ISL89165FRTBZ-T [RENESAS]

High Speed, Dual Channel, 6A, Power MOSFET Driver with Enable Inputs; DFN8, SOIC8; Temp Range: -40° to 125°C;
ISL89165FRTBZ-T
型号: ISL89165FRTBZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High Speed, Dual Channel, 6A, Power MOSFET Driver with Enable Inputs; DFN8, SOIC8; Temp Range: -40° to 125°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总22页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
ISL89163, ISL89164, ISL89165  
High Speed, Dual Channel, 6A, Power MOSFET Driver with Enable Inputs  
The ISL89163, ISL89164, and ISL89165 are  
high-speed, 6A, dual channel MOSFET drivers with  
Features  
• Dual output, 6A peak currents, can be paralleled  
• Dual AND-ed input logic, (input and enable)  
• Typical ON-resistance <1Ω  
enable inputs.  
Precision thresholds on all logic inputs allow the use  
of external RC circuits to generate accurate and  
stable time delays on both the main channel inputs,  
INA and INB, and the enable inputs, ENA and ENB.  
The precision delays capable of these precise logic  
thresholds make these parts valuable for dead time  
control and synchronous rectifiers. Note, the enable  
and input logic inputs can be interchanged for  
alternate logic implementations.  
• Specified Miller plateau drive currents  
• Very low thermal impedance (θ = 3°C/W)  
JC  
• Hysteretic Input logic levels for 3.3V CMOS, 5V  
CMOS, TTL, and Logic levels proportional to V  
DD  
• Precision threshold inputs for time delays with  
external RC components  
Three input logic thresholds are available:  
• 3.3V (CMOS)  
• 20ns rise and fall time driving a 10nF load.  
Applications  
• 5.0V (CMOS or TTL compatible)  
• Synchronous Rectifier (SR) driver  
• Switch mode power supplies  
• CMOS thresholds that are proportional to V  
DD  
At high switching frequencies, these MOSFET drivers  
use a minimal amount of internal bias currents.  
Separate, non-overlapping drive circuits are used to  
drive each CMOS output FET to prevent  
• Motor drives, Class D amplifiers, UPS, inverters  
• Pulse transformer driver  
• Clock/line driver  
shoot-through currents in the output stage.  
Related Literature  
The start-up sequence is designed to prevent  
unexpected glitches when V is being turned on or  
DD  
For a full list of related documents, visit our website:  
ISL89163, ISL89164, ISL89165 device pages  
turned off. When V < ~1V, an internal 10kΩ resistor  
DD  
between the output and ground helps to keep the  
output voltage low. When ~1V < V < UV, both  
DD  
outputs are driven low with significantly low resistance  
as the logic inputs are ignored, which ensures that the  
driven FETs are off. When V > UVLO, and after a  
DD  
short delay, the outputs begin to respond to the logic  
inputs.  
3.0  
Positive Threshold Limits  
2.5  
2.0  
V
DD  
ENB  
ENA  
1
2
3
4
8
1.5  
INA  
GND  
INB  
OUTA  
Negative Threshold Limits  
7
6
5
EPAD  
1.0  
0.5  
0.0  
OUTB  
4.7µF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 1. Typical Application  
Figure 2. Temperature Stable Logic Thresholds  
FN7707 Rev.6.00  
Jul.9.19  
Page 1 of 22  
ISL89163, ISL89164, ISL89165  
Contents  
1.  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
1.4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AC Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Test Waveforms and Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.  
4.  
5.  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
5.4  
Precision Thresholds for Time Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Paralleling Outputs to Double the Peak Drive Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Dissipation of the Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.  
7.  
8.  
9.  
General PCB Layout Guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General EPAD Heatsinking Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FN7707 Rev.6.00  
Jul.9.19  
Page 2 of 22  
ISL89163, ISL89164, ISL89165  
1. Overview  
1. Overview  
1.1  
Block Diagram  
VDD  
For options A and B, the UV  
comparator holds off the outputs  
Separate FET drives, with non-overlapping  
outputs, prevent shoot-thru currents in the  
output CMOS FETs resulting with very low  
high frequency operating currents.  
For clarity, only one channel is shown  
until V ~> 3.3V . For option C,  
DD  
DC  
the UV release is ~> 6.5V  
ENx  
ISL89163  
ENx and INx inputs are identical and  
may be interchanged for alternate logic  
OUTx  
INx  
10k  
ISL89164, ISL89165  
GND  
EPAD  
For proper thermal and electrical performance, the  
EPAD must be connected to the PCB ground plane.  
Figure 3. Block Diagram  
1.2  
Ordering Information  
Part Number  
(Notes 2, 3, 4)  
Part  
Marking  
Temp  
Input  
Input  
Tape and Reel  
Package  
Pkg.  
Range (°C)  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
Configuration Logic (V) (Units) (Note 1) (RoHS Compliant) Dwg. #  
ISL89163FRTAZ  
ISL89163FRTAZ-T  
ISL89163FRTBZ  
ISL89163FRTBZ-T  
ISL89164FRTAZ  
ISL89164FRTAZ-T  
ISL89164FRTBZ  
ISL89164FRTBZ-T  
ISL89165FRTAZ  
ISL89165FRTAZ-T  
ISL89165FRTBZ  
ISL89165FRTBZ-T  
ISL89163FBEAZ  
ISL89163FBEAZ-T  
ISL89163FBEBZ  
ISL89163FBEBZ-T  
ISL89164FBEAZ  
ISL89164FBEAZ-T  
ISL89164FBEBZ  
ISL89164FBEBZ-T  
163A  
163A  
163B  
163B  
164A  
164A  
164B  
164B  
165A  
165A  
165B  
165B  
Non-inverting  
3.3  
3.3  
5.0  
5.0  
3.3  
3.3  
5.0  
5.0  
3.3  
3.3  
5.0  
5.0  
3.3  
3.3  
5.0  
5.0  
3.3  
3.3  
5.0  
5.0  
-
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld 3x3 TDFN  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
L8.3x3I  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
6k  
-
6k  
Inverting  
-
6k  
-
6k  
Inverting +  
Non-inverting  
-
6k  
-
6k  
-
89163 FBEAZ  
89163 FBEAZ  
89163 FBEBZ  
89163 FBEBZ  
89164 FBEAZ  
89164 FBEAZ  
89164 FBEBZ  
89164 FBEBZ  
Non-inverting  
Inverting  
2.5k  
-
2.5k  
-
2.5k  
-
2.5k  
FN7707 Rev.6.00  
Jul.9.19  
Page 3 of 22  
ISL89163, ISL89164, ISL89165  
1. Overview  
Part Number  
(Notes 2, 3, 4)  
Part  
Marking  
Temp  
Range (°C)  
Input  
Input  
Tape and Reel  
Package  
Pkg.  
Configuration Logic (V) (Units) (Note 1) (RoHS Compliant) Dwg. #  
ISL89165FBEAZ  
89165 FBEAZ  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
Inverting +  
Non-inverting  
3.3V  
3.3V  
5.0V  
5.0V  
-
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
8 Ld EPSOIC  
M8.15D  
M8.15D  
M8.15D  
M8.15D  
ISL89165FBEAZ -T 89165 FBEAZ  
2.5k  
-
ISL89165FBEBZ  
ISL89165FBEBZ-T  
Notes:  
89165 FBEBZ  
89165 FBEBZ  
2.5k  
1. See TB347 for details about reel specifications.  
2. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations).  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC  
J-STD-020.  
3. Input Logic Voltage: A = 3.3V, B = 5.0V.  
4. For Moisture Sensitivity Level (MSL), see the ISL89163, ISL89164, ISL89165 device pages. For more information about MSL, see TB363.  
Table 1. Key Differences Between Family of Parts  
I/O Pins  
Part Number  
ISL89163  
ENA  
NINV  
NINV  
NINV  
ENB  
NINV  
NINV  
NINV  
INA  
NINV  
INV  
INB  
NINV  
INV  
OUTA  
NINV  
NINV  
NINV  
OUTB  
NINV  
NINV  
NINV  
ISL89164  
ISL89165  
INV  
NINV  
Note: INV: Inverting Input, NINV: Non-inverting input.  
FN7707 Rev.6.00  
Jul.9.19  
Page 4 of 22  
ISL89163, ISL89164, ISL89165  
1. Overview  
1.3  
Pin Configurations  
ISL89163FR, ISL89163FB  
(8 Ld TDFN, EPSOIC)  
Top View  
ISL89164FR, ISL89164FB  
(8 Ld TDFN, EPSOIC)  
Top View  
ENA  
INA  
1
2
3
4
8
7
6
5
ENB  
ENA  
/INA  
GND  
/INB  
1
2
3
4
8
7
6
5
ENB  
OUTA  
VDD  
OUTA  
VDD  
GND  
INB  
OUTB  
OUTB  
ISL89165FR, ISL89165FB  
(8 Ld TDFN, EPSOIC)  
Top View  
ENA  
/INA  
GND  
INB  
1
2
3
4
8
7
6
5
ENB  
OUTA  
VDD  
OUTB  
1.4  
Pin Descriptions  
Description  
Pin Number  
Symbol  
ENA  
(See Table 2)  
1
2
3
4
5
6
7
8
Channel A enable, 0V to VDD  
Channel A input, 0V to VDD  
Power Ground, 0V  
INA, /INA  
GND  
INB, /INB  
OUTB  
VDD  
Channel B enable, 0V to VDD  
Channel B output  
Power input, 4.5V to 16V  
Channel A output, 0V to VDD  
Channel B enable, 0V to VDD  
Power Ground, 0V  
OUTA  
ENB  
EPAD  
Table 2. Truth Table for Logic Polarities  
ENx  
INx  
ENx  
/INx  
OUTx  
OUTx  
Non-Inverting  
Inverting  
UV  
ENx*  
INx*  
OUTx*  
UV  
ENx* /INx*  
OUTx*  
0
0
0
0
1
1
1
1
x
0
1
1
0
0
1
1
x
1
0
1
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
1
0
*Substitute A or B for x  
FN7707 Rev.6.00  
Jul.9.19  
Page 5 of 22  
ISL89163, ISL89164, ISL89165  
2. Specifications  
2. Specifications  
2.1  
Absolute Maximum Ratings  
Parameter  
Minimum  
-0.3  
Maximum  
18  
Unit  
V
Supply Voltage, VDD Relative to GND  
Logic Inputs (INA, INB, ENA, ENB)  
Outputs (OUTA, OUTB)  
GND - 0.3  
GND - 0.3  
VDD + 0.3  
VDD + 0.3  
150  
V
V
Average Output Current (Note 5)  
ESD Rating  
mA  
Unit  
kV  
V
Value  
2
Human Body Model Class 2 (Tested per JESD22-A114E)  
Machine Model Class B (Tested per JESD22-A115-A)  
Charged Device Model Class IV  
200  
1
kV  
mA  
Latch-Up (Tested per JESD-78B; Class 2, Level A)  
Output Current  
500  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely  
impact product reliability and result in failures not covered by warranty.  
Note:  
5. The average output current, when driving a power MOSFET or similar capacitive load, is the average of the rectified output current. The  
peak output currents of this driver are self limiting by trans conductance or rDS(ON) and do not required any external components to  
minimize the peaks. If the output is driving a non-capacitive load, such as an LED, maximum output current must be limited by external  
means to less than the specified absolute maximum.  
2.2  
Thermal Information  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
θJC (°C/W)  
8 Ld TDFN Package (Notes 6, 7)  
8 Ld EPSOIC Package (Notes 6, 7)  
Notes:  
44  
42  
3
3
6. θJA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features.  
See TB379.  
7. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
Parameter  
Minimum  
Maximum  
2.27  
Unit  
W
Max Power Dissipation at +25°C in Free Air  
Max Power Dissipation at +25°C with Copper Plane  
Storage Temperature Range  
33.3  
W
-65  
-40  
+150  
°C  
°C  
Maximum Operating Junction Temperature Range  
Pb-Free Reflow Profile  
+150  
see TB493  
FN7707 Rev.6.00  
Jul.9.19  
Page 6 of 22  
ISL89163, ISL89164, ISL89165  
2. Specifications  
2.3  
Recommended Operating Conditions  
Parameter  
Minimum  
Maximum  
Unit  
Junction Temperature  
-40  
+125  
°C  
Options A and B  
Supply Voltage, VDD Relative to GND  
Logic Inputs (INA, INB, ENA, ENB)  
Outputs (OUTA, OUTB)  
4.5  
0
16  
V
V
V
VDD  
VDD  
0
Option C  
Supply Voltage, VDD Relative to GND  
Logic Inputs (INA, INB, ENA, ENB)  
Outputs (OUTA, OUTB)  
7.5  
0
16  
V
V
V
VDD  
VDD  
0
2.4  
Electrical Specifications  
2.4.1 DC Electrical Specifications  
VDD = 12V, GND = 0V, No load on OUTA or OUTB, unless otherwise specified. Boldface limits apply across the operating junction  
temperature range, -40°C to +125°C.  
TJ = +25°C  
TJ = -40°C to +125°C  
Min Max  
Min Typ Max (Note 8) (Note 8) Unit  
Parameters  
Power Supply  
Symbol  
Test Conditions  
Voltage Range (Option A and B)  
Voltage Range (Option C)  
VDD Quiescent Current  
VDD  
VDD  
IDD  
4.5  
7.5  
16  
16  
V
V
ENx = INx = GND  
5
mA  
mA  
INA = INB = 1MHz, square wave  
25  
Undervoltage  
VDD Undervoltage Lockout (Options A  
and B) (Note 12, Figure 10)  
VUV  
VUV  
ENA = ENB = True  
INA = INB = True  
3.3  
6.5  
V
V
VDD Undervoltage Lockout (Option C)  
(Note 12, Figure 10)  
ENA = ENB = True  
INA = INB = True (Note 9)  
Hysteresis (Option A or B)  
Hysteresis (Option C)  
Inputs  
~25  
mV  
V
~0.95  
Input Range for INA, INB, ENA, ENB  
VIN  
VIL  
Option A, B, or C  
GND  
1.12  
1.70  
2.00  
VDD  
1.32  
2.00  
2.76  
V
V
V
V
Logic 0 Threshold for INA, INB, ENA,  
ENB (Note 11)  
Option A, nominally 37% x 3.3V  
Option B, nominally 37% x 5.0V  
1.22  
1.85  
2.4  
Option C, nominally 20% x 12V  
(Note 9)  
Logic 1 Threshold for INA, INB, ENA,  
ENB (Note 11)  
VIH  
Option A, nominally 63% x 3.3V  
Option B, nominally 63% x 5.0V  
2.08  
3.15  
9.6  
1.98  
3.00  
9.24  
2.18  
3.30  
9.96  
V
V
V
Option C, nominally 80% x 12V  
(Note 9)  
Input Capacitance of INA, INB, ENA,  
ENB (Note 10)  
CIN  
IIN  
2
pF  
µA  
Input Bias Current for INA, INB, ENA,  
ENB  
GND < VIN < VDD  
-10  
+10  
VDD  
Outputs  
High Level Output Voltage  
VOHA  
VOHB  
VDD - 0.1  
V
FN7707 Rev.6.00  
Jul.9.19  
Page 7 of 22  
ISL89163, ISL89164, ISL89165  
2. Specifications  
VDD = 12V, GND = 0V, No load on OUTA or OUTB, unless otherwise specified. Boldface limits apply across the operating junction  
temperature range, -40°C to +125°C. (Continued)  
TJ = +25°C  
TJ = -40°C to +125°C  
Min Max  
Min Typ Max (Note 8) (Note 8) Unit  
Parameters  
Symbol  
Test Conditions  
Low Level Output Voltage  
VOLA  
VOLB  
GND  
GND + 0.1  
V
Peak Output Source Current  
Peak Output Sink Current  
Notes:  
IO  
IO  
VO (initial) = 0V, CLOAD = 10nF  
VO (initial) = 12V, CLOAD = 10nF  
-6  
A
A
+6  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested.  
9. The nominal 20% and 80% thresholds for option C are valid for any value within the specified range of VDD.  
10. This parameter is taken from the simulation models for the input FET. The actual capacitance on this input is dominated by the PCB  
parasitic capacitance.  
11. The true state input voltage for the non-inverted inputs is greater than the Logic 1 threshold voltage. The true state input voltage for the  
inverted inputs is less than the Logic 0 threshold voltage.  
12. A 400µs delay further inhibits the release of the output state when the UV positive going threshold is crossed. See Figure 10 on page 10.  
2.5  
AC Electrical Specifications  
VDD = 12V, GND = 0V, No Load on OUTA or OUTB, unless otherwise specified. Boldface limits apply across the operating junction  
temperature range, -40°C to +125°C.  
TJ = +25°C  
TJ = -40°C to +125°C  
Parameters  
Output Rise Time (see Figure 5)  
Output Fall Time (see Figure 5)  
Symbol  
Test Conditions  
Min Typ Max  
Min  
Max  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A
tR  
tF  
CLOAD = 10nF, 10% to 90%  
CLOAD = 10nF, 90% to 10%  
20  
20  
25  
25  
25  
25  
25  
25  
25  
25  
<1  
<1  
Output Rising Edge Propagation Delay for  
Non-Inverting Inputs (Note 13) (see Figure 4)  
tRDLYn VDD = 12V Options A and B  
VDD = 8V Option C  
Output Rising Edge Propagation Delay with  
Inverting Inputs (Note 13) (see Figure 4)  
tRDLYi VDD = 12V Options A and B  
VDD = 8V Option C  
Output Falling Edge Propagation Delay with  
Non-Inverting Inputs (Note 13) (see Figure 4)  
tFDLYn VDD = 12V Options A and B  
VDD = 8V Option C  
Output Falling Edge Propagation Delay with  
Inverting Inputs (Note 13) (see Figure 4)  
tFDLYi  
VDD = 12V Options A and B  
VDD = 8V Option C  
Rising Propagation Matching (see Figure 4)  
Falling Propagation Matching (see Figure 4)  
tRM  
tFM  
No load  
No load  
Miller Plateau Sink Current  
(See Test Circuit Figure 6)  
-IMP  
-IMP  
-IMP  
IMP  
IMP  
IMP  
VDD = 10V, VMILLER = 5V  
VDD = 10V, VMILLER = 3V  
VDD = 10V, VMILLER= 2V  
VDD = 10V, VMILLER = 5V  
VDD = 10V, VMILLER = 3V  
VDD = 10V, VMILLER = 2V  
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4.7  
3.7  
5.2  
5.8  
6.9  
400  
A
A
Miller Plateau Source Current  
(See Test Circuit Figure 7)  
A
A
A
Turn-On Delay (Note 12, Figure 10)  
Note:  
ton_delay see Figure 10  
µs  
13. Propagation delays for Option C are typically the same for the recommended operating range (7.5V ≤ VDD ≤ 16V).  
FN7707 Rev.6.00  
Jul.9.19  
Page 8 of 22  
ISL89163, ISL89164, ISL89165  
2. Specifications  
2.6  
Test Waveforms and Circuits  
V
DD  
80%  
Option C  
INA, INB,  
ENA, ENB  
20%  
0V  
3.3V Option A  
