PE9701 [PSEMI]

3000 MHz UltraCMOS? Integer-N PLL Rad Hard for Space Applications; 3000兆赫的UltraCMOS ?整数N分频PLL抗辐射的空间应用
PE9701
型号: PE9701
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3000 MHz UltraCMOS? Integer-N PLL Rad Hard for Space Applications
3000兆赫的UltraCMOS ?整数N分频PLL抗辐射的空间应用

文件: 总13页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE9701  
3000 MHz UltraCMOS™ Integer-N PLL  
Rad Hard for Space Applications  
Product Description  
Peregrine’s PE9701 is a high-performance integer-N PLL  
capable of frequency synthesis up to 3.0 GHz. The device  
is designed for superior phase noise performance while  
providing an order of magnitude reduction in current  
consumption, when compared with existing commercial  
space PLLs.  
Features  
3.0 GHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector with charge  
pump  
The PE9701 features a 10/11 dual modulus prescaler,  
counters, and a phase comparator as shown in Figure 1.  
Counter values are programmable through either a serial or  
parallel interface and can also be directly hard wired.  
Serial, parallel or hardwired  
programmable  
Ultra-low phase noise  
SEU < 10-9 errors / bit-day  
100 Krad (Si) total dose  
44-lead CQFJ  
The PE9701 is optimized for commercial space  
applications. Single Event Latch up (SEL) is physically  
impossible and Single Event Upset (SEU) is better than  
10-9 errors per bit / day. It is manufactured on Peregrine’s  
UltraCMOS™ process, a patented variation of silicon-on-  
insulator (SOI) technology on a sapphire substrate, offering  
excellent RF performance and intrinsic radiation tolerance.  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10/11  
Main  
Counter  
fp  
13  
D(7:0)  
Primary  
20-bit  
Secon-  
dary  
20-bit  
Latch  
8
PD_U  
Charge  
Pump  
Phase  
20  
20  
20  
Sdata  
CP  
Latch  
Detector  
20  
16  
PD_D  
Pre_en  
M(6:0)  
A(3:0)  
R(3:0)  
6
6
fr  
R Counter  
fc  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 13  
PE9701  
Product Specification  
Figure 2. Pin Configurations (Top View)  
Figure 3. Package Type  
44-lead CQFJ  
6
5
4
3
2
1
44 43 42 41 40  
D0, M0  
D1, M1  
fc  
V
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD_fc  
D2, M2  
N/C  
CP  
9
D3, M3  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
Cext  
VDD  
Dout  
VDD_fp  
fp  
VDD  
S_WR, D4, M4  
Sdata, D5, M5  
Sclk, D6, M6  
FSELS, D7, Pre_en  
GND  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing  
recommended.  
1
VDD  
ALL  
(Note 1)  
2
3
4
5
6
R0  
Direct  
Direct  
Direct  
Direct  
ALL  
Input  
R Counter bit0 (LSB).  
R Counter bit1.  
R1  
Input  
R2  
Input  
R Counter bit2.  
R3  
Input  
R Counter bit3.  
GND  
D0  
(Note 1)  
Input  
Ground.  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
ALL  
Parallel data bus bit0 (LSB).  
M Counter bit0 (LSB).  
Parallel data bus bit1.  
M Counter bit1.  
7
8
M0  
D1  
Input  
Input  
M1  
D2  
Input  
9
Input  
Parallel data bus bit2.  
M Counter bit2.  
M2  
D3  
Input  
10  
Input  
Parallel data bus bit3.  
M Counter bit3.  
M3  
VDD  
VDD  
Input  
11  
12  
(Note 1)  
(Note 1)  
Same as pin 1.  
ALL  
Same as pin 1.  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked.  
Primary register data is transferred to the secondary register on S_WR or Hop_WR  
rising edge.  
S_WR  
Serial  
Input  
13  
D4  
M4  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit4  
M Counter bit4  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 2 of 13  
PE9701  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Sdata  
Serial  
Input  
Binary serial data input. Input data entered MSB first.  
D5  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Parallel data bus bit5.  
M Counter bit5.  
14  
15  
16  
M5  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of Sclk.  
Sclk  
D6  
Serial  
Parallel  
Direct  
Parallel data bus bit6.  
M Counter bit6.  
M6  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for  
programming of internal counters while in Serial Interface Mode.  
FSELS  
D7  
Serial  
Parallel  
Direct  
Parallel data bus bit7 (MSB).  
Pre_en  
GND  
FSELP  
A0  
Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.  
Ground.  
17  
18  
ALL  
Selects contents of primary register (FSELP=1) or secondary register (FSELP=0) for  
programming of internal counters while in Parallel Interface Mode.  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
(Note 1)  
Input  
Input  
Input  
Input  
A Counter bit0 (LSB).  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially  
clocked into the enhancement register on the rising edge of Sclk.  
