ISL95338EVAL1Z [RENESAS]

Bidirectional Buck-Boost Voltage Regulator;
ISL95338EVAL1Z
型号: ISL95338EVAL1Z
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Bidirectional Buck-Boost Voltage Regulator

开关
文件: 总48页 (文件大小:1808K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL95338  
Bidirectional Buck-Boost Voltage Regulator  
FN8896  
Rev.2.00  
Nov 30, 2017  
The ISL95338 is a bidirectional, buck-boost voltage  
regulator that provides buck-boost voltage regulation and  
protection features. Intersil’s advanced R3™ Technology  
is used to provide high light-load efficiency, fast transient  
response, and seamless DCM/CCM transitions.  
Features  
• Bidirectional buck, boost, and buck-boost operation  
• Input voltage range 3.8V to 24V (no dead zone)  
• Output voltage up to 20V  
The ISL95338 takes input power from a wide range of  
DC power sources (conventional AC/DC ADPs, USB PD  
ports, travel ADPs, etc.) and safely converts it to a  
regulated voltage up to 24V. The ISL95338 can also  
convert a wide range DC power source connected at its  
output (system side) to a regulated voltage to its input  
(ADP side). This bidirectional buck-boost regulation  
feature makes its application very flexible.  
• Up to 1MHz switching frequency  
• Programmable soft-start time  
• LDO output for VDD and VDDP  
• System status alert function  
• Bidirectional internal discharge function  
• Active switching for negative voltage transitions  
• Bypass mode in both directions  
The ISL95338 includes various system operation  
functions such as Forward mode enable, Reverse mode  
enable, programmable soft-start time, and adjustable  
• Forward mode enable, Reverse mode enable  
• OCP, OVP, UVP, and OTP protection  
V
in both the forward direction and reverse direction.  
OUT  
The protection functionalities include OCP, OVP, UVP,  
OTP, etc.  
2
• SMBus and auto-increment I C compatible  
• Pb-free (RoHS compliant)  
• 32 Ld 4x4 TQFN Package  
The ISL95338 has serial communication through  
2
SMBus/I C that allows programming of many critical  
parameters to deliver a customized solution. These  
programming parameters include, but are not limited to:  
output current limit, input current limit, and output  
voltage setting.  
Applications  
• Tablet, ultrabook, power bank, mobile devices, and  
USB-C  
Related Literature  
• For a full list of related documents, visit our website  
ISL95338 product page  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 1 of 48  
ISL95338  
Rs1  
20m  
Rs2  
VSYS (SYSTEM SIDE)  
V
(ADAPTER SIDE )  
IN  
10m  
Q1  
Q2  
Q4  
Q3  
L1  
CSOP  
CSON  
SCL  
CSIN  
CSIP  
ADP  
SDA  
ADPS  
FRWEN  
RVSEN  
VOUT  
ISL95338  
VOUTS  
ADDR0  
PROCHOT #  
RVSPG  
GND  
ADDR1  
REF  
FRWPG  
V
V
IN  
OUT  
Figure 1. Typical Application Circuit  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 2 of 48  
ISL95338  
Contents  
1.  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.1  
1.2  
1.3  
1.4  
1.5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.  
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Recommended Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SMBus Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.  
4.  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General SMBus Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Data Validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SMBus Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Byte Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
SMBus and I C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.  
ISL95338 SMBus Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
5.11  
Setting System Side Current Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Setting Input Current Limit in Forward Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Setting System Regulating Voltage in Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Setting PROCHOT# Threshold for ADP Side Overcurrent Condition . . . . . . . . . . . . . . . . . . . 25  
Setting PROCHOT# Threshold for System Side Overcurrent Condition. . . . . . . . . . . . . . . . . 25  
Setting PROCHOT# Debounce Time and Duration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Regulating Voltage Register in Reverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output Current Limit Register in Reverse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Input Voltage Limit Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Information Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.  
Application Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1  
6.2  
6.3  
6.4  
6.5  
R3 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
ISL95338 Bidirectional Buck-Boost Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Programming Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 3 of 48  
ISL95338  
6.6  
Forward Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reverse Mode for USB OTG (On-the-Go). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Fast REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Fast Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Way Overcurrent Protection (WOCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Input Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
System Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
System Output Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ADP Output Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Switching Power MOSFET Gate Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
ADP Side Input Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
6.17  
6.18  
7.  
General Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1  
7.2  
7.3  
7.4  
7.5  
Select the LC Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Select the Input Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Select the Switching Power MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Select the Bootstrap Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Select the Resistor Divider for VOUTS and ADPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8.  
