PCK2011DL

更新时间:2024-09-18 02:18:23
品牌:NXP
描述:Direct RAMbus Clock Generator

PCK2011DL 概述

Direct RAMbus Clock Generator 直接RAMBUS时钟发生器 时钟发生器

PCK2011DL 规格参数

生命周期:Obsolete零件包装代码:SSOP
包装说明:SSOP,针数:24
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.84
Is Samacsys:NJESD-30 代码:R-PDSO-G24
长度:8.2 mm端子数量:24
最高工作温度:70 °C最低工作温度:
最大输出时钟频率:400 MHz封装主体材料:PLASTIC/EPOXY
封装代码:SSOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, SHRINK PITCH主时钟/晶体标称频率:400 MHz
认证状态:Not Qualified座面最大高度:2 mm
最大供电电压:3.465 V最小供电电压:3.135 V
标称供电电压:3.3 V表面贴装:YES
技术:CMOS温度等级:COMMERCIAL
端子形式:GULL WING端子节距:0.65 mm
端子位置:DUAL宽度:5.3 mm
uPs/uCs/外围集成电路类型:CLOCK GENERATOR, PROCESSOR SPECIFICBase Number Matches:1

PCK2011DL 数据手册

通过下载PCK2011DL数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
INTEGRATED CIRCUITS  
PCK2011  
Direct RAMbus Clock Generator  
Preliminary specification  
1999 Jan 19  
Philips  
Semiconductors  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Overview  
PIN CONFIGURATION  
The Direct Rambus Clock Generator (DRCG) provides the Channel  
clock signals for a Direct Rambus memory subsystem. It includes  
signals to synchronize the Direct Rambus Channel clock to an  
external system clock. Contained in a 24-pin SSOP package, the  
DRCG provides an off-the-shelf solution for a broad range of Direct  
Rambus memory applications.  
S0  
24  
1
2
VDDLR  
REFCLK  
VDDP  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
S1  
3
VDDO  
GNDO  
CLK  
4
GNDP  
5
GNDl  
Features  
6
PCLKM  
SYNCLKN  
GNDC  
N/C  
High Speed Clock Support  
7
CLKB  
GNDO  
Provides a 400MHz differential clock source for Direct Rambus  
memory systems for an 800MHz data transfer rate.  
8
9
VDDC  
VDDO  
Synchronization Flexibility  
10  
11  
VDDIPD  
STOPB  
MULT0  
The DRCG includes signals to synchronize the clock domains of  
the RambusR Channel with an external system or processor  
clock.  
MULT1  
S2  
PWRDNB 12  
Power Management Support  
SW00289  
The DRCG is able to turn off the Rambus Channel clock to  
minimize power for mobile and other power-sensitive applications:  
Related Documentation  
- In the “clock off” mode, the DRCG remains on while the output  
is disabled, allowing fast transitions between the clock-off and  
clock-on states. This mode could be used in conjunction with  
the Nap mode of the RDRAMs and Rambus ASIC Cell (RAC).  
Direct Rambus RAC Overview  
Direct Rambus Memory Controller Guide  
- In the “power down” mode, the DRCG is completely powered  
down for minimum power dissipation. This mode is used in  
conjunction with the power down modes of the RDRAMs and  
RAC.  
Pin-outs  
The DRCG is packaged in a 24-pin 150 mil SSOP. The pin  
configuration shows the preliminary pin-out. Table 1 describes the  
function and connection of each pin.  
Supports Independent Channel Clocking  
The DRCG supports systems that do not require synchronization  
of the Rambus clock to another system clock.  
Example System Clock Configuration  
Figure 2 shows the clocking configuration for an example Direct  
Rambus subsystem. The configuration shows the interconnection of  
the system clock source, the Direct Rambus Clock Generator  
(DRCG), and the clock signals of a memory controller ASIC. The  
ASIC contains the RAC, the Rambus Memory Controller protocol  
engine (RMC), and logic to support synchronizing the Channel clock  
with the controller clock. (This diagram represents the differential  
