PE9702ES [PSEMI]

3.0 GHz Integer-N PLL for Rad Hard Applications; 3.0 GHz的整数N分频PLL,抗辐射应用
PE9702ES
型号: PE9702ES
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3.0 GHz Integer-N PLL for Rad Hard Applications
3.0 GHz的整数N分频PLL,抗辐射应用

文件: 总14页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
PE9702  
3.0 GHz Integer-N PLL for Rad  
Product Description  
Hard Applications  
Peregrine’s PE9702 is a high-performance integer-N PLL  
capable of frequency synthesis up to 3.0 GHz. The  
device is designed for superior phase noise performance  
while providing an order of magnitude reduction in  
current consumption, when compared with existing  
commercial space PLLs.  
Features  
3.0 GHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector  
Serial, parallel or hardwired  
programmable  
The PE9702 features a 10/11 dual modulus prescaler,  
counters and a phase comparator as shown in Figure 1.  
Counter values are programmable through either a serial  
or parallel interface and can also be directly hard wired.  
Ultra-low phase noise  
SEU < 10-9 errors / bit-day  
100 Krad (Si) total dose  
44-lead CQFJ  
The PE9702 is optimized for commercial space  
applications. Single Event Latch up (SEL) is physically  
impossible and Single Event Upset (SEU) is better than  
10-9 errors per bit / day. Fabricated in Peregrine’s  
patented UTSi® (Ultra Thin Silicon) CMOS technology,  
the PE9702 offers excellent RF performance and intrinsic  
radiation tolerance.  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10 / 11  
Main  
fp  
Counter  
13  
D(7:0)  
8
Sdata  
Primary  
20-bit  
Secon-  
dary  
PD_U  
Phase  
20  
20  
20  
Latch  
20-bit  
Latch  
20  
16  
Detector  
PD_D  
Pre_en  
M(6:0)  
A(3:0)  
R(3:0)  
6
6
fr  
R Counter  
fc  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 1 of 15  
PE9702  
Advance Information  
Figure 2. Pin Configuration  
6
5
4
3
2
1
44 43 42 41 40  
D0, M0  
D1, M1  
fc  
V
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD_fc  
D2, M2  
PD_U  
PD_D  
VDD  
9
D3, M3  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
Cext  
S_WR, D4, M4  
Sdata, D5, M5  
Sclk, D6, M6  
FSELS, D7, Pre_en  
GND  
VDD  
Dout  
VDD_fp  
fp  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Interface Mode  
ALL  
Type  
(Note 1)  
Input  
Description  
1
VDD  
R0  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing recommended.  
2
3
4
5
6
Direct  
Direct  
Direct  
Direct  
ALL  
R Counter bit0 (LSB).  
R Counter bit1.  
R1  
Input  
R2  
Input  
R Counter bit2.  
R3  
Input  
R Counter bit3.  
GND  
D0  
(Note 1)  
Input  
Ground.  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Direct  
ALL  
Parallel data bus bit0 (LSB).  
M Counter bit0 (LSB).  
Parallel data bus bit1.  
M Counter bit1.  
7
8
M0  
D1  
Input  
Input  
M1  
D2  
Input  
9
Input  
Parallel data bus bit2.  
M Counter bit2.  
M2  
D3  
Input  
10  
Input  
Parallel data bus bit3.  
M Counter bit3.  
M3  
VDD  
VDD  
Input  
11  
12  
(Note 1)  
(Note 1)  
Same as pin 1.  
ALL  
Same as pin 1.  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked. Primary  
register data is transferred to the secondary register on S_WR or Hop_WR rising edge.  
13  
S_WR  
Serial  
Input  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 2 of 15  
PE9702  
Advance Information  
Pin No.  
Pin Name  
Interface Mode  
Parallel  
Type  
Input  
Description  
D4  
Parallel data bus bit4  
M Counter bit4  
M4  
Direct  
Input  
Input  
Input  
Input  
Sdata  
D5  
Serial  
Binary serial data input. Input data entered MSB first.  
Parallel data bus bit5.  
14  
Parallel  
M5  
Direct  
M Counter bit5.  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of Sclk.  
Sclk  
Serial  
Input  
15  
16  
D6  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit6.  
M Counter bit6.  
M6  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for  
programming of internal counters while in Serial Interface Mode.  
FSELS  
Serial  
Input  
D7  
Parallel  
Direct  
ALL  
Input  
Input  
Parallel data bus bit7 (MSB).  
Pre_en  
GND  
Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.  
Ground.  
17  
18  
Selects contents of primary register (FSELP=1) or secondary register (FSELP=0) for  
programming of internal counters while in Parallel Interface Mode.  
FSELP  
A0  
Parallel  
Direct  
Serial  
Input  
Input  
Input  
A Counter bit0 (LSB).  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially  
clocked into the enhancement register on the rising edge of Sclk.  
E_WR  
19  
Enhancement register write. D[7:0] are latched into the enhancement register on the  
rising edge of E_WR.  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
A1  
A Counter bit1.  
M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising edge  
of M2_WR.  
M2_WR  
A2  
Parallel  
Direct  
20  
21  
A Counter bit2.  
Selects serial bus interface mode (Bmode=0, Smode=1) or Parallel Interface Mode  
(Bmode=0, Smode=0).  
Smode  
Serial, Parallel  
A3  
Direct  
ALL  
Input  
A Counter bit3 (MSB).  
22  
23  
Bmode  
VDD  
Input  
Selects direct interface mode (Bmode=1).  
Same as pin 1.  
ALL  
(Note 1)  
M1 write. D[7:0] are latched into the primary register (Pre_en, M[6:0]) on the rising  
24  
25  
M1_WR  
A_WR  
Parallel  
Parallel  
Input  
Input  
edge of M1_WR.  
A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge of  
A_WR.  
Hop write. The contents of the primary register are latched into the secondary register  
on the rising edge of Hop_WR.  
26  
27  
Hop_WR  
Fin  
Serial, Parallel  
ALL  
Input  
Input  
Prescaler input from the VCO. 3.0 GHz max frequency.  
Prescaler complementary input. A bypass capacitor in series with a 51 resistor  
should be placed as close as possible to this pin and be connected directly to the  
ground plane.  
28  
Fin  
ALL  
Input  
29  
30  
GND  
fp  
ALL  
ALL  
Ground.  
Monitor pin for main divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 31.  
Output  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 3 of 15  
PE9702  
Advance Information  
Pin No.  
31  
Pin Name  
Interface Mode  
ALL  
Type  
Description  
VDD-fp  
(Note 1)  
VDD for fp. Can be left floating or connected to GND to disable the fp output.  
Data Out. The MSEL signal and the raw prescaler output are available on Dout through  
enhancement register programming.  
32  
33  
Dout  
VDD  
Serial, Parallel  
ALL  
Output  
(Note 1)  
Same as pin 1.  
Logical “NAND” of PD_U and PD_D terminated through an on chip, 2 kseries  
resistor. Connecting Cext to an external capacitor will low pass filter the input to the  
inverting amplifier used for driving LD.  
34  
Cext  
ALL  
Output  
35  
36  
37  
38  
VDD  
ALL  
ALL  
ALL  
ALL  
(Note 1)  
Output  
Same as pin 1.  
PD_D  
PD_U  
VDD-fc  
PD_D is pulse down when fp leads fc.  
PD_U is pulse down when fc leads fp.  
(Note 1)  
Output  
VDD for fc. Can be left floating or connected to GND to disable the fc output.  
Monitor pin for reference divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 38.  
39  
fc  
ALL  
40  
41  
42  
GND  
GND  
fr  
ALL  
ALL  
ALL  
Ground.  
Ground.  
Input  
Reference frequency input.  
Output,  
OD  
Lock detect and open drain logical inversion of CEXT. When the loop is in lock, LD is  
high impedance, otherwise LD is a logic low (“0”).  
43  
44  
LD  
ALL  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
Enh  
Serial, Parallel  
Input  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
VDD pins 31 and 38 are used to enable test modes and should be left floating.  
Note 2: All digital input pins have 70 kpull-down resistors to ground.  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 4 of 15  
PE9702  
Advance Information  
Table 2. Absolute Maximum Ratings  
Electrostatic Discharge (ESD) Precautions  
When handling this UTSi device, observe the same  
precautions that you would use with other ESD-  
sensitive devices. Although this device contains  
circuitry to protect it from damage due to ESD,  
precautions should be taken to avoid exceeding the  
rating specified in Table 4.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
VI  
Supply voltage  
Voltage on any input  
-0.3  
-0.3  
4.0  
V
V
VDD  
+ 0.3  
II  
IO  
Tstg  
DC into any input  
DC into any output  
Storage temperature  
range  
-10  
-10  
-65  
+10  
+10  
150  
mA  
mA  
°C  
Latch-Up Avoidance  
Unlike conventional CMOS devices, UTSi CMOS  
Table 3. Operating Ratings  
devices are immune to latch-up.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
TA  
Supply voltage  
Operating ambient  
temperature range  
2.85  
-40  
3.15  
85  
V
°C  
Table 4. ESD Ratings  
Symbol  
VESD  
Parameter/Conditions  
ESD voltage (Human Body  
Model) – Note 1  
Level Units  
1000  
V
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 5 of 15  
PE9702  
Advance Information  
Table 5. DC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Operational supply current;  
Conditions  
VDD = 2.85 to 3.15 V  
Min  
Typ  
Max  
Units  
IDD  
Prescaler disabled  
Prescaler enabled  
10  
24  
mA  
mA  
31  
Digital Inputs: All except fr, Fin, Fin  
VIH  
VIL  
IIH  
High level input voltage  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
VIL = 0, VDD = 3.15 V  
0.7 x VDD  
V
V
Low level input voltage  
High level input current  
Low level input current  
0.3 x VDD  
+70  
µA  
µA  
IIL  
-1  
Reference Divider input: fr  
IIHR  
High level input current  
VIH = VDD = 3.15 V  
+100  
+70  
0.4  
µA  
µA  
IILR  
R0 Input: R0  
IIHR  
Low level input current  
VIL = 0, VDD = 3.15 V  
-100  
High level input current  
Low level input current  
VIH = VDD = 3.15 V  
µA  
µA  
IILR  
VIL = 0, VDD = 3.15 V  
-5  
Counter and phase detector outputs: fc, fp.  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
VDD - 0.4  
Lock detect outputs: Cext, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
Output voltage HIGH, Cext  
Output voltage LOW, LD  
Iout = 100 mA  
Iout = -100 mA  
Iout = 6 mA  
0.4  
0.4  
V
V
V
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 6 of 15  
PE9702  
Advance Information  
Table 6. AC Characteristics  
VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
(Note 1)  
Min  
Max  
Units  
Control Interface and Latches (see Figures 3, 4, 5)  
fClk  
tClkH  
tClkL  
tDSU  
Serial data clock frequency  
Serial clock HIGH time  
Serial clock LOW time  
Sdata set-up time after Sclk rising edge, D[7:0] set-up time  
to M1_WR, M2_WR, A_WR, E_WR rising edge  
10  
MHz  
ns  
ns  
30  
30  
10  
ns  
tDHLD  
Sdata hold time after Sclk rising edge, D[7:0] hold time to  
M1_WR, M2_WR, A_WR, E_WR rising edge  
10  
ns  
tPW  
tCWR  
S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width  
Sclk rising edge to S_WR rising edge. S_WR, M1_WR,  
M2_WR, A_WR falling edge to Hop_WR rising edge  
30  
30  
ns  
ns  
tCE  
tWRC  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge. Hop_WR falling  
edge to S_WR, M1_WR, M2_WR, A_WR rising edge  
30  
30  
ns  
ns  
tEC  
tMDO  
E_WR transition to Sclk rising edge  
MSEL data out delay after Fin rising edge  
30  
ns  
ns  
CL = 12 pf  
8
Main Divider (Including Prescaler)  
Fin  
PFin  
Operating frequency  
Input level range  
500  
-5  
3000  
5
MHz  
dBm  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
PFin  
Operating frequency  
Input level range  
50  
-5  
300  
5
MHz  
dBm  
Reference Divider  
fr  
Pfr  
Operating frequency  
Reference input power (Note 2)  
(Note 3)  
Single-ended input  
100  
MHz  
dBm  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
20  
MHz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p  
.
Note 3: Parameter is guaranteed through characterization only and is not tested.  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 7 of 15  
PE9702  
Advance Information  
Functional Description  
The PE9702 consists of a prescaler, counters, a  
phase detector, and control logic. The dual  
modulus prescaler divides the VCO frequency by  
either 10 or 11, depending on the value of the  
modulus select. Counters “R” and “M” divide the  
reference and prescaler output, respectively, by  
integer values stored in a 20-bit register. An  
additional counter (“A”) is used in the modulus  
select logic. The phase-frequency detector  
generates up and down frequency control signals.  
The control logic includes a selectable chip  
interface. Data can be written via serial bus,  
parallel bus, or hardwired directly to the pins. There  
are also various operational and test modes and a  
lock detect output.  
Figure 3. Functional Block Diagram  
R Counter  
fr  
fc  
(6-bit)  
D(7:0)  
Sdata  
R(5:0)  
M(8:0)  
A(3:0)  
PD_U  
PD_D  
Phase  
Control  
Logic  
Detector  
Control  
Pins  
LD  
Cext  
Modulus  
Select  
Fin  
Fin  
10/11  
M Counter  
(9-bit)  
fp  
Prescaler  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 8 of 15  
PE9702  
Advance Information  
Main Counter Chain  
Reference Counter  
Normal Operating Mode  
The reference counter chain divides the reference  
frequency, fr, down to the phase detector  
comparison frequency, fc.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the following  
equation:  
The main counter chain divides the RF input  
frequency, Fin, by an integer derived from the user-  
defined values in the “M” and “A” counters. It is  
composed of the 10/11 dual modulus prescaler,  
modulus select logic, and 9-bit M counter. Setting  
Pre_en “low” enables the 10/11 prescaler. Setting  
Pre_en “high” allows Fin to bypass the prescaler  
and powers down the prescaler.  
fc = fr / (R + 1)  
(4)  
where 0 R 63  
The output from the main counter chain, fp, is  
related to the VCO frequency, Fin, by the following  
equation:  
Note that programming R with “0” will pass the  
reference frequency, fr, directly to the phase  
detector.  
In Direct Interface Mode, R Counter inputs R4 and  
R5 are internally forced low (“0”). In this mode, the  
R value is limited to 0 R 15.  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
When the loop is locked, Fin is related to the  
reference frequency, fr, by the following equation:  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
Register Programming  
Parallel Interface Mode  
where A M + 1, 1 M 511  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. Programming the M  
Counter with the minimum value of “1” will result in  
a minimum M Counter divide ratio of “2”.  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
Parallel Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “low”.  
Parallel input data, D[7:0], are latched in a parallel  
fashion into one of three 8-bit primary register  
sections on the rising edge of M1_WR, M2_WR, or  
A_WR per the mapping shown in Table 7 on page  
10. The contents of the primary register are  
transferred into a secondary register on the rising  
edge of Hop_WR according to the timing diagram  
shown in Figure 5. Data is transferred to the  
counters as shown in Table 7 on page 10.  
Prescaler Bypass Mode  
Setting Pre_en “high” allows Fin to bypass and  
power down the prescaler. In this mode, the 10/11  
prescaler and A register are not active, and the  
input VCO frequency is divided by the M counter  
directly. The following equation relates Fin to the  
reference frequency, fr:  
The secondary register acts as a buffer to allow  
rapid changes to the VCO frequency. This double  
buffering for “ping-pong” counter control is  
programmed via the FSELP input. When FSELP is  
“high”, the primary register contents set the counter  
inputs. When FSELP is “low”, the secondary  
register contents are utilized.  
Parallel input data, D[7:0], are latched into the  
enhancement register on the rising edge of E_WR  
according to the timing diagram shown in Figure 4.  
This data provides control bits as shown in Table 8  
on page 10 with bit functionality enabled by  
asserting the Enh input “low”.  
Fin = (M + 1) x (fr / (R+1)) )  
(3)  
where 1 M 511  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 9 of 15  
PE9702  
Advance Information  
Serial Interface Mode  
clocked serially into the enhancement register on  
the rising edge of Sclk, MSB (B0) first. The  
enhancement register is double buffered to prevent  
inadvertent control changes during serial loading,  
with buffer capture of the serially-entered data  
performed on the falling edge of E_WR according to  
the timing diagram shown in Figure 5. After the  
falling edge of E_WR, the data provides control bits  
as shown in Table 8 with bit functionality enabled by  
asserting the Enh input “low”.  
Serial Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “high”.  
While the E_WR input is “low” and the S_WR input  
is “low”, serial input data (Sdata input), B0 to B19, is  
clocked serially into the primary register on the  
rising edge of Sclk, MSB (B0) first. The contents  
from the primary register are transferred into the  
secondary register on the rising edge of either  
S_WR or Hop_WR according to the timing diagram  
shown in Figure 6. Data is transferred to the  
counters as shown in Table 7 on page 10.  
Direct Interface Mode  
The double buffering provided by the primary and  
secondary registers allows for “ping-pong” counter  
control using the FSELS input. When FSELS is  
“high”, the primary register contents set the counter  
inputs. When FSELS is “low”, the secondary  
register contents are utilized.  
Direct Interface Mode is selected by setting the  
Bmode input “high”.  
Counter control bits are set directly at the pins as  