Enhancement register write. D[7:0] are latched into the enhancement register on the  
rising edge of E_WR.  
Serial  
E_WR  
19  
Parallel  
Direct  
A1  
A Counter bit1.  
M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising  
edge of M2_WR.  
M2_WR  
A2  
Parallel  
Direct  
20  
21  
A Counter bit2.  
Selects serial bus interface mode (Bmode=0, Smode=1) or Parallel Interface Mode  
(Bmode=0, Smode=0).  
Smode  
A3  
Serial, Parallel  
Direct  
A Counter bit3 (MSB).  
Bmode  
VDD  
Selects direct interface mode (Bmode=1).  
Same as pin 1.  
22  
23  
24  
25  
26  
27  
ALL  
ALL  
M1 write. D[7:0] are latched into the primary register (Pre_en, M[6:0]) on the rising  
edge of M1_WR.  
A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge  
of A_WR.  
Hop write. The contents of the primary register are latched into the secondary  
register on the rising edge of Hop_WR.  
M1_WR  
A_WR  
Hop_WR  
Fin  
Parallel  
Parallel  
Serial, Parallel  
ALL  
Prescaler input from the VCO. 3.0 GHz max frequency.  
Prescaler complementary input. A bypass capacitor in series with a 51 resistor  
should be placed as close as possible to this pin and be connected directly to the  
ground plane.  
Fin  
28  
ALL  
Input  
29  
30  
GND  
fp  
ALL  
ALL  
Ground.  
Monitor pin for main divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 31.  
Output  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 13  
PE9701  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
31  
32  
33  
VDD-fp  
Dout  
VDD  
ALL  
(Note 1)  
VDD for fp  
Data Out. The MSEL signal and the raw prescaler output are available on Dout  
through enhancement register programming.  
Serial, Parallel  
ALL  
Output  
(Note 1)  
Same as pin 1.  
Logical “OR” of PD_U and PD_D terminated through an on chip, 2 kseries resistor.  
Connecting Cext to an external capacitor will low pass filter the input to the inverting  
amplifier used for driving LD.  
34  
Cext  
ALL  
Output  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VDD  
CP  
NC  
VDD-fc  
fc  
ALL  
(Note 1)  
Output  
Same as pin 1.  
Charge pump current is sourced for “up” when fc leads fp and sinked for “down”  
when fc lags fp.  
ALL  
ALL  
No connection.  
VDD for fc  
ALL  
(Note 1)  
Output  
Monitor pin for reference divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 38.  
ALL  
GND  
GND  
fr  
ALL  
Ground.  
ALL  
Ground.  
ALL  
Input  
Reference frequency input.  
Output,  
OD  
Lock detect and open drain logical inversion of Cext. When the loop is in lock, LD is  
high impedance, otherwise LD is a logic low (“0”).  
LD  
ALL  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
Enh  
Serial, Parallel  
Input  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
VDD pins 31 and 38 are used to enable test modes and should be left floating.  
Note 2: All digital input pins have 70 kpull-down resistors to ground.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 4 of 13  
PE9701  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level  
Units  
Symbol  
Parameter/Conditions Min Max Units  
ESD voltage (Human Body  
Model) – Note 1  
VDD  
VI  
Supply voltage  
-0.3  
-0.3  
-10  
-10  
4.0  
V
V
VESD  
1000  
V
VDD  
+ 0.3  
Voltage on any input  
DC into any input  
DC into any output  
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
II  
+10  
+10  
mA  
mA  
Electrostatic Discharge (ESD) Precautions  
IO  
Storage temperature  
range  
When handling this UltraCMOS™ device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the specified rating in Table 4.  
Tstg  
-65  
150  
°C  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
Supply voltage  
2.85  
-40  
3.15  
85  
V
Latch-Up Avoidance  
Operating ambient  
temperature range  
TA  
°C  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 5. DC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
IDD  
Operational supply current;  
Prescaler disabled  
VDD = 2.85 to 3.15 V  
10  
24  
mA  
mA  
Prescaler enabled  
31  
Digital Inputs: All except fr, Fin, Fin  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+70  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-1  
Reference Divider input: fr  
IIHR High level input current  
IILR  
VIH = VDD = 3.15 V  
+100  
+70  
0.4  
µA  
µA  
Low level input current  
VIL = 0, VDD = 3.15 V  
-100  
R0 Input: R0  
IIHRO  
High level input current  
Low level input current  
VIH = VDD = 3.15 V  
µA  
µA  
IILRO  
VIL = 0, VDD = 3.15 V  
-5  
Counter and phase detector outputs: fc, fp.  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
VDD - 0.4  