clocks as a single Busclk wire.)  
Works with Philips PCK2010 to support Intel CK98 Clock  
Synthesizer/Driver specification.  
ORDERING INFORMATION  
PACKAGES  
TEMPERATURE RANGE  
OUTSIDE NORTH AMERICA NORTH AMERICA  
PCK2011 DL PCK2011 DL  
DRAWING NUMBER  
24-Pin Plastic SSOP  
0°C to +70°C  
SOT340-1  
2
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Table 1. PIN DESCRIPTION  
Pin  
#
Name  
Type  
Function  
Notes  
1
VDDLR  
REFCLK  
VDDP  
RefV  
Reference for REFCLK  
Connect to CK133  
Connect to CK133  
3.3V Supply  
2
In  
Reference clock  
3
Pwr  
GND  
GND  
In  
VDD for PLL  
4
GNDP  
GNDl  
GND for PLL  
Ground  
5
GND for control inputs  
Phase Detector Input  
Phase Detector Input  
GND for Phase Aligner  
VDD for Phase Aligner  
Reference for P.D. Inputs  
Active Low Output Disable  
Active Low power down  
Mode control input  
PLL multiplier select  
PLL multiplier select  
VDD for clock outputs  
GND for clock outputs  
Output Clock (complement)  
Not used  
Ground  
6
PCLKM  
Connect to Controller  
Connect to Controller  
Ground  
7
SYNCLKN In  
8
GNDC  
VDDC  
VDDLPD  
STOPB  
PWRDnB  
S2  
GND  
9
Pwr  
RefV  
In  
3.3V Supply  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Connect to Controller  
Connect to Controller  
3.3V CMOS  
In  
In  
3.3V CMOS  
MULT1  
MULT0  
VDDO  
GNDO  
CLKB  
N/C  
In  
3.3V CMOS  
In  
3.3V CMOS  
Pwr  
GND  
Out  
N/C  
Out  
GND  
Pwr  
In  
3.3V Supply  
Ground  
Connect to Rambus Channel  
Not connected (floating)  
Connect to Rambus Channel  
Ground  
CLK  
Output Clock  
GNDO  
VDDO  
S1  
GND for clock outputs  
VDD for clock outputs  
Mode Control  
3.3V Supply  
3.3V CMOS  
S0  
In  
Mode Control  
3.3V CMOS  
3
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
This configuration achieves frequency-lock between the controller  
and Rambus Channel clocks (PCLK and SYNCLK). These clock  
signals are matched and phase-aligned at the RMC/RAC boundary  
in order to allow data transfers to occur across this boundary without  
additional latency.  
Pclk is the clock used in the Rambus memory controller (RMC) in  
the ASIC. SYNCLK is the clock used at the ASIC interface of the  
RAC. The DRCG together with the Gear Ratio Logic enables the  
controller to exchange data directly from the PCLK domain to the  
SYNCLK domain without incurring additional latency for  
synchronization. In general, PCLK and SYNCLK can run at different  
frequencies, so the Gear Ratio Logic must select the appropriate M  
and N dividers such that the frequencies of PCLK/M and SYNCLK/N  
are equal. In one example, PCLK=133MHz and SYNCLK=100MHz,  
and M=4 while N=3, giving PCLK/M = SYNCLK/N = 33MHz. Figure  
4 shows an example of the clock waveforms generated with the  
Gear Ratio Logic.  
The main clock source drives the system clock (PCLK) to the ASIC,  
and also drives the reference clock (REFCLK) to the DRCG.  
REFCLK may or may not be the same frequency as PCLK. A PLL  
inside the DRCG multiplies REFCLK to generate the desired  
frequency for BUSCLK. BUSCLK is driven on the Rambus Channel  
through a terminated transmission line. At the mid-point of the  
Channel, the RAC senses BUSCLK using its own DLL for clock  
alignment, followed by a fixed divide-by- 4 circuit that generates  
SYNCLK.  
REFCLK  
Direct Rambus  
Clock Generator  
(DRCG)  
PCK2010  
BUSCLK  
RDRAMs  
RAC  
RMC  
M
N
/4  
DLL  
PCLK  
SYNCLK  
Gear Ratio-  
Logic  
CONTROLLER  
SW00290  
Figure 1. System Clock Architecture  
The ASIC drives the output clocks, Pclk and SynClk/N from the  
Gear Ratio Logic to the DRCG Phase Detector inputs. The routing  
of the Pclk/M and SynClk/N signal traces must be matched in  
impedance and propagation delay on the ASIC as well as on the  
board. These signals are not part of the Rambus Channel and their  
routing must be matched by board designers.  
In this manner, the distributed loop adjusts the phase of SynClk/N to  
match that of Pclk/M, eliminating the phase error at the input of the  
DRCG. When the clocks are aligned, data can be exchanged  
directly from the Pclk domain to the SynClk domain.  
The Gear Ratio Logic supports four clock ratios (2.0, 1.5, 1.33, and  
1.0), where the ratio is defined as the ratio of Pclk/SynClk. Since  
Busclk = 4*SynClk, this ratio also is equal to 4*Pclk/Busclk. Other  
ratios could be used, depending on particular system  
implementations.  
After comparing the phases of Pclk/M and SynClk/N, the DRCG  
Phase Detector drives a phase aligner that adjusts the phase of  
DRCG output clock, Busclk. Since the other elements in the  
distributed loop have a fixed delay, adjusting Busclk adjusts the  
phase of SynClk and thus the phase of SynClk/N.  
4
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Power Management Modes  
Table 2. POWER MANAGEMENT MODES  
The DRCG device has three operating states: NORMAL, CLKSTOP  
and POWERDOWN. In Normal mode, the clock source is on, and  
the output is enabled. In CLKSTOP mode, the clock source is on,  
but the output is disabled (STOPB deasserted). In Powerdown  
mode, the device is powered down with the control signal PwrDnB  
equal to 0. The control signals Mult0, Mult1, S0, S1 and S2 must be  
stable before power is applied to the device, and can only be  
changed in Power-down mode (PWRDNB=0).  
MODE  
PwrDnB  
StopB  
Clk  
ClkB  
NORMAL  
CLKSTOP  
1
1
0
1
0
PACLK  
PACLKB  
V , STOP V , STOP  
X
X
POWERDOWN  
X
GND  
GND  
Upon applying power to the device, the device can enter any state,  
depending on the settings of the control signals, PwrDnB and StopB.  
The clock source output need not be glitch-free during state  
transitions.  
PWRDNB  
S0  
S1  
S2  
STOPB  
DRCG  
TEST MUX  
BYPASS MUX  
BYPCLK  
PLLCLK  
X
CLK  
REFCLK  
PHASE  
ALIGNER  
B
A
CLKB  
PPL  
PACLK  
ΦD  
PCLKM  
SYNCLKN  
MULT  
2
0
MULT  
1
SW00360  
Figure 2. Direct Rambus Clock Generator Package  
5
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Pclk  
SynClk  
Pclk/M =  
SynClk/N  
SW00292  
Figure 3. Gear Ratio Timing Diagram  
In order to reduce signal attenuation and EMI, clock signal rise/fall  
times are controlled to within specifications. In addition, DRCG is  
able to receive input signals that are generated from different  
voltage power supplies. The phase detector signals come from the  
controller. The controller output voltage supply is connected to the  
pin VddIPD of DRCG, and is used as the reference for the  
two-phase detector input signals, PclkM and SynClkN. The output  
voltage supply is also used as the reference for the output  
enable/disable signal, StopB.  
PHYSICAL SPECIFICATION  
General Requirements  
The clock source generates differential signals with specified jitter,  