9.  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10. About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 4 of 48  
ISL95338  
1. Overview  
1. Overview  
1.1  
Block Diagram  
VOUT  
ADP  
VOUT  
DRV  
+
DCIN  
FWRPG  
FWREN  
CMP  
4.1V  
-
5V  
LDO  
+
-
LOW  
PWR  
LDO  
0.8V  
VDD  
+
CMP  
DRV  
RVSPG  
RVSEN  
-
3.8V  
2.7V  
+
-
+
~1V  
CMP  
-
DAC  
AND  
CNTL  
LOGIC  
FOR OC/  
OV/UV/  
OT  
PROG  
SMBUS/I2C  
DIGITAL  
CONTROL  
AND  
FUSE  
LOGIC  
BOOT1  
ADDR0  
ADDR1  
UGATE1  
PHASE1  
SCL  
SDA  
BUF  
+
LGATE1  
GND  
SoftStart  
OV  
CMP  
-
+
CMP  
-
-1100mV+  
LGATE2  
Fwd  
VDAC  
+fwd:820mV-  
+rev:1200mV  
+
CMP  
UV  
VDDP  
-
+
-
PHASE2  
1uA  
REF  
Rev VDAC  
VREF  
UGATE2  
+
-
VOUTs  
ADPs  
Fwd  
Rev  
BOOT2  
COMPf  
VINDAC  
CSIP  
+
Fwd  
Rev  
-
COMP  
LOOP  
-
CSIP  
CSIN  
ACDAC  
18x  
SELECTOR  
+
-
COMPr  
+
Rev  
Fwd  
ACFB  
-
18x  
ERROR  
+
AMPLIFIER  
+
CSOP  
CSON  
18x  
IFB2DAC  
IFB2  
Fwd  
Rev  
-
+
-
+
18x  
-
+
-
CMP  
CMP  
DCHOTDAC  
DCHOTDAC  
DRV  
PROCHOT#  
+
-
Figure 2. Block Diagram  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 5 of 48  
ISL95338  
1. Overview  
1.2  
Simplified Application Circuit  
Rs1  
Rs2  
10m  
VSYS (SYSTEM SIDE)  
V
IN  
(ADAPTER SIDE)  
20m  
Q1  
Q2  
Q4  
Q3  
L1  
CSOP  
CSON  
SCL  
CSIN  
CSIP  
ADP  
SDA  
ADPS  
FRWEN  
RVSEN  
VOUT  
ISL95338  
VOUTS  
ADDR0  
PROCHOT#  
GND  
ADDR1  
REF  
RVSPG  
FRWPG  
3.3V  
FRWPG  
RVSPG  
SCL  
SDA  
V
IN  
V
OUT  
Figure 3. Simplified Application Diagram  
1.3  
Ordering Information  
Part Number  
(Notes 3, 4)  
Temp. Range  
(°C)  
Package  
Pkg.  
Dwg. #  
Part Marking  
95338H  
(RoHS Compliant)  
32 Ld 4x4 TQFN  
32 Ld 4x4 TQFN  
ISL95338HRTZ (Note 1)  
ISL95338IRTZ (Note 2)  
ISL95338EVAL1Z  
Notes:  
-10 to +100  
-40 to +100  
L32.4x4A  
L32.4x4A  
95338I  
Evaluation board  
1. Add “-T7A” suffix for 250 unit,“-TK” suffix for 1k unit, or “-T” suffix for 6k unit tape and reel options. Refer to TB347 for details on  
reel specifications.  
2. Add “-TK” suffix for 1k unit or “-T” suffix for 6k unit tape and reel options. Refer to TB347 for details on reel specifications.  
3. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and  
100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), see the product information page for ISL95338. For more information on MSL, refer to  
TB363.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 6 of 48  
ISL95338  
1. Overview  
1.4  
Pin Configuration  
ISL95338  
(32 Ld 4x4 TQFN)  
Top View  
32 31 30 29 28 27 26 25  
CSON  
CSOP  
FRWPG  
PROCHOT#  
SCL  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VOUTS  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
VDDP  
SDA  
GND  
(BOTTOM PAD)  
RVSEN  
FRWEN  
VDD  
DCIN  
9
10 11  
12 13 14 15 16  
1.5  
Pin Descriptions  
Pin Number  
Pin Name  
Description  
BOTTOM  
PAD  
GND  
CSON  
CSOP  
Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin. It should also  
be used as the thermal pad for heat dissipation.  
1
Forward VOUT current sense “-” input. Connect to VOUT current resistor negative input. Place a 0.1µF  
ceramic capacitor between CSOP and CSON to provide differential mode filtering.  
2
Forward VOUT current sense “+” input. Connect to VOUT current resistor positive input. Place a 0.1µF  
ceramic capacitor between CSOP and CSON to provide differential mode filtering.  
3
4
VOUTS  
BOOT2  
Forward VSYS feedback voltage. Use a resistor divider externally to configure forward VSYS voltage.  
High-side MOSFET Q4 gate driver supply. Connect an MLCC capacitor across the BOOT2 pin and the  
PHASE2 pin. The boot capacitor is charged through an internal boot diode connected from the VDDP pin  
to the BOOT2 pin when the PHASE2 pin drops below VDDP minus the voltage drop across the internal  
boot diode.  
5
6
UGATE2  
PHASE2  
High-side MOSFET Q4 gate drive.  
Current return path for the high side MOSFET Q4 gate drive. Connect this pin to the node consisting of  
the high-side MOSFET Q4 source, the low-side MOSFET Q3 drain, and the one terminal of the inductor.  
7
8
LGATE2  
VDDP  
Low-side MOSFET Q3 gate drive.  
Power supply for the gate drivers. Connect to VDD pin through a 4.7Ω resistor and connect a 1µF ceramic  
capacitor to GND.  
9
LGATE1  
PHASE1  
Low-side MOSFET Q2 gate drive.  
10  
Current return path for the high side MOSFET Q1 gate drive. Connect this pin to the node consisting of  
the high-side MOSFET Q1 source, the low-side MOSFET Q2 drain, and the input terminal of the inductor.  
11  
UGATE1  
High-side MOSFET Q1 gate drive.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 7 of 48  
ISL95338  
1. Overview  
Pin Number  
Pin Name  
Description  
12  
BOOT1  
High-side MOSFET Q1 gate driver supply. Connect an MLCC capacitor across the BOOT1 pin and the  
PHASE1 pin. The boot capacitor is charged through an internal boot diode connected from the VDDP pin  
to the BOOT1 pin when the PHASE1 pin drops below VDDP minus the voltage drop across the internal  
boot diode.  
13  
14  
15  
ADPS  
CSIN  
CSIP  
Reverse output voltage feedback. Use a resistor divider externally to configure the reverse output voltage.  
ADP current sense “-” input.  
ADP current sense “+” input. The modulator also uses this for sensing input voltage in Forward mode and  
output voltage in Reverse mode.  
16  
17  
18  
ADP  
DCIN  
VDD  
Used to sense ADP voltage. When ADP voltage is higher than 4.1V, Forward mode can be enabled.  
The ADP pin is also one of the two internal low power LDO inputs.  
Input of an internal LDO providing power to the IC. Connect a diode OR from ADP and system outputs.  
Bypass this pin with an MLCC capacitor.  
Output of the internal LDO; provide the bias power for the internal analog and digital circuit. Connect a  
1µF ceramic capacitor to GND.  
If VDD is pulled below 2.7V, the ISL95338 will reset all the SMBus register values to the default.  
19  
20  
21  
22  
23  
FRWEN  
RVSEN  
SDA  
Forward mode enable, analog signal input. Forward mode is valid if the FRWEN pin voltage is greater  
than 0.8V.  
Reverse mode enable, digital signal input. Reverse mode is valid if the signal is “1” (logic high), otherwise,  
Reverse mode is disabled.  
SMBus data I/O. Connect to the data line from the host controller. Connect a 10k pull-up resistor  
according to the SMBus specification.  
SCL  
SMBus clock I/O. Connect to the clock line from the host controller. Connect a 10k pull-up resistor  
according to the SMBus specification.  
PROCHOT# Open-drain output. Pulled low when input currentis detected as hot in Forward and Reverse mode.  
SMBus command to pull low (refer to Table 8 on page 25 and Table 10 on page 26 for Control 2 Register  
0x3DH and Control4 Register 0x4EH).  
24  
25  
26  
27  
28  
29  
FRWPG  
ADDR0  
RVSPG  
PROG  
COMPF  
REF  
Open-drain output. Indicator output to indicate the forward modulator is enabled.  
Address setting pin for the IC. The IC address is set by ADDR0 and ADDR1 logic voltage levels.  
Open-drain output. Indicator output to indicate the reverse modulator is enabled.  
A resistor from PROG pin to GND sets the default forward system output voltage.  
Forward mode error amplifier output. Connect a compensation network externally from COMPF to GND.  
Output voltage soft-start reference. A ceramic capacitor from REF to GND is set to the desired soft-start  
time. In Forward mode, forward output voltage (VOUTS) reference soft-start time is set. In Reverse mode,  
reverse output voltage (ADPS) reference soft-start time is set.  
30  
31  
32  
COMPR  
VOUT  
Reverse mode error amplifier output. Connect a compensation network externally from COMPR to GND.  
Forward VOUT sense voltage for modulator and PHASE 2 zero-current comparator.  
ADDR1  
Address setting pin for the IC. The IC address is set by ADDR0 and ADDR1 logic voltage levels.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 8 of 48  
ISL95338  
2. Specifications  
2. Specifications  
2.1  
Absolute Maximum Ratings  
Parameter  
Minimum  
-0.3  
Maximum  
+30  
Unit  
V
CSIP, CSIN, DCIN, ADPS, ADP  
CSIP  
0.3  
ADP + 2  
+30  
V
PHASE1  
GND - 0.3  
GND - 2 (<20ns)  
PHASE1 - 0.3  
GND - 0.3  
GND - 2 (<20ns)  
PHASE2 - 0.3  
GND - 0.3  
GND - 2 (<20ns)  
-0.3  
V
PHASE1  
+30  
V
UGATE1  
BOOT1 + 0.3  
+30  
V
PHASE2  
V
PHASE2  
+30  
V
UGATE2  
BOOT2 + 0.3  
VDDP + 0.3  
VDDP + 0.3  
+27  
V
LGATE1, LGATE2  
V
LGATE1, LGATE2  
V
VOUT, VOUTS, CSOP, CSON  
VDD, VDDP  
V
-0.3V  
+6.5  
V
BOOT1, BOOT2  
- 0.3  
VDDP + 27  
PHASE1 + 6.5  
PHASE2 + 6.5  
+6.5  
V
BOOT1  
(PHASE1 - 0.3)  
(PHASE2 - 0.3)  
-0.3  
V
BOOT2  
V
COMPR, COMPF, REF, PROG  
RVSEN, FRWEN, ADDR0, ADDR1  
FRWPG, PROCHOT#, RVSPG  
SCL, SDA  
V
-0.3  
+6.5  
V
-0.3  
+6.5  
V
-0.3  
+6.5  
V
BOOT1-PHASE1, BOOT2-PHASE2  
CSIP-CSIN, CSOP-CSON  
ESD Rating  
-0.3  
+0.3  
V
2
mA  
Unit  
kV  
V
Rating  
2
Human Body Model (Tested per JS-001-2014)  
Machine Model (Tested per JESD22-A115C)  
Charged Device Model (Tested per JS-002-2014)  
Latch-Up (Tested per JESD78E)  
200  
1
kV  
mA  
100  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may  
adversely impact product reliability and result in failures not covered by warranty.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 9 of 48  
ISL95338  
2. Specifications  
2.2  
Thermal Information  
Thermal Resistance (Typical)  
JA (°C/W)  
JC (°C/W)  
32 Ld TQFN Package (Notes 5, 6)  
Notes:  
37  
2
5. JA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach”  
features. See TB379.  
6. For JC, the “case temp” location is the center of the ceramic on the package underside.  
Parameter  
Minimum  
Maximum  
Unit  
Junction Temperature Range (TJ)  
-10  
+125  
°C  
Storage Temperature Range (TS)  
Pb-Free Reflow Profile  
-65  
+150  
°C  
Refer to TB493  
2.3  
Recommended Operation Conditions  
Parameter  
Minimum  
Maximum  
+100  
Unit  
°C  
°C  
V
Ambient Temperature - HRTZ  
Ambient Temperature - IRTZ  
ADP Input Voltage  
-10  
-40  
+4  
+100  
+24  
VOUT Input Voltage  
+4  
+20  
V
2.4  
Electrical Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface  
limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified.  
Min  
Max  
Parameter  
UVLO/ACOK  
Symbol  
Test Conditions  
(Note 7) Typ (Note 7) Unit  
VADP UVLO Rising  
VADP UVLO Hysteresis  
VOUT UVLO Rising  
VADP_UVLO_r  
VADP_UVLO_h  
VOUT_UVLO_r  
VOUT_UVLO_h  
VDD_2P7_r  
3.9  
3.9  
2.5  
4.2  
530  
4.2  
4.55  
4.55  
2.9  
V
mV  
V
VOUT UVLO Hysteresis  
300  
2.7  
mV  
V
VDDA 2P7 Rising, SMBus Active  
(Note 8)  
VDDA 2P7 POR Hysteresis  
(Note 8)  
VDD_2P7_h  
VDD_3P8_r  
150  
3.8  
mV  
V
VDDA 3P8 POR Rising,  
3.6  
3.9  
Modulator, and Gate Driver Active  
VDD 3P8 Hysteresis  
FRWEN Rising  
VDD_3P8_h  
FRWEN_r  
FRWEN_h  
150  
0.8  
50  
mV  
V
0.775  
0.825  
FRWEN Hysteresis  
Bias Current  
mV  
Forward Supply Current, Disable  
State  
ADP, ADPS CSIN, CSIP, VDDP, DCIN = 5V,  
FWREN = Low  
130  
70  
200  
150  
µA  
µA  
µA  
Reverse Supply Current, Disable  
State  
VOUT, VOUTS CSON, CSOP, VDDP,  
DCIN = 5V, RVSEN = Low  
Forward Supply Current, Enable  
State  
ADP, ADPS CSIN, CSIP, DCIN = 20V,  
FWREN = High  
3000  
3300  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 10 of 48  
ISL95338  
2. Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface  
limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 7) Typ (Note 7) Unit  
Reverse Supply Current, Enable  
State  
VOUT, VOUTS CSON, CSOP, DCIN = 20V,  
RVSEN = High  
3000  
1600  
1600  
3300  
2000  
2000  
µA  
µA  
µA  
Forward Supply Current, Enable  
State  
DCIN only (does not include gate driver  
current)  
Reverse Supply Current, Enable  
State  
DCIN only (does not include gate driver  
current)  
Linear Regulator  
VDDA Output Voltage  
VDDA Dropout Voltage  
VDD Overcurrent Threshold  
VDD  
6V < VADP < 23V, no load  
30mA, VDCIN = 4V  
4.5  
90  
5.1  
100  
135  
5.5  
V
VDD_dp  
VDD_OC  
mV  
mA  
165  
ADP Current Regulation, RADP = 20mΩ  
Input Current Accuracy  
|CSIP - CSIN| = 80mV  
4
A
%
-3  
-4  
+3  
+4  
|CSIP - CSIN| = 40mV  
2
A
%
|CSIP - CSIN| = 10mV  
0.5  
A
-10  
-3.0  
-6.0  
+10  
+3.0  
+6.0  
%
ADP Current PROCHOT#  
Threshold  
Rs1 = 20mΩ  
IADP_HOT_TH10  
ACProchot = 0x0A80H (2688mA)  
ACProchot = 0x0400H (1024mA)  
2688  
1024  
mA  
%
mA  
%
Voltage Regulation  
Output Voltage Accuracy Forward  
Output Voltage Accuracy Forward  
Output Voltage Accuracy Reverse  
Output Voltage Accuracy Reverse  
Output Voltage Accuracy Forward  
Output Voltage Accuracy Forward  
Output Voltage Accuracy Reverse  
Output Voltage Accuracy Reverse  
Minimum Input Voltage Accuracy  
HRTZ  
HRTZ  
HRTZ  
HRTZ  
IRTZ  
Measured at VOUTS, 8V and up  
Measured at VOUTS, 4V to 8V  
Measured at ADPS, 8V and up  
Measured at ADPS, 4V to 8V  
Measured at VOUTS, 8V and up  
Measured at VOUTS, 4V to 8V  
Measured at ADPS, 8V and up  
Measured at ADPS, 4V to 8V  
Measured at ADPS  
-1  
-1.5  
-1  
+1  
+1.5  
+1  
%
%
%
%
%
%
%
%
V
-1.5  
-2  
+1.5  
+2  
IRTZ  
-1.5  
-2  
+1.5  
+2  
IRTZ  
IRTZ  
-3  
+3  
-3  
+3  
V
Current Regulation, Rs2 = 10mΩ  
OUT  
VOUT Current Accuracy  
|CSOP - CSON| = 60mV  
|CSOP - CSON| = 20mV  
|CSOP - CSON| = 10mV  
|CSOP - CSON| = 5mV  
6
2
A
%
A
-3  
-5  
+3  
+5  
%
A
1
-10  
-20  
0
+10  
+20  
27  
%
A
0.5  
%
ADP Current-Sense Amplifier, RADP = 20mΩ  
CSIP/CSIN Input Voltage Range  
VCSIP/N  
V
FN8896 Rev.2.00  
Nov 30, 2017  
Page 11 of 48  
ISL95338  
2. Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface  
limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 7) Typ (Note 7) Unit  
VOUT Current-Sense Amplifier, RBAT = 10mΩ  
System Side Current PROCHOT#  
Threshold, Rs2 = 10mΩ  
ISYS_HOT  
SystemSideProchot = 0x1000H (4096mA)  
4096  
mA  
%
-5  
+5  
RVSEN  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Leakage Current  
PROCHOT#, RVSPG, FWRPG  
Output Sinking Current  
Leakage Current  
0.9  
V
V
0.35  
1
VRVSEN = 3.3V, 5V  
Pin at 0.4V  
µA  
37  
mA  
µA  
1
PROCHOT#  
PROCHOT# Debounce Time  
(Note 8)  
PROCHOT# Debounce register  
PROCHOT# Duration register  
-15  
-15  
15  
15  
%
%
PROCHOT# Duration Time  
(Note 8)  
Protection  
ADP Overvoltage Rising  
Hysteresis  
Forward mode  
25.5  
0.85  
0.9  
26.4  
27  
V
ADP Overvoltage Hysteresis  
0.35  
1.1  
V
V
VOUTS Overvoltage Rising  
Threshold  
Forward mode VOUTS-12xREF  
Reverse mode ADPS-12xREF  
Forward mode VOUTS-12xREF  
Reverse mode ADPS-12xREF  
1.45  
1.5  
VOUTS Overvoltage Hysteresis  
0.55  
1.2  
V
V
ADPS Overvoltage Rising  
Threshold  
ADPS Overvoltage Hysteresis  
0.6  
V
V
VOUTS Undervoltage Falling  
Threshold  
-1.15  
-1.55  
140  
-0.85  
-0.55  
-0.85  
160  
VOUTS Undervoltage Hysteresis  
0.6  
V
V
ADPS Undervoltage Falling  
Threshold  
-1.2  
ADPS Undervoltage Hysteresis  
0.4  
V
Over-Temperature Threshold  
(Note 8)  
150  
°C  
Oscillator  
Oscillator Frequency, Digital Core  
Only  
0.85  
-15  
1
1.15  
15  
MHz  
%
Digital Debounce Time Accuracy  
PV Debounce and UV Debounce for  
FWRPG and RVSPG delay  
Miscellaneous  
Switching Frequency Accuracy  
All programmed fSW settings, CCM, and no  
period stretching  
-15  
15  
%
ADP Discharge Current  
ADP = 5V  
6.5  
8.5  
0.7  
0.7  
14  
mA  
mA  
µA  
µA  
µA  
VOUT Discharge Current  
REF Pin Sink/Source Current  
REF Pin Fast Sink Current  
REF Pin Fast Source Current  
VOUT = 5V  
Control1 <3> = 0  
Control1 <3> = 1  
Control1 <3> = 1  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 12 of 48  
ISL95338  
2. Specifications  
Operating conditions: ADP = CSIP = CSIN = 4V and 23V, VOUTS = VOUT = CSOP = CSON = 8V, unless otherwise noted. Boldface  
limits apply across the junction temperature range, -10°C to +125°C unless otherwise specified. (Continued)  
Min  
Max  
Parameter  
Symbol  
Test Conditions  
(Note 7) Typ (Note 7) Unit  
SMBus  
SDA/SCL Input Low Voltage  
SDA/SCL Input High Voltage  
SDA/SCL Input Bias Current  
SDA, Output Sink Current (Note 8)  
SMBus Frequency  
3.3V  
0.8  
1
V
V
3.3V  
2
3.3V  
µA  
mA  
kHz  
SDA = 0.4V  
4
fSMB  
10  
400  
1200  
475  
1200  
450  
1200  
450  
1200  
450  
Gate Driver  
UGATE1 Pull-Up Resistance  
UGATE1 Source Current  
UGATE1 Pull-Down Resistance  
UGATE1 Sink Current  
UG1RPU  
UG1SRC  
UG1RPD  
UG1SNK  
100mA source current  
UGATE1 - PHASE1 = 2.5V  
100mA sink current  
800  
2
mΩ  
A
1.3  
1.9  
1.3  
2.3  
1.3  
2.3  
1.3  
350  
2.8  
800  
2
mΩ  
A
UGATE1 - PHASE1 = 2.5V  
100mA source current  
LGATE1 - GND = 2.5V  
100mA sink current  
LGATE1 Pull-Up Resistance  
LGATE1 Source Current  
LG1RPU  
mΩ  
A
LG1SRC  
LGATE1 Pull-Down Resistance  
LGATE1 Sink Current  
LG1RPD  
300  
3.5  
800  
2
mΩ  
A  
LG1SNK  
LGATE1 - GND = 2.5V  
100mA source current  
LGATE2 - GND = 2.5V  
100mA sink current  
LGATE2 Pull-Up Resistance  
LGATE2 Source Current  
LG2RPU  
mΩ  
A
LG2SRC  
LGATE2 Pull-Down Resistance  
LGATE2 Sink Current  
