and behaviors  
6.8.1 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 33. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 16. DSPI classic SPI timing — master mode  
Table 34. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
12.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 34. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
Description  
DSPI_SCK input high/low time  
Min.  
Max.  
Unit  
ns  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
10  
14  
14  
ns  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
ns  
2
ns  
7
ns  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 17. DSPI classic SPI timing — slave mode  
6.8.2 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 35. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
47  
Peripheral operating requirements and behaviors  
Table 35. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 18. DSPI classic SPI timing — master mode  
Table 36. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6.25  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
20  
19  
19  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
48  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
DSPI_SIN  
Figure 19. DSPI classic SPI timing — slave mode  
6.8.3 I2C switching specifications  
See General switching specifications.  
6.8.4 UART switching specifications  
See General switching specifications.  
6.8.5 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 37. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
S7  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
ns  
I2S_TX_BCLK to I2S_TXD valid  
15  
Table continues on the next page...  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
49  
Peripheral operating requirements and behaviors  
Table 37. I2S/SAI master mode timing (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S8  
S9  
I2S_TX_BCLK to I2S_TXD invalid  
0
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
25  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 20. I2S/SAI timing — master modes  
Table 38. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
10  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
29  
21  
ns  
ns  
ns  
ns  
ns  
10  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
50  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 21. I2S/SAI timing — slave modes  
6.8.6 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
75  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
51  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 22. I2S/SAI timing — master modes  
Table 40. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
87  
72  
ns  
ns  
ns  
ns  
ns  
30  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
52  
Freescale Semiconductor, Inc.  
Dimensions  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 23. I2S/SAI timing — slave modes  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
64-pin LQFP  
Then use this document number  
98ASS23234W  
8 Pinout  
8.1 K12 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
• The analog input signals ADC0_SE10, ADC0_SE11,  
ADC0_DP1, and ADC0_DM1 are available only for K11,  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
53  
Pinout  
K12, K21, and K22 devices and are not present on K10 and  
K20 devices.  
• The TRACE signals on PTE0, PTE1, PTE2, PTE3, and  
PTE4 are available only for K11, K12, K21, and K22  
devices and are not present on K10 and K20 devices.  
• If the VBAT pin is not used, the VBAT pin should be left  
floating. Do not connect VBAT pin to VSS.  
• The FTM_CLKIN signals on PTB16 and PTB17 are  
available only for K11, K12, K21, and K22 devices and is  
not present on K10 and K20 devices. For K22D devices  
this signal is on ALT4, and for K22F devices, this signal is  
on ALT7.  
• The FTM0_CH2 signal on PTC5/LLWU_P9 is available  
only for K11, K12, K21, and K22 devices and is not  
present on K10 and K20 devices.  
• The I2C0_SCL signal on PTD2/LLWU_P13 and  
I2C0_SDA signal on PTD3 are available only for K11,  
K12, K21, and K22 devices and are not present on K10 and  
K20 devices.  
64  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQFP  
1
2
ADC0_SE10  
ADC0_SE11  
ADC0_SE10  
ADC0_SE11  
PTE0  
UART1_TX  
UART1_RX  
TRACE_CLKOUT I2C1_SDA  
RTC_CLKOUT  
PTE1/  
TRACE_D3  
I2C1_SCL  
LLWU_P0  
3
4
VDD  
VDD  
VSS  
VSS  
5
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
PTE16  
PTE17  
PTE18  
PTE19  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART2_TX  
FTM_CLKIN0  
FTM_CLKIN1  
I2C0_SDA  
FTM0_FLT3  
6
UART2_RX  
LPTMR0_ALT3  
7
UART2_CTS_b  
UART2_RTS_b  
8
I2C0_SCL  
9
10  
11  
12  
13  
14  
15  
16  
17  
VREFH  
VREFH  
VREFL  
VREFL  
VSSA  
VSSA  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
54  
Freescale Semiconductor, Inc.  
Pinout  
64  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQFP  
18  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
19  
20  
21  
22  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
PTA0  
UART0_CTS_b/  
UART0_COL_b  
FTM0_CH5  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
23  
24  
JTAG_TDI/  
EZP_DI  
PTA1  
PTA2  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
25  
26  
JTAG_TMS/  
SWD_DIO  
PTA3  
UART0_RTS_b  
FTM0_CH0  
FTM0_CH1  
JTAG_TMS/  
SWD_DIO  
NMI_b/  
PTA4/  
NMI_b  
EZP_CS_b  
EZP_CS_b  
LLWU_P3  