5.0V Option B  
50%  
50%  
Option A or B  
INA, INB,  
ENA, ENB  
0V  
tRDLY  
tFDLY  
/OUTA  
OUTA  
90%  
tRDLY  
tFDLY  
/OUTB  
OUTB  
OUTA  
or  
OUTB  
10%  
tRM  
tFM  
tR  
tF  
Logic Levels: Option A = 3.3V, Option B = 5.0V, Option C = V  
DD  
Figure 4. Prop Delays and Matching  
Figure 5. Rise/Fall Times  
10V  
10V  
ISL8916x  
ISL8916x  
0.1µF  
10kΩ  
0.1µF  
10nF  
10k  
VMILLER  
VMILLER  
10µF  
10µF  
200ns  
200ns  
10nF  
+ISENSE  
+ISENSE  
50m  
50m  
-ISENSE  
-ISENSE  
Figure 6. Miller Plateau Sink Current Test Circuit  
Figure 7. Miller Plateau Source Current Test Circuit  
10V  
0A  
Current through 0.1Ω  
IMP  
Resistor  
VMILLER  
VOUT  
VOUT  
VMILLER  
Current through 0.1  
Resistor  
Ω
-IMP  
0V  
0
200ns  
200ns  
Figure 8. Miller Plateau Sink Current  
Figure 9. Miller Plateau Source Current  
FN7707 Rev.6.00  
Jul.9.19  
Page 9 of 22  
ISL89163, ISL89164, ISL89165  
2. Specifications  
Rising VDD  
This duration is dependant on  
rise time of VDD  
UV Threshold  
This duration is  
independent on rise  
time of VDD  
~1V  
10kΩ to  
ground  
Outputs Active  
Low  
OUTA, OUTB  
Output State  
Outputs Controlled by Logical  
Inputs  
400µs Typical  
(ton_delay  
)
<1Ω to Ground  
Figure 10. Start-Up Output Characteristic  
FN7707 Rev.6.00  
Jul.9.19  
Page 10 of 22  
ISL89163, ISL89164, ISL89165  
3. Typical Performance Curves  
3. Typical Performance Curves  
3.5  
35  
30  
25  
20  
15  
10  
5
+125°C  
+125°C  
+25°C  
3.0  
-40°C  
+25°C  
-40°C  
2.5  
2.0  
4
8
12  
16  
4
8
12  
16  
V
V
DD  
DD  
Figure 12. IDD vs VDD (1MHz)  
Figure 11. IDD vs VDD (STATIC)  
50  
40  
30  
20  
10  
0
1.1  
1.0  
16V  
V
Low  
OUT  
No Load  
0.9  
0.8  
0.7  
10V  
V
High  
OUT  
12V  
5V  
0.6  
0.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Frequency (MHz)  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Figure 13. IDD vs Frequency (+25°C)  
Figure 14. rDS(ON) vs Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
Positive Threshold  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Positive Threshold  
Negative Threshold  
Negative Threshold  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
Figure 15. Option A Thresholds  
Figure 16. Option B Thresholds  
FN7707 Rev.6.00  
Jul.9.19  
Page 11 of 22  
ISL89163, ISL89164, ISL89165  
3. Typical Performance Curves  
25  
30  
25  
Fall Time, C  
= 10nF  
LOAD  
Output Falling Prop Delay  
Output Rising Prop Delay  
20  
Rise Time, C  
= 10nF  
LOAD  
20  
15  
15  
-45  
-20  
5
30  
55  
80  
105  
130  
5
7
9
11  
13  
15  
V
Temperature (°C)  
DD  
Figure 18. Propagation Delay vs VDD  
Figure 17. Output Rise/Fall Time  
FN7707 Rev.6.00  
Jul.9.19  
Page 12 of 22  
ISL89163, ISL89164, ISL89165  
4. Functional Description  
4. Functional Description  
The ISL89163, ISL89164, ISL89165 MOSFET drivers incorporate several features optimized for Synchronous  
Rectifier (SR) driver applications including precision input logic thresholds, enable inputs, undervoltage lockout,  
and high-amplitude output drive currents.  
The precision input thresholds facilitate the use of an external RC network to delay the rising or falling propagation  
of the driver output; this feature is useful for adjusting when the SRs turn on relative to the primary side FETs. In a  
similar manner, these drivers can also be used to control the turn-on/off timing of the primary side FETs.  
The enable inputs (ENA, ENB) are used to emulate diode operation of the SRs by disabling the driver output, as  
necessary, to prevent negative currents in the output filter inductors. One example is turning off the SRs when the  
power supply output is turned off, which prevents the output capacitor from being discharged through the output  
inductor. If this is allowed to happen, the voltage across the output capacitor rings negative possibly damaging the  
capacitor (if it is polarized) and probably damaging the load. Another example is preventing circulating currents  
between paralleled power supplies during no or light-load conditions. During light-load conditions (especially  
when active load sharing is not active), energy is transferred from the paralleled power supply that has a higher  
voltage to the paralleled power supply with the lower voltage. Consequently, the energy that is absorbed by the  
low voltage output transfers to the primary side causing the bus voltage to increase until the primary side is  
damaged by excessive voltage.  
The start-up sequence for input threshold Options A, B, and C prevents unexpected glitches when V is being  
DD  
turned on or turned off. When V < ~1V, an internal 10kΩ resistor connected between the output and ground  
DD  
helps keep the gate voltage close to ground. When ~1V < V < UV, both outputs are driven low while ignoring  
DD  
the logic inputs. This low state has the same current sinking capacity as during normal operation, and it ensures  
that the driven FETs are held off even if there is a switching voltage on the drains that can inject charge into the  
gates using the Miller capacitance. When V > UVLO, and after a 400µs delay, the outputs now respond to the  
DD  
logic inputs. See Figure 10 for complete details.  
For the negative transition of V through the UV lockout voltage, the outputs of input threshold Options A or B  
DD  
are active low when V < ~3.2V regardless of the input logic states. Similarly, the C option outputs are active  
DD  
DC  
low when V < ~6.5V  
.
DD  
DC  
FN7707 Rev.6.00  
Jul.9.19  
Page 13 of 22  
ISL89163, ISL89164, ISL89165  
5. Application Information  
5. Application Information  
5.1  
Precision Thresholds for Time Delays  
Three input logic voltage levels are supported by the ISL89163, ISL89164, ISL89165. Option A uses 3.3V logic,  
Option B uses 5.0V logic, and Option C uses higher voltage logic when it is desired to have voltage thresholds  
that are proportional to V . The A and B options have nominal thresholds that are 37% and 63% of 3.3V and  
DD  
5.0V, respectively and the C option is 20% and 80% of V  
.
DD  
ENx  
D
INx  
OUTx  
R
del  
cdel  
Figure 19. Delay Using RCD Network  
In Figure 19, R and C delay the rising edge of the input signal. For the falling edge of the input signal, the  
del  
del  
diode shorts out the resistor resulting in a minimal falling edge delay.  
The 37% and 63% thresholds of Options A and B were chosen to simplify the calculations for the desired time  
delays. When using an RC circuit to generate a time delay, the delay is simply T (secs) = R (ohms) x C (farads).  
Note: The equation only applies if the input logic voltage is matched to the 3.3V or 5V threshold options. If the  
logic high amplitude is not equal to 3.3V or 5V, the equations shown in Equation 1 can be used for more precise  
delay calculations.  
(EQ. 1)  
High level of the logic signal into the RC  
Positive going threshold for 5V logic (B option)  
Low level of the logic signal into the RC  
V
V
V
= 10V  
H
= 63% × 5V  
thres  
= .3V  
L
Timing values  
R
= 100Ω  
= 1nF  
del  
C
t
del  
V
V  
thres  
L
= −R  
C
× ln  
+ 1  
del  
del del  
V
V  
L
H
nominal delay time for this example  
t
= 34.788 ns  
del  
In this example, the high logic voltage is 10V, the positive threshold is 63% of 5V and the low level logic is 0.3V.  
Note the rising edge propagation delay of the driver must be added to this value.  
The minimum recommended value of C is 100pF. The parasitic capacitance of the PCB and any attached scope  
probes introduces significant delay errors if smaller values are used. Larger values of C further minimize errors.  
Acceptable values of R are primarily effected by the source resistance of the logic inputs. Generally, 100Ω  
resistors or larger are usable.  
5.2  
Paralleling Outputs to Double the Peak Drive Currents  
The typical propagation matching of the ISL89163 and ISL89164 is less than 1ns. The matching is so precise that  
carefully matched and calibrated scope probes and channels must be used to make this measurement. Because  
of the excellent performance, these driver outputs can be safely paralleled to double the current drive capacity. It  
is important that the INA and INB inputs are connected together on the PCB with the shortest possible trace,  
which is also required of OUTA and OUTB. However, the ISL89165 cannot be paralleled because of the  
complementary logic.  
FN7707 Rev.6.00  
Jul.9.19  
Page 14 of 22  
ISL89163, ISL89164, ISL89165  
5. Application Information  
5.3  
Power Dissipation of the Driver  
The power dissipation of the ISL89163, ISL89164, ISL89165 is dominated by the losses associated with the gate  
charge of the driven bridge FETs and the switching frequency. The internal bias current also contributes to the  
total dissipation, but it is usually not significant as compared to the gate charge losses.  
12  
10  
V
= 64V  
DS  
8
6
4
2
0
V
= 40V  
DS  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Gate Charge (nC)  
Q
g,  
Figure 20. MOSFET Gate Charge vs Gate Voltage  
Figure 20 illustrates how the gate charge varies with the gate voltage in a typical power MOSFET. In this example,  
the total gate charge for V = 10V is 21.5nC when V = 40V. This is the charge that a driver must source to turn  
gs  
DS  
on the MOSFET and must sink to turn-off the MOSFET.  
Equation 2 shows calculating the power dissipation of the driver:  
R
gate  
--------------------------------------------  
(EQ. 2)  
P
= 2 Q freq V  
+ I (freq) • V  
DD DD  
D
c
GS  
R
+ r  
gate  
DS(ON)  
where:  
• freq = Switching frequency,  
• V = V bias of the ISL89163, ISL89164, ISL89165  
GS  
DD  
• Q = Gate charge for V  
c
GS  
• I (freq) = Bias current at the switching frequency (see Figure 11)  
DD  
• r  
= ON-resistance of the driver  
DS(ON)  
• R  
= External gate resistance (if any).  
gate  
Note: The gate power dissipation is proportionally shared with the external gate resistor. Do not overlook the  
power dissipated by the external gate resistor.  
5.4  
Typical Application Circuits  
The drive circuit provides primary-to-secondary line isolation. A controller, on the primary side, is the source of the  
SR control, OUTLLN, and OUTLRN signals. The secondary side signals, V1 and V2 are rectified by the dual  
diode, D9, to generate the secondary side bias for U4. V1 and V3 are also inverted by Q100 and Q101, and the  
rising edges are delayed by R /C and R /C respectively to generate the SR drive signals, LRN and LLN. For  
27 10  
28  
9
complete information on this SR drive circuit, and other applications for the ISL89163, ISL89164, ISL89165, see  
AN1603, “ISL6752/54EVAL1Z ZVS DC/DC Power Supply with Synchronous Rectifiers User Guide”.  
FN7707 Rev.6.00  
Jul.9.19  
Page 15 of 22  
ISL89163, ISL89164, ISL89165  
5. Application Information  
PWM  
/OUTLLN  
/OUTLRN  
L
R
L
Primary to Secondary Side Self  
Biasing, Isolated SR Drive  
VBIAS  
R27  
ENABLE  
D9  
V2  
OUTLLN  
V1  
LRN  
Q100  
C123  
V1  
U4  
R28  
V4  
R-SR  
LSR  
V2  
LLN  
V3  
EL7212  
ISL89163  
U4  
OUTLRN  
Q101  
T6  
V3  
LLN  
C9  
C10  
V4  
Red dashed lines point out the turn-on  
delay of the SRs when PWM goes low  
LRN  
FN7707 Rev.6.00  
Jul.9.19  
Page 16 of 22  
ISL89163, ISL89164, ISL89165  
6. General PCB Layout Guidelines  
6. General PCB Layout Guidelines  
The AC performance of the ISL89163, ISL89164, ISL89165 depends significantly on the design of the PC board.  
The following layout design guidelines are recommended to achieve optimum performance:  
• Place the driver as close as possible to the driven power FET.  
• Understand where the switching power currents flow. The high-amplitude di/dt currents of the driven power FET  
will induce significant voltage transients on the associated traces.  
• Keep power loops as short as possible by paralleling the source and return traces.  
• Use planes where practical; they are usually more effective than parallel traces.  
• Avoid paralleling high-amplitude di/dt traces with low level signal lines. High di/dt will induce currents and  
consequently, noise voltages in the low level signal lines.  
• When practical, minimize impedances in low level signal circuits. The noise, magnetically induced on a 10kΩ  
resistor, is 10x larger than the noise on a 1kΩ resistor.  
• Be aware of magnetic fields emanating from transformers and inductors. Gaps in the magnetic cores of these  
structures are especially bad for emitting flux.  
• If you must have traces close to magnetic devices, align the traces so that they are parallel to the flux lines to  
minimize coupling.  
• The use of low inductance components, such as chip resistors and chip capacitors, is highly recommended.  
• Use decoupling capacitors to reduce the influence of parasitic inductance in the V and GND leads. To be  
DD  
effective, these caps must also have the shortest possible conduction paths. If vias are used, connect several  
paralleled vias to reduce the inductance of the vias.  
• It may be necessary to add resistance to dampen resonating parasitic circuits especially on OUTA and OUTB. If  
an external gate resistor is unacceptable, the layout must be improved to minimize lead inductance.  
• Keep high dv/dt nodes away from low level circuits. Guard banding can be used to shunt away dv/dt injected  
currents from sensitive circuits, which is especially true for control circuits that source the input signals to the  
ISL89163, ISL89164, ISL89165.  
• Avoid having a signal ground plane under a high-amplitude dv/dt circuit, which injects di/dt currents into the  
signal ground paths.  
• Do power dissipation and voltage drop calculations of the power traces. Many PCB/CAD programs have built in  
tools for calculation of trace resistance.  
• Large power components (Power FETs, Electrolytic caps, power resistors, etc.) have internal parasitic  
inductance which cannot be eliminated. This must be accounted for in the PCB layout and circuit design.  
• If you simulate your circuits, consider including parasitic components especially parasitic inductance.  
FN7707 Rev.6.00  
Jul.9.19  
Page 17 of 22  
ISL89163, ISL89164, ISL89165  
7. General EPAD Heatsinking Considerations  
7. General EPAD Heatsinking Considerations  
The thermal pad is electrically connected to the GND supply through the IC substrate. The EPAD of the ISL89163,  
ISL89164, ISL89165 has two main functions:  
• Provide a quiet GND for the input threshold comparators  
• Provide heat sinking for the IC  
The EPAD must be connected to a ground plane, and no switching currents from the driven FET should pass  
through the ground plane under the IC.  
Figure 21 is a PCB layout example of how to use vias to remove heat from the IC through the EPAD.  
For maximum heatsinking, Renesas recommends that a ground plane, connected to the EPAD, is added to both  
sides of the PCB. A via array, within the area of the EPAD, conducts heat from the EPAD to the GND plane on the  
bottom layer. The number of vias and the size of the GND planes required for adequate heatsinking is determined  
by the power dissipated by the ISL89163, ISL89164, ISL89165, the air flow, and the maximum temperature of the  
air around the IC.  
EPAD GND Plane  
EPAD GND Plane  
Bottom Layer  
Component Layer  
Figure 21. Typical PCB Pattern for Thermal Vias  
FN7707 Rev.6.00  
Jul.9.19  
Page 18 of 22  
ISL89163, ISL89164, ISL89165  
8. Revision History  
8. Revision History  
Rev.  
Date  
Description  
6.00  
Jul.9.19  
Applied new formatting  
Updated 1st paragraph on page 1.  
Updated links throughout document.  
Updated Ordering Information table adding tape and reel information to table and updating notes, and  
removed Note 1.  
Removed About Intersil section  
Updated disclaimer.  
5.00  
4.00  
Oct.13.16  
Sep.30.15  
ton_delay parameter added to the AC Electrical Specifications.  
The “up to 400µs” label of Figure 9 is changed to “400µs typical (ton_delay)”.  
Updated the Ordering Information table on page 3.  
Replaced Products section with About Intersil section.  
Updated Package Outline Drawing L8.3x3I to the latest revision. Changes are as follows:  
-Tiebar Note updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
3.00  
Feb.22.12  
(page 5) ENA and ENB added to the Input Range parameter  
(page 6) Propagation delay testing parameters changed for option C  
(page 6) Note 13 added  
(page 7) Figure 3 modified to show different input thresholds for testing prop delays for option C  
(page 4) The startup sequence references for the VDD Undervoltage Lock-out parameters for Option C is now  
the same as Options A and B. Options A, B, and C now have the same startup sequence.  
(page 5) Note 9 is rewritten to be more precise.  
(page 8) The old startup sequence for Option C has been deleted (formerly Figure 10)  
(page 10) The old startup sequence description in the Functional Description Overview has been deleted.  
2.00  
Jan.9.12  
(page 1) vertical part numbers in the right margin are deleted to conform to new datasheet standards.  
(page 1) Last paragraph of the product description is changed to better describe the improved turn on  
characteristics.  
(page 1) features list is reduced in size to 8 features. Some features are reworded to improve readability.  
(page 1) a reference to a non-existent application note is deleted from the Related Literature section.  
(page 2) pin configuration pictures are redrawn and relabeled for readability.  
(page 2) some pins description names are changed to corollate to the pin name in the pin configuration  
pictures. Some descriptions are also corrected. The truth table associated with the pin descriptions is  
expanded to include the logic performance of the under-voltage. (these revisions are not a change to function).  
(page 4) note and figure references are added to the VDD Under-voltage lock-out parameter for options A, B,  
and C  
(page 5) note 12 is revised to more clearly describe the turn-on characteristics of options A, B, and C.  
(page 6) no load test conditions added to the rising and falling propagation matching parameters.  
(page 8) figures 7 and 8 added to clearly define the startup characteristics  
(page 10) the last paragraph of the Functional Description overview is replaced by 3 paragraphs to more  
clearly describe the under voltage and turn-on and turn-off characteristics.  
(page 11). A new section is added to the application information describing how the drivers outputs can be  
paralleled.  
(pages 1..13) various minor corrections to text for grammar and spelling.  
1.00  
0.00  
Aug.26.11  
Oct.12.10  
(page 8) Note 12 revised from 200µs to 400µs  
(page 6) The Operating Junction Temp Range in the “Thermal Information” was revised to read  
“Maximum Operating Junction Temp Range....-40°C to +150°C” from “-40°C to +125°C”  
Updated POD M8.15D by converting to new POD format. Removed table of dimensions and moved  
dimensions onto drawing. Added land pattern.  
Initial release  
FN7707 Rev.6.00  
Jul.9.19  
Page 19 of 22  
ISL89163, ISL89164, ISL89165  
9. Package Outline Drawings  
For the most recent package outline drawing, see L8.3x3I.  
9. Package Outline Drawings  
L8.3x3I  
8 Lead Thin Dual Flat No-Lead Plastic Package  
Rev 2 5/15  
2X 1.950  
3.00  
A
6X 0.65  
B
5
8
(4X)  
0.15  
1.64 +0.10/ - 0.15  
6
PIN 1  
INDEX AREA  
6
PIN #1 INDEX AREA  
4
1
4
8X 0.30  
0.10 M C A B  
8X 0.400 ± 0.10  
TOP VIEW  
2.38  
+0.10/ - 0.15  
BOTTOM VIEW  
SEE DETAIL "X"  
( 2.38 )  
( 1.95)  
C
0.10  
C
Max 0.80  
0.08  
C
SIDE VIEW  
( 8X 0.60)  
(1.64)  
( 2.80 )  
PIN 1  
5
0 . 2 REF  
C
(6x 0.65)  
0 . 00 MIN.  
0 . 05 MAX.  
( 8 X 0.30)  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN7707 Rev.6.00  
Jul.9.19  
Page 20 of 22  
ISL89163, ISL89164, ISL89165  
9. Package Outline Drawings  
M8.15D  
For the most recent package outline drawing, see M8.15D.  
8 Lead Narrow Body Small Outline Exposed Pad Plastic Package  
Rev 1, 3/11  
8
INDEX  
AREA  
6.20 (0.244)  
5.84 (0.230)  
DETAIL "A"  
1.27 (0.050)  
0.41 (0.016)  
3.99 (0.157)  
3.81 (0.150)  
0.50 (0.02)  
x 45°  
1
2
3
0.25 (0.01)  
TOP VIEW  
8°  
0°  
0.25 (0.010)  
0.19 (0.008)  
SEATING PLANE  
SIDE VIEW “B”  
1.72 (0.067)  
4.98 (0.196)  
4.80 (0.189)  
1.52 (0.059)  
-C-  
2.25  
(0.089)  
1.95  
(0.077)  
0.25 (0.010)  
0.10 (0.004)  
1.27 (0.050)  
1
2
3
4
8
7
6
5
0.46 (0.019)  
0.36 (0.014)  
0.60 (0.023)  
1.27 (0.050)  
SIDE VIEW “A  
1
2
3
5.45 (0.214)  
2.50 (0.099)  
2.00 (0.078)  
TYPICAL RECOMMENDED LAND PATTERN  
8
Notes:  
1. Dimensions are in millimeters. Dimensions in ( ) for reference only.  
2. Dimensioning and tolerancing per ASME-Y14.5M-1994.  
3. Unless otherwise specified, tolerance: Decimal ± 0.05.  
3.50 (0.137)  
3.00 (0.118)  
4. Dimension does not include interlead flash or protrusions. Interlead flash  
BOTTOM VIEW  
or protrusions shall not exceed 0.25mm per side.  
5. The Pin 1 identifier may be either a mold or a mark feature.  
6. The chamfer on the body is optional. If it is not present, a visual index  
FN7707 Rev.6.00  
Jul.9.19  
Page 21 of 22  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

ISL89165FRTBZ-T7

AND GATE BASED MOSFET DRIVER
RENESAS

ISL89165FRTCZ

High Speed, Dual Channel, 6A, Power MOSFET Driver with Enable Inputs
INTERSIL

ISL89165FRTCZ

High Speed, Dual Channel, 6A, Power MOSFET Driver with Enable Inputs; DFN8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL89166

High Speed, Dual Channel, 6A, Power MOSFET Driver With Programmable Delays
INTERSIL

ISL89166FBEAZ

High Speed, Dual Channel, 6A, Power MOSFET Driver With Programmable Delays
INTERSIL

ISL89166FBEAZ

High Speed, Dual Channel, 6A, Power MOSFET Driver With Programmable Delays; DFN8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL89166FBECZ

AND GATE BASED MOSFET DRIVER
RENESAS

ISL89166FBECZ-T

AND GATE BASED MOSFET DRIVER
RENESAS

ISL89166FRTAZ

High Speed, Dual Channel, 6A, Power MOSFET Driver With Programmable Delays
INTERSIL

ISL89166FRTAZ-T

High Speed, Dual Channel, 6A, Power MOSFET Driver With Programmable Delays; DFN8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL89166FRTAZ-T7

AND GATE BASED MOSFET DRIVER
RENESAS

ISL89166FRTBZ-T

AND GATE BASED MOSFET DRIVER
RENESAS