ISL70005SEHX/SAMPLE [RENESAS]

Switching Regulator/Controller;
ISL70005SEHX/SAMPLE
型号: ISL70005SEHX/SAMPLE
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Switching Regulator/Controller

信息通信管理 开关
文件: 总46页 (文件大小:1400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
ISL70005SEH, ISL73005SEH  
Radiation Hardened Dual Output Point-of-Load, Integrated Synchronous Buck and Low Dropout  
Regulator  
The ISL70005SEH and ISL73005SEH are radiation  
hardened dual output Point-of-Load (POL) regulators  
combining the high efficiency of a synchronous buck  
regulator with the low noise of a Low Dropout (LDO)  
Features  
• Dual output regulator: sync buck and LDO  
• Independent EN, SS, and PG indicators  
regulator. They are suited for systems with 3.3V or 5V  
power buses and can support continuous output load  
currents of 3A for the buck regulator and ±1A for the  
LDO.  
• ±1% reference voltage  
• 1A current sourcing/sinking capability on LDO  
• External clock synchronization: 100kHz to 1MHz  
• Full military temperature range operation  
The buck regulator uses a voltage mode control  
architecture and switches at a resistor adjustable  
frequency of 100kHz to 1MHz. Externally adjustable  
loop compensation allows for an optimum balance  
between stability and output dynamic performance.  
The internal synchronous power switches are  
optimized for high efficiency and excellent thermal  
performance.  
T = -55°C to +125°C  
A
T = -55°C to +150°C  
J
• Radiation acceptance testing - ISL70005SEH  
HDR (50-300rad(Si)/s): 100krad(Si)  
LDR (0.01rad(Si)/s): 75krad(Si)  
• Radiation acceptance testing - ISL73005SEH  
LDR (0.01rad(Si)/s): 75krad(Si)  
The LDO is completely configurable independent of  
the switching regulator. It uses NMOS pass devices  
and separate chip bias voltage (L_VCC) to drive its  
gate, enabling the LDO to operate with a very low  
voltage at the L_VIN input. The LDO can sink and  
source up to 1A continuously, making it an ideal  
choice to power DDR memory.  
• SEE hardness (see test report)  
2
No SEB or SEL at LET 86.4MeV•cm /mg  
2
SET at LET 86.4MeV•cm /mg <±3% ΔV  
OUT  
2
No SEFI at LET 43MeV•cm /mg  
The ISL70005SEH and ISL73005SEH are available  
in a space saving 28 Ld ceramic dual flat-pack  
package or in die form. They are specified to operate  
• Electrically screened to DLA SMD 5962-19209  
Applications  
across a temperature range of T = -55°C to +125°C.  
A
• Point-of-load for low power FPGA core, auxiliary  
and I/O supply voltages  
Related Literature  
• DDR memory power for VDDQ and VTT rails  
• Distributed power system of satellite payloads  
For a full list of related documents visit our website:  
ISL70005SEH, ISL73005SEH device pages  
ISL70005SEH, ISL73005SEH  
Buck Regulator  
0.915  
0.910  
0.905  
0.900  
3.3V or 5V  
VDDQ = 1.8V  
B_PVINx B_LXx  
VDDQ  
VTT = 0.9V  
L_VIN  
L_OUT  
LDO Regulator  
DDR Memory  
Controller  
R
T
DDR  
Memory  
L_VCC = B_VCC = 5V  
L_VIN = 1.8V  
0.895  
R
S
L_EA+ = 0.9V  
0.890  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
LDO Current (A)  
Figure 2. LDO Load Regulation; DDR2 Configuration  
Figure 1. Power Solution for DDR2 Memory  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 1 of 46  
ISL70005SEH, ISL73005SEH  
Contents  
1.  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
1.3  
1.4  
1.5  
Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.  
4.  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.1  
4.2  
4.3  
4.4  
Synchronous Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Low Dropout Regulator (LDO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Internal Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Over-Temperature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
Power Supply Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Switching Frequency Selection and External Sync for Buck Regulator. . . . . . . . . . . . . . . . . . . . . . . . 31  
B_EN and L_EN Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Soft-Start Capacitor for Buck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Soft-Start Capacitor for LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power-Good Indicator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Independent Output Point-of-Load Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LDO Tracking Buck for DDR Memory Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.  
Synchronous Buck Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.1  
6.2  
6.3  
6.4  
6.5  
Buck Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Buck Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Buck Output Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Buck Output Voltage Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Buck Feedback Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.  
8.  
LDO Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1  
7.2  
LDO Input and Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
LDO Output Voltage Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
PCB Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8.1  
8.2  
8.3  
Buck Regulator PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LDO Regulator PCB Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Example PCB Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 2 of 46  
ISL70005SEH, ISL73005SEH  
9. Die and Assembly Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10. Metalization Mask Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
12. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 3 of 46  
ISL70005SEH, ISL73005SEH  
1. Overview  
1. Overview  
1.1  
Typical Application Schematics  
VIN = 3.3V  
ISL70005SEH  
to FPGA  
to FPGA  
1
2
3
4
5
6
7
8
9
B_SS  
L_PG 28  
B_PG 27  
B_FB  
B_COMP  
B_RT  
B_VIN2 26  
B_LX2 25  
VIN = 3.3V  
VCORE = 1.8V  
+
VIN = 3.3V  
From FPGA  
B_VCC B_PGND2 24  
B_SYNC B_PGND1 23  
B_LX1 22  
B_VIN1 21  
TEST 20  
B_GND1  
B_GND2  
VREF  
R4  
VIN = 3.3V  
R1  
From I/O Port  
From I/O Port  
10 B_EN  
11 L_EN  
12 L_VCC  
13 L_SS  
14 L_EA+  
L_VIN 19  
L_OUT 18  
L_PGND 17  
L_GND 16  
L_EA- 15  
VIN = 3.3V  
VI/O = 1.5V  
VIN = 3.3V  
RF  
RG  
Figure 3. ISL70005SEH Application for Low Power FPGA Core and I/O Supply  
VIN = 3.3V  
ISL70005SEH  
to I/O Port  
1
2
3
4
5
6
7
8
9
B_SS  
L_PG 28  
B_PG 27  
to I/O Port  
B_FB  
B_COMP  
B_RT  
B_VIN2 26  
B_LX2 25  
VIN = 3.3V  
VDDQ = 1.8V  
+
VIN = 3.3V  
From FPGA  
B_VCC  
B_PGND2 24  
B_SYNC B_PGND1 23  
B_LX1 22  
B_VIN1 21  
TEST 20  
B_GND1  
B_GND2  
VREF  
R4  
VIN = 3.3V  
R1  
From I/O Port  
From I/O Port  
VDDQ = 1.8V  
VTT = 0.9V (Tracks VDDQ)  
10 B_EN  
11 L_EN  
12 L_VCC  
13 L_SS  
14 L_EA+  
L_VIN 19  
L_OUT 18  
L_PGND 17  
L_GND 16  
L_EA- 15  
VIN = 3.3V  
RF  
RG  
VDDQ/2  
Figure 4. ISL70005SEH Application for DDR Memory Power Solution  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 4 of 46  
ISL70005SEH, ISL73005SEH  
1. Overview  
1.2  
Functional Block Diagram  
B_GND1,  
B_GND2  
B_VIN1,  
B_VIN2  
B_PG  
B_RT  
B_SYNC  
B_VCC  
B_VCC  
B_VCC  
B_GND  
B_VCC  
SHDNB  
PGOOD  
Logic  
Oscillator and Clock  
Generator  
+ Current  
Sense  
SHDN  
B
B_VCC  
B_COMP  
B_VCC  
B_FB  
VREF  
PWM Control Logic,  
Gate Drive and  
Overcurrent Limit  
B_LX1,  
B_LX2  
L_VCC  
B_VCC  
VREF  
600mV  
B_PGND1,  
B_PGND2  
B_VCC  
L_VCC  
I
SS  
L_VCC  
SHDNB  
B_SS  
THERMAL  
SENSE  
UVLO and Shutdown  
Logic  
B_EN  
L_EN  
L_VCC  
L_VIN  
Source  
SHDNL  
L_PG  
I_SENSE  
L_VCC  
L_VCC  
SHDNL  
PGOOD  
Logic  
L_OUT  
L_VCC  
Sink  
I_SENSE  
B_GND  
Overcurrent  
Limit  
L_PGND  
L_GND  
L_VCC  
L_PGND  
I
SS  
L_VCC  
L_VCC  
L_GND  
L_GND  
B_PGND  
L_EA- L_EA+  
L_SS  
Figure 5. Block Diagram  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 5 of 46  
ISL70005SEH, ISL73005SEH  
1. Overview  
1.3  
Ordering Information  
Package  
(RoHS  
Compliant)  
Ordering SMD  
Part Number  
(Note 2)  
Radiation Hardness  
(Total Ionizing Dose)  
Temperature  
Range (°C)  
Package  
Drawing  
Number (Note 1)  
5962R1920901VXC  
5962R1920901V9A  
5962L1920902VXC  
5962L1920902V9A  
N/A  
ISL70005SEHVF  
HDR to 100krad(Si)  
LDR to 75krad(Si)  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
28 Ld CDFP  
Die  
K28.A  
ISL70005SEHVX (Note 5)  
-
ISL73005SEHVF  
LDR to 75krad(Si)  
28 Ld CDFP  
Die  
K28.A  
ISL73005SEHVX (Note 5)  
-
K28.A  
-
ISL70005SEHF/PROTO (Note 3)  
ISL70005SEHX/SAMPLE (Notes 3, 5)  
ISL70005SEHDEMO1Z (Note 4)  
ISL70005SEHEV2Z (Note 4)  
N/A  
28 Ld CDFP  
Die  
N/A  
N/A  
N/A  
Evaluation Board  
Evaluation Board  
N/A  
Notes:  
1. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers  
listed must be used when ordering.  
2. These Intersil Pb-free Hermetic packaged products employ 100%Au plate - e4 termination finish, which is RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations.  
3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are  
intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across temperature  
specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE parts are capable of meeting the  
electrical limits and conditions specified in the DLA SMD. The /SAMPLE parts do not receive 100% screening across temperature to the  
DLA SMD electrical limits. These part types do not come with a Certificate of Conformance because they are not DLA qualified devices.  
4. Evaluation boards use the /PROTO parts and /PROTO parts are not rated or certified for total ionizing dose (TID) or Single Event Effect  
(SEE) immunity.  
5. Die product tested at TA = + 25°C. The wafer probe test includes functional and parametric testing sufficient to make the die capable of  
meeting the electrical performance outlined in “Electrical Specifications” on page 10.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 6 of 46  
ISL70005SEH, ISL73005SEH  
1. Overview  
1.4  
Pin Configuration  
28 Ld CDFP  
Top View  
B_SS  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
L_PG  
B_PG  
B_FB  
B_COMP  
B_RT  
B_VIN2  
B_LX2  
B_PGND2  
B_PGND1  
B_LX1  
B_VCC  
B_SYNC  
B_GND1  
B_GND2  
VREF  
B_VIN1  
9
20  
19  
TEST  
10  
L_VIN  
B_EN  
11  
12  
13  
14  
18  
17  
16  
15  
L_OUT  
L_PGND  
L_GND  
L_EA-  
L_EN  
L_VCC  
L_SS  
L_EA+  
Note: The ESD triangular mark is indicative of Pin #1. It is a part of the device  
marking and is placed on the lid in the quadrant where Pin #1 is located.  
1.5  
Pin Descriptions  
Pin  
Number Pin Name ESD Circuit  
Description  
1
2
3
4
5
B_SS  
2
2
2
2
5
Soft-start input to the buck regulator. When B_EN is driven above 2V, a 24µA pull-up current charges  
a ceramic capacitor connected from B_SS to B_GNDx to set the soft-start ramp time.  
B_FB  
Inverting input to the buck error amplifier. Connect a type III compensation network between this pin  
and the B_COMP pin.  
B_COMP  
B_RT  
Output for the error amplifier of the buck regulator. Connect an external compensation network  
between this pin and the B_FB pin.  
Oscillator frequency select input. Connect a resistor from this pin to B_GNDx to program the  
switching frequency from 100kHz to 1MHz.  
B_VCC  
Supply input to the internal buck control circuitry. Bypass B_VCC to B_GNDx using a ceramic  
capacitor as close as possible to the IC.  
Note: B_VCC must be connected to the same DC voltage as B_VINx and L_VCC.  
6
B_SYNC  
2
Clock frequency synchronization input to the buck regulator. During soft-start, the ISL7x005SEH  
uses its internal oscillator until B_SS >600mV, and then synchronizes to B_SYNC if a clock is  
present. The rising edge of B_SYNC starts a new PWM cycle (begins minimum off-time). Connect to  
GND if synchronization is not used.  
7
8
9
B_GND1  
B_GND2  
VREF  
N/A  
N/A  
1
Buck analog ground pin and package lid connection.  
Output of the 600mV reference voltage. Bypass this pin to L_GND with a minimum 100nF ceramic  
capacitor located as close as possible to the IC. This pin may be used as the LDO reference voltage  
by connecting VREF to L_EA+. Additional loading is not recommended.  
10  
11  
12  
B_EN  
L_EN  
6
6
4
Enable input to the buck regulator. Driving this pin above 2V enables the buck.  
Enable input to the LDO. Driving this pin above 2V enables the LDO.  
L_VCC  