27  
28  
29  
DISABLED  
DISABLED  
DISABLED  
PTA5  
FTM0_CH2  
FTM1_CH0  
FTM1_CH1  
I2S0_TX_BCLK  
I2S0_TXD0  
JTAG_TRST_b  
FTM1_QD_PHA  
FTM1_QD_PHB  
PTA12  
PTA13/  
I2S0_TX_FS  
LLWU_P4  
30  
31  
32  
33  
34  
35  
VDD  
VDD  
VSS  
VSS  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
LPTMR0_ALT1  
FTM1_QD_PHA  
RESET_b  
ADC0_SE8  
RESET_b  
ADC0_SE8  
PTB0/  
I2C0_SCL  
FTM1_CH0  
LLWU_P5  
36  
37  
38  
ADC0_SE9  
ADC0_SE12  
ADC0_SE13  
ADC0_SE9  
ADC0_SE12  
ADC0_SE13  
PTB1  
PTB2  
PTB3  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
FTM1_CH1  
FTM1_QD_PHB  
FTM0_FLT3  
UART0_RTS_b  
UART0_CTS_b/  
UART0_COL_b  
FTM0_FLT0  
39  
40  
41  
42  
43  
44  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE14  
ADC0_SE15  
PTB16  
PTB17  
PTB18  
PTB19  
PTC0  
UART0_RX  
UART0_TX  
EWM_IN  
FTM_CLKIN0  
FTM_CLKIN1  
EWM_OUT_b  
FTM2_CH0  
I2S0_TX_BCLK  
I2S0_TX_FS  
FTM2_CH1  
ADC0_SE14  
ADC0_SE15  
SPI0_PCS4  
SPI0_PCS3  
PDB0_EXTRG  
UART1_RTS_b  
I2S0_TXD1  
I2S0_TXD0  
PTC1/  
LLWU_P6  
FTM0_CH0  
FTM0_CH1  
FTM0_CH2  
45  
46  
47  
ADC0_SE4b/  
CMP1_IN0  
ADC0_SE4b/  
CMP1_IN0  
PTC2  
SPI0_PCS2  
SPI0_PCS1  
UART1_CTS_b  
UART1_RX  
I2S0_TX_FS  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
CLKOUT  
I2S0_TX_BCLK  
VSS  
VSS  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
55  
Pinout  
64  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQFP  
48  
49  
VDD  
VDD  
DISABLED  
DISABLED  
CMP0_IN0  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_CH3  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
50  
51  
PTC5/  
LLWU_P9  
LPTMR0_ALT2  
PDB0_EXTRG  
I2S0_RXD0  
FTM0_CH2  
CMP0_IN0  
PTC6/  
LLWU_P10  
I2S0_RX_BCLK  
52  
53  
54  
55  
56  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
DISABLED  
DISABLED  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
PTC7  
PTC8  
PTC9  
PTC10  
I2S0_RX_FS  
I2S0_MCLK  
I2S0_RX_BCLK  
I2S0_RX_FS  
I2S0_RXD1  
FTM2_FLT0  
I2C1_SCL  
I2C1_SDA  
PTC11/  
LLWU_P11  
57  
DISABLED  
PTD0/  
SPI0_PCS0  
UART2_RTS_b  
LLWU_P12  
58  
59  
ADC0_SE5b  
DISABLED  
ADC0_SE5b  
PTD1  
SPI0_SCK  
UART2_CTS_b  
UART2_RX  
PTD2/  
SPI0_SOUT  
I2C0_SCL  
LLWU_P13  
60  
61  
DISABLED  
PTD3  
SPI0_SIN  
UART2_TX  
I2C0_SDA  
FTM0_CH4  
ADC0_SE21  
ADC0_SE21  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE22  
PTD4/  
LLWU_P14  
SPI0_PCS1  
UART0_RTS_b  
EWM_IN  
62  
63  
64  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE22  
PTD5  
SPI0_PCS2  
SPI0_PCS3  
CMT_IRO  
UART0_CTS_b/  
UART0_COL_b  
FTM0_CH5  
FTM0_CH6  
FTM0_CH7  
EWM_OUT_b  
FTM0_FLT0  
FTM0_FLT1  
PTD6/  
LLWU_P15  
UART0_RX  
PTD7  
UART0_TX  
8.2 K12 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
56  
Freescale Semiconductor, Inc.  
Revision History  
PTE0  
PTE1/LLWU_P0  
VDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
VSS  
2
3
PTC3/LLWU_P7  
PTC2  
VSS  
4
PTE16  
5
PTC1/LLWU_P6  
PTC0  
PTE17  
6
PTE18  
7
PTB19  
PTE19  
8
PTB18  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
9
PTB17  
10  
11  
12  
13  
14  
15  
16  
PTB16  
PTB3  
PTB2  
PTB1  
VREFH  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFL  
VSSA  
Figure 24. K12 64 LQFP Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
Freescale Semiconductor, Inc.  
57  
Revision History  
Table 41. Revision History  
Rev. No.  
Date  
6/2012  
6/2012  
Substantial Changes  
1
Alpha customer release.  
1.1  
In Table 6, "Power consumption operating behaviors", changed the units of IDD_VLLS2  
IDD_VLLS1, IDD_VLLS0, and IDD_VBAT from nA to μA.  
,
2
7/2012  
• Updated section "Power consumption operating behaviors".  
• Updated section "Flash timing specifications — program and erase".  
• Updated section "Flash timing specifications — commands".  
• Removed the 32K ratio from "Write endurance" in section "Reliability specifications".  
• Updated IDDstby maximum value in section "VREG electrical specifications".  
• Added the charts in section "Diagram: Typical IDD_RUN operating behavior".  
3
4
8/2012  
8/2013  
• Updated section "Power consumption operating behaviors".  
• Updated section "EMC radiated emissions operating behaviors".  
• Updated section "MCG specifications".  
• Added applicable notes in section "Signal Multiplexing and Pin Assignments".  
• Updated section "Power consumption operating behaviors"  
• Updated section "MCG specifications"  
• Updated section "16-bit ADC operating conditions"  
• Added section "Small package marking"  
K12 Sub-Family Data Sheet, Rev. 4, 08/2013.  
58  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are  
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other  
product or service names are the property of their respective owners. ARM and Cortex  
are the registered trademarks of ARM Limited.  
© 2012-2013 Freescale Semiconductor, Inc.  
Document Number: K12P64M50SF4  
Rev. 4  
08/2013  

相关型号:

935314802528

Microcontroller
NXP

935314805528

RISC Microcontroller
NXP

935314807528

Microcontroller
NXP

935314808557

Microcontroller
NXP

935314809528

RISC Microcontroller
NXP

935314826528

Microcontroller
NXP

935314839557

Microcontroller
NXP

935314851557

Microcontroller
NXP

935314881557

RISC Microcontroller
NXP

935314884528

RISC Microcontroller
NXP

935314884557

RISC Microcontroller
NXP

935314887528

RISC Microcontroller
NXP