Lock detect outputs: Cext, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
Iout = 100 µA  
Iout = -100 µA  
Iout = 6 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, Cext  
Output voltage LOW, LD  
Charge Pump output: CP  
ICP - Source  
ICP – Sink  
ICPL  
Drive current  
VCP = VDD / 2  
-2.6  
1.4  
-1  
-2  
2
-1.4  
2.6  
1
mA  
mA  
µA  
%
Drive current  
VCP = VDD / 2  
Leakage current  
Sink vs. source mismatch  
1.0 V < VCP < VDD – 1.0 V  
ICP – Source  
vs. ICP Sink  
VCP = VDD / 2,  
TA = 25° C  
25  
ICP vs. VCP  
Output current magnitude variation vs. voltage  
V < VCP < VDD – 1.0 V  
TA = 25° C  
25  
%
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 13  
PE9701  
Product Specification  
Table 6. AC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 4, 5, 6)  
fClk  
tClkH  
tClkL  
Serial data clock frequency  
Serial clock HIGH time  
Serial clock LOW time  
(Note 1)  
10  
MHz  
ns  
30  
30  
ns  
Sdata hold time after Sclk rising edge, D[7:0] set-up time to  
M1_WR, M2_WR, A_WR, E_WR rising edge  
tDSU  
10  
ns  
Sdata hold time after Sclk rising edge, D[7:0] hold time to  
M1_WR, M2_WR, A_WR, E_WR rising edge  
tDHLD  
tPW  
tCWR  
tCE  
10  
30  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width  
Sclk rising edge to S_WR rising edge. S_WR, M1_WR,  
M2_WR, A_WR falling edge to Hop_WR rising edge  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge. Hop_WR falling  
edge to S_WR, M1_WR, M2_WR, A_WR rising edge  
tWRC  
tEC  
E_WR transition to Sclk rising edge  
ns  
ns  
tMDO  
MSEL data out delay after Fin rising edge  
CL = 12 pf  
8
Main Divider (Prescaler Enabled)  
Fin  
Operating frequency  
Input level range  
500  
-5  
3000  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
Operating frequency  
Input level range  
50  
-5  
300  
5
MHz  
dBm  
PFin  
Reference Divider  
fr  
Operating frequency  
(Note 3)  
100  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single-ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
20  
MHz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 Vp-p  
.
Note 3: Parameter is guaranteed through characterization only, and is not tested.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 6 of 13  
PE9701  
Product Specification  
Functional Description  
The PE9701 consists of a prescaler, counters, a  
phase detector, a charge pump, and control logic.  
The dual modulus prescaler divides the VCO  
frequency by either 10 or 11, depending on the  
value of the modulus select. Counters “R” and  
“M” divide the reference and prescaler output,  
respectively, by integer values stored in a 20-bit  
register. An additional counter (“A”) is used in the  
modulus select logic. The phase-frequency  
detector generates up and down frequency control  
signals. The control logic includes a selectable  
chip interface. Data can be written via serial bus,  
parallel bus, or hardwired directly to the pins.  
There are also various operational and test modes  
and a lock detect output.  
Figure 4. Functional Block Diagram  
R Counter  
fr  
fc  
(6-bit)  
PD_U  
R(5:0)  
M(8:0)  
A(3:0)  
D(7:0)  
Sdata  
Control  
Pins  
Phase  
Control  
Logic  
Charge  
PD_D  
CP  
Detector  
Pump  
LD  
Cext  
2 k  
Modulus  
Select  
Fin  
Fin  
10/11  
M Counter  
(9-bit)  
fp  
Prescaler  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 13  
PE9701  
Product Specification  
Main Counter Chain  
Reference Counter  
The reference counter chain divides the  
reference frequency, fr, down to the phase  
detector comparison frequency, fc.  
Normal Operating Mode  
The main counter chain divides the RF input  
frequency, Fin, by an integer derived from the  
user-defined values in the “M” and “A” counters. It  
is composed of the 10/11 dual modulus prescaler,  
modulus select logic, and 9-bit M counter. Setting  
Pre_en “low” enables the 10/11 prescaler. Setting  
Pre_en “high” allows Fin to bypass the prescaler  
and powers down the prescaler.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the  
following equation:  
fc = fr / (R + 1)  
(4)  
where 0 R 63  
The output from the main counter chain, fp, is  
related to the VCO frequency, Fin, by the following  
equation:  
Note that programming R with “0” will pass the  
reference frequency, fr, directly to the phase  
detector.  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
In Direct Interface Mode, R Counter inputs R4  
and R5 are internally forced low (“0”). In this  
mode, the R value is limited to 0 R 15.  
When the loop is locked, Fin is related to the  
reference frequency, fr, by the following equation:  
