HD66115TA3 [RENESAS]

LIQUID CRYSTAL DISPLAY DRIVER, UUC181, SLIM, TCP-181;
HD66115TA3
型号: HD66115TA3
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC181, SLIM, TCP-181

驱动 接口集成电路
文件: 总21页 (文件大小:74K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66115T  
(160-Channel Common Driver Packaged  
in a Slim Tape Carrier Package)  
ADE-207-282(Z)  
'99.9  
Rev. 0.0  
Description  
The HD66115T is a common driver for large dot matrix liquid crystal graphics displays. It features 160  
channels which can be divided into two groups of 80 channels by selecting data input/output pins. The  
driver is powered by about 3 V, making it suitable for the design of portable equipment which fully utilizes  
the low power dissipation of liquid crystal elements. The HD66115T, packaged in a slim tape carrier  
package (slim-TCP), makes it possible to reduce the size of the user area (wiring area).  
Features  
Duty cycle: About 1/100 to 1/480  
160 LCD drive circuits  
High LCD driving voltage: 14V to 40V  
Output division function (2 × 80-channel outputs)  
Display off function  
Operating voltage: 2.5V to 5.5V  
Slim-TCP  
Low output impedance: 0.7 k(typ)  
Ordering Information  
Type No.  
Outer Lead Pitch (µm)  
HD66115TA0  
HD66115TA3  
180  
250  
Note: The details of TCP pattern are shown in “The Information of TCP.”  
1
HD66115T  
Pin Arrangement  
Top view  
Note: This figure does not specify the tape carrier package dimensions.  
Pin Assignments  
181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161  
2
HD66115T  
Pin Descriptions  
Symbol  
VLCD1, 2  
VCC  
Pin No.  
Pin Name  
VLCD  
Input/Output  
Classification  
177, 163  
166  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
LCD drive output  
VCC  
GND1, 2  
V1L, V1R  
V2L, V2R  
V5L, V5R  
V6L, V6R  
CL  
176, 170  
178, 165  
181, 161  
180, 162  
179, 164  
171  
GND  
V1L, V1R  
V2L, V2R  
V5L, V5R  
V6L, V6R  
Clock  
Input  
Input  
Input  
Input  
Input  
M
172  
M
Input  
CH  
175  
CH  
Input  
SHL  
174  
Shift left  
Data  
Input  
DIO1  
169  
Input/output  
Input/output  
Input  
DIO2  
167  
Data  
DI  
168  
Data  
DISPOFF  
X1–X160  
173  
Display off  
X1–X160  
Input  
1–160  
Output  
3
HD66115T  
Pin Functions  
Power Supply  
VCC, GND: Supply power to the internal logic circuits.  
VLCD, GND: Supply power to the LCD drive circuits (Figure 1).  
V1L, V1R, V2L, V2R, V5L, V5R, V6L, V6R: Supply different power levels to drive the LCD. V1 and  
V2 are selected levels, and V5 and V6 are non-selected levels.  
Control Signals  
CL: Inputs data shift clock pulses for the shift register. At the falling edge of each CL pulse, the shift  
register shifts data input via the DIO pins.  
M: Changes the LCD drive outputs to AC.  
CH: Selects the data shift mode. (CH = high: 2 × 80-output mode, CH = low: 160-output mode)  
SHL: Selects the data shift direction for the shift register and the common signal scan direction (Figure 2).  
DIO1, DIO2: Input or output data. DIO1 is input and DIO2 is output when SHL is high. DIO1 is output  
and DIO2 is input when SHL is low.  
DI: Input data. DI is input to X81–X160 when CH and SHL are high, and to X81–X1 when SHL is low.  