voltage levels, duty cycle, and rise/fall times. Figure 5 shows the  
clock equivalent circuit.  
Z
R = Z  
T CH  
CH  
The reference clock comes from the main clock source chip. The  
main clock source output voltage supply is connected to the pin  
VddIR of DRCG, and is used as the reference for the Refclk input  
signal.  
CHANNEL  
Clock Jitter  
The short-term jitter specification (over four cycles) for the clock  
source is under 100 ps maximum. Jitter is measured using a jitter  
measurement system that provides flexibility for measuring  
cycle-cycle jitter as a function of cycle count.  
R
T
= Z  
CH  
Z
CH  
SW00291  
Clock Source Specification  
Figure 4. Equivalent Circuit  
Rambus clock sources meet the output specifications listed in  
Table 4 when characterized under the operating conditions listed in  
Table 3.  
The driver produces a specified voltage swing on the Channel. The  
nominal value of the Channel impedance, Z CH , is 28 ohms.  
6
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Table 3. DC DEVICE CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V DD  
Supply voltage  
3.135 3.465  
T A  
Ambient operating temperature  
Refclk Input cycle time  
0
70  
°C  
tCYCLE ,IN  
tJ,IN  
10  
40  
ns  
1
Input Cycle-to-cycle jitter  
250  
60%  
33  
ps  
DCIN  
Input duty cycle over 10,000 cycles  
Input frequency of modulation  
40%  
30  
0.25  
tCYCLE  
kHz  
%
3
fM,IN  
PM,IN  
Modulation index  
0.5  
0.6  
Modulation index for triangular modulation  
Modulation index for non-triangular modulation  
3
PM,IN  
%
4
4
0.5  
tCYCLE,PD  
tERR,INIT  
DCIN,PD  
tIR , tIF  
CIN,PD  
CIN,PD  
CIN,CMOS  
VIL  
Phase Detector input cycle time at PclkM & SynClkN  
30  
–0.5  
25%  
1
100  
0.5  
75%  
4
ns  
Initial Phase error at Phase Detector inputs (Required range of Phase Aligner)  
Phase Detector input duty cycle over 10,000 cycles  
tCYCLE,PD  
tCYCLE,PD  
V/ns  
pF  
Input slew rate (measured at 20% – 80% of input voltage) for PclkM, SynClkN, and Refclk  
2
Input capacitance at PclkM, SynClkN, and Refclk  
7
2
Input capacitance matching at PclkM and SynClkN  
0.5  
10  
0.3  
pF  
2
Input capacitance at CMOS pins  
pF  
Input (CMOS) signal low voltage  
Input (CMOS) signal high voltage  
Refclk input low voltage  
Vdd  
VIH  
0.7  
Vdd  
VIL,R  
0.3  
VddI,R  
VddI,R  
VddI,PD  
VddI,PD  
V
VIH,R  
Refclk input high voltage  
0.7  
VIL,PD  
Input signal low voltage for PD inputs and StopB  
Input signal high voltage for PD inputs and StopB  
Input supply reference for Refclk  
Input supply reference for PD inputs  
0.3  
VIH,PD  
VDDI,R  
VDDI,PD  
NOTES:  
0.7  
1.3  
1.3  
3.3  
3.3  
V
1. Refclk jitter measured at V  
(nom)/2  
DDI,R  
2. Capacitance measured at Freq = 1MHz, DC bias = 0.9V, and V < 100mV  
AC  
3. If the input modulation is used, input modulation is allowed but not required.  
4. The amount of allowed spreading for any non-triangular modulation is determined by the induced downstream tracking skew, which cannot  
exceed the skew generated by the specified 0.6% triangular modulation. Typically, the amount of allowed non-triangular modulation is about  
0.5%.  
7
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct Rambus Clock Generator  
PCK2011  
Table 4. AC DEVICE CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Unit  
tCYCLE  
Clock cycle time  
2.5  
3.75  
60  
ns  
ps  
ps  
ps  
ps  
Cycle-to-cycle jitter at Clk/ClkB  