Register Programming  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
Parallel Interface Mode  
where A M + 1, 1 M 511  
Parallel Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “low”.  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. Programming the M  
Counter with the minimum value of “1” will result in  
a minimum M Counter divide ratio of “2”.  
Parallel input data, D[7:0], is latched in a parallel  
fashion into one of three 8-bit primary register  
sections on the rising edge of M1_WR, M2_WR,  
or A_WR per the mapping shown in Table 7 on  
page 9. The contents of the primary register are  
transferred into a secondary register on the  
rising edge of Hop_WR according to the timing  
diagram shown in Figure 5. Data is transferred  
to the counters as shown in Table 7 on page 9.  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
Prescaler Bypass Mode  
The secondary register acts as a buffer to allow  
rapid changes to the VCO frequency. This  
double buffering for “ping-pong” counter control  
is programmed via the FSELP input. When  
FSELP is “high”, the primary register contents  
set the counter inputs. When FSELP is “low”,  
the secondary register contents are utilized.  
Setting Pre_en “high” allows Fin to bypass and  
power down the prescaler. In this mode, the  
10/11 prescaler and A register are not active, and  
the input VCO frequency is divided by the M  
counter directly. The following equation relates Fin  
to the reference frequency, fr:  
Fin = (M + 1) x (fr / (R+1)) )  
(3)  
Parallel input data, D[7:0], is latched into the  
enhancement register on the rising edge of  
E_WR according to the timing diagram shown in  
Figure 5. This data provides control bits as  
shown in Table 8 on page 9 with bit functionality  
enabled by asserting the Enh input “low”  
where 1 M 511  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 8 of 13  
PE9701  
Product Specification  
Serial Interface Mode  
Serial Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “high”.  
While the E_WR input is “low” and the S_WR  
input is “low”, serial input data (Sdata input), B0 to  
B19, is clocked serially into the primary register on  
the rising edge of Sclk, MSB (B0) first. The  
contents from the primary register are transferred  
into the secondary register on the rising edge of  
either S_WR or Hop_WR according to the timing  
diagram shown in Figure 6. Data is transferred to  
the counters as shown in Table 7 on page 9.  
B7, is clocked serially into the enhancement  
register on the rising edge of Sclk, MSB (B0) first.  
The enhancement register is double buffered to  
prevent inadvertent control changes during serial  
loading, with buffer capture of the serially-entered  
data performed on the falling edge of E_WR  
according to the timing diagram shown in Figure  
6. After the falling edge of E_WR, the data  
provides control bits as shown in Table 8 with bit  
functionality enabled by asserting the Enh input  
“low”.  
Direct Interface Mode  
Direct Interface Mode is selected by setting the  
Bmode input “high”.  
The double buffering provided by the primary and  
secondary registers allows for “ping-pong” counter  
control using the FSELS input. When FSELS is  
“high”, the primary register contents set the  
Counter control bits are set directly at the pins as  
shown in Table 7. In Direct Interface Mode, main  
counter inputs M7 and M8, and R Counter inputs  
R4 and R5 are internally forced low (“0”).  
counter inputs.  
When FSELS is “low”, the  
secondary register contents are utilized.  
While the E_WR input is “high” and the S_WR  
input is “low”, serial input data (Sdata input), B0 to  
Table 7. Primary Register Programming  
Interface  
Mode  
Smode  
R5  
R4  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Enh  
Bmode  
Pre_en  
M2_WR rising edge load  
M1_WR rising edge load  
A_WR rising edge load  
Parallel  
1
1
1
0
0
1
0
1
D3  
B0  
D2  
B1  
D1  
B2  
D0  
B3  
D7  
B4  
D6  
B5  
D5  
B6  
D4  
B7  
D3  
B8  
D2  
B9  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Serial*  
Direct  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18 B19  
X
0
0
0
0
Pre_en M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
Prescaler  
output  
Smode  
Reserved  
Reserved  
Reserved  
fc, fp OE  
Enh  
Bmode  
E_WR rising edge load  
Parallel  
Serial*  
0
0
0
0
1
D7  
B0  
D6  
B1  
D5  
B2  
D4  
D3  
D2  
B5  
D1  
B6  
D0  
B7  
0
B3  
B4  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 13  
PE9701  
Product Specification  
Figure 5. Parallel Interface Mode Timing Diagram  