Bias supply pin to the LDO analog circuitry and common functions circuitry. Bypass L_VCC to  
L_GND using a ceramic capacitor as close as possible to the IC.  
Note: L_VCC must be connected to the same DC voltage as B_VCC and B_VINx.  
13  
14  
L_SS  
1
1
Soft-start input to the LDO. When L_EN is driven above 2V, a 24µA pull-up current charges the  
ceramic capacitor connected from L_SS to L_GND to set the soft-start output ramp time.  
L_EA+  
Non-inverting input to the LDO error amplifier. Connect this pin to the VREF pin for independent LDO  
application or a resistor divider from the buck output for tracking DDR memory power applications.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 7 of 46  
ISL70005SEH, ISL73005SEH  
1. Overview  
Pin  
Number Pin Name ESD Circuit  
Description  
15  
L_EA-  
1
Inverting input to the LDO error amplifier. Connect a resistor divider network from L_OUT to this pin  
to set the output voltage. Connect L_EA- to L_OUT for setting L_OUT equal to L_EA+.  
16  
17  
18  
19  
20  
21  
L_GND  
L_PGND  
L_OUT  
L_VIN  
NA  
NA  
1
LDO analog ground pin.  
LDO power-stage ground pin.  
LDO output pin.  
4
Input supply for the LDO power-stage MOSFET. L_VIN voltage must not exceed L_VCC.  
Factory use only. Must be connected to L_GND in application.  
TEST  
6
B_VIN1  
3
Input supply for the buck power-stage MOSFETs. Bypass B_VINx pins directly to B_PGNDx with  
ceramic capacitors located as close as possible to the IC.  
Note: B_VIN1 must be connected to the same DC voltage as B_VCC and L_VCC.  
22  
B_LX1  
NA  
Buck regulator switch node connection. Output of the internal buck power MOSFETs. Connect to the  
power inductor.  
23  
24  
25  
B_PGND1  
B_PGND2  
B_LX2  
NA  
NA  
NA  
Buck power-stage ground pin.  
Buck regulator switch node connection. Output of the internal buck power MOSFETs. Connect to the  
power inductor.  
26  
27  
B_VIN2  
B_PG  
L_PG  
N/A  
3
2
Input supply for the buck power-stage MOSFETs. Bypass B_VINx pins directly to B_PGNDx with  
ceramic capacitors located as close as possible to the IC.  
Note: B_VIN2 must be connected to the same DC voltage as B_VCC and L_VCC.  
Power-good output for the buck regulator. This output is open-drain logic. Connect a 10kΩ to 100kΩ  
pull-up resistor to B_VCC. Can be wired-OR with L_PG to have a single power-good signal. Bypass  
B_PG to B_GND with a 1nF ceramic capacitor to mitigate SEE.  
28  
2
Power-good output for the LDO. This output is open-drain logic, connect a 10kΩ to 100kΩ pull-up  
resistor to L_VCC. Can be wired-OR with B_PG to have a single power-good signal. Bypass L_PG to  
L_GND with a 1nF ceramic capacitor to mitigate SEE.  
LID  
N/A  
The top lid of the package is electrically connected to pins 7 (B_GND1) and 8 (B_GND2).  
L_VCC  
PIN #  
B_VCC  
PIN #  
B_VINx  
7V  
Clamp  
Circuit 1  
Circuit 2  
Circuit 3  
B_PGND  
L_GND  
B_GND  
L_VCC  
PIN #  
B_VCC  
7V  
Clamp  
7V  
Clamp  
Circuit 4  
Circuit 5  
Circuit 6  
PIN #  
L_GND  
B_GND  
L_GND  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 8 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
2. Specifications  
2.1  
Absolute Maximum Ratings  
Parameter  
Minimum  
B_GND - 0.3  
B_GND - 0.3  
B_PGND - 0.3  
B_PGND - 0.3  
L_GND - 0.3  
L_GND - 0.3  
L_GND - 0.3  
L_GND - 0.3  
Maximum  
Unit  
V
B_VCC  
B_GND + 6.5  
B_GND + 6.0  
B_PGND + 6.5  
B_PGND + 6.0  
L_GND + 6.5  
L_GND + 6.0  
L_GND + 6.5  
L_GND + 6.0  
B_VCC (Notes 6, 7)  
B_VINx  
V
V
B_VINx (Notes 6, 7)  
L_VCC  
V
V
L_VCC (Notes 6, 7)  
L_VIN  
V
V
L_VIN (Notes 6, 7)  
B_LXx  
V
B_PGND - 0.3; limit 6.5 from  
B_VIN  
B_VINx + 0.3; limit 6.5 to  
B_PGND  
V
B_LXx (Notes 6, 7)  
B_PGND - 0.3; limit 6.0 from  
B_VIN  
B_VINx + 0.3; limit 6.0 to  
B_PGND  
V
V
B_LXx (<50ns pulse width up to 1MHz switching frequency)  
B_PGND - 2.0; limit 6.5 from  
B_VIN  
B_VINx + 1.5; limit 6.5 to  
B_PGND  
L_OUT  
L_PGND - 0.3  
L_PGND - 0.3  
B_GND - 0.3  
L_GND - 0.3  
B_GND - 0.3  
L_VIN + 0.3; limit 6.5  
L_VIN + 0.3; limit 6.0  
B_VCC + 0.3  
V
V
V
V
V
L_OUT (Notes 6, 7)  
L_PG, B_PG, B_RT, B_SYNC, B_COMP, B_FB  
B_EN, L_EN, L_EA-, L_EA+, VREF, TEST  
B_SS  
L_VCC + 0.3  
B_VCC + 0.3, limit B_GND +  
3.5  
L_SS  
L_GND - 0.3  
L_VCC + 0.3, limit L_GND +  
3.5  
V
B_GND to L_PGND, B_GND to L_GND, L_GND to L_PGND  
B_GND to B_PGND, L_GND to B_PGND, L_PGND to B_PGND  
ESD Rating  
-0.3  
-0.6  
0.3  
0.6  
V
V
Value  
Unit  
kV  
V
Human Body Model (Tested per MIL-STD-883 TM3015.7)  
Charged Device Model (Tested per JS-002-2014)  
2
750  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely  
impact product reliability and result in failures not covered by warranty.  
Notes:  
6. For operation in a heavy ion environment at LET = 86.4MeV•cm2/mg at 125°C (TC) and with buck converter sourcing 0A and 3.5A load  
current.  
7. For operation in a heavy ion environment at LET = 86.4MeV•cm2/mg at 125°C (TC) with LDO sourcing and sinking 1.2A load current.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 9 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
2.2  
Thermal Information  
Thermal Resistance (Typical)  
θJA (°C/W)  
θJC (°C/W)  
1.2  
CDFP Package K28.A (Notes 8, 9)  
19.5  
Notes:  
8. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with direct attach features. See  
TB379.  
9. For θJC, the case temperature location is the center of the package underside.  
Parameter  
Maximum Junction Temperature  
Storage Temperature Range  
Minimum  
Maximum  
+150  
Unit  
°C  
-65  
+150  
°C  
2.3  
Recommended Operating Conditions  
Parameter  
Minimum  
-55  
Maximum  
+125  
Unit  
°C  
Ambient Temperature  
B_VIN1, B_VIN2, B_VCC, L_VCC  
3.3 ±10%  
5.0 ±10%  
V
(These four pins must be at the same DC voltage)  
L_VIN  
1.0  
0.6  
L_VCC  
1.27  
V
V
L_EA+, L_EA-  
2.4  
Electrical Specifications  
Buck Regulator Electrical Specifications  
2.4.1  
Unless otherwise noted, B_VINx = B_VCC = 3V to 5.5V; B_GND = B_PGNDx = 0V; B_EN = 2.0V; B_SYNC = B_LXx = Open Circuit; B_PG is  
pulled up to B_VCC with a 3kΩ resistor; VREF is bypassed to L_GND with a 22nF capacitor; B_SS is bypassed to B_GNDx with a 220nF  
capacitor; IOUT = 0A; TA = TJ = +25°C. Boldface limits apply across the operating temperature range, -55°C to +125°C, without  
irradiation. They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s  
(ISL70005SEH only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Power Supply  
Operating Supply Current - Switching  
Shutdown Supply Current - Idle  
Enable Pin Characteristics  
B_EN Rising Threshold  
B_EN = 2V, 100kHz switching, B_LXx floating  
B_EN = GND  
10  
15  
mA  
mA  
0.6  
3.0  
1.6  
1.4  
100  
80  
2.0  
1.9  
V
V
B_EN Falling Threshold  
B_EN Input Hysteresis  
200  
100  
mV  
kΩ  
kΩ  
B_EN Pull-Down Resistance  
B_EN Pull-Down Resistance  
PWM Control Logic  
B_EN = 5.5V  
B_EN = 1.4V  
160  
130  
60  
Switching Frequency  
B_RT resistor = 544kΩ  
B_RT resistor = 44kΩ  
85  
115  
kHz  
kHz  
ns  
875  
100  
1000 1175  
B_LXx Minimum On-Time  
B_LXx Minimum On-Time  
B_LXx Minimum Off-Time  
B_VIN = B_VCC = 5.5V, B_COMP = 180mV,  
1kΩ from B_LXx to 2.75V  
175  
215  
105  
240  
325  
165  
B_VIN = B_VCC = 3V, B_COMP = 180mV,  
1kΩ from B_LXx to 1.5V  
115  
50  
ns  
ns  
B_COMP = 180mV,  
1kΩ from B_LXx to [B_VIN / 2]  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 10 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
Unless otherwise noted, B_VINx = B_VCC = 3V to 5.5V; B_GND = B_PGNDx = 0V; B_EN = 2.0V; B_SYNC = B_LXx = Open Circuit; B_PG is  
pulled up to B_VCC with a 3kΩ resistor; VREF is bypassed to L_GND with a 22nF capacitor; B_SS is bypassed to B_GNDx with a 220nF  
capacitor; IOUT = 0A; TA = TJ = +25°C. Boldface limits apply across the operating temperature range, -55°C to +125°C, without  
irradiation. They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s  
(ISL70005SEH only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
Parameter  
Modulator Gain (Note 10)  
Test Conditions  
Min  
Typ  
Max  
Unit  
V/V  
kHz  
2.35  
External Synchronization Range  
B_RT clock set to 90% of B_SYNC clock, 50% duty cycle  
clock input  
100  
2
1000  
B_SYNC Input Voltage  
B_SYNC VIH voltage  
B_SYNC VIL voltage  
V
V
0.8  
1
B_SYNC Input Leakage Current  
Soft-Start  
-1  
µA  
Soft-Start Source Current  
Soft-Start Discharge ON-Resistance  
Soft-Start Discharge Time  
SS = GND  
17  
23  
3.0  
256  
30  
µA  
6.0  
Ω
Clock  
Cycles  
Reference Voltage  
Reference Voltage Tolerance  
Error Amplifier  
VREF + error amplifier VIO  
0.594  
0.6  
0.606  
V
DC Gain (Note 10)  
80  
7
dB  
MHz  
V
Gain-Bandwidth Product (Note 10)  
Maximum Output Voltage  
Slew Rate (Note 10)  
B_VCC = 5.5V  
3.5  
4.2  
8.5  
V/µs  
nA  
B_FB Input Leakage Current  
Power MOSFET  
B_FB = 0.6V, B_VINx = 5.5V  
250  
Packaged Upper Device rDS(ON)  
B_VINx = B_VCC = 3.0V; single B_LXx output  
B_VINx = B_VCC = 5.5V; single B_LXx output  
B_VINx = B_VCC = 3.0V; single B_LXx output  
B_VINx = B_VCC = 5.5V; single B_LXx output  
80  
65  
40  
35  
160  
130  
90  
245  
210  
160  
150  
15  
mΩ  
mΩ  
mΩ  
mΩ  
%
Packaged Lower Device rDS(ON)  
85  
Packaged ON Resistance Matching,  
B_LX1 rDS(ON)_1 to B_LX2 rDS(ON)_2,  
Upper and Lower Device  
TA = +125°C  
Match = | rDS(ON)_1 - rDS(ON)_2 | / AVG  
where AVG = (rDS(ON)_1 + rDS(ON)_2) / 2  
5
Die Upper Device rDS(ON)  
B_VINx = B_VCC = 3.0V; TA = 25°C single B_LXx output  
B_VINx = B_VCC = 5.5V; TA = 25°C single B_LXx output  
B_VINx = B_VCC = 3.0V; TA = 25°C Single B_LXx output  
B_VINx = B_VCC = 5.5V; TA = 25°C single B_LXx Output  
40  
20  
15  
10  
75  
50  
35  
30  
5
110  
85  
60  
65  
15  
mΩ  
mΩ  
mΩ  
mΩ  
%
Die Lower Device  
rDS(ON)  
Die ON Resistance Matching,  
B_LX1 rDS(ON)_1 to B_LX2 rDS(ON)_2  
Upper and Lower Device  
B_VINx = 3.0V; TA = +25°C  
Match = | rDS(ON)_1 - rDS(ON)_2 | / AVG  
where AVG = (rDS(ON)_1 + rDS(ON)_2) / 2  
B_LXx Output Leakage  
B_EN = B_LXx = xGND, single B_LXx output  
3
µA  
µA  
ns  
B_EN = GND, B_LXx = 5.5V, single B_LXx output  
15  
50  
Dead Time (Note 10)  
0
30  
Power-Good Signal  
B_PG Overvoltage Error Threshold  
B_PG Overvoltage Error Hysteresis  
B_PG Undervoltage Error Threshold  
B_FB as a % of VREF  
B_FB as a % of VREF  
B_FB as a % of VREF  
107  
1.5  
85  
111  
3.5  
89  
115  
5
%
%
%
93  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 11 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
Unless otherwise noted, B_VINx = B_VCC = 3V to 5.5V; B_GND = B_PGNDx = 0V; B_EN = 2.0V; B_SYNC = B_LXx = Open Circuit; B_PG is  
pulled up to B_VCC with a 3kΩ resistor; VREF is bypassed to L_GND with a 22nF capacitor; B_SS is bypassed to B_GNDx with a 220nF  
capacitor; IOUT = 0A; TA = TJ = +25°C. Boldface limits apply across the operating temperature range, -55°C to +125°C, without  
irradiation. They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s  
(ISL70005SEH only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)  
Parameter  
B_PG Undervoltage Error Hysteresis  
B_PG Drive  
Test Conditions  
B_FB as a % of VREF  
Min  
1.5  
7.2  
Typ  
Max  
5
Unit  
%
3.5  
B_VIN = 3V, B_PG = 0.4V, B_EN = GND  
B_VINx = B_PG = 5.5V  
mA  
µA  
B_PG Leakage  
1
Protection Features  
Undervoltage Protection  
Undervoltage Trip Threshold  
Undervoltage Recovery Threshold  
Overcurrent Protection  
Overcurrent Limit  
B_FB as a % of VREF; in test mode  
B_FB as a % of VREF, in test mode  
71  
86  
75  
90  
79  
94  
%
%
4.0  
6.4  
A
Note:  
10. Specifications established by characterization or analysis and are not production tested.  
2.4.2  
LDO Electrical Specifications  
Unless otherwise noted, all parameters are guaranteed over the following specified conditions: COUT = 150µF tantalum, TA = TJ = +25°C,  
IL = 0A. Applications must follow thermal guidelines of the package to determine worst case junction temperature. See “Applications  
Information” on page 31 and TB379. Boldface limits apply across the operating temperature range, -55°C to +125°C without irradiation.  
They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70005SEH  
only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. Pulse load techniques used by ATE to  
ensure TJ = TA.  
Parameter  
DC Characteristics  
Test Conditions  
Min  
Typ  
Max  
Unit  
L_VIN Voltage Range  
L_OUT Voltage Range  
MIN ensured by L_VIN dropout testing  
0.775  
0.6  
L_VCC  
V
V
MIN ensured by L_VIN dropout testing;  
MAX ensured by L_VCC dropout testing;  
L_EA+ = 0.600V  
L_VCC - 1.5  
VREF Voltage  
0.591  
0.609  
V
Power-On Reset  
L_VCC Internal UVLO Rising Threshold  
L_VCC Internal UVLO Falling Threshold  
L_VCC Internal UVLO Hysteresis  
2.6  
2.45  
75  
2.8  
2.95  
2.80  
420  
V
V
175  
mV  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 12 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
Unless otherwise noted, all parameters are guaranteed over the following specified conditions: COUT = 150µF tantalum, TA = TJ = +25°C,  
IL = 0A. Applications must follow thermal guidelines of the package to determine worst case junction temperature. See “Applications  
Information” on page 31 and TB379. Boldface limits apply across the operating temperature range, -55°C to +125°C without irradiation.  
They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70005SEH  
only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. Pulse load techniques used by ATE to  
ensure TJ = TA. (Continued)  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
DC Output Voltage Accuracy, L_OUTx  
L_VIN = [4.15V, 5.5V], L_VCC = 5.5V, R1/R2 = 4.5,  
R1: L_OUT to L_EA-; R2: L_EA- to L_GND  
L_EA+ = 0.600V, ILOAD = [10mA, 1A]  
L_OUTx where x = [1, 3, 5, 7]  
3.225 3.272  
3.285 3.327  
1.463 1.487  
3.336  
V
L_VIN = [4.15V, 5.5V], L_VCC = 5.5V, R1/R2 = 4.5,  
R1: L_OUT to L_EA-; R2: L_EA- to L_GND  
L_EA+ = 0.600V, ILOAD = [-10mA, -1A]  
L_OUTx where x = [2, 4, 6, 8]  
3.397  
1.519  
V
V
L_VIN = [2V, 3V, 5.5V], L_VCC = [3.35V, 5.5V],  
R1/R2 = 1.5,  
R1: L_OUT to L_EA-; R2: L_EA- to L_GND  
L_EA+ = 0.600V, ILOAD = [10mA, 1A]  
L_OUTx where x = [9, 11, 13, 15, 17, 19, 21, 23]  
L_VIN = [2V, 3V, 5.5V], L_VCC = [3.35V, 5.5V],  
R1/R2 = 1.5,  
1.490 1.512  
1.546  
V
R1: L_OUT to L_EA-; R2: L_EA- to L_GND  
L_EA+ = 0.600V, ILOAD = [-10mA, -1A]  
L_OUTx where x = [10, 12, 14, 16, 18, 20, 22, 24]  
L_VIN = [1.75V, 3V, 5.5V],  
1.235 1.245  
1.246 1.255  
0.585 0.595  
0.596 0.605  
1.258  
1.269  
0.608  
0.619  
15  
V
V
L_VCC = [3.1V, 5.5V], L_EA- = L_OUT,  
L_EA+ = 1.250V, ILOAD = [10mA, 1A]  
L_OUTx where x = [25, 27, 29, 31, 33, 35, 37, 39]  
L_VIN = [1.75V, 3V, 5.5V]  
L_VCC = [3.1V, 5.5V], L_EA- = L_OUT,  
L_EA+ = 1.250V, ILOAD = [-10mA, -1A]  
L_OUTx where x = [26, 28, 30, 32, 34, 36, 38, 40]  
L_VIN = [1.1V, 3V, 5.5V], L_VCC = [3V, 5.5V],  
L_EA- = L_OUT,  
L_EA+ = 0.600V, ILOAD = [10mA, 1A]  
L_OUTx where x = [41, 43, 45, 47, 49, 51, 53, 55]  
V
L_VIN = [1.1V, 3V, 5.5V], L_VCC = [3V, 5.5V],  
L_EA- = L_OUT,  
L_EA+ = 0.600V, ILOAD = [-10mA, -1A]  
L_OUTx where x = [42, 44, 46, 48, 50, 52, 54, 56]  
V
Regulation Dead-Band  
L_VOUT difference between the two current cases:  
5
10  
mV  
I
OUT = [sourcing 10mA, sinking 10mA]  
for L_VCC = 5.5V, L_VIN = 5.5V,  
L_EA+ = 0.600V, L_OUT = L_EA-  
L_EA+, L_EA- Input Bias Current  
L_VCC Pin Current  
L_EA+ = L_EA- = 0.6V, L_VIN = 5.5V  
1
µA  
L_OUT = 1.5V; ILOAD = 1A; L_VIN = 1.65V;  
3.0V < L_VCC < 5.5V  
7.2  
10  
mA  
L_VCC Pin Current in Shutdown  
L_EN = B_EN = 0V, L_VCC = 5.5V  
450  
1000  
1.5  
µA  
V
L_VCC Dropout Voltage L_VCCDO  
(Note 13)  
IOUT = 1A, L_OUT = 3.3V; L_VIN = 3.8V  
L_VCC = L_OUT + L_VCCDO  
;
L_VIN Dropout Voltage, L_VINDO (Note 12) IOUT = 1A, L_OUT = 0.6V; L_VIN = L_OUT +  
L_VINDO; 3.0V < L_VCC < 5.5V; TA = -55°C  
75  
115  
145  
175  
mV  
mV  
mV  
I
OUT = 1A, L_OUT = 0.6V; L_VIN = L_OUT +  
100  
135  
L_VINDO; 3.0V < L_VCC < 5.5V; TA = 25°C  
IOUT = 1A, L_OUT = 0.6V; L_VIN = L_OUT +  
L_VINDO; 3.0V < L_VCC < 5.5V; TA = 125°C  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 13 of 46  
ISL70005SEH, ISL73005SEH  
2. Specifications  
Unless otherwise noted, all parameters are guaranteed over the following specified conditions: COUT = 150µF tantalum, TA = TJ = +25°C,  
IL = 0A. Applications must follow thermal guidelines of the package to determine worst case junction temperature. See “Applications  
Information” on page 31 and TB379. Boldface limits apply across the operating temperature range, -55°C to +125°C without irradiation.  
They also apply at +25°C after total ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s (ISL70005SEH  
only) or after total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. Pulse load techniques used by ATE to  
ensure TJ = TA. (Continued)  
Parameter  
Protection Features  
Test Conditions  
Min  
Typ  
Max  
Unit  
Positive Overcurrent Limit  
Negative Overcurrent Limit  
1.25  
-2  
2
A
A
-1.25  
195  
Thermal Shutdown Temperature (Note 11) Junction temperature  
153  
175  
8
°C  
°C  
Thermal Shutdown Hysteresis (Rising  
Threshold) (Note 11)  
Junction temperature  
AC Ripple Rejection and Noise Characteristics  
1kHz VIN Supply Ripple Rejection  
V
P-P = 300mV; f = 1kHz; ILOAD = 1A;  
60  
50  
80  
50  
70  
36  
11  
dB  
dB  
L_VCC = 5V; L_VIN = 3.15V; L_OUT = 1.5V  
100kHz VIN Supply Ripple Rejection  
(Note 11)  
VP-P = 300mV; f = 100kHz; ILOAD = 1A;  
L_VCC = 5V; L_VIN = 3.15V; L_OUT = 1.5V  
1kHz L_VCC Supply Ripple Rejection  
V
P-P = 300mV; f = 1kHz; ILOAD = 1A;  
dB  
L_VCC = 5V; L_VIN = 3V; L_OUT = 1.5V  
100kHz L_VCC Supply Ripple Rejection  
(Note 11)  
VP-P = 300mV; f = 100kHz; ILOAD = 1A;  
L_VCC = 5V; L_VIN = 3V; L_OUT = 1.5V  
dB  
Output Noise Voltage (Note 11)  
L_VCC = 5V; L_VIN = 1.4V;  
µVRMS  
L_OUT = 1.25V; ILOAD = 100mA;  
BW = 10Hz < f < 100kHz; L_EA- = L_OUT  
Enable Pin Characteristics  
L_EN Rising Threshold  
1.6  
1.4  
100  
80  
2.0  
1.9  
V
V
L_EN Falling Threshold  
L_EN Input Hysteresis  
200  
mV  
kΩ  
kΩ  
L_EN Pull-Down Resistance  
L_EN Pull-Down Resistance  
PGOOD Characteristics  
L_PG Overvoltage Error Threshold  
L_PG Overvoltage Error Hysteresis  
L_PG Undervoltage Error Threshold  
L_PG Undervoltage Error Hysteresis  
L_PG Output Low Drive  
L_EN = 5.5V  
L_EN = 1.4V  
160  
130  
60  
L_EA- as a % of L_EA+; L_EA+ = 0.6V  
L_EA- as a % of L_EA+; L_EA+ = 0.6V  
L_EA- as a % of L_EA+; L_EA+ = 0.6V  
L_EA- as a % of L_EA+; L_EA+ = 0.6V  
L_VCC = 3V; L_PG = 0.4V; L_EN = L_GND  
L_VIN = L_PG = 5.5V  
107  
1.5  
85  
111  
3.5  
89  
115  
5
%
%
93  
5
%
1.5  
7.2  
3.5  
%
mA  
µA  
L_PG Leakage Current  
1
Notes:  
11. Specifications established by characterization or design and are not production tested.  
12. L_VIN dropout is defined by the difference in L_VIN and L_OUT when the regulator produces a 2% drop in L_OUT from its nominal value.  
13. L_VCC dropout is defined by the difference in L_VCC and L_OUT when the regulator produces a 2% drop in L_OUT from its nominal  
value.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 14 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C.  
f
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
Vout = 3.3V  
Vout = 2.5V  
Vout = 1.8V  
Vout = 1.5V  
Vout = 2.5V  
Vout = 1.8V  
Vout = 1.5V  
0.0  
0.5  
1.0  
1.5  
Load Current (A)  
2.0  
2.5  
3.0  
3.0  
3.0  
0.0  
0.5  
1.0  
1.5  
Load Current (A)  
2.0  
2.5  
3.0  
Figure 6. Efficiency vs IOUT; B_VIN = 3V; 100kHz  
Figure 7. Efficiency vs IOUT; B_VIN = 5V; 100kHz  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vout = 3.3V  
Vout = 2.5V  
Vout = 1.8V  
Vout = 1.5V  
Vout = 1.8V  
Vout = 1.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Load Current (A)  
Load Current (A)  
Figure 8. Efficiency vs IOUT; B_VIN = 3V; 500kHz  
Figure 9. Efficiency vs IOUT; B_VIN = 5V; 500kHz  
95  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vout = 3.3V  
Vout = 2.5V  
Vout = 1.8V  
Vout = 1.5V  
Vout = 1.8V  
Vout = 1.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Load Current (A)  
Figure 10. Efficiency vs IOUT; B_VIN = 3V; 1MHz  
Figure 11. Efficiency vs IOUT; B_VIN = 5V; 1MHz  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 15 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
from 1.5V to 3.3V  
V
from 1.5V to 1.8V  
OUT  
OUT  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Load Current (A)  
Figure 12. Power Loss vs IOUT; B_VIN = 3V; 100kHz  
Figure 13. Power Loss vs IOUT; B_VIN = 5V; 100kHz  
1.4  
1.4  
1.2  
V
from 1.5V to 1.8V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
OUT  
V
from 1.5V to 3.3V  
OUT  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Load Current (A)  
Figure 14. Power Loss vs IOUT; B_VIN = 3V; 500kHz  
Figure 15. Power Loss vs IOUT; B_VIN = 5V; 500kHz  
1.4  
1.4  
V
from 1.5V to 3.3V  
V
from 1.5V to 1.8V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
OUT  
OUT  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Load Current (A)  
Figure 16. Power Loss vs IOUT; B_VIN = 3V; 1MHz  
Figure 17. Power Loss vs IOUT; B_VIN = 5V; 1MHz  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 16 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Load Current (A)  
Load Current (A)  
Figure 18. Buck Load Regulation; B_VIN = 3V  
Figure 19. Buck Load Regulation; B_VIN = 5V  
1.8025  
3.2785  
3.2780  
3.2775  
3.2770  
3.2765  
3.2760  
3.2755  
3.2750  
3.2745  
1.8020  
1.8015  
1.8010  
1.8005  
1.8000  
1.7995  
Load = 0.5A  
Load = 2.5A  
Load = 0.5A  
Load = 2.5A  
2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
B_VCC = B_VIN (V)  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
B_VCC = B_VIN (V)  
Figure 20. Buck Line Regulation; VOUT = 1.8V  
Figure 21. Buck Line Regulation; VOUT = 3.3V  
SS 500mV/Div  
SS 500mV/Div  
PG 2V/Div  
PG 2V/Div  
VOUT 1V/Div  
EN 5V/Div  
VOUT 1V/Div  
EN 5V/Div  
500µs/DIV  
200µs/DIV  
Figure 22. Buck Soft-Start; Load = 0.68Ω; LDO Disabled  
Figure 23. Buck Soft-Start; Load = 0.68Ω; LDO Enabled  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 17 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
SS 1V/Div  
SS 1V/Div  
PG 2V/Div  
PG 2V/Div  
VOUT 1V/Div  
VOUT 1V/Div  
EN 5V/Div  
EN 5V/Div  
500µs/DIV  
500µs/DIV  
Figure 25. LDO Soft-Start; Load = 1.5Ω to GND; Buck  
Figure 24. LDO Soft-Start; Load = 1.5Ω to GND; Buck  
Enabled  
Disabled  
B_PG 2V/Div  
B_PG 2V/Div  
B_VOUT 1V/Div  
B_VOUT 1V/Div  
B_SS 1V/Div  
EN 5V/Div  
B_SS 1V/Div  
EN 5V/Div  
L_SS 1V/Div  
L_PG 2V/Div  
L_SS 1V/Div  
L_PG 2V/Div  
L_VOUT 1V/Div  
L_VOUT 1V/Div  
500µs/Div  
500µs/Div  
Figure 26. Buck and LDO Soft-Start; B_EN = L_EN; 0.68Ω  
Load on Buck; 1.5Ω Load on LDO; FPGA Configuration  
Figure 27. Buck and LDO Soft-Start; B_EN = L_EN;  
Load = 0A on Buck and LDO; DDR Configuration  
LX 5V/Div  
Inductor Current 500mA/Div  
VOUT 50mV/Div  
VOUT 50mV/Div  
LX 5V/Div  
Inductor Current 500mA/Div  
1µs/Div  
1µs/Div  
Figure 28. Buck Steady State Operation; Load = 0A  
Figure 29. Buck Steady State Operation; Load = 3A  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 18 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
f
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
VOUT 50mV/Div  
VOUT 50mV/Div  
Inductor Current 1.5A/Div  
Inductor Current 1.5A/Div  
Load Step Current 1.5A/Div  
Load Step Current 1.5A/Div  
10µs/Div  
10µs/Div  
Figure 30. Buck Load Step ON Transient Response;  
Figure 31. Buck Load Step OFF Transient Response;  
VOUT = 1.8V  
VOUT = 1.8V  
VOUT 50mV/Div  
VOUT 50mV/Div  
Inductor Current 1.36A/Div  
Load Step Current 1.36A/Div  
Inductor Current 1.36A/Div  
Load Step Current 1.36A/Div  
10µs/Div  
10µs/Div  
Figure 32. Buck Load Step ON Transient Response;  
Figure 33. Buck Load Step OFF Transient Response;  
VOUT = 3.3V  
VOUT = 3.3V  
Inductor Current 2A/Div  
Inductor Current 2A/Div  
B_VOUT 1V/Div  
B_PG 5V/Div  
B_PG 5V/Div  
B_VOUT 1V/Div  
B_SS 500mV/Div  
B_LX 2V/Div  
B_LX 2V/Div  
B_SS 500mV/Div  
2µs/Div  
500µs/Div  
Figure 34. Buck Overcurrent Detection and Fault  
Response  
Figure 35. Buck Overcurrent Hiccup Operation  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 19 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
f
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
Inductor Current 2A/Div  
1000  
800  
700  
B_VOUT 1V/Div  
600  
500  
400  
B_PG 5V/Div  
300  
200  
100  
B_LX 2V/Div  
B_SS 500mV/Div  
500µs/Div  
RT Resistor (kΩ)  
Figure 37. Buck Internal Oscillator RT vs fSW  
Figure 36. Buck Overcurrent Fault Recovery Response  
60  
40  
100  
80  
60  
40  
20  
60  
100  
80  
60  
40  
40  
20  
20  
20  
0
0
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-20  
-40  
-60  
Gain  
Gain  
Phase  
Phase  
1.0E+02  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+02  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
Frequency (Hz)  
Frequency (Hz)  
Figure 38. Buck Bode Plot; Load = 0A  
Figure 39. Buck Bode Plot; Load = 3A  
1.195  
1.194  
1.193  
1.192  
1.191  
1.190  
1.191  
1.190  
1.189  
1.188  
1.187  
1.186  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
L_VIN Voltage (V)  
L_VIN Voltage (V)  
Figure 40. LDO Line Regulation; Load = 0A  
Figure 41. LDO Line Regulation; Load = 1A Sourcing  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 20 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.765  
0.760  
0.755  
0.750  
0.745  
0.740  
L_VCC = B_VCC = 5V  
L_VIN = 1.5V  
L_EA+ = 0.75V  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
LDO Current (A)  
LDO Current (A)  
Figure 42. LDO Constant Current Limit Threshold  
Figure 43. LDO Load Regulation DDR3 Configuration  
0.915  
0.910  
0.905  
0.900  
1.265  
1.260  
1.255  
1.250  
L_VCC = B_VCC = 5V  
L_VCC = B_VCC = 5V  
L_VIN = 1.8V  
0.895  
L_VIN = 2.5V  
1.245  
L_EA+ = 1.25V  
L_EA+ = 0.9V  
0.890  
1.240  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
LDO Current (A)  
LDO Current (A)  
Figure 44. LDO Load Regulation DDR2 Configuration  
Figure 45. LDO Load Regulation DDR Configuration  
1.84  
1.83  
1.82  
1.23  
1.22  
1.21  
1.20  
1.81  
L_VIN = 3V  
1.80  
L_VCC = B_VCC = 5V  
L_VIN = 3V  
L_EA+ = VREF  
L_VCC = B_VCC = 5V  
1.19  
1% Resistor Divider  
1.79  
L_EA+ = VREF  
1% Resistor Divider  
1.18  
1.78  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
-1.5  
-1.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
Load Current (A)  
Load Current (A)  
Figure 46. LDO Load Regulation Av = 2  
Figure 47. LDO Load Regulation Av = 3  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 21 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
L_VOUT 50mV/Div  
L_VOUT 50mV/Div  
1A Sourcing  
1A Sourcing  
Load Current 500mA/Div  
Load Current 500mA/Div  
1A Sinking  
1A Sinking  
2µs/Div  
2µs/Div  
Figure 48. LDO Source-to-Sink Transient Response;  
L_OUT = L_EA- = L_EA+ = 0.6V  
Figure 49. LDO Source-to-Sink Transient Response;  
L_OUT = L_EA- = L_EA+ = 0.75V  
L_VOUT 50mV/Div  
L_VOUT 50mV/Div  
1A Sourcing  
1.1A Sourcing  
Load Current 500mA/Div  
Load Current 500mA/Div  
1A Sinking  
1.1A Sinking  
2µs/Div  
2µs/Div  
Figure 50. LDO Source-to-Sink Transient Response;  
L_OUT = L_EA- = L_EA+ = 0.9V  
Figure 51. LDO Source-to-Sink Transient Response;  
L_OUT = L_EA- = L_EA+ = 1.25V  
B_EN = L_EN 5V/Div  
VREF 200mV/Div  
L_VOUT 100mV/Div  
Load Current 2A/Div  
L_SS 1V/Div  
B_SS 1V/Div  
LDO Current 2A/Div  
20µs/Div  
200µs/Div  
Figure 52. LDO Constant Current Limit Regulation  
Transient Response  
Figure 53. VREF Start-Up Timing on B_EN or L_EN Rising  
Edge; 100nF capacitor on VREF  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 22 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
L_VIN = 3V  
L_VIN = 3V  
L_VCC = B_VCC = 5V  
L_OUT = 0.9V  
300mVpp AC  
L_VCC = B_VCC = 5V  
L_OUT = 0.9V  
300mVpp AC  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Frequency (Hz)  
Frequency (Hz)  
Figure 54. LDO L_VCC PSRR Curve; 1A Source  
Figure 55. LDO L_VCC PSRR Curve; 1A Sink  
0
0
-10  
L_VIN = 3V  
L_VIN = 3V;  
L_VCC = B_VCC = 5V  
L_OUT = 0.9V  
-20  
-40  
L_VCC = B_VCC = 5V  
L_OUT = 0.9V  
300mVpp AC  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
300mVpp AC  
-60  
-80  
-100  
-120  
1.E+01  
1.E+02  
1.E+03  
Frequency (Hz)  
1.E+04  
1.E+05  
1.E+01  
1.E+02  
1.E+03  
Frequency (Hz)  
1.E+04  
1.E+05  
Figure 56. LDO L_VIN PSRR Curve; 1A Source  
Figure 57. LDO L_VIN PSRR Curve; 1A Sink  
100.00  
100.00  
L_VIN = 1.4V  
L_VIN = 1.4V  
L_VCC = B_VCC = 4V  
L_OUT = 1.25V  
100mA Load  
L_VCC = B_VCC = 4V  
L_OUT = 1.25V  
100mA Load  
10.00  
1.00  
0.10  
0.01  
10.00  
1.00  
0.10  
0.01  
Buck Enabled  
Buck Disabled  
0.01  
0.1  
1
10  
100  
1000  
10000 100000  
0.01  
0.1  
1
10  
100  
1000  
10000 100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 58. LDO Noise Spectral Density; Buck Disabled  
Figure 59. LDO Noise Spectral Density; Buck Enabled  
Dual Output FPGA Configuration  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 23 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
100.00  
10.00  
1.00  
100.00  
10.00  
1.00  
L_VIN = 1.8V  
L_VIN = 1.8V  
L_VCC = B_VCC = 4V  
L_OUT = 0.9V  
L_VCC = B_VCC = 4V  
L_OUT = 1.2V  
100mA Load  
100mA Load  
DDR Configuration  
Buck V  
into L_VIN  
OUT  
0.10  
0.10  
0.01  
0.01  
0.01  
0.1  
1
10  
100  
1000  
10000  
100000  
0.01  
0.1  
1
10  
100  
1000  
10000 100000  
Frequency (Hz)  
Frequency (Hz)  
Figure 60. LDO Noise Spectral Density; B_OUT into  
L_VIN  
Figure 61. LDO Noise Spectral Density; DDR  
Configuration  
1.190  
1.185  
1.180  
1.175  
1.170  
1.165  
1.200  
1.195  
1.190  
1.185  
1.180  
1.175  
1.170  
1.165  
1.160  
1.155  
1.150  
L_VCC = B_VCC = 5V  
L_OUT = 1.2V;  
L_VCC = B_VCC = 5V  
L_OUT = 1.2V;  
1A Sourcing  
1.160  
1.155  
1.150  
Av = 1; L_EA+ = 1.2V  
1A Sourcing  
Av = 2; L_EA+ = VREF  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
L_VIN Voltage (V)  
L_VIN Voltage (V)  
Figure 62. LDO Dropout Voltage; Av = 2  
Figure 63. LDO Dropout Voltage; Av = 1  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
Gain  
Phase  
0
0
Gain  
-20  
-40  
-50  
-20  
-40  
-50  
Phase  
-100  
1.E+07  
-100  
1.E+07  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Frequency (Hz)  
Frequency (Hz)  
Figure 65. LDO Bode Plot; Av = 1; Sinking 0.9A;  
L_VIN = 3V; L_VOUT = 0.9V  
Figure 64. LDO Bode Plot; Av = 1; Sourcing 0.9A;  
L_VIN = 3V; L_OUT = 0.9V  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 24 of 46  
ISL70005SEH, ISL73005SEH  
3. Typical Performance Curves  
Unless otherwise noted, the test platform is the ISL70005SEHEV2Z where B_PVIN = B_VCC = L_VCC = 5V; L_VIN = 3V; B_OUT = 1.8V;  
SW = 1MHz; Buck CIN = 150µF tantalum + 2x1µF ceramic; Buck COUT = 150µF tantalum + 2x1µF ceramic; LOUT = 2.2µH; LDO CIN = 150µF  
tantalum + 11µF ceramic; LDO COUT = 150µF tantalum +12µF ceramic; L_OUT = 1.2V; L_EA+ = VREF = 0.6V; TA = +25°C. (Continued)  
f
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
250  
200  
150  
100  
50  
0
0
Gain  
Gain  
Phase  
-20  
-40  
-50  
-100  
-20  
-40  
-50  
-100  
Phase  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
Frequency (Hz)  
Frequency (Hz)  
Figure 66. LDO Bode Plot; Av = 2; Sourcing 1.2A;  
L_VIN = 3V; L_OUT = 1.2V  
Figure 67. LDO Bode Plot; Av = 2; Sinking 1.2A;  
L_VIN = 3V; L_OUT = 1.2V  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 25 of 46  
ISL70005SEH, ISL73005SEH  
4. Functional Description  
4. Functional Description  
The ISL70005SEH and ISL73005SEH are radiation hardened dual output Point-of-Load (POL) regulators  
combining the high efficiency of a synchronous buck regulator with the low noise of a Low Dropout (LDO)  
regulator. This device is suited for systems with 3.3V or 5V power buses and can support continuous output load  
currents of 3A for the buck regulator and ±1A for the LDO.  
The buck regulator uses a voltage mode control architecture and switches at a resistor adjustable frequency of  
100kHz to 1MHz. Externally adjustable loop compensation allows for an optimum balance between stability and  
output dynamic performance. The internal synchronous power switches are optimized for high efficiency and  
excellent thermal performance.  
The LDO is completely configurable independent of the switching regulator. It uses NMOS pass devices and  
separate chip bias voltage (L_VCC) to drive its gate, which enables the LDO to function with very low input  
voltages at the L_VIN NMOS input. Combined with low dropout performance, the LDO allows regulation with  
minimal power dissipation across a wide output voltage. The LDO can sink and source up to 1A continuously  
making it an ideal choice to power DDR memory.  
The ISL70005SEH and ISL73005SEH offers independently on the Buck and LDO programmable soft-start and  
enable functions along with power-good indicators for ease of supply rail sequencing and other housekeeping  
requirements. In addition, these devices incorporate fault protection for the regulators. The protection features  
include over-temperature, input Undervoltage Lockout (UVLO), output undervoltage detection, output overvoltage  
detection and output overcurrent protection.  
The ISL70005SEH and ISL73005SEH are available in a space saving 28 Ld ceramic dual flat-pack package or  
in die form and are specified to operate across the military temperature range of T = -55°C to +125°C.  
A
4.1  
Synchronous Buck Converter  
Buck Architecture  
4.1.1  
The synchronous integrated FET buck regulator uses a voltage mode control architecture with external  
compensation. It is fabricated on a 0.6µm BiCMOS junction isolated process optimized for power management  
applications. With this device and a handful of external components, a complete synchronous buck DC/DC  
converter can be readily implemented.  
4.1.2  
Buck Enable Control  
The B_EN pin accepts TTL/CMOS logic input levels. When the voltage on the B_EN pin exceeds its logic rising  
threshold, the controller monitors the POR voltage before initiating the soft-start for the PWM regulator. When  
B_EN is pulled low, the device enters a low power shutdown mode. The internal synchronous MOSFETs are held  
in a high impedance state while in shutdown mode.  
4.1.3  
Buck Soft-Start  
The Buck regulator soft-start is enabled upon rising edge of B_EN. The soft-start function uses an internal current  
source and an external capacitor to create a reference ramp during start-up to minimize in-rush current to the  
output capacitors. The soft-start circuit clamps the error amplifier reference voltage to the lower of voltage  
between the external soft-start capacitor connected to the B_SS pin or the internal reference voltage (0.6V  
typical). The soft-start capacitor is charged by an internal current source. As the soft-start capacitor is charged,  
the output voltage ramps to the set point determined by the soft-start capacitor voltage and the feedback voltage.  
When the voltage on the B_SS pin is equal to the internal reference voltage, the soft-start interval is complete.  
When B_SS pin has charged to 1.6V (internally clamped) and with no fault conditions, the buck power-good  
B_PG pin goes high impedance. The soft-start capacitor is discharged by a 3.0Ω resistor whenever POR  
condition is not met or B_EN is pulled low.  
The buck regulator is designed to soft-start into a pre-biased output that is less than its target regulation voltage.  
During soft-start there is no switching on the B_LXx pins until the B_SS voltage crosses the B_FB voltage to  
prevent discharging a pre-biased output. If the pre-bias output is above its target regulation voltage this is an  
overcharged condition for the buck regulator. For a soft-start into an overcharged condition, the buck regulator  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 26 of 46  
ISL70005SEH, ISL73005SEH  
4. Functional Description  
does not complete soft-start. When the B_SS pin voltage reaches 1.6V, the soft-start capacitor is internally  
discharged to 0V and begins a new soft-start cycle with no switching on B_LXx. This condition repeats until the  
pre-bias output voltage is reduced below the target regulation voltage.  
4.1.4  
Switching Frequency with B_RT and B_SYNC  
The buck regulator PWM switching frequency is set through the internal oscillator with an adjustable range of  
100kHz to 1MHz. An external termination resistor, RT, from the B_RT pin to B_GND sets the oscillator frequency.  
See “Switching Frequency Selection and External Sync for Buck Regulator” on page 31 for more information on  
setting the RT resistor.  
The switching frequency can also be synchronized to an external clock through the B_SYNC pin. During soft-start  
the clock at B_SYNC is ignored and the PWM controller uses the internal oscillator for switching until the soft-start  
voltage is above the internal 600mV reference voltage where it synchronizes to B_SYNC. The synchronization  
frequency range is 100kHz to 1MHz. If external synchronization is not used, tie B_SYNC to GND.  
4.1.5  
Buck Power-Good  
The B_PG power-good indicator is an open-drain logic output. On completion of soft-start and without a fault  
condition on the buck regulator, the B_PG pin is high impedance. An external pull-up resistor to B_VCC is used  
for logic high indicating the buck output is operating in regulation. The recommended range for the pull-up resistor  
is 10kΩ to 100kΩ. Before soft-start completes or in a fault condition, the B_PG pin is actively pulled low to indicate  
buck output is not operating in regulation. To mitigate SEE, bypass the B_PG pin to B_GND with a 1nF ceramic  
capacitor.  
4.1.6  
Buck Integrated Power MOSFETs  
The buck regulator integrates two synchronous operation MOSFETs for the power stage. The high-side MOSFET  
is a PMOS and the low-side MOSFET is an NMOS. The MOSFETs are optimized for low r  
excellent efficiency over the 3A load current operating range.  
to provide  
DS(ON)  
4.1.7  
Buck Error Amplifier Output  
The B_COMP pin is the output of the error amplifier. The voltage on B_COMP determines the duty cycle at  
B_LXx. For voltage mode control, a Type III compensation network must be connected between B_FB and  
B_COMP to stabilize the feedback loop. See “Buck Feedback Compensation Design” on page 36 for the design  
of the Type III compensator. The B_COMP pin analog range is from 100mV to 0.4*B_VCC that correlates to the  
B_LXx duty cycle from minimum on-time to minimum off-time.  
4.1.8  
Buck Overcurrent Limiting  
The buck regulator integrates cycle-by-cycle output overcurrent limiting. Peak inductor current is sensed on the  
integrated high-side PMOS FET. If the high-side switch current exceeds the overcurrent threshold (5.3A typical),  
the PMOS turns off and the low-side NMOS FET is turned on for the remainder of the switching cycle. After four  
consecutive detections of cycle-by-cycle current limiting, the Buck regulator enters an overcurrent fault protection  
mode as described in Buck Fault Protection. The minimum response time from the high-side PMOS turn-on to  
overcurrent detection is determined by the B_LX minimum on-time specified in the Electrical Specification table  
on page 10. The response time from overcurrent detection to the high-side PMOS turn-off is approximately 60ns.  
See Figure 35 and Figure 36.  
4.1.9  
Buck Fault Protection  
The buck regulator integrates output overvoltage detection, output undervoltage protection, overcurrent protection  
and over-temperature protection. The fault response for output overvoltage only pulls the B_PG pin low to indicate  
an overvoltage condition. After recovery from an overvoltage, the B_PG pin is released. The fault response for an  
undervoltage or overcurrent condition pulls the B_PG pin low and starts a hiccup mode, after which a time delay  
causes the controller to start a soft-start cycle. The hiccup mode continues indefinitely until the fault condition  
recovers. If the soft-start completes with no fault condition, the B_PG pin is released. The fault response for an  
over-temperature condition pulls the B_PG and B_SS pins low and disables switching on B_LXx. After recovery  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 27 of 46  
ISL70005SEH, ISL73005SEH  
4. Functional Description  
from over-temperature condition, a soft-start cycle is initiated. After a successful soft-start, the B_PG pin is  
released.  
The undervoltage and overvoltage fault detection is implemented by sensing the B_FB voltage and comparing it  
to internal references for undervoltage and overvoltage thresholds. For the buck regulator, there are two  
Undervoltage (UV) thresholds. The first UV threshold (typically 89% of regulation) only flags the B_PG pin to  
indicate an undervoltage condition. The second UV threshold (typically 75% of regulation) produces a fault  
response on the buck converter where it operates in hiccup mode. See Buck Hiccup Operation for a description of  
Hiccup operation.  
4.1.10 Buck Hiccup Operation  
The buck regulator operates in hiccup mode when an output undervoltage or overcurrent condition occurs. During  
these fault conditions, the B_LXx pins are tri-stated and the B_SS pin is internally discharged. The buck regulator  
goes through a dummy soft-start cycle where the B_SS capacitor is charged by the internal current source but  
there is no switching on B_LXx. When the B_SS capacitor is fully charged (internally clamped to 1.6V), the B_SS  
pin is discharged again. The buck regulator then attempts a normal soft-start. This cycle repeats until the fault  
condition is removed to allow the buck regulator to go through a successful soft-start where B_PG is released.  
4.2  
Low Dropout Regulator (LDO)  
LDO Architecture  
4.2.1  
The LDO on the ISL70005SEH and ISL73005SEH is designed with NMOS pull-up and NMOS pull-down FETs  
with source and sink capability of up to 1A. Separate gate bias (L_VCC) and pass FET input (L_VIN) pins allow  
output voltage regulation up to L_OUT = L_VCC-1.5V and low dropout performance down to L_VIN = 0.775V.  
The LDO uses separate feedback loops for voltage regulation when sourcing and sinking current. To prevent  
internal shoot-through between the transition of the source and sink regulation loop, a small dead-band voltage  
region disables the LDO output at the LDO output current sourcing and sinking transition. During this dead-band  
voltage, both the LDO sourcing and sinking NMOS FETs are disabled. Any load current sources from or sinks into  
the output capacitor, raising or lowering the output voltage until it is out of the dead-band region where the LDO  
resumes voltage regulation. The dead-band voltage is precision trimmed to ±5mV around the target regulation  
voltage at unity gain feedback and is amplified by the feedback gain value. For example with L_EA+ = 0.6V and  
L_OUT = 1.2V, the dead-band voltage is ±10mV due to the feedback gain of 2. See Equation 1 for calculating the  
dead-band voltage above and below the LDO target regulation voltage. For sourcing current, the dead-band  
voltage is negative (LDO output is a dead-band voltage below target regulation voltage) and for sinking current,  
the dead-band voltage is positive (LDO output is a dead-band voltage above target regulation voltage). During  
transient loading conditions from sourcing current to sinking current (or from sinking current to sourcing current),  
the delay time for the LDO to resume regulation after sensing it is outside the dead-band region is typically 3µs.  
During this delay time, sourcing or sinking load current is provided only by the output capacitor on L_OUT. See  
Figure 43 through Figure 52.  
L_OUT  
L_EA+  
------------------  
(EQ. 1)  
V
= 5mV   
DeadBand  
4.2.2  
LDO Enable Control  
The L_EN pin accepts TTL/CMOS logic input levels. When the voltage on the L_EN pin exceeds its logic rising  
threshold, the controller monitors the POR voltage before initiating the soft-start for the LDO. When L_EN is pulled  
low, the device enters a low power shutdown mode.  
4.2.3  
LDO Soft-Start  
The LDO regulator soft-start is enabled on the rising edge of L_EN. The soft-start circuitry for the LDO is similar to  
the soft-start circuit on the buck regulator. The L_SS pin soft-start uses an internal current source and an external  
capacitor to create a reference ramp during start-up to minimize in-rush current to the output capacitors. The  
soft-start circuit clamps the error amplifier reference voltage to the lower of voltage between the external soft-start  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 28 of 46  
ISL70005SEH, ISL73005SEH  
4. Functional Description  
capacitor connected to L_SS or the reference voltage connected to L_EA+. The soft-start capacitor is charged by  
an internal current source. As the soft-start capacitor is charged, the output voltage ramps to the set point  
determined by the soft-start capacitor voltage and the feedback voltage. When the voltage on the L_SS pin is  
equal to the L_EA+ reference voltage, the soft-start interval is complete. When the L_SS pin has charged to 2.6V  
(internally clamped) and with no fault conditions, the LDO power-good L_PG pin is released. The soft-start  
capacitor is discharged by a 3.0Ω resistor whenever the Power-On Reset (POR) condition is not met or L_EN is  
pulled low.  
The LDO sources or sinks up to a limited constant current (1.65A typical) into a pre-biased output during soft-start  
to charge or discharge the output capacitor to bring L_OUT to the regulation voltage set by the ramping L_SS  
reference.  
4.2.4  
LDO Error Amplifier Inputs  
The LDO has two error amplifier inputs. The L_EA- pin is the inverting feedback pin that sets the output voltage.  
The L_EA+ pin is the non-inverting reference pin. The L_EA+ pin must be connected to a voltage such as the  
VREF pin (0.6V typical) or to the buck output for tracking applications. The recommended analog voltage range of  
L_EA+ is 0.6V to 1.27V.  
4.2.5  
LDO Output Overcurrent Limiting  
The LDO integrates output overcurrent protection by operating in constant current limit when the current reaches  
the overcurrent threshold (1.65A for sourcing or sinking, typical). In constant current limit the LDO does not  
regulate output voltage. Sourcing or sinking load currents beyond the constant current limit is supported by the  
output capacitor, causing the output voltage to rise or fall until the overcurrent condition recovers. There is a 18µs  
typical delay time between detecting an overcurrent condition until the constant current limiting is active for both  
sourcing and sinking. See Figure 42 and Figure 52.  
4.2.6  
LDO Power-Good  
The L_PG power-good indicator is an open-drain logic output. After completion of soft-start and without a fault  
condition on the LDO, the L_PG pin is high impedance. An external pull-up resistor to L_VCC is used for logic  
high indicating the LDO output is operating in regulation. The recommended range for the pull-up resistor is 10kΩ  
to 100kΩ. Before soft-start completes or in a fault condition, the L_PG pin is actively pulled low to indicate LDO  
output is not operating in regulation. To mitigate SEE, bypass the L_PG pin to L_GND with a 1nF ceramic  
capacitor.  
4.2.7  
LDO Fault Protection  
The LDO integrates output undervoltage detection, output overvoltage detection, output overcurrent protection,  
and over-temperature protection. When the LDO output current reaches the source or sink overcurrent threshold,  
it operates in constant current limit with no regulation on LDO output voltage. While the LDO operates in constant  
current limit but does not cross the undervoltage or overvoltage thresholds, there is no fault response on the  
L_PG pin. The undervoltage and overvoltage fault detection is implemented by sensing the L_EA- voltage and  
comparing it to internal references for the undervoltage and overvoltage thresholds. The fault response for an  
output undervoltage or overvoltage only pulls the L_PG pin low to indicate a fault condition. After recovery from an  
output undervoltage or overvoltage condition, the L_PG pin is released. The LDO integrates over-temperature  
thermal shutdown. The fault response to an over-temperature condition is similar to the buck regulator. The L_SS  
pin is discharged and the L_PG pin is pulled low while the L_OUT pin is high impedance. After recovery from an  
over-temperature condition, a soft-start cycle is initiated. After a successful soft-start, the L_PG pin is released.  
4.3  
Internal Reference Voltage  
The ISL70005SEH and ISL73005SEH integrate a 0.6V reference with ±1% tolerance over line, temperature, and  
radiation that is precision trimmed for the buck regulator. This reference voltage is trimmed with the input offset of  
buck error amplifier compensated. The reference voltage coming out to the VREF pin is prior to the buck regulator  
error amplifier. Therefore, VREF includes the input offset voltage of the error amplifier that reduces the accuracy  
of VREF pin to ±1.5% tolerance.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 29 of 46  
ISL70005SEH, ISL73005SEH  
4. Functional Description  
During the first rising edge of B_EN (Buck enable) or L_EN (LDO enable), the internal reference voltage is also  
enabled. When the VREF pin voltage reaches 0.564V (94% of 0.6V), soft-start begins on either the B_SS (Buck  
soft-start) or L_SS (LDO soft-start) pin. Renesas recommends decoupling the VREF pin to L_GND for SEE  
mitigation. The minimum recommended value is 100nF. VREF has a typical source impedance of 1.7kΩ.  
Therefore, the delay from a rising edge of enable to the beginning of soft-start is determined by the RC time  
constant to reach 94% of 0.6V. For a 100nF capacitor on VREF, the typical delay time is approximately 500µs.  
See Figure 53 for an example of the VREF start-up time to the beginning of the soft-start delay.  
4.4  
Over-Temperature Detection  
The over-temperature detection circuit on the ISL70005SEH and ISL73005SEH is located near the LDO output as  
this is where most of the power dissipation occurs in the circuit. When an over-temperature condition is detected,  
the fault response is as described in “Buck Fault Protection” on page 27 for the buck regulator and “LDO Fault  
Protection” on page 29 for the LDO. The over-temperature rising threshold is typically T = 175°C with a recovery  
J
hysteresis of 8°C. Power dissipation from the Buck or LDO causes a differential temperature from junction that  
triggers an over-temperature condition at a lower ambient temperature.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 30 of 46  
ISL70005SEH, ISL73005SEH  
5. Applications Information  
5. Applications Information  
5.1  
Power Supply Biasing  
It is necessary in application to have B_VCC, L_VCC, and B_VIN biased to the same RMS DC voltage. A low  
pass filter can be placed on B_VIN to B_VCC and L_VCC to provide noise filtering on the analog supplies. A 1Ω  
resistor and 0.1µF capacitor on B_VCC = L_VCC to B_GND = L_GND is recommended. The L_VCC input UVLO  
threshold is specified in the electrical specification table with a typical rising threshold of 2.8V. Below UVLO both  
the B_LXx and L_OUT output is high impedance. B_VIN is the input to the buck synchronous power MOSFETs  
and L_VIN is the input to the LDO upper NMOS FET. The recommended input voltage range of B_VCC, L_VCC,  
and B_VIN is 3V to 5.5V. The recommended input voltage range of L_VIN is from 1.0V to L_VCC. There are no  
power sequencing requirements for the B_VCC = L_VCC = B_VIN and L_VIN power supplies.  
5.2  
Switching Frequency Selection and External Sync for Buck Regulator  
The internal oscillator frequency for the synchronous buck regulator is programmable by an external resistor on  
the B_RT pin. Select the RT resistor based on Figure 37 and Equation 2. For external synchronization  
applications using the B_SYNC pin, the recommendation is for the external synchronization frequency to be as  
near as possible to the internal oscillator frequency set by RT resistor to minimize voltage transients at the buck  
output during the internal to external synchronization.  
54348  
(EQ. 2)  
--------------------------  
RTk =  
8.9  
f
kHz  
SW  
During soft-start, the PWM controller uses its internal oscillator frequency set by the B_RT resistor value. When  
B_SS voltage > 600mV the PWM controller synchronizes to the external clock on B_SYNC.  
In application, the internal oscillator to external clock synchronization occurs after eight clock cycles on B_SYNC.  
5.3  
B_EN and L_EN Pins  
The ISL70005SEH and ISL73005SEH internal band-gap is enabled by the logic high of B_EN or L_EN. After the  
band-gap is enabled, soft-start begins when VREF pin is typically 94% of the nominal 600mV. The delay time for  
VREF rising is typically 500µs with a 100nF capacitor on VREF. The 100nF capacitor is for SEE mitigation.  
In application, the first rising edge of B_EN or L_EN includes the VREF delay time before soft-start initiates and  
impacts the start-up timing between B_EN or L_EN first rising to B_PG or L_PG rising. If the band-gap is already  
enabled, during the rising edge of B_EN or L_EN there is approximately 50µs delay before soft-start begins. For  
buck always on applications, tie B_EN to B_VCC = L_VCC. For LDO always on applications, tie L_EN to  
B_VCC = L_VCC.  
See Figure 22 to Figure 27 for soft-start timing from enable to power-good indication.  
5.4  
Soft-Start Capacitor for Buck  
Place a soft-start capacitor on B_SS pin to B_GND. A 23µA typical current source on B_SS charges the soft-start  
capacitor to set the voltage ramp to the error amplifier during soft-start. The value of the soft-start capacitor  
determines the time to ramp the buck output voltage into regulation (B_SS reaches 0.6V). B_SS is internally  
clamped to 1.5V. When B_SS reaches the internally clamped 1.5V and with no other fault condition, the B_PG pin  
is released. Use Equation 3 to determine the capacitor needed for the soft-start time to ramp the buck output  
voltage into regulation. Use Equation 4 to determine the time for B_PG to go high after enabling the buck.  
I
A  
SS  
(EQ. 3)  
(EQ. 4)  
---------------------  
C
nF=  
t ms  
SS  
SS  
0.6V  
1.5V  
A  
---------------------  
t
ms=  
C nF  
PG  
SS  
I
SS  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 31 of 46  
ISL70005SEH, ISL73005SEH  
5. Applications Information  
5.5  
Soft-Start Capacitor for LDO  
Place a soft-start capacitor on L_SS pin to L_GND. A 23µA typical current source on L_SS charges the soft-start  
capacitor to set the voltage ramp to the error amplifier during soft-start. The value of the soft-start capacitor  
determines the time to bring the LDO output voltage into regulation (L_SS reaches L_EA+). L_SS is internally  
clamped to 2.6V. When L_SS reaches the internally clamped 2.6V and with no other fault condition, the L_PG pin  
is released. Choose a soft-start capacitor based on the soft-start time using Equation 5 below. To avoid reaching  
the LDO constant current limit during soft-start to charge the LDO output capacitor, choose a soft-start capacitor  
using Equation 6 below. The constant current limit is 1.65A typical, 1.2A minimum. Use Equation 7 to determine  
the time for L_PG to go high after enabling the LDO.  
I
A  
SS  
---------------------  
(EQ. 5)  
(EQ. 6)  
C
C
t
nF=  
nF   
t ms  
SS  
SS  
SS  
L_EA+  
I
A  
SS  
--------------------------------------------------  
C  
uF  
OUT  
1000 I  
A  
CCLimit  
2.6V  
A  
(EQ. 7)  
---------------------  
ms=  
C nF  
SS  
PG  
I
SS  
5.6  
Power-Good Indicator Pins  
Use a 10kΩ or larger pull-up resistor on the B_PG and L_PG pins to B_VCC = L_VCC for power-good indication.  
A 1nF capacitor on the B_PG and L_PG pin to B_GND and L_GND is recommended for SEE mitigation. B_PG  
and L_PG can be connected together for a wired-OR single power-good indicator.  
5.7  
Independent Output Point-of-Load Application  
The ISL70005SEH and ISL73005SEH can be used in a dual output Buck and LDO regulator for use in  
applications such as the FPGA core and I/O supply rail. Independent enable control, soft-start, and power-good  
indicator are available for the Buck and LDO (see Figure 3 on page 4).  
5.8  
LDO Tracking Buck for DDR Memory Application  
The ISL70005SEH and ISL73005SEH can be configured for LDO tracking Buck application (see Figure 4 on  
page 4).  
Specifically for DDR memory applications, the 1A source and sink LDO is configured as the VTT rail regulator.  
The buck configured as the VDDQ regulator can be used to bias the LDO L_VIN input to minimize power  
dissipation in the LDO. The VDDQ output is divided by half with a resistor divider to set the reference voltage on  
the LDO L_EA+ pin. Connect L_OUT to L_EA- for unity gain to set L_OUT = L_EA+ = VDDQ/2. For accurate  
tracking, do not place any capacitance on the L_EA+ pin to L_GND. Otherwise transient voltages on the buck  
regulator output are not properly tracked by the LDO output due to the RC delay formed by the resistor divider and  
capacitor into the L_EA+ reference input. Use proper PCB layout to minimize noise into L_EA+ pin.  
For accurate tracking during soft-start, the recommendation is to use a smaller soft-start capacitor on L_SS  
compared to B_SS. This ensures that the lowest reference voltage to the error amplifier on the LDO is only set by  
L_EA+, which is controlled by the ramping voltage on B_SS pin.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 32 of 46  
ISL70005SEH, ISL73005SEH  
6. Synchronous Buck Design Guide  
6. Synchronous Buck Design Guide  
6.1  
Buck Input Capacitor Selection  
Use a mix of input bypass capacitors to control the voltage overshoot and undershoot across the internal  
MOSFETs of the synchronous buck regulator. Use small low ESR ceramic capacitors for high-frequency  
decoupling and bulk capacitors to supply the current needed each time the upper MOSFET turns on. Place the  
small ceramic capacitors physically close to the MOSFETs between the drain of the upper MOSFET (B_VINx  
pins) and the source of the lower MOSFET (B_PGNDx pins).  
The important parameters for the bulk input capacitance are the voltage rating and the RMS current rating. For  
reliable operation, select bulk capacitors with voltage and current ratings above the maximum input voltage and  
largest RMS current required by the circuit. Their voltage rating should be at least 1.25 times greater than the  
maximum input voltage, while a voltage rating of 1.5 times is a conservative guideline. For most cases, the RMS  
current rating requirement for the input capacitor of a buck regulator is approximately 1/2 the DC load current.  
The maximum RMS current through the input capacitors may be closely approximated using Equation 8.  
2
VOUT  
-------------  
VIN  
VOUT  
VIN  
2
VIN VOUT VOUT  
1
(EQ. 8)  
I
=
------------- x I  
x 1 –  
+ -------- x ------------------------------- x-------------  
OUT  
CINrms  
MAX  
12 Lxf  
VIN  
OSC  
The recommended bulk input capacitor is a 150µF low ESR tantalum capacitor. The capacitor used for the  
ISL70005SEHEV2Z evaluation platform is an AVX TPM series 16V tantalum with 30mΩ ESR. Place a 0.1µF and  
10nF high frequency low ESR ceramic capacitor close to the B_VINx and B_PGNDx pins. These capacitors  
provide the instantaneous current into the buck regulator during the high frequency switching transitions.  
6.2  
Buck Output Capacitor Selection  
An output capacitor is required to filter the inductor ripple current and supply the load transient current. The  
filtering requirements are a function of the switching frequency and the ripple current. The load transient  
requirements are a function of the slew rate (di/dt) and the magnitude of the transient load current. These  
requirements are generally achieved with a combination of bulk and decoupling capacitors with careful layout.  
High-frequency low ESR ceramic capacitors initially supply the transient load current and reduce the current load  
slew rate seen by the bulk capacitors. The bulk filter capacitor values are generally determined by the Effective  
Series Resistance (ESR) and voltage rating requirements rather than actual capacitance requirements. Place  
high-frequency decoupling capacitors as close to the power pins of the load as physically possible. Be careful not  
to add inductance in the circuit board wiring that could cancel the usefulness of these low inductance  
components.  
The shape of the output voltage waveform during a load transient that represents the worst case loading  
conditions ultimately determines the number of output capacitors and their type. When this load transient is  
applied to the regulator, most of the current required by the load is initially contributed by the output capacitors.  
This is due to the finite amount of time required for the inductor current to slew up or down to the level of the  
output current required by the load. This results in a momentary undershoot or overshoot in the output voltage. At  
the initial edge of the transient undershoot or overshoot, the Equivalent Series Inductance (ESL) of each capacitor  
induces a spike that adds on top of the voltage drop due to the ESR. After the initial spike, the output voltage dips  
down (load step on) or peaks up (load step off) as the output capacitor sources or sinks the transient load current  
until the output inductor current reaches the load current. Figure 68 on page 34 shows a typical response of the  
output voltage to a transient load current.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 33 of 46  
ISL70005SEH, ISL73005SEH  
6. Synchronous Buck Design Guide  
ΔV  
PEAK  
V
OUT  
ΔV  
ESR  
ΔV  
ΔV  
DIP  
ESL  
I
OUT  
I
TRAN  
Figure 68. Typical Transient Response  
The amplitudes of the voltage spikes caused by capacitor ESR and ESL is approximated by Equation 9:  
V  
V  
= ESR I  
(EQ. 9)  
ESR  
TRAN  
TRAN  
dI  
----------------------------  
= ESL   
ESL  
dt  
where I  
= Output load current transient.  
TRAN  
In a typical converter design, the ESR of the output capacitor bank impacts the transient response. The ESR and  
the ESL determine the number output capacitors required to minimize the initial voltage spike at the output  
transient response. It may be necessary to place multiple output capacitors in parallel to reduce the parasitic ESR  
and ESL to achieve minimize the magnitude of the output voltage spike during a load transient response.  
The ESL of the capacitor, which is an important parameter, is not usually listed in datasheets. Practically it can be  
approximated using Equation 10 if an Impedance vs Frequency curve is given, where f is the frequency where  
res  
the lowest impedance is achieved (resonant frequency). The ESL of the capacitor becomes a concern when  
designing circuits that supply power to loads with high rates of change in the current.  
1
ESL = ------------------------------------------------------  
(EQ. 10)  
2
C2    f  
res  
If ΔV  
and/or ΔV  
PEAK  
is too large for the output voltage limits, the amount of capacitance may need to be  
DIP  
increased. In this situation, a trade-off between output inductance and output capacitance may be necessary.  
The recommended bulk output capacitor is a 150µF low ESR tantalum capacitor. The capacitor used for the  
ISL70005SEHEV2Z evaluation platform is an AVX TPM series 16V tantalum with 30mΩ ESR. In addition, place  
the high frequency ceramic decoupling closed to the load for optimal performance during transient loads.  
6.3  
Buck Output Inductor Selection  
The output inductor is selected to minimize the response time of the regulator to a load transient and meet  
steady-state output voltage ripple requirements. A smaller inductance value improves transient response but  
increases output voltage ripple. The inductor value determines the inductor ripple current with the output voltage  
ripple being a function of the ripple current. The inductor ripple current and output voltage ripple are approximated  
using Equation 11 and Equation 12:  
V V  
IN  
------------------------------------ ---------------  
V
OUT  
L  
OUT  
(EQ. 11)  
I
=
RIPPLE  
f
V
SW  
IN  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 34 of 46  
ISL70005SEH, ISL73005SEH  
(EQ. 12)  
6. Synchronous Buck Design Guide  
V
= I  
ESR  
RIPPLE  
OUT_RIPPLE  
where ESR is the output capacitor equivalent series resistance.  
Increasing inductance reduces the ripple current and output voltage ripple; however, the regulator response time  
to transient load is increased.  
One of the parameters limiting the response of the regulator to a load transient is the time required to change the  
inductor current. The response time is the time required to slew the inductor current from its initial level to the  
transient level. During this interval the difference between the inductor current and the transient load current is  
sourced from or sunk into the output capacitor. Minimizing the response time reduces the amount of transient  
voltage overshoot and undershoot on the output capacitor.  
The response time to a transient is different for the transient load on and off. Equation 13 gives the approximate  
response time to a load step.  
L I  
L I  
TRAN  
Load On:  
TRAN  
Load Off:  
(EQ. 13)  
-------------------------------  
-------------------------  
t
=
t
=
RISE  
FALL  
V
V  
V
IN  
OUT  
OUT  
• I  
• t  
• t  
is the transient load current step  
TRAN  
RISE  
FALL  
is the inductor response time to a turn on load step  
is the response time to a turn off load step  
The worst case response time can be during either the load step on or off. Check for transient load response for  
both turn-on and turn-off at minimum and maximum load current.  
The recommended inductor is 2.2µH for 1MHz applications. The inductor used for the ISL70005SEHEV2Z  
evaluation platform is a Coilcraft XFL4020 series 2.2µH with 21mΩ DCR.  
The inductor saturation current rating is recommended to be above the peak overcurrent threshold of the  
ISL70005SEH (typical 5.35A, maximum 6.0A) to ensure that inductor does not saturate operating near the  
overcurrent condition. Inductor saturation along with standard tolerance over temperature and life can decrease  
the inductance and increase ripple current.  
6.4  
Buck Output Voltage Setting  
The Buck regulator output voltage is set by two feedback resistors connected from the V  
B_GND. See Equation 14 for setting the buck output voltage.  
to B_FB and B_FB to  
OUT  
R
1
(EQ. 14)  
------  
Buck V  
= 0.6V   
+ 1  
OUT  
R
4
where R is from Buck V  
to B_FB and R is from B_FB to B_GND.  
1
OUT  
4
The resistor R is recommended to be in the range of 10kΩ to 30kΩ. The value of R controls the design of the  
1
1
Type III Compensation network to stabilize the feedback loop (see “Buck Feedback Compensation Design” on  
page 36). For Buck V = 0.6V, connect V directly to B_FB.  
OUT  
OUT  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 35 of 46  
ISL70005SEH, ISL73005SEH  
6. Synchronous Buck Design Guide  
Due to the minimum Ton (325ns, maximum) and Toff times (165ns, maximum) of the ISL70005SEH and  
ISL73005SEH Buck B_LXx pins and the selected switching frequency f , the buck regulator is restricted by a  
SW  
duty cycle limitation that bounds the upper and lower output voltage achievable. The equations for minimum and  
maximum buck output voltage is calculated below on Equations 15 and 16.  
V
= Min ON-Time (max) + Dead Time (max)  f  
(EQ. 15)  
OUT_MIN  
V  
SW(max)  
 r  
I  
 r  
r  
 I  
+ R  
IN_(MAX) OUT_MIN  
DSON(high)  
DSON(low)  
OUT_MIN  
DSON(low)  
DCR  
DCR  
(EQ. 16)  
V
= 1 Min OFF-Time (max) + Dead Time (max)  f  
OUT_MAX  
V I  
SW(max)  
 r  
r  
 I  
 r  
+ R  
IN_(MIN) OUT_MAX  
DSON(high)  
DSON(low)  
OUT_MAX  
DSON(low)  
6.5  
Buck Feedback Compensation Design  
The ISL70005SEH and ISL73005SEH buck regulators use voltage mode control for output voltage regulation.  
Due to the double pole roll off in gain at the LC output filter resonant frequency, in voltage mode control a Type III  
compensator is required to stabilize the feedback loop. The goal of the compensation network is to provide a  
closed loop transfer function with the highest 0dB crossing frequency with adequate Gain and Phase margin. See  
Figure 69 for the schematic of a Type III compensator. This feedback network is connected between the B_FB  
and B_COMP pin. The loop compensation used on the ISL70005SEHEV2Z evaluation board is based upon the  
K-Factor design to determine the pole-zero placement of the Type III compensation. The K-Factor design places  
the two zeros at a square-root of K below the crossover frequency and the two poles at a square-root of K above  
the crossover frequency, where the value K is determined by how much phase boost is needed.  
C1  
C3  
C2  
R3  
R2  
VOUT  
R1  
B_COMP  
VREF  
Figure 69. Type III Compensator  
The steps to design the Type III Compensator based on K-Factor:  
1. Plot the Gain-Phase Response of the Plant (Modulator and LC output filter).  
2. Pick the Phase Margin desired, denoted as M. Typical phase margin range is 45° to 75°. As a good compromise  
of fast transient response and good stability margin, 50°-70° degrees is a good recommended range.  
3. Choose the Unity Gain Frequency (UGF) of the Type III Compensator. To ensure there is enough attenuation  
of gain at the switching frequency f  
the UGF should be no greater than one decade below f  
.
SW  
SW  
4. Find the Open Loop Phase of the Plant at UGF, denoted as P.  
5. Calculated the amount of Phase Boost, denoted as B, required. B = M - P - 90.  
2
6. Calculate the K factor based upon the amount of Phase Boost B. K = { Tan [ (B/4) + 45° ] } .  
7. Find the Open Loop Gain of the Plant at UGF. Take the reciprocal of this gain, denoted as G.  
8. Use Equation 17 through Equation 21 to find the R and C values of the Type III Compensator.  
R = Set by the feedback resistor for Buck output voltage regulation. R should be in the 10kΩ to 30kΩ range.  
1
1
1
(EQ. 17)  
-------------------------------------------------  
C
=
1
2  UGF G R  
1
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 36 of 46  
ISL70005SEH, ISL73005SEH  
(EQ. 18)  
6. Synchronous Buck Design Guide  
C
= C  K 1  
2
1
K
(EQ. 19)  
--------------------------------------  
R
=
2
2  UGF C  
2
R
1
K 1  
(EQ. 20)  
(EQ. 21)  
-----------------  
R
C
=
=
3
3
1
---------------------------------------------------------  
2  UGF K R   
3
Type III Compensator Design Example for the ISL70005SEHEV2Z Platform:  
1. The ISL70005SEHEV2Z buck regulator is set to operate at f = 1MHz with a 45.3kΩ resistor on the B_RT pin.  
SW  
The output inductor Lo = 2.2µH used is a Coilcraft XFL4020 with DCR = 21mΩ. The output capacitor  
Co = 150µF used is an AVX TPM Series 16V tantalum with ESR = 30mΩ. The ceramic capacitors with much  
lower ESR used are only a small fraction of the bulk capacitance and can be ignored. The modulator gain of  
the ISL70005SEH is B_VIN / 2.315V. Plot the Open Loop Plant Gain-Phase using either a spreadsheet tool or  
MathCad. This is needed for determining the gain and phase of the Plant at UGF.  
2. Phase margin desired: M = 50°.  
3. Compensator unity gain frequency: UGF = 30kHz.  
4. For B_VIN = 5V, the open-loop plant phase at UGF is P = -125.7°.  
5. Phase boost B = M - P - 90° = 50° + 125.7° - 90° = 85.7°.  
2
6. K-Factor calculated as K = {Tan [(85.7°/4) + 45°]} = 5.25.  
7. The open-loop gain of the plant at UGF is 0.378. The value G = 1/0.378 = 2.647.  
8. Calculate the R and C values of the Type III Compensator.  
a. R = 24.9kΩ  
1
1
1
------------------------------------------------------  
------------------------------------------------------------------------------------------  
C
C
R
=
=
= 80.5pF  
b.  
c.  
d.  
; Use 82pF standard value  
1
2
2
2  UGF G R   
2 3.14 30000 2.647 24900  
1
= C  K 1= 80.5pF  5.25 1= 342pF  
; Use 330pF standard value  
1
K
5.25  
-----------------------------------------------------------------------  
; Use 36.5kΩ standard value  
= 35.5k  
-------------------------------------------  
=
=
2  UGF C   
2 3.14 30000 342pF  
2
R
24900  
5.25 1  
1
-----------------  
-------------------------  
; Use 5.9kΩ standard value  
= 5.86k  
e.  
f.  
R
C
=
=
=
3
K 1  
1
1
---------------------------------------------------------  
2  UGF K R   
----------------------------------------------------------------------------------------  
=
= 395pF  
; Use 390pF standard value  
3
2 3.14 30000 5.25 5860  
3
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 37 of 46  
ISL70005SEH, ISL73005SEH  
6. Synchronous Buck Design Guide  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-20  
-40  
-60  
-80  
-100  
Gain (dB)  
Phase (Degrees)  
-160  
1.E+07  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Frequency (Hz)  
Figure 70. Calculated Open-Loop Gain-Phase  
100  
80  
60  
40  
20  
0
Gain (dB)  
Phase (Degrees)  
60  
40  
20  
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-100  
1.E+07  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Frequency (Hz)  
Figure 71. Calculated K-Factor Type III Compensator  
80  
60  
0
Gain - Measured  
Gain - Calculated  
Phase - Measured  
Phase - Calculated  
-50  
40  
-100  
-150  
-200  
-250  
-300  
20  
0
-20  
-40  
-60  
-80  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Frequency (Hz)  
Figure 72. Calculated vs Measured Buck Closed Loop Bode Response  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 38 of 46  
ISL70005SEH, ISL73005SEH  
7. LDO Design Guide  
7. LDO Design Guide  
7.1  
LDO Input and Output Capacitor Selection  
The recommended bulk output capacitor is a 150µF low ESR tantalum capacitor. The capacitor used for the  
ISL70005SEHEV2Z evaluation platform is an AVX TPM series 150µF 16V tantalum with 30mΩ ESR. A low ESR  
high frequency 10µF ceramic capacitor must be placed close to the L_OUT and L_PGND pins for LDO stability.  
See “Example PCB Layout” on page 40 for recommended placement of the 10µF capacitor. There is no minimal  
requirement for input capacitance; however, it must be sized appropriately to avoid reaching dropout voltage and  
meet transient requirements during load step. For example, the ISL70005SEHEV2Z uses the same tantalum  
capacitor for bulk input and output capacitance.  
7.2  
LDO Output Voltage Setting  
The LDO output voltage is set by two feedback resistors connected from the L_OUT to L_EA- and L_EA- to  
L_GND. See Equation 22 for setting the LDO output voltage.  
R
F
(EQ. 22)  
--------  
L_OUT = L_EA+   
+ 1  
R
G
R is from L_VOUT to L_EA- and R is from L_EA- to L_GND. L_EA+ is the non-inverting input reference  
F
G
voltage. The VREF pin can be connected to L_EA+ for a 600mV 1.5% accurate reference voltage. For unity gain  
applications, connect L_OUT directly to L_EA- to set L_OUT = L_EA+.  
When the LDO is used for sourcing current only applications, careful consideration must be taken in setting the  
L_OUT voltage. The dead-band voltage discussed in “LDO Architecture” on page 28 introduces an offset to  
Equation 22 that must be nulled out. For example, if L_EA+ = VREF = 0.6V and L_OUT is targeted for 1.2V, the  
dead-band voltage is -10mV, which means when sourcing current, the LDO output voltage is 10mV below the  
target regulation voltage. Set L_OUT = 1.2V + 10mV = 1.21V for Equation 22 to achieve the targeted  
L_OUT = 1.2V.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 39 of 46  
ISL70005SEH, ISL73005SEH  
8. PCB Layout Guidelines  
8. PCB Layout Guidelines  
8.1  
Buck Regulator PCB Layout  
PCB design is critical to high frequency switching regulator performance. Careful component placement and trace  
routing are necessary to reduce switching voltage spikes and minimize undesirable voltage drops. Optimize  
regulator performance by reducing noise from the power ground into the analog ground by avoiding high-current  
ground returns near sensitive analog ground. Bypass or ground pins accordingly to their respective IC ground pin.  
See the “Pin Descriptions” on page 7 and Figure 5 on page 5 as guidance.  
Place critical components as close as possible to the IC to minimize stray inductance and resistance. Place the  
high-frequency ceramic decoupling capacitors for the Buck input near the B_VIN1/B_VIN2 and  
B_PGND1/B_PGND2 pins as they provide the instantaneous switching input currents to the Buck Regulator.  
Keep the connection between the B_LX1 and B_LX2 pins to the output inductor short and direct to avoid creating  
a large switching plane on the PCB. Void the copper on adjacent layers where the switching node is formed, to  
eliminate parasitic capacitance on the switching node, which impacts efficiency and causes switching spikes. To  
minimize output ripple voltage, place the ceramic and tantalum output capacitors near the output inductor to form  
a minimal ground loop return back to the B_PGND1/B_PGND2 pins. Place the output voltage feedback resistor  
divider as close as possible to the B_FB pin of the IC. Connect the top leg of the divider to the Buck output voltage  
with a Kelvin trace near the point of load to optimize load regulation performance. Connect the bottom leg of the  
divider directly to the B_GND1 and B_GND2 pins. Place the Type III compensation network close to the B_COMP  
and B_FB pins. Place the soft-start capacitor on the B_SS pin and the oscillator setting resistor on the B_RT pin  
close to the Buck regulator. Terminate the soft-start capacitor and timing resistor near the B_GND1 and B_GND2  
pins.  
For applications where the switching node voltage spikes overshoot B_VINx or undershoot B_PGNDx near the  
absolute maximum rating, a Schottky clamp diode across the B_LXx to B_PGNDx pins and across the B_VINx to  
B_LXx pins may be needed to help suppress the switching transient to protect the power MOSFETs of the Buck  
regulator.  
8.2  
LDO Regulator PCB Layout  
Place the LDO input and output capacitors close to the L_VIN, L_OUT, and L_PGND connections. For the LDO  
output capacitors, Renesas recommends placing the 10µF ceramic capacitor closest to the L_OUT and P_GND  
pins to maintain LDO stability. Similar to the Buck regulator, place the LDO feedback voltage resistor dividers near  
the L_EA- and L_GND pins. Connect the L_OUT connection to the feedback divider with a Kelvin trace near the  
point of load for optimum load regulation performance. Place the LDO soft-start capacitor near the L_SS and  
L_GND pins.  
8.3  
Example PCB Layout  
B_SS  
B_RT  
Inductor  
B_VIN  
B_LX1  
B_LX2  
C
caps on  
bottom layer  
Buck C  
OUT  
IN  
B_VIN  
L_VIN  
LDO C  
IN  
L_OUT  
LDO C  
OUT  
L_SS  
L_EA+  
SS Cap  
Figure 73. Top Layer PCB  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 40 of 46  
ISL70005SEH, ISL73005SEH  
9. Die and Assembly Characteristics  
9. Die and Assembly Characteristics  
Table 1. Die and Assembly Related Information  
Die Information  
Dimensions  
6,504µm x 8,436µm (256 mils x 332 mils)  
Thickness: 304.8µm ± 25µm (12 mils ± 1 mil)  
Interface Materials  
Glassivation  
Type: Silicon Dioxide and silicon nitride  
Thickness: 0.3µm ± 0.03µm and 1.2µm ± 0.12µm  
Top Metallization  
Type: AlCu (99.5%/0.5%)  
Thickness: 2.7µm ± 0.4µm  
Backside Finish  
Silicon  
Process  
0.6µm BiCMOS, junction isolated  
Assembly Information  
Substrate and Package Lid Potential  
Additional Information  
Worst Case Current Density  
Transistor Count  
Internal connection to B_GND1 and B_GND2  
<2 x 105 A/cm2  
7,317  
Weight of Packaged Device  
Lid Characteristics  
2.15 grams (typical) - K28.A package  
Finish: Gold  
Lid Potential: Internal connection to B_GND1 and B_GND2  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 41 of 46  
ISL70005SEH, ISL73005SEH  
10. Metalization Mask Layout  
10. Metalization Mask Layout  
B_VIN2  
B_LX2  
B_RT  
B_VCC  
B_PGND  
B_SYNC  
B_LX1  
B_VIN1  
TEST  
B_GND1  
B_GND2  
VREF  
L_VIN  
L_VIN  
B_EN  
L_EN  
L_OUT  
L_OUT  
Origin of Coordinate Table  
Table 2. Layout X-Y Coordinates (Centroid of bond pad)  
X Coordinate  
Y Coordinate Pad X Dimension Pad Y Dimension  
Bond Wire Diameter  
(0.001”)  
Pad Name  
L_EN  
Pad Number  
(µm)  
(µm)  
(µm)  
125  
125  
125  
125  
125  
125  
125  
(µm)  
125  
125  
125  
320  
320  
125  
320  
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
B_EN  
776  
VREF  
1,628  
2,528  
3,530  
4,621  
5,364  
B_GND2  
B_GND1  
B_SYNC  
B_VCC  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 42 of 46  
ISL70005SEH, ISL73005SEH  
10. Metalization Mask Layout  
Table 2. Layout X-Y Coordinates (Centroid of bond pad) (Continued)  
X Coordinate  
(µm)  
Y Coordinate Pad X Dimension Pad Y Dimension  
(µm)  
Bond Wire Diameter  
Pad Name  
B_RT  
Pad Number  
(µm)  
6,268  
6,956  
6,956  
6,956  
6,956  
6,956  
6,935  
6,016  
4,831  
3,646  
2,727  
1,862  
957  
(µm)  
125  
125  
125  
125  
125  
125  
508  
508  
254  
508  
508  
125  
260  
260  
254  
254  
125  
125  
125  
125  
125  
125  
125  
125  
125  
320  
125  
(0.001”)  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
3
8
0
125  
125  
125  
125  
125  
125  
254  
254  
894  
254  
254  
125  
254  
254  
254  
254  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
125  
B_COMP  
B_FB  
9
425  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
1,106  
1,931  
2,644  
3,183  
5,057  
5,238  
5,242  
5,238  
5,238  
5,744  
5,254  
4,001  
5,257  
4,024  
4,820  
5,040  
5,260  
2,986  
3,334  
3,685  
2,417  
1,838  
1,249  
519  
B_SS  
L_PG  
B_PG  
B_VIN2  
B_LX2  
B_PGND  
B_LX1  
B_VIN1  
TEST  
3
3
3
3
1.5  
3
L_VIN  
L_VIN  
593  
3
L_OUT  
L_OUT  
L_PGND  
L_PGND  
L_PGND  
L_GND  
L_GND  
L_GND  
L_EA-  
81  
3
-283  
-720  
-720  
-720  
-720  
-720  
-720  
-720  
-720  
-720  
-720  
-720  
3
3
3
3
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
L_EA+  
L_SS  
L_VCC  
L_VCC  
921  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 43 of 46  
ISL70005SEH, ISL73005SEH  
11. Revision History  
11. Revision History  
Rev.  
Date  
Description  
1.01  
Jan.8.20  
Fixed UVLO pin association from B_VCC to L_VCC in electrical spec table. Moved to appropriate section.  
Updated Power Supply Biasing section on page 31.  
Updated the B_COMP output voltage range in the Buck Error Amplifier Output section on page 27.  
1.00  
Dec.11.19  
initial release  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 44 of 46  
ISL70005SEH, ISL73005SEH  
12. Package Outline Drawing  
For the most recent package outline drawing, see K28.A.  
12. Package Outline Drawing  
K28.A MIL-STD-1835 CDFP3-F28 (F-11A, CONFIGURATION B)  
28 lead ceramic metal seal flatpack package  
A
A
e
INCHES  
MIN  
MILLIMETERS  
PIN NO. 1  
ID AREA  
SYMBOL  
MAX  
0.115  
0.022  
0.019  
0.009  
0.006  
0.740  
0.520  
0.550  
-
MIN  
1.14  
MAX  
2.92  
0.56  
0.48  
0.23  
0.15  
18.80  
13.21  
13.97  
-
NOTES  
D
A
b
0.045  
0.015  
0.015  
0.004  
0.004  
-
-
-A-  
-B-  
0.38  
0.38  
0.10  
0.10  
-
-
b1  
c
-
S1  
-
b
c1  
D
-
E1  
3
0.004  
Q
H
A - B  
D
S
0.036  
M
H
A - B  
S
C
D
S
M
S
E
0.460  
-
11.68  
-
-
E
E1  
E2  
E3  
e
3
-D-  
A
0.180  
0.030  
4.57  
0.76  
-
-H-  
-C-  
-
-
7
L
E2  
L
E3  
E3  
0.050 BSC  
1.27 BSC  
-
SEATING AND  
BASE PLANE  
c1  
LEAD FINISH  
k
0.008  
0.250  
0.026  
0.00  
-
0.015  
0.370  
0.045  
-
0.20  
6.35  
0.66  
0.00  
-
0.38  
9.40  
1.14  
-
2
L
-
BASE  
METAL  
Q
S1  
M
N
8
(c)  
6
b1  
0.0015  
0.04  
-
M
M
(b)  
28  
28  
-
SECTION A-A  
Rev. 0 5/18/94  
Notes:  
1. Index area: A notch or a pin one identification mark shall be  
located adjacent to pin one and shall be located within the  
shaded area shown. The manufacturer’s identification shall not  
be used as a pin one identification mark. Alternately, a tab  
(dimension k) may be used to identify pin one.  
2. If a pin one identification mark is used in addition to a tab, the  
limits of dimension k do not apply.  
3. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
4. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness. The maximum  
limits of lead dimensions b and c or M shall be measured at the  
centroid of the finished lead surfaces, when solder dip or tin plate  
lead finish is applied.  
5. N is the maximum number of terminal positions.  
6. Measure dimension S1 at all four corners.  
7. For bottom-brazed lead packages, no organic or polymeric  
materials shall be molded to the bottom of the package to cover  
the leads.  
8. Dimension Q shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension Q minimum  
shall be reduced by 0.0015 inch (0.038mm) maximum when  
solder dip lead finish is applied.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
R34DS0008EU0101 Rev.1.01  
Jan.8.20  
Page 45 of 46  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
version of a document, or your nearest sales office, please visit:  
www.renesas.com  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

ISL70040SEHL/PROTO

Buffer/Inverter Based Peripheral Driver
RENESAS

ISL70218SEH

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SEHF/PROTO

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SEHVX/SAMPLE

Operational Amplifier
RENESAS

ISL70218SEHX/SAMPLE

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRH

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMEVAL1Z

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

DUAL OP-AMP, 3.2MHz BAND WIDTH, CDFP10, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT PACK-10
RENESAS

ISL70218SRHMX

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMX

DUAL OP-AMP, 3.2MHz BAND WIDTH, CUUC8, DIE-8
RENESAS