shown in Table 7. In Direct Interface Mode, main  
counter inputs M7 and M8, and R Counter inputs R4  
and R5 are internally forced low (“0”).  
While the E_WR input is “high” and the S_WR input  
is “low”, serial input data (Sdata input), B0 to B7, is  
Table 7. Primary Register Programming  
Interface  
Enh  
Bmode Smode  
R5  
R4  
M8  
M7 Pre_en M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Mode  
Parallel  
1
0
0
M2_WR rising edge load  
M1_WR rising edge load  
A_WR rising edge load  
D3  
B0  
D2  
B1  
D1  
B2  
D0  
B3  
D7  
B4  
D6  
B5  
D5  
B6  
D4  
B7  
D3  
B8  
D2  
B9  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Serial*  
Direct  
1
1
0
1
1
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18 B19  
X
0
0
0
0
Pre_en M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1 A0  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Power  
down  
Counter  
load  
MSEL  
Prescaler  
output  
Enh  
Bmode Smode  
Reserved  
Reserved  
Reserved  
fc, fp OE  
Mode  
output  
E_WR rising edge load  
Parallel  
Serial*  
0
0
0
0
0
1
D7  
B0  
D6  
B1  
D5  
B2  
D4  
B3  
D3  
B4  
D2  
B5  
D1  
B6  
D0  
B7  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 10 of 15  
PE9702  
Advance Information  
Figure 4. Parallel Interface Mode Timing Diagram  
tDSU  
tDHLD  
7 : 0  
[ ]  
D
tPW  
tCWR  
tWRC  
M1_WR  
M2_WR  
A_WR  
tPW  
E_WR  
Hop_WR  
Figure 5. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 11 of 15  
PE9702  
Advance Information  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Reserved**  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Reserved**  
Reserved**  
Power down  
Counter load  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming as directed by the Bmode and  
Smode inputs.  
Bit 5  
Bit 6  
Bit 7  
MSEL output  
Prescaler output  
fp, fc OE  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the raw internal prescaler output (fmain) onto the Dout output.  
fp, fc outputs disabled.  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U, and  
PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc), PD_D  
pulses “low”. If the divided reference leads the  
divided VCO in phase or frequency (fr leads fp),  
PD_U pulses “low”. The width of either pulse is  
directly proportional to phase offset between the  
two input signals, fp and fc. The phase detector gain  
is 430 mV / radian.  
PD_U pulses result in an increase in VCO  
frequency and PD_D results in a decrease in VCO  
frequency.  
A lock detect output, LD is also provided, via the pin  
Cext. Cext is the logical “NAND” of PD_U and  
PD_D waveforms, which is driven through a series  
2k ohm resistor. Connecting Cext to an external  
shunt capacitor provides integration. Cext also  
drives the input of an internal inverting comparator  
with an open drain output. Thus LD is an “AND”  
function of PD_U and PD_D. See Figure 3 for a  
schematic of this circuit.  
PD_U and PD_D are designed to drive an active  
loop filter which controls the VCO tune voltage.  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 12 of 15  
PE9702  
Advance Information  
Figure 6. Package Drawing  
44-lead CQFJ  
All dimensions are in mils  
PEREGRINE SEMICONDUCTOR CORP. | http://www.peregrine-semi.com  
Copyright Peregrine Semiconductor Corp. 2003  
Page 13 of 15  
PE9702  
Advance Information  
Table 10. Ordering Information  
Order  
Shipping  
Method  
40 units / Tray  
40 units / Tray  
1 / Box  
Part Marking  
Description  
Engineering Samples  
Flight Units  
Evaluation Kit  
Package  
44-pin CQFJ  
Code  
9702-01  
9702-11  
9702-00  
PE9702 ES  
PE9702  
PE9702 EK  
44-pin CQFJ  
File No. 70/0036~00C | UTSi CMOS RFIC SOLUTIONS  
Copyright Peregrine Semiconductor Corp. 2003  
Page 14 of 15  

相关型号:

PE9702_06

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9703

FME PLUG TO SMA FEMALE
PASTERNACK

PE9704

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9704

FME PLUG TO N MALE
PASTERNACK

PE9704EK

3.0 GHz Integer-N PLL for Rad Hard Apllications
PSEMI

PE9704ES

3.0 GHz Integer-N PLL for Rad Hard Apllications
PSEMI

PE9704_06

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9705

Mini UHF Male to FME Plug Adapter
PASTERNACK

PE9706

FME PLUG TO MINI UHF MALE RITGT ANGLE
PASTERNACK

PE9707

SMA Male to FME Jack Adapter
PASTERNACK

PE9708

SMA Female to FME Jack Adapter
PASTERNACK

PE9709

FME JACK TO MINI UHF MALE
PASTERNACK