tDSU  
tDHLD  
[7: 0]  
D
tPW  
tCWR  
tWRC  
M1_WR  
M2_WR  
A_WR  
tPW  
E_WR  
Hop_WR  
Figure 6. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 10 of 13  
PE9701  
Product Specification  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Reserved**  
Reserved**  
Reserved**  
Power down  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming as directed by the Bmode and  
Bit 4  
Counter load  
Smode inputs.  
Bit 5  
Bit 6  
Bit 7  
MSEL output  
Prescaler output  
fp, fc OE  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the raw internal prescaler output (fmain) onto the Dout output.  
fp, fc outputs disabled.  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U,  
and PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc),  
PD_D pulses “high”. If the divided reference leads  
the divided VCO in phase or frequency (fr leads  
fp), PD_U pulses “high”. The width of either pulse  
is directly proportional to phase offset between the  
two input signals, fp and fc.  
pin CP. The current pulses from pin CP are low  
pass filtered externally and then connected to the  
VCO tune voltage. PD_U pulses result in a  
current source, which increases the VCO  
frequency; PD_D pulses result in a current sink,  
which decreases VCO frequency.  
A lock detect output, LD is also provided, via the  
pin Cext. Cext is the logical “NAND” of PD_U and  
PD_D waveforms, which is driven through a series  
2k resistor. Connecting Cext to an external  
shunt capacitor provides integration. Cext also  
drives the input of an internal inverting comparator  
with an open drain output. Thus LD is an “AND”  
function of PD_U and PD_D. See Figure 4 for a  
schematic of this circuit.  
The signals from the phase detector couple  
directly to a charge pump. PD_U controls a  
current source at pin CP with constant amplitude  
and pulse duration approximately the same as  
PD_U. PD_D similarly drives a current sink at  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 13  
PE9701  
Product Specification  
Figure 9. Package Drawing  
44-lead CQFJ  
All dimensions are in mils  
Table 10. Ordering Information  
Order Code  
9701-01  
Part Marking  
PE9701 ES  
PE9701  
Description  
Package  
Shipping Method  
40 units / Tray  
40 units / Tray  
1 / Box  
Engineering Samples  
44-pin CQFJ  
44-pin CQFJ  
9701-11  
Flight Units  
9701-00  
PE9701 EK  
Evaluation Kit  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0035-02 UltraCMOS™ RFIC Solutions  
Page 12 of 13  
PE9701  
Product Specification  
Sales Offices  
The Americas  
North Asia Pacific  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor K.K.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Tel: 858-731-9400  
Teikoku Hotel Tower 10B-6  
1-1-1 Uchisaiwai-cho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Fax: 858-731-9499  
Tel: +81-3-3502-5211  
Fax: +81-3-3502-5213  
Europe  
Peregrine Semiconductor, Korea  
#B-2402, Kolon Tripolis, #210  
Geumgok-dong, Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-480 S. Korea  
Tel: +82-31-728-4300  
Peregrine Semiconductor Europe  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F-92380 Garches, France  
Tel: +33-1-47-41-91-73  
Fax : +33-1-47-41-91-73  
Fax: +82-31-728-4305  
South Asia Pacific  
Space and Defense Products  
Americas:  
Peregrine Semiconductor, China  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Tel: 858-731-9453  
Fax: +86-21-5836-7652  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence Cedex 3, France  
Tel: +33(0) 4 4239 3361  
Fax: +33(0) 4 4239 7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS and HaRP are trademarks of Peregrine  
Semiconductor Corp.  
Document No. 70-0035-02 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 13 of 13  

相关型号:

PE9701EK

3000 MHz UltraCMOS? Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9701ES

3000 MHz UltraCMOS? Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9702

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9702

SMA Male to FME Plug Adapter
PASTERNACK

PE97022

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PSEMI

PE97022-00

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PSEMI

PE97022-01

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PSEMI

PE97022-11

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PSEMI

PE97022-99

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9702EK

3.0 GHz Integer-N PLL for Rad Hard Applications
PSEMI

PE9702ES

3.0 GHz Integer-N PLL for Rad Hard Applications
PSEMI

PE9702_06

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI