PCF2104NU/7 [NXP]

LCD controller/driver; LCD控制器/驱动器
PCF2104NU/7
型号: PCF2104NU/7
厂家: NXP    NXP
描述:

LCD controller/driver
LCD控制器/驱动器

驱动器 控制器 CD
文件: 总56页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF2104x  
LCD controller/driver  
1997 Dec 16  
Product specification  
Supersedes data of 1997 Apr 01  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
CONTENTS  
9.4  
Display on/off control  
9.4.1  
9.4.2  
9.4.3  
9.5  
D
C
B
1
2
3
FEATURES  
APPLICATIONS  
Cursor/display shift  
Function set  
DL (parallel mode only)  
N, M  
Set CGRAM address  
Set DDRAM address  
Read busy flag and address  
GENERAL DESCRIPTION  
9.6  
3.1  
3.2  
Packages  
Available types  
9.6.1  
9.6.2  
9.7  
9.8  
9.9  
4
5
6
7
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING  
9.10  
9.11  
Write data to CGRAM or DDRAM  
Read data from CGRAM or DDRAM  
PIN FUNCTIONS  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
RS: register select (parallel control)  
R/W: read/write (parallel control)  
E: data bus clock (parallel control)  
DB0 to DB7: data bus (parallel control)  
C1 to C60: column driver outputs  
R1 to R32: row driver outputs  
VLCD: LCD power supply  
OSC: oscillator  
SCL: serial clock line  
SDA: serial data line  
SA0: address pin  
T1: test pad  
10  
INTERFACE TO MICROCONTROLLER  
(PARALLEL INTERFACE)  
11  
INTERFACE TO MICROCONTROLLER  
(I2C-BUS INTERFACE)  
Characteristics of the I2C-bus  
Bit transfer  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
Start and stop conditions  
System configuration  
Acknowledge  
I2C-bus protocol  
12  
LIMITING VALUES  
8
FUNCTIONAL DESCRIPTION  
13  
HANDLING  
8.1  
8.2  
8.3  
8.4  
LCD bias voltage generator  
Oscillator  
External clock  
Power-on reset  
Registers  
14  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
TIMING DIAGRAMS  
APPLICATION INFORMATION  
15  
16  
17  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
8.11  
8.12  
8.13  
8.14  
Busy Flag  
17.1  
8-bit operation, 2 × 12 display using internal  
reset  
4-bit operation, 2 × 12 display using internal  
reset  
8-bit operation, 2 × 24 display  
I2C operation, 2 × 12 display  
Initializing by instruction  
Address Counter (AC)  
Display data RAM (DDRAM)  
Character generator ROM (CGROM)  
Character generator RAM (CGRAM)  
Cursor control circuit  
Timing generator  
LCD row and column drivers  
Programming of MUX 1 : 16 displays with  
PCF2104x  
17.2  
17.3  
17.4  
17.5  
18  
19  
20  
21  
BONDING PAD LOCATIONS  
DEFINITIONS  
8.15  
Programming of MUX 1 : 32 displays with  
PCF2104x  
Reset function  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
8.16  
9
INSTRUCTIONS  
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
Clear display  
Return home  
Entry mode set  
I/D  
S
1997 Dec 16  
2
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
but does not contain the high voltage generator of that  
device.  
1
FEATURES  
Single chip LCD controller/driver  
The PCF2104x is optimized for chip-on-glass applications.  
The ‘x’ in ‘PCF2104x’ represents a specific letter code for  
a character set in the character generator ROM (CGROM).  
1 or 2-line display of up to 24 characters per line, or  
2 or 4 lines of up to 12 characters per line  
5 × 7 character format plus cursor; 5 × 8 for kana  
Two standard character sets are currently available,  
specified by the letters ‘C’ and ‘L’ (see Figs 5 and 6).  
Other character sets are available on request.  
(Japanese syllabary) and user-defined symbols  
On-chip:  
– generation of intermediate LCD bias voltages  
The PCF2104x is a low-power CMOS LCD controller and  
driver, designed to drive a split screen dot matrix LCD  
display of 1 or 2 lines by 24 characters or 2 or 4 lines by  
12 characters with a 5 × 8 dot format. All necessary  
functions for the display are provided in a single chip,  
including on-chip generation of LCD bias voltages which  
results in a minimum of external components and lower  
system power consumption. To allow partial VDD shutdown  
the ESD protection system of the SCL and SDA pins does  
– oscillator requires no external components (external  
clock also possible)  
Display data RAM: 80 characters  
Character generator ROM: 240 characters  
Character generator RAM: 16 characters  
4 or 8-bit parallel bus or 2-wire I2C-bus interface  
CMOS/TTL compatible  
not use a diode connected to VDD  
.
32 row, 60 column outputs  
The chip contains a character generator and displays  
alphanumeric and kana characters. The PCF2104x  
interfaces to most microcontrollers via a 4 or 8-bit bus, or  
via the 2-wire I2C-bus.  
MUX rates 1 : 32 and 1 : 16  
Uses common 11 code instruction set  
Logic supply voltage range, VDD VSS: 2.5 to 6 V  
Display supply voltage range, VDD VLCD: 3.5 to 9 V  
Low power consumption.  
3.1  
Packages  
I2C-bus address: 011101 SA0.  
PCF2104xU/2; chip with bumps in tray  
PCF2104xU/7; chip with bumps on tape.  
2
APPLICATIONS  
For further details see Chapter 18.  
Telecom equipment  
Portable instruments  
Point-of-sale terminals.  
3.2  
Available types  
PCF2104CU/x: character set ‘C’ in CGROM  
PCF2104LU/x: character set ‘L’ in CGROM  
PCF2104NU/x: character set ‘N’ in CGROM.  
3
GENERAL DESCRIPTION  
The PCF2104x integrated circuit is similar to the  
PCF2114x (described in the “PCF2116 family” data sheet)  
4
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF2104CU/2  
chip with bumps in tray  
chip with bumps on tape  
chip with bumps in tray  
chip with bumps on tape  
chip with bumps in tray  
chip with bumps on tape  
PCF2104CU/7  
PCF2104LU/2  
PCF2104LU/7  
PCF2104NU/2  
PCF2104NU/7  
1997 Dec 16  
3
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
5
BLOCK DIAGRAM  
C1 to C60  
80-21  
R1 to R32  
5-20  
81-96  
60  
32  
COLUMN DRIVERS  
60  
ROW DRIVERS  
BIAS  
VOLTAGE  
GENERATOR  
111  
V
LCD  
6
32  
SHIFT REGISTER  
32-BIT  
DATA LATCHES  
60  
SHIFT REGISTER  
5 x 12-bit  
5
PCF2104x  
CURSOR + DATA CONTROL  
5
2
4
V
DD  
CHARACTER  
CHARACTER  
GENERATOR  
ROM  
1
GENERATOR  
RAM  
V
OSCILLATOR  
OSC  
SS  
(CGRAM)  
16  
(CGROM)  
240  
CHARACTERS  
CHARACTERS  
101  
T1  
TIMING  
GENERATOR  
8
DISPLAY DATA RAM  
(DDRAM) 80 CHARACTERS  
7
DISPLAY  
ADDRESS  
COUNTER  
7
ADDRESS  
COUNTER (AC)  
7
POWER - ON  
RESET  
INSTRUCTION  
DECODER  
8
8
DATA  
REGISTER (DR)  
BUSY  
FLAG  
INSTRUCTION  
REGISTER (IR)  
8
7
8
I/O BUFFER  
4
4
109-106  
105-102  
98  
E
100  
R/W  
99  
RS  
97  
SCL  
110  
SDA  
3
MGC627  
DB0 to DB3 DB4 to DB7  
SA0  
Fig.1 Block diagram.  
4
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
6
PINNING  
SYMBOL  
FFC PAD  
TYPE  
DESCRIPTION  
OSC  
1
2
I
P
I
oscillator/external clock input  
logic supply voltage  
I2C-bus address pin input  
VDD  
SA0  
VSS  
3
4
P
O
O
O
O
O
O
O
I
ground  
R8 to R5  
R32 to R29  
R24 to R17  
C60 to C1  
R9 to R16  
R25 to R28  
R1 to R4  
SCL  
5 to 8  
9 to12  
13 to 20  
21 to 80  
81 to 88  
89 to 92  
93 to 96  
97  
LCD row driver outputs  
LCD row driver outputs  
LCD row driver outputs  
LCD column driver outputs  
LCD row driver outputs  
LCD row driver outputs  
LCD row driver outputs  
I2C-bus serial clock input  
data bus clock input  
E
98  
I
RS  
99  
I
register select input  
R/W  
100  
I
read/write input  
T1  
101  
I
test pad input  
DB7 to DB0  
SDA  
102 to 109  
110  
I/O  
I/O  
I
8-bit bidirectional data bus input/output  
I2C-bus serial data input/output  
LCD supply voltage input  
VLCD  
111  
7
PIN FUNCTIONS  
RS: register select (parallel control)  
7.4  
DB0 to DB7: data bus (parallel control)  
The bidirectional, 3-state data bus transfers data between  
the system controller and the PCF2104x. DB7 may be  
used as the Busy Flag, signalling that internal operations  
are not yet completed. In 4-bit operations the 4 higher  
order lines DB4 to DB7 are used; DB0 to DB3 must be left  
open circuit. There is an internal pull-up on each of the  
data lines. Note that these pins must be left open circuit  
when I2C-bus control is used.  
7.1  
RS selects the register to be accessed for read and write  
when the device is controlled by the parallel interface.  
RS = logic 0 selects the instruction register for write and  
the Busy Flag and Address Counter for read. RS = logic 1  
selects the data register for both read and write. There is  
an internal pull-up on pin RS.  
7.2  
R/W: read/write (parallel control)  
7.5  
C1 to C60: column driver outputs  
R/W selects either the read (R/W = logic 1) or write  
(R/W = logic 0) operation when control is by the parallel  
interface. There is an internal pull-up on this pin.  
These pins output the data for pairs of columns.  
This arrangement permits optimized chip-on-glass (COG)  
layout for 4-line by 12 characters.  
7.3  
E: data bus clock (parallel control)  
7.6  
R1 to R32: row driver outputs  
The E pin is set HIGH to signal the start of a read or write  
operation when the device is controlled by the parallel  
interface. Data is clocked in or out of the chip on the  
negative edge of the clock. Note that this pin must be tied  
to logic 0 (VSS) when I2C-bus control is used.  
These pins output the row select waveforms to the left and  
right halves of the display.  
7.7  
VLCD: LCD power supply  
Negative power supply for the liquid crystal display.  
1997 Dec 16  
5
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
7.8  
OSC: oscillator  
8.2  
Oscillator  
When the on-chip oscillator is used, this pin must be  
connected to VDD. An external clock signal, if used, is input  
at this pin.  
The on-chip oscillator provides the clock signal for the  
display system. No external components are required.  
Pin OSC must be connected to VDD  
.
7.9  
SCL: serial clock line  
8.3 External clock  
Input for the I2C-bus clock signal.  
If an external clock is to be used, it must be input at  
pin OSC. The resulting display frame frequency is given by  
f
frame = 12304 osc  
f
. A clock signal must always be present,  
7.10 SDA: serial data line  
otherwise the LCD may be frozen in a DC state.  
Input/output for the I2C-bus data line.  
8.4  
Power-on reset  
7.11 SA0: address pin  
The Power-on reset block initializes the chip after  
power-on or power failure.  
The hardware sub-address line is used to program the  
device sub-address for 2 different PCF2104xs on the  
same I2C-bus.  
8.5  
Registers  
The PCF2104x has two 8-bit registers, an instruction  
register (IR) and a data register (DR). The register select  
signal (RS) determines which register will be accessed.  
7.12 T1: test pad  
Must be connected to VSS. Not user accessible.  
The instruction register stores instruction codes such as  
display clear and cursor shift, and address information for  
the Display Data RAM (DDRAM) and Character Generator  
RAM (CGRAM). The instruction register can be written to,  
but not read from, by the system controller.  
8
FUNCTIONAL DESCRIPTION (see Fig.1)  
8.1  
LCD bias voltage generator  
The intermediate bias voltages for the LCD display are  
also generated on-chip. This removes the need for an  
external resistive bias chain and significantly reduces the  
system power consumption. The optimum levels depend  
on the multiplex rate and are selected automatically when  
the number of lines in the display is defined.  
The data register temporarily stores data to be read from  
the DDRAM and CGRAM. When reading, data from the  
DDRAM or CGRAM (corresponding to the address in the  
Address Counter) is written to the data register prior to  
being read by the ‘Read data’ instruction.  
The optimum value of VOP depends on the multiplex rate,  
the LCD threshold voltage (Vth) and the number of bias  
levels. The relationships are given in Table 1.  
8.6  
Busy Flag  
The Busy Flag indicates the free/busy status of the  
PCF2104x. Logic 1 indicates that the chip is busy and  
further instructions will not be accepted. The Busy Flag is  
output at pin DB7 when RS = logic 0 and R/W = logic 1.  
Instructions should only be written after checking that the  
Busy Flag is at logic 0 or waiting for the required number  
of clock cycles.  
Using a 5-level bias scheme for 1 : 16 MUX rate allows  
VOP < 5 V for most LCD liquids. The effect on the display  
contrast is negligible.  
Table 1 Optimum values for VOP  
NUMBER  
MUX  
RATE  
DISCRIMINATION  
Von/Voff  
OF BIAS  
LEVELS  
VOP/Vth  
1 : 16  
1 : 32  
5
6
3.67  
5.19  
1.277  
1.196  
1997 Dec 16  
6
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
8.7  
Address Counter (AC)  
8.10 Character generator RAM (CGRAM)  
The Address Counter assigns addresses to the DDRAM  
and CGRAM for reading and writing and is set by the  
instructions ‘Set CGRAM address’ and  
‘Set DDRAM address’. After a read/write operation the  
Address Counter is automatically incremented or  
decremented by 1. The Address Counter contents are  
output to the bus (DB0 to DB6) when RS = logic 0 and  
R/W = logic 1.  
Up to 16 user-defined characters may be stored in the  
character generator RAM. The CGROM and CGRAM use  
a common address space, of which the first column is  
reserved for the CGRAM (see Fig.5). Figure 8 shows the  
addressing principle for the CGRAM.  
8.11 Cursor control circuit  
The cursor control circuit generates the cursor (underline  
and/or character blink as shown in Fig.9) at the DDRAM  
address contained in the Address Counter. When the  
Address Counter contains the CGRAM address the cursor  
will be inhibited.  
8.8  
Display data RAM (DDRAM)  
The DDRAM stores up to 80 characters of display data,  
represented by 8-bit character codes. DDRAM locations  
not used for storing display data can be used as general  
purpose RAM. The basic DDRAM-to-display mapping  
scheme is shown in Fig.2. With no display shift, the  
characters represented by the codes in the first 12 or 24  
RAM locations, starting at address 00 in line 1, are  
displayed. Subsequent lines display data starting at  
addresses 20, 40, or 60 Hex. Figures 3 and 4 show the  
DDRAM-to-display mapping scheme when the display is  
shifted.  
8.12 Timing generator  
The timing generator produces the various signals  
required to drive the internal circuitry. Internal chip  
operation is not disturbed by operations on the data buses.  
8.13 LCD row and column drivers  
The PCF2104x contains 32 row and 60 column drivers,  
which connect the appropriate LCD bias voltages in  
sequence to the display, in accordance with the data to be  
displayed. The bias voltages and the timing are selected  
automatically when the number of lines in the display is  
selected. Figures 10 and 11 show typical waveforms.  
The address range for a 1-line display is 00 to 4F; for a  
2-line display from 00 to 27 (line 1) and 40 to 67 (line 2);  
for a 4-line display from 00 to 13, 20 to 33, 40 to 53 and  
60 to 73 for lines 1, 2, 3 and 4 respectively. For 2 and  
4-line displays the end address of one line and the start  
address of the next line are not consecutive. When the  
display is shifted each line wraps around independently of  
the others (see Figs 3 and 4).  
In the 1-line mode (1 : 16) the row outputs are driven in  
pairs: R1/R17, R2/R18 for example. This allows the output  
pairs to be connected in parallel, thereby providing greater  
drive capability.  
When data is written to the DDRAM wrap-around occurs  
from 4F to 00 in 1-line mode and from 27 to 40 and  
67 to 00 in 2-line mode; from 13 to 20, 33 to 40, 53 to 60  
and 73 to 00 in 4-line mode.  
Unused outputs should be left unconnected.  
8.9  
Character generator ROM (CGROM)  
The character generator ROM generates 240 character  
patterns in 5 × 8 dot format from 8-bit character codes.  
Figures 5 and 6 show the character sets currently  
available.  
1997 Dec 16  
7
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
non-displayed DDRAM addresses  
Display  
Position  
handbook, 4 columns  
1
2
3
4
5
22 23 24  
(decimal)  
00 01 02 03 04  
15 16 17 18 19  
4C 4D 4E 4F  
DDRAM  
Address  
(hex)  
1-line display  
non-displayed DDRAM address  
24 25 26 27  
00 01 02 03 04  
40 41 42 43 44  
15 16 17 18 19  
55 56 57 58 59  
line 1  
line 2  
DDRAM  
Address  
(hex)  
64 65 66 67  
MLA792  
2-line display  
non-displayed DDRAM addresses  
9 10 11 12  
handbook, 4 columns  
1
2
3
4
5
6
7
8
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 line 1  
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 line 2  
DDRAM  
Address  
(hex)  
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53  
line 3  
line 4  
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73  
MLA793  
4 line display  
Fig.2 DDRAM-to-display mapping; no shift (PCF2104x).  
8
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
Display  
Position  
(decimal)  
Display  
Position  
(decimal)  
1
2
3
4
5
22 23 24  
14 15 16  
1
2
3
4
5
22 23 24  
16 17 18  
4F 00 01 02 03  
01 02 03 04 05  
DDRAM  
Address  
(hex)  
DDRAM  
Address  
(hex)  
1-line display  
1-line display  
line 1  
line 1  
line 2  
14 15 16  
16 17 18  
27 00 01 02 03  
01 02 03 04 05  
41 42 43 44 45  
DDRAM  
Address  
(hex)  
DDRAM  
Address  
(hex)  
56 57 58  
MLA815  
67 40 41 42 43  
54 55 56 line 2  
MLA802  
2-line display  
2-line display  
1
2
3
4
5
6
7
8
9 10 11 12  
1
2
3
4
5
6
7
8
9 10 11 12  
line 1  
line 2  
line 3  
line 4  
line 1  
line 2  
line 3  
13 00 01 02 03 04 05 06 07 08 09 0A  
33 20 21 22 23 24 25 26 27 28 29 2A  
53 40 41 42 43 44 45 46 47 48 49 4A  
73 60 61 62 63 64 65 66 67 68 69 6A  
01 02 03 04 05 06 07 08 09 0A 0B 0C  
21 22 23 24 25 26 27 28 29 2A 2B 2C  
41 42 43 44 45 46 47 48 49 4A 4B 4C  
DDRAM  
DDRAM  
Address  
(hex)  
Address  
(hex)  
61 62 63 64 65 66 67 68 69 6A 6B 6C  
4-line display  
line 4  
MLA803  
4-line display  
MLA816  
Fig.3 DDRAM-to-display mapping; right shift  
(PCF2104x).  
Fig.4 DDRAM-to-display mapping; left shift  
(PCF2104x).  
1997 Dec 16  
9
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
upper  
4 bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
lower  
4 bits  
CG  
RAM 1  
xxxx 0000  
xxxx 0001  
xxxx 0010  
xxxx 0011  
xxxx 0100  
xxxx 0101  
xxxx 0110  
xxxx 0111  
xxxx 1000  
xxxx 1001  
xxxx 1010  
xxxx 1011  
xxxx 1100  
xxxx 1101  
xxxx 1110  
xxxx 1111  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
MLB895  
Fig.5 Character set ‘C’ in CGROM; PCF2104C.  
1997 Dec 16  
10  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
upper  
4 bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
lower  
6 bits  
CG  
RAM 1  
xxxx 0000  
xxxx 0001  
xxxx 0010  
xxxx 0011  
xxxx 0100  
xxxx 0101  
xxxx 0110  
xxxx 0111  
xxxx 1000  
xxxx 1001  
xxxx 1010  
xxxx 1011  
xxxx 1100  
xxxx 1101  
xxxx 1110  
xxxx 1111  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
MGC629  
Fig.6 Character set ‘L’ in CGROM; PCF2104L.  
1997 Dec 16  
11  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
upper  
4 bits  
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
lower  
4 bits  
CG  
RAM 1  
xxxx 0000  
xxxx 0001  
xxxx 0010  
xxxx 0011  
xxxx 0100  
xxxx 0101  
xxxx 0110  
xxxx 0111  
xxxx 1000  
xxxx 1001  
xxxx 1010  
xxxx 1011  
xxxx 1100  
xxxx 1101  
xxxx 1110  
xxxx 1111  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
MGM134  
Fig.7 Character set ‘N’ in CGROM; PCF2104N.  
1997 Dec 16  
12  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
character codes  
(DDRAM data)  
CGRAM  
address  
character patterns  
(CGRAM data)  
7
6
5
4
3
2
1
0
0
6
0
5
4
3
2
1
0
4
3
2
1
0
higher  
order  
bits  
lower  
order  
bits  
higher  
order  
bits  
lower  
order  
bits  
higher  
order  
bits  
lower  
order  
bits  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
character  
pattern  
example 1  
0
0
0
0
0
0
0
0
0
0
0
0
0
cursor  
position  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
character  
pattern  
example 2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
MGA800 - 1  
Character code bits 0 to 3 correspond to CGRAM address bits 3 to 6.  
CGRAM address bits 0 to 2 designate character pattern line position. The 8th line is the cursor position and display is performed by logical OR with the  
cursor. Data in the 8th line will appear in the cursor position.  
Character pattern column positions correspond to CGRAM data bits 0 to 4; bit 4 being at the left end, as shown in the figure.  
CGRAM character patterns are selected when character code bits 4 to 7 are all logic 0. CGRAM data = logic 1 corresponds to selection for display.  
Only bits 0 to 5 of the CGRAM address are set by the ‘Set CGRAM address’ instruction. Bit 6 can be set using the ‘Set DDRAM address’ instruction or  
by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the ‘Read Busy Flag and address’ instruction.  
Fig.8 Relationship between CGRAM addresses, data and display patterns.  
1997 Dec 16  
13  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
MGA801  
cursor  
5 x 7 dot character font  
alternating display  
cursor display example  
blink display example  
Fig.9 Cursor and blink display examples.  
1997 Dec 16  
14  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
frame n  
frame n 1  
state 1 (ON)  
state 2 (ON)  
V
DD  
V
2
V /V  
ROW 1  
ROW 9  
ROW 2  
3
4
V
5
V
LCD  
V
V
DD  
2
V /V  
3
4
1-line display  
(1:16)  
V
5
V
LCD  
V
V
DD  
2
V /V  
3
4
V
5
V
LCD  
V
V
DD  
2
V /V  
COL 1  
3
4
V
5
V
LCD  
V
V
DD  
2
COL 2  
V /V  
4
3
5
V
V
LCD  
V
OP  
0.25 V  
0 V  
OP  
OP  
state 1  
0.25 V  
V
OP  
V
OP  
0.25 V  
0 V  
OP  
OP  
state 2  
0.25 V  
V
OP  
MGA802 - 1  
1
2
3
16  
1
2
3
16  
Fig.10 Typical LCD waveforms; 1-line mode.  
15  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
frame n  
frame n 1  
state 1 (ON)  
state 2 (ON)  
V
DD  
V
2
V
3
V
ROW 1  
4
V
5
V
LCD  
V
DD  
V
2
V
3
ROW 9  
V
4
V
5
V
LCD  
V
DD  
V
2
V
3
V
2-line display  
(1:32)  
ROW 2  
4
V
5
V
LCD  
V
DD  
V
2
V
3
COL 1  
V
4
V
5
V
LCD  
V
DD  
V
2
V
3
COL 2  
V
4
V
5
V
LCD  
V
OP  
0.15 V  
OP  
0 V  
state 1  
0.15 V  
OP  
V
OP  
V
OP  
0.15 V  
state 2 0 V  
0.15 V  
OP  
OP  
V
OP  
MGA803 - 1  
123  
32 12 3  
32  
Fig.11 Typical LCD waveforms; 2-line mode.  
16  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
Using the ‘Function set’ instruction, M and N are set to 0, 0  
(respectively). Figures 12, 13 and 14 show the DDRAM  
addresses of the display characters. The second row of  
each table corresponds to either the right half of a 1-line  
display or to the second line of a 2-line display. Wrap  
around of data during display shift or when writing data is  
non-standard.  
8.14 Programming of MUX 1 : 16 displays with  
PCF2104x  
The PCF2104x can be used in the following ways:  
1-line mode to drive a 2-line display  
2 × 12 characters with MUX rate 1 : 16, resulting in  
better contrast. The internal data flow of the chip is  
optimized for this purpose.  
display position  
DDRAM address  
1
2
3
4
5
6
7
8
9
10  
09  
11  
0A  
12  
0B  
00  
01  
02  
03  
04  
05  
06  
07  
08  
display position  
DDRAM address  
13  
14  
15  
0E  
16  
0F  
17  
10  
18  
11  
19  
12  
20  
13  
21  
14  
22  
15  
23  
16  
24  
17  
0C  
0D  
MLB899  
Fig.12 DDRAM-to-display mapping; no shift (PCF2104x).  
display position  
DDRAM address  
1
2
3
4
5
6
7
8
9
10  
08  
11  
09  
12  
0A  
4F  
00  
01  
02  
03  
04  
05  
06  
07  
display position  
DDRAM address  
13  
0B  
14  
15  
16  
0E  
17  
0F  
18  
10  
19  
11  
20  
12  
21  
13  
22  
14  
23  
15  
24  
16  
0C  
0D  
MLB900  
Fig.13 DDRAM-to-display mapping; right shift (PCF2104x).  
display position  
DDRAM address  
1
2
3
4
5
6
7
8
9
10  
0A  
11  
0B  
12  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0C  
display position  
DDRAM address  
13  
14  
0E  
15  
0F  
16  
10  
17  
11  
18  
12  
19  
13  
20  
14  
21  
15  
22  
16  
23  
17  
24  
18  
0D  
MLB901  
Fig.14 DDRAM-to-display mapping; left shift (PCF2104x).  
17  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
8.15 Programming of MUX 1 : 32 displays with  
PCF2104x  
9
INSTRUCTIONS  
Only two PCF2104x registers, the instruction register (IR)  
and the data register (DR) can be directly controlled by the  
microcontroller. Before internal operation, control  
information is stored temporarily in these registers to allow  
interface to various types of microcontrollers which  
operate at different speeds or to allow interfacing to  
peripheral control ICs.  
The PCF2104x operation is controlled by the instructions  
shown in Table 3 together with their execution time.  
Details are explained in subsequent sections.  
To drive a 2-line by 24 characters MUX 1 : 32 display, use  
instruction ‘Function set’ to set M, N to 0, 1 (respectively).  
To drive a 4-line by 12 characters MUX 1:32 display, use  
instruction ‘Function set’ to set M, N to 1, 1 (respectively).  
8.16 Reset function  
The PCF2104 automatically initializes (resets) when  
power is turned on. The state after reset is given in  
Table 2.  
Instructions are of 4 categories, those that:  
1. Designate PCF2104x functions such as display  
format, data length, etc.  
Table 2 State after reset  
STEP  
DESCRIPTION  
2. Set internal RAM addresses  
3. Perform data transfer with internal RAM  
4. Others.  
1
2
Display clear.  
Function set:  
DL = 1: 8-bit interface  
M, N = 0 1-line display  
G = 0: not used  
In normal use, category 3 instructions are used most  
frequently. However, automatic incrementing by 1  
(or decrementing by 1) of internal RAM addresses after  
each data write lessens the microcontroller program load.  
The display shift in particular can be performed  
concurrently with display data write, thus enabling the  
designer to develop systems in minimum time with  
maximum programming efficiency.  
3
Display on/off control:  
D = 0: display off  
C = 0: cursor off;  
B = 0: blink off;  
4
5
Entry mode set:  
During internal operation, no instruction other than the  
Busy Flag/address read instruction will be executed.  
I/D = 1: +1 (increment)  
G = 0: not used  
Because the Busy Flag is set to logic 1 while an instruction  
is being executed, it is advisable to ensure that the flag it  
is at logic 0 before sending the next instruction or wait for  
the maximum instruction execution time, as given in  
Table 3. An instruction sent while the Busy Flag is HIGH  
will not be executed.  
Default address pointer to DDRAM. The Busy  
Flag (BF) indicates the busy state (BF = logic 1)  
until initialization ends. The busy state lasts  
2 ms. The chip may also be initialized by  
software. See Tables 10 and 11.  
6
I2C-bus interface reset.  
1997 Dec 16  
18  
-------  
                                                                                             
-
Table 3 Instructions (note 1)  
REQUIRED  
CLOCK  
INSTRUCTION  
NOP  
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DESCRIPTION  
CYCLES(2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
No operation.  
0
Clear display  
Clears entire display and sets DDRAM  
address 0 in Address Counter.  
165  
Return home  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
Sets DDRAM address 0 in Address Counter  
Also returns shifted display to original position  
DDRAM contents remain unchanged.  
3
3
Entry mode set  
I/D  
S
Sets cursor move direction and specifies shift  
of display. These operations are performed  
during data write and read.  
Display control  
Cursor/display shift  
Function set  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
D
C
0
B
0
0
Sets entire display on/off (D), cursor on/off (C)  
and blink of cursor position character (B).  
3
3
3
S/C R/L  
Moves cursor and shifts display without  
changing DDRAM contents.  
DL  
N
M
G
Sets interface data length (DL), number of  
display lines (N, M) and voltage generator  
control (G).  
Set CGRAM  
address  
0
0
0
0
0
1
0
1
1
ACG  
Sets CGRAM address.  
3
3
0
Set DDRAM  
address  
ADD  
AC  
Sets DDRAM address.  
Read busy flag and  
address  
BF  
Reads Busy Flag (BF) indicating internal  
operation is being performed and reads  
Address Counter contents.  
Read data  
Write data  
1
1
1
0
read data  
write data  
Reads data from CGRAM or DDRAM.  
Writes data to CGRAM or DDRAM.  
3
3
Notes  
1. In the I2C-bus mode the DL bit is don't care. 8-bit mode is assumed.  
In the I2C-bus mode a control byte is required when RS or R/W is changed; control byte: Co, RS, R/W, 0, 0, 0, 0, 0; command byte: DB7 to DB0.  
1
fosc  
2. Example: fosc = 150 kHz, Tcy  
=
= 6.67 µs; 3 cycles = 20 µs, 165 cycles = 1.1 ms.  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
Table 4 Command bit identities  
BIT  
LOGIC 0  
LOGIC 1  
I/D  
S
decrement  
increment  
display shift  
display on  
cursor on  
display freeze  
D
display off  
C
cursor off  
B
character at cursor position does not blink  
character at cursor position blinks  
display shift  
S/C  
R/L  
DL  
cursor move  
left shift  
right shift  
4 bits  
8 bits  
N (M = 0)  
N (M = 1)  
BF  
2 line × 12 characters; MUX 1 : 16  
reserved  
2 lines × 24 characters; MUX 1 : 32  
4 lines × 12 characters; MUX 1 : 32  
internal operation in progress  
end of internal operation  
last control byte, only data bytes to follow  
Co  
next two bytes are a data byte and another control byte  
RS  
R/W  
E
DB7  
DB6  
DB5  
DB4  
IR7  
IR6  
IR5  
IR4  
IR3  
IR2  
IR1  
IR0  
BF  
AC3  
AC2  
AC1  
AC0  
DR7  
DR6  
DR5  
DR4  
DR3  
DR2  
DR1  
DR0  
AC6  
AC5  
AC4  
busy flag and  
address counter read  
data register  
read  
instruction  
write  
MGA804  
Fig.15 4-bit transfer example.  
1997 Dec 16  
20  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
RS  
R/W  
E
internal  
internal operation  
not  
busy  
DB7  
IR7  
IR3  
AC3  
AC3  
D7  
D3  
busy  
instruction  
write  
busy flag  
check  
busy flag  
check  
instruction  
write  
MGA805  
IR7, IR3: instruction 7th bit, 3rd bit.  
AC3: Address Counter 3rd bit.  
Fig.16 An example of 4-bit data transfer timing sequence.  
RS  
R/W  
E
internal  
internal operation  
not  
busy  
data  
busy  
busy  
data  
DB7  
instruction  
write  
busy flag  
check  
busy flag  
check  
busy flag  
check  
instruction  
write  
MGA806  
Fig.17 Example of Busy Flag check timing sequence.  
21  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
9.1  
Clear display  
9.4.2  
C
‘Clear display’ writes space code 20 (hexadecimal) into all  
DDRAM addresses (the character pattern for character  
code 20 must be a blank pattern), sets the DDRAM  
Address Counter to logic 0 and returns the display to its  
original position if it was shifted. Consequently, the display  
disappears and the cursor or blink position goes to the left  
edge of the display (the first line if 2 or 4 lines are  
displayed) and sets the entry mode to I/D = logic 1  
(increment mode). S of entry mode does not change.  
The cursor is displayed when C = logic 1 and inhibited  
when C = logic 0. Even if the cursor disappears, the  
display functions I/D, etc. remain in operation during  
display data write. The cursor is displayed using 5 dots in  
the 8th line (see Fig.9).  
9.4.3  
B
The character indicated by the cursor blinks when  
B = logic 1. The blink is displayed by switching between  
display characters and all dots on with a period of  
1 second when fosc = 150 kHz (see Fig.9). At other clock  
The instruction ‘Clear display’ requires extra execution  
time. This may be allowed for by checking the Busy Flag  
(BF) or by waiting until 2 ms has elapsed. The latter must  
be applied where no read-back options are foreseen, as in  
some chip-on-glass (COG) applications.  
frequencies the blink period is equal to 150 kHz/fosc  
The cursor and the blink can be set to display  
simultaneously.  
.
9.2  
Return home  
9.5  
Cursor/display shift  
‘Return home’ sets the DDRAM Address Counter to  
logic 0 and returns the display to its original position if it  
was shifted. DDRAM contents do not change. The cursor  
or blink position goes to the left of the display (the first line  
if 2 or 4 lines are displayed). I/D and S of entry mode do  
not change.  
‘Cursor/display shift’ moves the cursor position or the  
display to the right or left without writing or reading display  
data. This function is used to correct a character or move  
the cursor through the display. In 2 or 4-line displays, the  
cursor moves to the next line when it passes the last  
position of the line (40 or 20 decimal). When the displayed  
data is shifted repeatedly all lines shift at the same time;  
displayed characters do not shift into the next line.  
The Address Counter (AC) content does not change if the  
only action performed is shift display, but increments or  
decrements with the cursor shift.  
9.3  
Entry mode set  
9.3.1  
I/D  
When I/D = logic 1 (0) the DDRAM or CGRAM address  
increments (decrements) by 1 when data is written to or  
read from the DDRAM or CGRAM. The cursor or blink  
position moves to the right when incremented and to the  
left when decremented. The cursor and blink are inhibited  
when the CGRAM is accessed.  
9.6  
Function set  
9.6.1  
DL (PARALLEL MODE ONLY)  
Sets interface data width. Data is sent or received in bytes  
(DB7 to DB0) when DL = logic 1 or in two nibbles  
(DB7 to DB4) when DL = logic 0. When 4-bit width is  
selected, data is transmitted in two cycles using the  
parallel bus(1).  
9.3.2  
S
When S = logic 1, the entire display shifts either to the right  
(I/D = logic 0) or to the left (I/D = logic 1) during a DDRAM  
write. Consequently, it looks as if the cursor stands still and  
the display moves. The display does not shift when  
reading from the DDRAM, or when writing to or reading  
from the CGRAM. When S = logic 0 the display does not  
shift.  
Function set from I2C-bus interface: DL bit can not bet set  
to logic 0 from the I2C-bus interface. If bit DL has been set  
to logic 0 via the parallel bus, programming via the I2C-bus  
interface is complicated.  
9.6.2  
N, M  
9.4  
Display on/off control  
Sets number of display lines.  
9.4.1  
D
(1) In a 4-bit application DB3 to DB0 are left open (internal  
pull-ups). Hence in the first function set instruction after  
power-on G and H are set to 1. A second function set must  
then be sent (2 nibbles) to set G and H to their required  
values.  
The display is on when D = logic 1 and off when  
D = logic 0. Display data in the DDRAM is not affected and  
can be displayed immediately by setting D to logic 1.  
1997 Dec 16  
22  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
9.7  
Set CGRAM address  
9.11 Read data from CGRAM or DDRAM  
‘Set CGRAM address’ sets bits 0 to 5 of the CGRAM  
address (ACG in Table 3) into the Address Counter  
(binary A[5] to A[0]). Data can then be written to or read  
from the CGRAM.  
Reads binary 8-bit data D[7] to D[0] from the CGRAM or  
DDRAM.  
The most recent ‘Set address’ instruction determines  
whether the CGRAM or DDRAM is to be read.  
Only bits 0 to 5 of the CGRAM address are set by the  
‘Set CGRAM address’ instruction. Bit 6 can be set using  
the ‘Set DDRAM address’ instruction or by using the  
auto-increment feature during CGRAM write. All bits 0 to 6  
can be read using the ‘Read busy flag and address’  
instruction.  
The ‘Read data’ instruction gates the content of the data  
register (DR) to the bus while E = HIGH. After E goes  
LOW again, internal operation increments (or decrements)  
the AC and stores RAM data corresponding to the new AC  
into the DR.  