LG2RPD  
300  
3.5  
800  
2
mΩ  
A
LG2SNK  
LGATE2 - GND = 2.5V  
100mA source current  
UGATE2 - PHASE2 = 2.5V  
100mA sink current  
UGATE2 Pull-Up Resistance  
UGATE2 Source Current  
UGATE2 Pull-Down Resistance  
UGATE2 Sink Current  
UG2RPU  
UG2SRC  
UG2RPD  
UG2SNK  
mΩ  
A
300  
3.5  
20  
mΩ  
A  
UGATE2 - PHASE2 = 2.5V  
2.3  
10  
10  
10  
10  
UGATE1 to LGATE1 Dead Time  
LGATE1 to UGATE1 Dead Time  
LGATE2 to UGATE2 Dead Time  
UGATE2 to LGATE2 Dead Time  
tUG1LG1DEAD  
tLG1UG1DEAD  
tLG2UG2DEAD  
tUG2LG2DEAD  
40  
40  
40  
40  
ns  
ns  
ns  
ns  
20  
20  
20  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 13 of 48  
ISL95338  
2. Specifications  
2.5  
SMBus Timing Specification  
Min  
Max  
Parameters  
Symbol  
FSMB  
Test Conditions  
(Note 7)  
Typ  
(Note 7) Unit  
SMBus Frequency  
10  
4.7  
4
400  
kHz  
µs  
Bus-Free Time  
tBUF  
Start Condition Hold Time from SCL  
tHD:STA  
tSU:STA  
µs  
Start Condition Set-Up Time from  
SCL  
4.7  
µs  
Stop Condition Set-Up Time from  
SCL  
tSU:STO  
4
µs  
SDA Hold Time from SCL  
SDA Set-Up Time from SCL  
SCL Low Period  
tHD:DAT  
tSU:DAT  
tLOW  
300  
250  
4.7  
4
ns  
ns  
µs  
µs  
s
SCL High Period  
tHIGH  
SMBus Inactivity Timeout  
Maximum charging period without an SMBus Write  
to MaxSystemVoltage or ADPCurrent register  
175  
Notes:  
7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by  
characterization and are not production tested.  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
PWM  
tLGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
tUGFLGR  
Figure 4. Gate Driver Timing Diagram  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 14 of 48  
ISL95338  
3. Typical Performance Curves  
3. Typical Performance Curves  
Figure 6. Reverse Mode, Soft-Start, 12VADP, 5VSYS  
Figure 5. Forward Mode Soft-Start, 12VADP, 20VSYS  
Figure 7. VSYS Voltage Ramps Up in Forward Mode,  
Buck -> Buck-Boost -> Boost Operation Mode Transition  
Figure 8. ADP Voltage Ramps Up in Reverse Mode, Buck  
-> Buck-Boost -> Boost Operation Mode Transition  
Figure 9. Reverse Mode, 5VADP to 20VADP  
Figure 10. Reverse Mode, 20VADP to 5VADP  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 15 of 48  
ISL95338  
3. Typical Performance Curves  
Figure 12. Forward Mode, 20VSYS to 5VSYS  
Figure 11. Forward Mode, 5VSYS to 20VSYS  
Figure 14. Forward Mode, Output Voltage Loop to  
Adapter Voltage Loop Transition. 6VADP, Input Voltage  
Limit = 5.12V, 12VSYS, System Load 0A to 0.78A Step,  
System Current Limit = 5A, Input Current Limit=5A  
Figure 13. Forward Mode, Output Voltage Loop to ADP  
Current Loop Transition. 5VADP, 12VSYS, System Load  
0A to 0.65A Step, ADP Current Limit = 1.5A  
Figure 15. Forward Mode, Force Buck-Boost Mode to  
Boost Mode. 10VADP, 12VSYS  
Figure 16. Reverse Mode, Force Buck-Boost Mode to  
Boost Mode. 12VADP, 10VSYS  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 16 of 48  
ISL95338  
3. Typical Performance Curves  
Figure 17. Forward Mode, 5VADP, 12VSYS, 0-2A Transient  
Load  
Figure 18. Reverse Mode, 20VADP, 12VSYS, 0-2A  
Transient Load  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 17 of 48  
ISL95338  
4. General SMBus Architecture  
4. General SMBus Architecture  
VDD SMB  
SMBUS SLAVE  
SCL  
INPUT  
CONTROL  
OUTPUT  
INPUT  
STATE  
MACHINE  
REGISTERS  
MEMORY  
etc.  