DISPOFF: Controls LCD output level. A low DISPOFF sets the LCD drive outputs X1–X160 to the V2  
level. A high DISPOFF is normally used.  
LCD Drive Outputs  
X1–X160: Each X outputs one of four voltage levels V1, V2, V5, or V6, depending on the combination of  
the M signal and the data level (Figure 3).  
4
HD66115T  
VLCD1, 2  
VCC  
GND1, 2  
Figure 1 Power Supply for LCD Driver  
SHL  
Data shift direction  
Shift to right  
High  
Low  
DIO1 SR1 SR2 SR3 • • • SR160 DIO2  
Shift to left  
DIO2 SR160 SR159 • • • SR1 DIO1  
Note: SR1 to SR160 correspond to the outputs of X1 to X160, respectively.  
Figure 2 Selection of Data Shift Direction and Common Signal Scan Direction by SHL  
M
1
0
DATA  
1
0
1
0
V2  
V6  
V1  
V5  
X output level  
Figure 3 Selection of LCD Drive Output Level  
5
HD66115T  
Block Diagram  
X1–X160  
V1L, V2L,  
V5L, V6L  
V1R, V2R,  
V5R, V6R  
LCD drive circuit  
M
VCC  
GND1, 2  
VLCD1, 2  
Level shifter  
DISPOFF  
CL  
Logic  
Logic  
Shift register  
Shift register  
SR  
Q
Q
Q
Q
• • • • • • SR80  
SR1  
SR81 • • • • • •  
160  
D
D
D
D
Logic  
DIO1  
DIO2  
SHL  
CH  
DI  
6
HD66115T  
Block Functions  
LCD Drive Circuit  
The 160-bit LCD drive circuit generates four voltage levels V1, V2, V5, and V6, which drive the LCD  
panel. One of these four levels is output to the corresponding X pin, depending on the combination of the  
M signal and the data in the shift register.  
Level Shifter  
The level shifter changes logic control signals (2.5V–5.5V) into high-voltage signals for the LCD drive  
circuit.  
Shift Register  
The 160-bit shift register shifts the data input via the DIO pin by one bit at a time. The one bit of shifted-  
out data is output from the DIO pin to the next driver IC. Both actions occur simultaneously at the falling  
edge of each shift clock (CL) pulse. The SHL pin selects the data shift direction.  
7
HD66115T  
Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Rating  
Unit  
V
Notes  
1, 5  
Power supply voltage for logic circuits  
Power supply voltage for LCD drive circuits  
Input voltage 1  
–0.3 to +7.0  
VLCD  
VT1  
VT2  
VT3  
Topr  
–0.3 to +42  
V
1, 5  
–0.3 to VCC + 0.3  
VLCD – 7.0 to VLCD + 0.3  
–0.3 to +7.0  
V
1, 2  
Input voltage 2  
V
1, 3  
Input voltage 3  
V
1, 4  
Operating temperature  
Storage temperature  
–30 to +75  
°C  
°C  
Tstg  
–55 to +110  
Notes: 1. The reference point is GND (0V).  
2. Applies to pins CL, M, SHL, DI, DISPOFF, and CH.  
3. Applies to pins V1 and V6.  
4. Applies to pins V2 and V5.  
5. Power should be applied to VCC–GND first, and then VLCD–GND. It should be disconnected in  
the reverse order.  
6. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged.  
It should always be used within its specified operating range in order to prevent malfunctions or  
loss of reliability.  
8
HD66115T  
Electrical Characteristics  
DC Characteristics (VCC = 2.5 to 5.5V, GND = 0V, VLCD–GND = 14 to 40V, and Ta = –30 to +75°C,  
unless otherwise noted)  
Item  
Symbol Pins Min  
Typ Max  
Unit Test Condition  
Notes  
Input high  
voltage  
VIH  
1
0.8 × VCC  
VCC  
V
Input low voltage VIL  
1
2
0
0.2 × VCC  
V
Output high  
voltage  
VOH  
VCC – 0.4  
V
IOH = –0.4 mA  
Output low  
voltage  
VOL  
RON  
IIL1  
2
0.7  
0.4  
1.0  
5
V
IOL = 0.4 mA  
Vi–Xj on  
resistance  
3
kΩ  
µA  
µA  
mA  
mA  
ION = 150 µA  
1
2
Input leakage  
current 1  
1
–5  
–25  
VIN = VCC to GND  
VIN = VLCD to GND  
Input leakage  
current 2  
IIL2  
4
25  
0.5  
1.0  
Current  
consumption 1  
IGND  
ILCD  
fCL = 36 kHz  
fM = 75 kHz  
Current  
consumption 2  
Note: Pins: 1. CL, M, SHL, CH, DI, DIO1, DIO2, DISPOFF  
2. DIO1, DIO2  
3. X1–X160, V  
4. V1, V2, V5, V6  
Notes: 1. Indicates the resistance between one of the pins X1–X160 and one of the voltage supply pins  
V1, V2, V5, or V6, when load current is applied to the X pin; defined under the following  
conditions:  
Ta = 25°C Note that RON depends on Ta (°C) (Figure 4).  
VLCD–GND = 40V  
V1, V6 = VLCD – {1/20 (VLCD–GND)}  
V5, V2 = GND + {1/20 (VLCD–GND)}  
All voltages must be within V, VLCD V1 V6 VLCD – 7.0V, and 7.0V V5 V2 GND.  
Note that V depends on the power supply voltage VLCD–GND (Figure 6).  
2. Input and output currents are excluded. When a CMOS input is left floating, excess current flows  
from the power supply through the input circuit. To avoid this, VIH and VIL must be held at VCC  
and GND, respectively.  
9
HD66115T  
1 k  
800  
600  
400  
200  
0
–20  
25  
Ta (°C)  
75  
Figure 4 Relation between RON and Ta  
VLCD  
V1  
V  
V6  
V5  
V2  
V  
GND  
Figure 5 Relation between Driver Output Waveform and Voltage Levels  
6.4  
V (V)  
Voltage level range  
2.3  
14  
40  
VLCD–GND (V)  
Figure 6 Relation between VLCD–GND and DV  
10  
HD66115T  
AC Characteristics (VCC = 2.5 to 5.5V, GND = 0V, and Ta = –30 to +75°C, unless otherwise noted)  
Item  
Symbol  
tCYC  
tCWH  
tCWL  
tr  
Pins  
Min  
400  
30  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Notes  
Clock cycle time  
Clock high-level width  
Clock low-level width  
Clock rise time  
CL  
CL  
CL  
370  
CL  
30  
Clock fall time  
tf  
CL  
30  
Data setup time  
Data hold time  
tDS  
DI, DIO1, DIO2, CL  
DI, DIO1, DIO2, CL  
DIO1, DIO2, CL  
M, CL  
100  
30  
tDH  
Data output delay time  
M phase difference  
Output delay time 1  
Output delay time 2  
tDD  
350  
300  
1.2  
1.2  
1
tM  
–300  
tpd1  
tpd2  
X (n), CL  
2
2
X (n), M  
AC Characteristics (VCC = 5.0V ± 10%, GND = 0V, and Ta = –30 to +75°C, unless otherwise noted)  
Item  
Symbol  
tCYC  
tCWH  
tCWL  
tr  
Pins  
Min  
400  
30  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Notes  
Clock cycle time  
Clock high-level width  
Clock low-level width  
Clock rise time  
CL  
CL  
CL  
370  
CL  
30  
Clock fall time  
tf  
CL  
30  
Data setup time  
Data hold time  
tDS  
DI, DIO1, DIO2, CL  
DI, DIO1, DIO2, CL  
DIO1, DIO2, CL  
M, CL  
100  
30  
tDH  
Data output delay time  
M phase difference  
Output delay time 1  
Output delay time 2  
tDD  
150  
300  
0.7  
0.7  
1
tM  
–300  
tpd1  
tpd2  
X (n), CL  
2
2
X (n), M  
Note: 1, 2 The load circuit shown in Figure 7 is connected.  
11  
HD66115T  
Test point  
*1: 30 pF  
*2: 100 pF  
Figure 7 Load Circuit  
tf  
tr  
tCWL  
tCWH  
tCYC  
0.8 × VCC  
0.2 × VCC  
CL  
tDD  
tDS  
tDH  
0.8 × VCC  
0.2 × VCC  
DIO1, DIO2,  
DI  
(input)  
0.8 × VCC  
0.2 × VCC  
DIO1, DIO2,  
DL  
(output)  
tM  
M
tpd2  
X (n)  
tpd1  
Figure 8 LCD Controller Interface Timing  
12  
HD66115T  
Operation Timing (1/480 Duty Cycle)  
From LCD controller  
HD66115T (2)  
HD66115T (1)  
HD66115T (3)  
13  
HD66115T  
Connection Examples  
Figures 9 and 10 show examples of how HD66115Ts can be configured to drive a 480-line LCD panel with  
a 1/240 duty cycle. Figures 11 and 12 show examples of how HD66115Ts can be configured to drive a  
480-line LCD panel with a 1/480 duty cycle. The HD66115T's 160 channels can be divided into two groups  
of 80 channels, and its data shift direction can be changed by selecting the data output mode pin (CH) and  
data shift pin (SHL), respectively.  
LCD panel  
DATA  
(Data of lines 1 to 240)  
DIO1  
X1 →  
Line 1  
IC1  
(SHL = high, CH = low)  
Line 160  
Line 161  
DIO2 X160  
DIO1  
DI  
X1  
IC2  
(SHL = high, CH = high)  
X80  
X81  
Line 240  
Line 241  
DATA  
(Data of lines 241 to 480)  
DIO2 X160  
Line 320  
Line 321  
DIO1  
X1  
IC3  
(SHL = high, CH = low)  
Line 480  
DIO2 X160  
Segment driver  
Figure 9 Dual-Screen Configuration of a 480-Line LCD Panel with a 1/240 Duty Cycle (1)  
14  
HD66115T  
LCD panel  
DIO1  
X1 →  
Line 1  
IC1  
(SHL = low, CH = low)  
Line 160  
Line 161  
X160  
DIO2  
DIO1  
X1 →  
IC2  
(SHL = low, CH = high)  
X80 →  
X81 →  
Line 240  
Line 241  
DATA  
(Data of lines 1 to 240)  
DI  
DIO2 X160 →  
Line 320  
Line 321  
DIO1  
X1 →  
IC3  
(SHL = low, CH = low)  
DATA  
Line 480  
DIO2 X160  
(Data of lines 241 to 480)  
Segment driver  
Figure 10 Dual-Screen Configuration of a 480-Line LCD Panel with a 1/240 Duty Cycle (2)  
15  
HD66115T  
LCD panel  
DATA  
(Data of lines 1 to 480)  
DIO1  
X1 →  
Line 1  
IC1  
(SHL = high, CH = low)  
Line 160  
Line 161  
DIO2 X160  
DIO1  
X1  
IC2  
(SHL = high, CH = low)  
DIO2 X160 →  
Line 320  
Line 321  
DIO1  
X1 →  
IC3  
(SHL = high, CH = low)  
X160 →  
Line 480  
DIO2  
Segment driver  
Figure 11 Single-Screen Configuration of a 480-Line LCD Panel with a 1/480 Duty Cycle (1)  
16  
HD66115T  
LCD panel  
DIO1  
X1  
Line 1  
IC1  
(SHL = low, CH = low)  
Line 160  
Line 161  
DIO2 X160  
DIO1  
X1  
IC2  
(SHL = low, CH = low)  
DIO2 X160  
Line 320  
Line 321  
DIO1  
X1  
IC3  
(SHL = low, CH = low)  
DATA  
(Data of lines 1 to 480)  
Line 480  
DIO2 X160  
Segment driver  
Figure 12 Single-Screen Configuration of a 480-Line LCD Panel with a 1/480 Duty Cycle (2)  
17  
HD66115T  
Notes on Power-On/Off of the LCD Driver  
To prevent an LCD driver display error at power on/off, the sequence for power-on signal activation must  
be as follows (see Figure 13):  
2.7V  
2.7V  
VCC  
0ms  
0ms  
0ms  
0ms  
VLCD  
DISP  
Input signals such as  
CL1, CL2, and Data  
Signal non-fixed Initializing period  
period  
(1frame or longer)  
Figure 13 Sequence of Power-On/Off  
At Power On  
(1) Power on VCC. At this time, input 0 to the DISP pin.  
(2) Display-off function forces the LCD driver to output a V2 level (lowest level).  
(3) Display-off function takes priority even if the input signal status becomes irregular immediately after  
VCC power-on.  
(4) Input the specified signals to initialize registers of the LCD driver. Its period must be 1 frame or longer.  
(5) Set the DISP level to 1 to cancel display-off function after steps (1) to (4). At this time, VLCD and each  
V pin input must be at the specified levels.  
18  
HD66115T  
At Power Off  
Basically, the power-off procedure is the reverse of the power-on procedure.  
(1) Set the DISP level to 0.  
(2) Lower LCD driver power supply to 0V  
(3) Lower VCC and each input signals to 0V  
At this time, each V pin input must be at 0V. Display-off function stops when VCC falls to 0V, and  
therefore, the LCD driver may output a level other than V2 (lowest level). As a result, a display error may  
be caused at power-off or power-on.  
19  
HD66115T  
LCD Driver LSI Power Supply Pin Connection  
A feature of the LCD driver is the LCD drive power supply. As the number of pixel drives per LSI  
increases, so does the voltage and number of outputs.  
Consequently, if multi-output CMOS circuits are switched simultaneously, a wiring voltage drop may  
occurs due to transient currents, and the potential between the LCD drive circuit power supply (VLCD) and  
LCD drive level power supplies (V1, V6, and V3) or GND and the LCD level power supplies (V2, V5, and  
V4) may be inverted, resulting in latchup breakdown. To prevent this, it is recommended that, when  
designing the LCD drive power supply and board power supply wiring, the power supply wiring be  
designed as low-impedance and capacitors be inserted in the wiring between VLCD and V1, V3, V6, and  
between V2, V4, V5 and GND. In set evaluation, it is recommended that a check be carried out to confirm  
that there is no inversion of the LCD drive power supply and level power supplies in the period between  
when the LCD drive power supply is turned on and turned off.  
Example of capacitor insertion (when VLCD = V1 and GND = V2)  
VLCD, V1 pins  
(COM, SEG)  
+
+
+
V6 pin (COM)  
V3 pin (SEG)  
V4 pin (SEG)  
V5 pin (COM)  
+
Electrolytic capacitor  
Ceramic capacitor  
+
+
GND, V2 pins  
(COM, SEG)  
Figure 14 Example of Capacitor Insertion  
20  
HD66115T  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straße 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
21  

相关型号:

HD66120T

LCD Display Driver
ETC

HD66120TA3

LIQUID CRYSTAL DISPLAY DRIVER, UUC269, SLIM, TCP-269
RENESAS

HD66120TA5

LCD Display Driver
ETC

HD66130

320-channel Low-voltage Segment Driver for Dot-Matrix STN Liquid Crystal Display
HITACHI

HD66130T

320-channel Low-voltage Segment Driver for Dot-Matrix STN Liquid Crystal Display
HITACHI

HD66131ST

LCD Display Driver
ETC

HD66132T

LCD Display Driver
ETC

HD66133T

LCD Display Driver
ETC

HD66134ST

LCD Display Driver
ETC

HD66135T

LCD Display Driver
ETC

HD66137

High-Voltage Durable 240-Channel Common Driver for Dot-Matrix STN LCD
HITACHI

HD66137T

High-Voltage Durable 240-Channel Common Driver for Dot-Matrix STN LCD
HITACHI