Remark: the only three instructions that update the data  
register (DR) are:  
9.8  
Set DDRAM address  
‘Set CGRAM address’  
Set DDRAM address sets the DDRAM address (ADD in  
Table 3) into the Address Counter (binary A[6] to A[0).  
Data can then be written to or read from the DDRAM.  
‘Set DDRAM address’  
‘Read data’ from CGRAM or DDRAM.  
Other instructions (e.g. ‘Write data, ‘Cursor/display shift’,  
‘Clear display’, ‘Return home’) will not modify the data  
register content.  
Table 5 Hexadecimal address ranges  
ADDRESS  
00 to 4F  
FUNCTION  
1-line by 24  
00 to 0B and 0C to 4F  
00 to 27 and 40 to 67  
2-line by 12  
2-line by 24  
10 INTERFACE TO MICROCONTROLLER  
(PARALLEL INTERFACE)  
00 to 13, 20 to 33, 40 to 53 4-line by 12  
and 60 to 73  
The PCF2104x can send data in either two 4-bit operations  
or one 8-bit operation and can thus interface to 4-bit or  
8-bit microcontrollers.  
9.9  
Read busy flag and address  
In the 8-bit mode data is transferred as 8-bit bytes using  
the 8 data lines DB0 to DB7. Three further control lines E,  
RS, and R/W are required.  
‘Read busy flag and address’ reads the Busy Flag (BF).  
When BF = logic 1 it indicates that an internal operation is  
in progress. The next instruction will not be executed until  
BF = logic 0, so BF should be checked before sending  
another instruction.  
In the 4-bit mode data is transferred in two cycles of 4-bits  
each. The higher order bits (corresponding to DB4 to DB7  
in 8-bit mode) are sent in the first cycle and the lower order  
bits (DB0 to DB3 in 8-bit mode) in the second cycle.  
Data transfer is complete after two 4-bit data transfers.  
It should be noted that two cycles are also required for the  
Busy Flag check. 4-bit operation is selected by instruction.  
See Figs 15, 16 and 17 for examples of bus protocol.  
At the same time, the value of the Address Counter  
expressed in binary A[6] to A[0] is read out. The Address  
Counter is used by both CGRAM and DDRAM and its  
value is determined by the previous instruction.  
9.10 Write data to CGRAM or DDRAM  
In the 4-bit mode pins DB3 to DB0 must be left  
open-circuit. They are pulled up to VDD internally.  
Writes binary 8-bit data D[7] to D[0] to the CGRAM or the  
DDRAM.  
Whether the CGRAM or DDRAM is to be written to is  
determined by the previous specification of CGRAM or  
DDRAM address setting. After writing, the address  
automatically increments or decrements by 1, in  
accordance with the entry mode. Only bits D0 to D4 of  
CGRAM data are valid, bits D5 to D7 are ‘don't care’.  
1997 Dec 16  
23  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
11 INTERFACE TO MICROCONTROLLER  
(I2C-BUS INTERFACE)  
11.5 Acknowledge  
The number of data bytes transferred between the start  
and stop conditions from transmitter to receiver is  
unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level  
signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock  
pulse. A slave receiver which is addressed must generate  
an acknowledge after the reception of each byte. Also a  
master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the  
slave transmitter. The device that acknowledges must  
pull-down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH  
period of the acknowledge related clock pulse (set-up and  
hold times must be taken into consideration). A master  
receiver must signal an end of data to the transmitter by  
not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event the transmitter  
must leave the data line HIGH to enable the master to  
generate a stop condition.  
11.1 Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
serial data line (SDA) and a serial clock line (SCL).  
Both lines must be connected to a positive supply via a  
pull-up resistor. Data transfer may be initiated only when  
the bus is not busy.  
11.2 Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as a control signal.  
11.3 Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as the STOP condition (P).  
11.6 I2C-bus protocol  
Before any data is transmitted on the I2C-bus, the device  
which should respond is addressed first. The addressing is  
always carried out with the first byte transmitted after the  
start procedure. The I2C-bus configuration for the different  
PCF2104x READ and WRITE cycles is illustrated in  
Figs 22, 23 and 24.  
11.4 System configuration  
A device generating a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBC621  
Fig.18 Bit transfer.  
24  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.19 Definition of START and STOP conditions.  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
MGA807  
Fig.20 System configuration.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.21 Acknowledgement on the I2C-bus.  
25  
1997 Dec 16  
acknowledgement  
from PCF2104x  
S
A
0
0
1
1
1
0
1
0
A
1
CONTROL BYTE  
A
DATA  
A
0
CONTROL BYTE  
1 byte  
A
DATA  
A
P
S
slave address  
2n 0 bytes  
n
0 bytes  
update  
data pointer  
R/W  
Co  
Co  
S
A
0
0
1
1
1
0
1
0
MGC617  
PCF2104x  
slave address  
R/W  
Fig.22 Master transmits to slave receiver; WRITE mode.  
ahdnbok,uflapegwidt  
acknowledgement  
from PCF2104x  
S
A
0
(1)  
0
1
1
1
0
1
1
CONTROL BYTE  
DATA  
0
1
1
CONTROL  
DATA  
0
A
A
A
A
A
S
slave address  
2n 0 bytes  
2 bytes  
R/W  
Co  
Co  
acknowledgement  
from PCF2104x  
no acknowledgement  
from master  
S
A
0
SLAVE  
ADDRESS  
1
A
DATA  
A
DATA  
1
P
S
n bytes  
last byte  
R/W  
update  
MGC618  
data pointer  
(1) Last data byte is a dummy byte (may be omitted).  
Fig.23 Master reads after setting word address; write word address, set RS/RW; READ data.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
acknowledgement  
from PCF2104x  
acknowledgement  
from master  
no acknowledgement  
from master  
S
A
0
SLAVE  
ADDRESS  
1
A
DATA  
A
DATA  
1
S
P
last byte  
n bytes  
R/W  
update  
data pointer  
MGC619  
Fig.24 Master reads slave immediately after first byte; READ mode (RS previously defined).  
1997 Dec 16  
28  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 0  
LSB  
R/W  
STOP  
CONDITION  
(P)  
BIT 6  
(A6)  
ACKNOWLEDGE  
(A)  
PROTOCOL  
SDA  
t
t
t
r
BUF  
LOW  
SCL  
t
t
HD;STA  
f
t
SU;STO  
t/f  
SCL  
MGA811 - 1  
t
HIGH  
Fig.25 I2C-bus timing diagram; rise and fall times refer to VIL and VIH.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
12 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDD  
PARAMETER  
MIN.  
0.5  
MAX.  
UNIT  
supply voltage  
+8.0  
V
VLCD  
VI  
LCD supply voltage  
V
V
V
DD 11  
VDD  
V
input voltage OSC, RS, R/W, E and DB0 to DB7  
output voltage R1 to R32, C1 to C60 and VLCD  
DC input current  
SS 0.5  
VDD + 0.5  
V
VO  
II  
LCD 0.5 VDD + 0.5  
V
10  
10  
50  
+10  
+10  
+50  
400  
100  
+150  
mA  
mA  
mA  
IO  
DC output current  
IDD, ISS, ILCD VDD, VSS or VLCD current  
Ptot  
PO  
Tstg  
total power dissipation  
power dissipation per output  
storage temperature  
mW  
mW  
°C  
65  
13 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices).  
14 DC CHARACTERISTICS  
VDD = 2.5 to 6 V; VSS = 0 V; VLCD = VDD 3.5 to VDD 9 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDD  
supply voltage  
2.5  
6.0  
V
VLCD  
IDD  
LCD supply voltage  
supply current external VLCD  
supply current 1  
V
DD 9  
V
DD 3.5  
V
note 1  
IDD1  
200  
200  
500  
300  
µA  
µA  
IDD2  
supply current 2  
VDD = 5 V; VOP = 9 V;  
fosc = 150 kHz;  
Tamb = 25 °C  
IDD3  
supply current 3  
VDD = 3 V; VOP = 5 V;  
fosc = 150 kHz;  
150  
200  
µA  
Tamb = 25 °C  
ILCD  
VLCD input current  
notes 1 and 6  
note 2  
50  
100  
1.8  
µA  
VPOR  
Power-on reset voltage level  
1.3  
V
1997 Dec 16  
30  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
SYMBOL  
Logic  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VIL1  
LOW level input voltage pins E, RS,  
R/W, DB0 to DB7 and SA0  
VSS  
0.3VDD  
VDD  
V
VIH1  
HIGH level input voltage pins E, RS,  
R/W, DB0 to DB7 and SA0  
0.7VDD  
VSS  
V
VIL(osc)  
VIH(osc)  
Ipu  
LOW level input voltage pin OSC  
HIGH level input voltage pin OSC  
VDD 1.5  
V
VDD 0.1  
VDD  
V
pull-up current at pins DB0 to DB7, VI = VSS  
RS and R/W  
0.04  
0.15  
1.00  
µA  
IOL(DB)  
IOH(DB)  
IL1  
LOW level output current pins  
DB0 to DB7  
VOL = 0.4 V; VDD = 5 V 1.6  
mA  
mA  
µA  
HIGH level output current pins  
DB0 to DB7  
VOH = 4 V; VDD = 5 V  
VI = VDD or VSS  
1.0  
1  
leakage current pins OSC, E, RS,  
R/W, DB0 to DB7 and SA0  
+1  
I2C-bus  
SDA, SCL  
VIL2  
VIH2  
IL2  
LOW level input voltage  
HIGH level input voltage  
leakage current  
note 3  
VSS  
0.3VDD  
V
note 3  
0.7VDD  
VDD  
+1  
7
V
VI = VDD or VSS  
note 4  
1  
µA  
pF  
mA  
Ci  
input capacitance  
IOL(SDA)  
LOW level output current (SDA)  
VOL = 0.4 V; VDD = 5 V  
3
LCD outputs  
RROW  
row output resistance pins  
R1 to R32  
note 5  
note 5  
note 6  
1.5  
3
3
kΩ  
kΩ  
mV  
RCOL  
Vtol1  
column output resistance pins  
C1 to C60  
6
bias voltage tolerance pins  
R1 to R32 and C1 to C60  
±20  
±130  
Notes  
1. LCD outputs are open-circuit; inputs at VDD or VSS; V0 = VDD; bus inactive; internal or external clock with duty cycle  
50% (IDD1 only).  
2. Resets all logic when VDD < VPOR  
.
3. When the voltages are above or below the supply voltages VDD or VSS, an input current may flow; this current must  
not exceed ±0.5 mA.  
4. Tested on sample basis.  
5. Resistance of output terminals (R1 to R32 and C1 to C60) with load current Iload = 150 µA; VOP = VDD VLCD = 9 V;  
outputs measured one at a time.  
6. LCD outputs open-circuit.  
1997 Dec 16  
31  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
15 AC CHARACTERISTICS  
VDD = 2.5 to 6.0 V; VSS = 0 V; VLCD = VDD 3.5 V to VDD 9 V; Tamb = 40 °C to + 85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
40  
TYP.  
65  
MAX.  
100  
UNIT  
Hz  
fFR  
fosc  
LCD frame frequency (internal clock)  
external clock frequency  
note 1  
90  
150  
225  
kHz  
Bus timing characteristics: Parallel Interface; notes 1 and 2  
WRITE OPERATION (WRITING DATA FROM MICROCONTROLLER TO PCF2104X)  
Tcy  
enable cycle time  
enable pulse width  
address set-up time  
address hold time  
data set-up time  
data hold time  
500  
220  
50  
ns  
ns  
ns  
ns  
ns  
ns  
PWEH  
tASU  
tAH  
25  
tDSW  
tHD  
60  
25  
READ OPERATION (READING DATA FROM PCF2104X TO MICROCONTROLLER)  
Tcy  
enable cycle time  
enable pulse width  
address set-up time  
address hold time  
data delay time  
500  
220  
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
PWEH  
tASU  
tAH  
tDHD  
tHD  
150  
100  
data hold time  
20  
Timing characteristics: I2C-bus interface; note 2  
fSCL  
SCL clock frequency  
tolerable spike width on bus  
bus free time  
100  
100  
kHz  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
tSW  
tBUF  
4.7  
4.7  
4
tSU;STA  
tHD;STA  
tLOW  
tHIGH  
tr  
set-up time for a repeated START condition  
start condition hold time  
SCL LOW time  
4.7  
4
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
data set-up time  
1
tf  
0.3  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
set-up time for STOP condition  
4
Notes  
1. VDD = 5.0 V.  
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to  
VIL and VIH with an input voltage swing of VSS to VDD  
.
1997 Dec 16  
32  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
16 TIMING DIAGRAMS  
RS  
V
V
V
V
IH1  
IL1  
IH1  
IL1  
t
t
AH  
V
AS  
R/W  
V
IL1  
IL1  
t
PW  
EH  
AH  
V
V
IH1  
IH1  
E
V
V
V
IL1  
IL1  
IL1  
t
H
t
DSW  
IH1  
V
V
V
V
IH1  
IL1  
Valid Data  
DB0 to DB7  
IL1  
MLA798 - 1  
T
cy  
Fig.26 Parallel bus write operation sequence; writing data from microcontroller to PCF2104x.  
V
V
V
V
IH1  
IL1  
t
IH1  
IL1  
RS  
t
AS  
AH  
V
V
IH1  
IH1  
R/W  
t
PW  
AH  
EH  
V
V
IH1  
IH1  
V
E
V
IL1  
V
IL1  
IL1  
t
t
DHR  
DDR  
V
V
V
V
OH1  
OH1  
OL1  
DB0 to DB7  
OL1  
MLA799 - 1  
T
cy  
Fig.27 Parallel bus read operation sequence; reading data from PCF2104x to microcontroller.  
33  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
17 APPLICATION INFORMATION  
handbook, 4 columns  
P20  
P21  
P22  
RS  
R/W  
E
32  
60  
R1 to R32  
to  
LCD  
P80CL51  
PCF2104x  
C1 to C60  
DB0 to DB7  
8
P10 to P17  
MGC620  
Fig.28 Direct connection to 8-bit microcontroller; 8-bit bus.  
handbook, 4 columns  
RS  
R/W  
E
P10  
P11  
P12  
32  
60  
R1 to R32  
to  
LCD  
P80CL51  
PCF2104x  
C1 to C60  
DB4 to DB7  
4
P14 to P17  
MGC621  
Fig.29 Direct connection to 8-bit microcontroller; 4-bit bus.  
R7 to R16  
R25 to R32  
V
V
LCD  
16  
LCD  
100 nF  
V
V
R1 to R8  
DD  
DD  
2 x 24 CHARACTER  
LCD DISPLAY  
(SPLIT SCREEN)  
R17 to R24  
OSC  
100  
nF  
16  
PCF2104x  
60  
60  
C1 to C60  
V
V
SS  
SS  
MGC624  
DB0 to DB7 E RS R/W  
Fig.30 Typical application using parallel interface.  
34  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
V
V
V
16  
LCD  
100 nF  
LCD  
R1 to R16  
V
DD  
DD  
2 x 24 CHARACTER  
LCD DISPLAY  
(SPLIT SCREEN)  
R17 to R24  
16  
OSC  
100  
nF  
PCF2104x  
V
V
DD DD  
60  
60  
C1 to C60  
V
V
SS  
SS  
SA0  
V
DD  
V
V
LCD  
LCD  
100 nF  
V
V
DD  
DD  
R1 to R16  
16  
2 x 12 CHARACTER  
LCD DISPLAY  
OSC  
100  
nF  
PCF2104x  
60  
C1 to C60  
V
V
SS  
SS  
SA0  
MGC625  
V
SS  
SCL SDA  
MASTER TRANSMITTER  
PCF84C81  
Fig.31 Application using I2C-bus interface.  
1997 Dec 16  
35  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
17.1 8-bit operation, 2 × 12 display using internal  
17.3 8-bit operation, 2 × 24 display  
reset  
For a 2-line display, the cursor automatically moves from  
the first to the second line after the 40th digit of the first line  
has been written. Thus, if there are only 8 characters in the  
first line, the DDRAM address must be set after the eighth  
character is completed (see Table 8). It should be noted  
that both lines of the display are always shifted together,  
data does not shift from one line to the other.  
Table 7 shows an example of a 1-line display in 8-bit  
operation. The PCF2104x functions must be set by the  
function set instruction prior to display. Since the display  
data RAM can store data for 80 characters, the RAM can  
be used for advertising displays when combined with  
display shift operation. Since the display shift operation  
changes the display position only and DDRAM contents  
remain unchanged. Display data entered first can be  
displayed when the ‘Return home’ instruction is  
performed.  
17.4 I2C operation, 2 × 12 display  
A control byte is required with most instructions  
(see Table 9).  
17.2 4-bit operation, 2 × 12 display using internal  
17.5 Initializing by instruction  
reset  
If the power supply conditions for correctly operating the  
internal reset circuit are not met, the PCF2104x must be  
initialized by instruction. Tables 10 and 11 show how this  
may be performed for 8-bit and 4-bit operation.  
The program must set functions prior to 4-bit operation.  
Table 6 shows an example. When power is turned on, 8-bit  
operation is automatically selected and the PCF2104x  
attempts to perform the first write as an 8-bit operation.  
Since nothing is connected to DB0 to DB3, a rewrite is  
then required. However, since one operation is completed  
in two accesses of 4-bit operation, a rewrite is required to  
set the functions (see Table 6 step 3).  
Thus, DB4 to DB7 of the function set are written twice.  
1997 Dec 16  
36  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
Table 6 4-bit operation, 1-line display example; using internal reset  
STEP  
INSTRUCTION  
DISPLAY  
OPERATION  
Initialized. No display appears.  
1
Power supply on (PCF2104x is  
initialized by the internal reset circuit).  
2
3
Function set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0;  
DB5 = 1; DB4 = 0  
Sets to 4-bit operation. In this instance operation is  
handled as 8-bits by initialization and only this  
instruction completes with one write.  
Function set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0;  
DB5 = 1; DB4 = 0  
Sets to 4-bit operation, selects 2 × 12 display.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0;  
DB5 = 0; DB4 = 0  
4-bit operation starts from this point and resetting is  
needed.  
4
5
6
Display on/off control:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0;  
DB5 = 0; DB4 = 0  
Turns on display and cursor.  
RS = 0; R/W = 0; DB7 = 1; DB6 = 1;  
DB5 = 1; DB4 = 0  
Entire display is blank after initialization.  
Entry mode set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0;  
DB5 = 0; DB4 = 0  
_
Sets mode to increment the address by 1 and to shift the  
cursor to the right at the time of write to the DD/CGRAM.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 1;  
DB5 = 1; DB4 = 0  
Display is not shifted.  
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; P_  
DB5 = 0; DB4 = 1  
Writes ‘P’. The DDRAM has already been selected by  
initialization at power-on.  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1;  
DB5 = 1; DB4 = 0  
The cursor is incremented by 1 and shifted to the right.  
1997 Dec 16  
37  
Table 7 8-bit operation, 1-line display example; using internal reset (character set ‘A’)  
STEP  
INSTRUCTION  
DISPLAY  
OPERATION  
Initialized. No display appears.  
1
Power supply on (PCF2104x is initialized by the internal  
reset function).  
2
3
Function set:  
Sets to 8-bit operation, selects 2 × 12 display.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
Display mode on/off control:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 1; DB0 = 0  