Total jitter over 2, 3, or 4 clock cycles  
tJ  
1
100  
tSTEP  
Phase Aligner phase step size (at Clk/ClkB)  
1
tERR,PD  
Phase Detector phase error for distributed loop Measured at PclkM-SynClkN (rising edges) (does not – 100 100  
include clock jitter)  
tERR,SSC  
DC  
PLL output Phase error when tracking SSC  
Output duty cycle over 10,000 cycles  
Output cycle-to-cycle duty cycle error  
Output rise and fall times (measured at 20% – 80% of output voltage)  
Difference between rise and fall times on a single device (20% – 80%)  
Output voltage during Clkstop (StopB = 0)  
Differential output crossing-point voltage  
Output voltage swing (p-p single-ended)  
Output HIGH voltage  
– 100 100  
ps  
tCYCLE  
ps  
ps  
ps  
V
40%  
60%  
50  
tDC,ERR  
tCR , tCF  
tCR,CF  
250  
500  
100  
2.0  
1.8  
0.6  
2.0  
V , stop  
X
1.1  
1.3  
0.4  
V
V
V
V
V
X
V
COS  
OH  
OL  
V
Output LOW voltage  
1.0  
12  
V
R
Output dynamic resistance (at pins)  
50  
OUT  
I
I
I
I
I
Output current during Hi-Z (S0 = 0, S1 = 1)  
Output current during ClkStop (StopB = 0)  
Current on powerdown (PwrDnB = 0)  
Current on ClkStop (StopB = 0)  
50  
µA  
µA  
µA  
mA  
mA  
OZ  
, stop  
500  
200  
50  
OZ  
powerdown  
ClkStop  
Current on normal state (StopB = 1)  
100  
normal  
NOTE:  
1. Output jitter specs measured at t  
= 2.5ns.  
CYCLE  
2. V  
= V – V  
COS  
OH OL  
3. R = V /I ; this is defined at the output pins.  
out  
O
O
Table 5. DRCG FUNCTIONS  
REFCLK  
pin2  
33  
MULT0  
MULT1  
PLL  
CLK/CLKB  
pins 20/18  
267  
MODE  
S0  
S1  
S2  
CLK  
CLKB  
pin 18  
PAclk  
PLLclk  
Refclk  
pin15  
pin14  
multiplier  
pin 24  
pin 23  
pin 13  
pin 20  
PAclk  
PLLclk  
Refclk  
1
0
1
0
0
1
1
1
1
0
1
0
8
6
Normal  
Bypass  
0
1
1
0
1
1
0
0
0
1
0
0
1
1
0
0
0
1
1
1
x
50  
300  
50  
8
400  
Test  
67  
4
267  
Vendor Test A  
Vendor Test B  
Reserved  
Output Test  
67  
6
400  
100  
8/3  
267  
Hi-Z  
Hi-Z  
8
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct RAMbus Clock Generator  
PCK2011  
SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm  
SOT340-1  
9
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct RAMbus Clock Generator  
PCK2011  
NOTES  
10  
1999 Jan 19  
Philips Semiconductors  
Preliminary specification  
Direct RAMbus Clock Generator  
PCK2011  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
print code  
Date of release: 05-96  
9397-750-04956  
Document order number:  
Philips  
Semiconductors  

PCK2011DL 相关器件

型号 制造商 描述 价格 文档
PCK2014A NXP CK98 100/133 MHz spread spectrum system clock generator 获取价格
PCK2014ADL NXP CK98 100/133 MHz spread spectrum system clock generator 获取价格
PCK2014ADL-T NXP IC 133 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO56, 7.50 MM, PLASTIC, SSOP-56, Clock Generator 获取价格
PCK2014DL NXP IC 133 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO56, 7.50 MM, PLASTIC, SSOP-56, Clock Generator 获取价格
PCK2014DL PHILIPS Clock Generator, CMOS, PDSO56, 获取价格
PCK2014DL-T NXP IC 133 MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO56, 7.50 MM, PLASTIC, SSOP-56, Clock Generator 获取价格
PCK2020 NXP CK00 100/133MHz spread spectrum differential system clock generator 获取价格
PCK2020DL NXP CK00 100/133MHz spread spectrum differential system clock generator 获取价格
PCK2020DL,512 NXP PCK2020DL 获取价格
PCK2020DL,518 NXP PCK2020DL 获取价格

PCK2011DL 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6