_
Turns on display and cursor. Entire display is blank after  
initialization.  
4
Entry mode set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 1; DB1 = 1; DB0 = 0  
_
Sets mode to increment the address by 1 and to shift the  
cursor to the right at the time of the write to the  
DD/CGRAM. Display is not shifted.  
5
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
P_  
Writes ‘P’. The DDRAM has already been selected by  
initialization at power-on. The cursor is incremented by 1  
and shifted to the right.  
6
Write data to CGRAM/DDRAM:  
PH_  
Writes ‘H’.  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 1; DB4 = 1;  
DB3 = 1; DB2 = 0; DB1 = 0; DB0 = 0  
7
|
|
|
8
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 1; DB0 = 1  
PHILIPS_  
PHILIPS_  
HILIPS _  
Writes ‘S’.  
9
Entry mode set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 1; DB1 = 1; DB0 = 1  
Sets mode for display shift at the time of write.  
10  
11  
12  
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
Writes space.  
Writes ‘M’.  
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 0; DB0 = 1  
ILIPS M_  
|
|
|
STEP  
INSTRUCTION  
Write data to CGRAM/DDRAM:  
DISPLAY  
OPERATION  
13  
MICROKO  
Writes ‘O’.  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 1; DB0 = 1  
14  
15  
16  
17  
18  
19  
20  
21  
Cursor or display shift:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
MICROKO  
MICROKO  
ICROCO  
Shifts only the cursor position to the left.  
Shifts only the cursor position to the left.  
Writes ‘C’ correction. The display moves to the left.  
Shifts the display and cursor to the right.  
Shifts only the cursor to the right.  
Writes ‘M’.  
Cursor or display shift:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 1; DB0 = 1  
Cursor or display shift:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 1;  
DB3 = 1; DB2 = 1; DB1 = 0; DB0 = 0  
MICROCO  
MICROCO_  
ICROCOM_  
Cursor or display shift:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 1; DB1 = 0; DB0 = 0  
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 0; DB0 = 1  
|
|
|
Return home:  
PHILIPS M  
Returns both display and cursor to the original position  
(address 0).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 1; DB0 = 0  
Table 8 8-bit operation, 2-line display example; using internal reset  
STEP  
INSTRUCTION  
DISPLAY  
OPERATION  
Initialized. No display appears.  
1
Power supply on (PCF2104x is initialized by the internal  
reset function).  
2
3
Function set:  
Sets to 8-bit operation, selects 2 × 24 display  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = 1; DB2 = 0; DB1 = 0; DB0 = 0  
Display on/off control:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 1; DB0 = 0  
_
Turns on display and cursor. Entire display is blank after  
initialization.  
4
Entry mode set:  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 1; DB1 = 1; DB0 = 0  
_
Sets mode to increment the address by 1 and to shift the  
cursor to the right at the time of write to the CG/DDRAM.  
Display is not shifted.  
5
Write data to CGRAM/DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
P_  
Writes ‘P’. The DDRAM has already been selected by  
initialization at power-on. The cursor is incremented by 1  
and shifted to the right.  
6
|
|
|
7
Write data to CGRAM/DDRAM:  
PHILIPS_  
Writes ‘S’.  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1;  
DB3 = 0; DB2 = 0; DB1 = 1; DB0 = 1  
8
Set DDRAM address:  
RS = 0; R/W = 0; DB7 = 1; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 0  
PHILIPS  
_
Sets DDRAM address to position the cursor at the head of  
the 2nd line.  
9
Write data to CGRAM/ DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 0; DB0 = 1  
PHILIPS  
M_  
Writes ‘M’.  
10  
11  
12  
|
|
|
Write data to CGRAM/ DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 1; DB0 = 1  
PHILIPS  
Writes ‘O’.  
MICROCO_  
Write data to CGRAM/ DDRAM:  
PHILIPS  
Sets mode for display shift at the time of write.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 1; DB1 = 1; DB0 = 1  
MICROCO_  
STEP  
INSTRUCTION  
Write data to CGRAM/ DDRAM:  
RS = 1; R/W = 0; DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 1; DB1 = 0; DB0 = 1  
DISPLAY  
HILIPS  
OPERATION  
13  
Writes ‘M’. Display is shifted to the left. The first and  
second lines shift together.  
ICROCOM_  
14  
15  
|
|
|
Return home:  
PHILIPS  
Returns both display and cursor to the original position  
(address 0).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 1; DB0 = 0  
MICROCOM  
Table 9 Example of I2C-bus operation; 1-line display (using internal reset, assuming SA0 = VSS; note 1)  
STEP  
I2C-BUS BYTE  
DISPLAY  
OPERATION  
Initialized. No display appears.  
1
2
I2C-bus start  
Slave address for write:  
SA6 = 0; SA5 = 1; SA4 = 1; SA3 = 1; SA2 = 0; SA1 = 1;  
SA0 = 0; R/W = 0; Ack = 1  
During the acknowledge cycle SDA will be pulled-down by  
the PCF2104x.  
3
4
Send a control byte for function set:  
Co = 0; RS = 0; R/W = 0; Ack = 1  
Control byte sets RS and R/W for following data bytes.  
Function set:  
Selects 1-line display; SCL pulse during acknowledge  
cycle starts execution of instruction.  
DB7 = 0; DB6 = 0; DB5 = 1; DB4 = X; DB3 = 0; DB2 = 0;  
DB1 = 0; DB0 = 0; Ack = 1  
5
6
Display on/off control:  
DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0; DB3 = 1; DB2 = 1;  
DB1 = 1; DB0 = 0; Ack = 1  
_
_
Turns on display and cursor. Entire display shows  
character Hex 20 (blank in ASCII-like character sets).  
Entry mode set:  
DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0; DB3 = 0; DB2 = 1;  
DB1 = 1; DB0 = 0; Ack = 1  
Sets mode to increment the address by 1 and to shift the  
cursor to the right at the time of write to the DDRAM or  
CGRAM. Display is not shifted.  
7
8
I2C-bus start  
_
_
For writing data to DDRAM, RS must be set to 1.  
Therefore a control byte is needed.  
Slave address for write:  
SA6 = 0; SA5 = 1; SA4 = 1; SA3 = 1; SA2 = 0; SA1 = 1;  
SA0 = 0; R/W = 0; Ack = 1  
9
Send a control byte for write data:  
Co = 0; RS = 1; R/W = 0; Ack = 1  
_
10  
Write data to DDRAM:  
DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1; DB3 = 0; DB2 = 0;  
DB1 = 0; DB0 = 0; Ack = 1  
P_  
Writes ‘P’. The DDRAM has been selected at power-up.  
The cursor is incremented by 1 and shifted to the right.  
11  
Write data to DDRAM:  
PH_  
Writes ‘H’.  
DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0; DB3 = 1; DB2 = 0;  
DB1 = 0; DB0 = 0; Ack = 1  
12 to 15  
|
|
|
|
16  
Write data to DDRAM:  
PHILIPS_  
Writes ‘S’.  
DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 1; DB3 = 0; DB2 = 0;  
DB1 = 1; DB0 = 1; Ack = 1  
STEP  
I2C-BUS BYTE  
DISPLAY  
OPERATION  
17  
(optional I2C-bus stop) I2C-bus start + slave address for write PHILIPS_  
(as step 8)  
18  
19  
Control byte:  
Co = 1; RS = 0; R/W = 0; Ack = 1  
PHILIPS_  
PHILIPS  
Return home:  
Sets DDRAM address 0 in Address Counter. (Also returns  
shifted display to original position. DDRAM contents  
unchanged). This instruction does not update the Data  
Register (DR).  
DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0; DB3 = 0; DB2 = 0;  
DB1 = 1; DB0 = 0; Ack = 1  
20  
Control byte for read:  
Co = 0; RS = 1; R/W = 1; Ack = 1  
PHILIPS  
DDRAM content will be read from following instructions.  
The R/W has to be set to 1 while still in I2C-bus write  
mode.  
21  
22  
I2C-bus start  
PHILIPS  
PHILIPS  
Slave address for read:  
SA6 = 0; SA5 = 1; SA4 = 1; SA3 = 1; SA2 = 0; SA1 = 1;  
SA0 = 0; R/W = 1; Ack = 1  
During the acknowledge cycle the content of the DR is  
loaded into the internal I2C-bus interface to be shifted out.  
In the previous instruction neither a ‘Set address’ nor a  
‘Read data’ has been performed. Therefore the content of  
the DR was unknown.  
23  
Read data: 8 × SCL + master acknowledge; note 2:  
DB7 = X; DB6 = X; DB5 = X; DB4 = X; DB3 = X; DB2 = X;  
DB1 = X; DB0 = X; Ack = 1  
PHILIPS  
8 × SCL; content loaded into interface during previous  
acknowledge cycle is shifted out over SDA. MSB is DB7.  
During master acknowledge content of DDRAM  
address 01 is loaded into the I2C-bus interface.  
24  
25  
Read data: 8 × SCL + master acknowledge; note 2:  
DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0; DB3 = 1; DB2 = 0;  
DB1 = 0; DB0 = 0; Ack = 0  
PHILIPS  
PHILIPS  
8 × SCL; code of letter ‘H’ is read first. During master  
acknowledge code of ‘I’ is loaded into the I2C-bus  
interface.  
No master acknowledge; After the content of the I2C-bus  
interface register is shifted out no internal action is  
performed. No new data is loaded to the interface register,  
Data Register (DR) is not updated, Address Counter (AC)  
is not incremented and cursor is not shifted.  
Read data: 8 × SCL + no master acknowledge; note 2:  
DB7 = 0; DB6 = 1; DB5 = 0; DB4 = 0; DB3 = 1; DB2 = 0;  
DB1 = 0; DB0 = 1; Ack = 1  
26  
I2C stop  
PHILIPS  
Notes  
1. X = don’t care.  
2. SDA is left at high-impedance by the microcontroller during the READ acknowledge.  
Table 10 Initialization by instruction, 8-bit interface (note 1)  
STEP  
DESCRIPTION  
Power-on or unknown state  
|
Wait 2 ms after VDD rises above VPOR  
|
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = X; DB2 = X; DB1 = X; DB0 = X  
BF cannot be checked before this instruction. ‘Function set’  
(interface is 8-bits long).  
|
Wait 2 ms  
|
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = X; DB2 = X; DB1 = X; DB0 = X  
BF cannot be checked before this instruction.‘Function set’  
(interface is 8-bits long).  
|
Wait more than 40 µs  
|
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = X; DB2 = X; DB1 = X; DB0 = X  
BF cannot be checked before this instruction. ‘Function set’  
(interface is 8-bits long).  
|
|
BF can be checked after the following instructions. When BF is not checked, the  
waiting time between instructions is the specified instruction time (see Table 3).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1;  
DB3 = N; DB2 = M; DB1 = X; DB0 = 0  
‘Function set’ (interface is 8-bits long). Specify the number of display lines.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 1; DB2 = 0; DB1 = 0; DB0 = 0  
‘Display off’.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 0; DB1 = 0; DB0 = 1  
‘Clear display’.  
‘Entry mode set’.  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0;  
DB3 = 0; DB2 = 1; DB1 = I/D; DB0 = S  
|
Initialization ends  
Note  
1. X = don’t care.  
Table 11 Initialization by instruction, 4-bit interface. Not applicable for I2C-bus operation  
STEP  
DESCRIPTION  
Power-on or unknown state  
|
Wait 2 ms after VDD rises above VPOR  
|
BF cannot be checked before this instruction. ‘Function set’  
(interface is 8-bits long).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1  
|
Wait 2 ms  
|
BF cannot be checked before this instruction. ‘Function set’  
(interface is 8-bits long).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1  
|
Wait 40 µs  
|
BF cannot be checked before this instruction. ‘Function set’  
(interface is 8-bits long).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 1  
|
|
BF can be checked after the following instructions. When BF is not checked, the  
waiting time between instructions is the specified instruction time (see Table 3).  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 0  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 1; DB4 = 0  
RS = 0; R/W = 0; DB7 = N; DB6 = M; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 1; DB6 = 0; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 1; DB6 = 0; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 0; DB6 = 0; DB5 = 0; DB4 = 0  
RS = 0; R/W = 0; DB7 = 0; DB6 = 1; DB5 = I/D; DB4 = S  
|
‘Function set’ (set interface to 4-bits long). Interface is 8-bits long.  
‘Function set’ (interface is 4-bits long).  
Specify number of display lines and voltage generator characteristic.  
‘Display off’.  
‘Clear display’.  
‘Entry mode set’.  
Initialization ends  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
DISPLAY LAYOUT: COLUMNS  
15 46  
PCF2104x column  
output numbers  
C1  
60  
LCD column  
numbers  
1
31  
60  
DOT MATRIX LCD  
PCF2104x column  
output numbers  
C16  
45  
DISPLAY LAYOUT: ROWS  
R8 to R1  
R9 to R16  
MGC623  
R17 to R24  
R32 to R25  
Fig.32 Example of 4 × 12 display layout (PCF2104x).  
1997 Dec 16  
46  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
display glass  
dot matrix  
COLUMN LAYOUT  
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
ROW LAYOUT  
1 to 8  
16 to 9  
MLB898  
2
lines by 12 characters display  
Fig.33 Display example (PCF2104x); 2 lines by 12 characters.  
1997 Dec 16  
47  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
R1  
R8  
PCF2104x  
CHIP-ON-GLASS  
4 LINE BY  
R9  
R16  
R17  
R24  
R25  
R32  
12 CHARACTER  
C1  
2104  
R9  
C60  
MGC626  
SCL  
SDA  
V
SS  
DD  
LCD  
V
V
Fig.34 Chip-on-glass application.  
1997 Dec 16  
48  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
18 BONDING PAD LOCATIONS  
86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
58  
57  
56  
55  
54  
53  
52  
51  
50  
R15 87  
R16 88  
R25 89  
R26 90  
R27  
R28  
91  
92  
R1 93  
R2  
R3 95  
R4  
94  
49  
48  
47  
96  
SCL 97  
98  
E
46 C35  
45 C36  
44 C37  
43 C38  
42 C39  
41 C40  
40 C41  
39 C42  
38 C43  
37 C44  
36 C45  
35 C46  
34 C47  
33 C48  
32 C49  
31 C50  
30 C51  
29 C52  
28 C53  
RS 99  
100  
101  
R/W  
T1  
x
5.63  
mm  
0
0
y
DB7 102  
DB6 103  
DB5  
DB4  
104  
105  
PCF2104x  
DB3 106  
DB2 107  
DB1 108  
DB0 109  
SDA 110  
V
111  
LCD  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
MGC628  
5.10 mm  
Chip dimensions: approximately 5.10 × 5.63 mm.  
Gold bump dimensions: approximately 89 × 89 × 25 µm.  
Fig.35 Bonding pad locations.  
49  
1997 Dec 16  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
Table 12 Bonding pad locations (dimensions in µm).  
All x/y coordinates are referenced to centre of chip,  
see Fig.35  
SYMBOL  
OSC  
PAD  
x
y
SYMBOL  
C42  
PAD  
x
y
1
2184.5  
2024.5  
1864.5  
1704.5  
1339  
1179  
1019  
859  
699  
539  
379  
219  
59  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2637  
2445  
2285  
2125  
1965  
1805  
1645  
1485  
1325  
1165  
1005  
845  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2185  
2025  
1865  
1705  
1545  
1385  
1225  
1065  
905  
685  
525  
VDD  
SA0  
VSS  
R8  
2
C41  
C40  
C39  
C38  
C37  
C36  
C35  
C34  
C33  
C32  
C31  
C30  
C29  
C28  
C27  
C26  
C25  
C24  
C23  
C22  
C21  
C20  
C19  
C18  
C17  
C16  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
3
365  
4
205  
5
45  
R7  
6
115  
R6  
7
275  
R5  
8
435  
R32  
R31  
R30  
R29  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
C60  
C59  
C58  
C57  
C56  
C55  
C54  
C53  
C52  
C51  
C50  
C49  
C48  
C47  
C46  
C45  
C44  
C43  
9
595  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
755  
915  
1075  
1235  
101  
1395  
261  
1555  
421  
1715  
581  
1875  
741  
2035  
901  
2195  
1061  
1221  
1381  
1541  
1701  
1861  
2021  
2181  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2350  
2355  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
745  
585  
425  
265  
105  
C8  
55  
C7  
215  
375  
535  
C6  
C5  
1997 Dec 16  
50  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
SYMBOL  
C4  
PAD  
x
y
77  
78  
695  
855  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2637.5  
2308  
C3  
C2  
79  
1015  
1175  
1385  
1545  
1705  
1865  
2025  
2185  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2349  
2327.5  
2027.5  
1982.5  
C1  
80  
R9  
81  
R10  
R11  
82  
83  
R12  
R13  
R14  
R15  
R16  
R25  
R26  
R27  
R28  
R1  
84  
85  
86  
87  
88  
2148  
89  
1988  
90  
1828  
91  
1668  
92  
1508  
93  
1348  
R2  
94  
1188  
R3  
95  
1028  
R4  
96  
868  
SCL  
E
97  
632  
98  
472  
RS  
99  
312  
R/W  
T1  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
142  
34  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
SDA  
VLCD  
RECPAT ‘F’  
RECPAT ‘C’  
RECPAT ‘C’  
233  
393  
668  
828  
1103  
1263  
1538  
1698  
1933  
2453  
2427.5  
2512.5  
2297.5  
1997 Dec 16  
51  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
19 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
20 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
21 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1997 Dec 16  
52  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
NOTES  
1997 Dec 16  
53  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
NOTES  
1997 Dec 16  
54  
Philips Semiconductors  
Product specification  
LCD controller/driver  
PCF2104x  
NOTES  
1997 Dec 16  
55  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 1949  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580/xxx  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA53  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
417067/1200/04/pp56  
Date of release: 1997 Dec 16  
Document order number: 9397 750 02924  

相关型号:

PCF2104X

LCD controller/driver
MOTOROLA

PCF2105

LCD controller/driver
NXP

PCF2105MU

LCD controller/driver
NXP

PCF2105MU/2

LCD controller/driver
NXP

PCF2105MU/7

LCD Display Driver
ETC

PCF210AA

SPI Real time clock/calendar Time keeping application
NXP

PCF2110

LCD Display Driver
ETC

PCF2111

LCD drivers
NXP

PCF2111C

LCD drivers
NXP

PCF2111CP

LCD drivers
NXP

PCF2111CPN

IC LIQUID CRYSTAL DISPLAY DRIVER, PDIP40, Display Driver
NXP

PCF2111CT

LCD drivers
NXP