SMBUS MASTER  
INPUT  
SCL  
SDA  
CONTROL  
CONTROL  
OUTPUT  
INPUT  
OUTPUT  
INPUT  
CPU  
SDA  
CONTROL  
SMBUS SLAVE  
OUTPUT  
SCL  
CONTROL  
OUTPUT  
INPUT  
STATE  
MACHINE  
REGISTERS  
MEMORY  
etc.  
SDA  
CONTROL  
SCL SDA  
OUTPUT  
TO OTHER  
SLAVE DEVICES  
Figure 19. General SMBus Architecture  
4.1  
Data Validity  
The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP  
condition. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.  
Refer to Figure 20.  
SDA  
SCL  
DATA LINE  
STABLE  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
Figure 20. Data Validity  
4.2  
START and STOP Conditions  
As Figure 21 shows, the START condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.  
The STOP condition is a LOW to HIGH transition on the SDA line while SCL is HIGH. A STOP condition must be  
sent before each START condition.  
SDA  
SCL  
S
P
START  
STOP  
CONDITION  
CONDITION  
Figure 21. Start and Stop Waveforms  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 18 of 48  
ISL95338  
4. General SMBus Architecture  
4.3  
Acknowledge  
Each address and data transmission uses nine clock pulses. The ninth pulse is the acknowledge bit (ACK). After the  
start condition, the master sends seven slave address bits and an R/W bit during the next eight clock pulses. During  
the nine clock pulse, the device that recognizes its own address holds the data line low to acknowledge (refer to  
Figure 22). The acknowledge bit is also used by both the master and the slave to acknowledge receipt of register  
addresses and data.  
MSB  
SDA  
SCL  
1
2
8
9
START  
ACKNOWLEDGE  
FROM SLAVE  
Figure 22. Acknowledge on the SMBus  
4.4  
SMBus Transactions  
All transactions start with a control byte sent from the SMBus master device. The control byte begins with a  
START condition, followed by seven bits of slave address (refer to Table 1 on page 20), and the R/W bit. The R/W  
bit is “0” for a WRITE or “1” for a READ. If any slave device on the SMBus bus recognizes its address, it will  
acknowledge by pulling the Serial Data (SDA) line low for the last clock cycle in the control byte. If no slave exists  
at that address or it is not ready to communicate, the data line will be “1”, indicating a Not Acknowledge condition.  
After the control byte is sent and the ISL95338 acknowledges it, the second byte sent by the master must be a  
register address byte such as 0x14 for the SystemCurrentLimit register. The register address byte tells the  
ISL95338 which register the master will write or read. See Table 2 on page 20 for details of the registers. After the  
ISL95338 receives a register address byte, it will respond with an acknowledge.  
4.5  
Byte Format  
Every byte put on the SDA line must be eight bits long and must be followed by an acknowledge bit. Data is  
transferred with the Most Significant Bit (MSB) first and the Least Significant Bit (LSB) last. The LO BYTE data  
is transferred before the HI BYTE data. For example, when writing 0x41A0, 0xA0 is written first and 0x41 is  
written second.  
WRITE TO A REGISTER  
SLAVE  
ADDR + W  
REGISTER  
ADDR  
LO BYTE  
DATA  
HI BYTE  
DATA  
S
S
A
A
A
A P  
READ FROM A REGISTER  
SLAVE  
ADDR + W  
REGISTER  
ADDR  
SLAVE  
LO BYTE  
DATA  
HI BYTE  
DATA  
A
A
P
S
A
A
N P  
ADDR + R  
DRIVEN BY THE  
MASTER  
S
P
A
N
START  
STOP  
ACKNOWLEDGE  
NO  
P
DRIVEN BY THE IC  
ACKNOWLEDGE  
Figure 23. SMBus Read and Write Protocol  
2
4.6  
SMBus and I C Compatibility  
2
The ISL95338 SMBus minimum input logic high voltage is 2V, so it is compatible with I C with higher than 2V  
pull-up power supply.  
2
2
The ISL95338 SMBus registers are 16 bits, so it is compatible with 16 bits I C or 8 bits I C with auto-increment  
capability. The chip will not acknowledge SMBus communication unless either ADP or VOUT is higher than 4.1V.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 19 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
5. ISL95338 SMBus Commands  
The ISL95338 receives control inputs from the SMBus interface after Power-On Reset (POR). The serial interface  
complies with the System Management Bus Specification, which can be downloaded from www.smbus.org. The  
ISL95338 uses the SMBus Read-word and Write-word protocols (see Figure 23 on page 19) to communicate with the  
host system. The ISL95338 is an SMBus slave device and does not initiate communication on the bus. The ISL95338  
address is programmable through ADDR0 and ADDR1 voltage levels (see Table 1) to support multiple ISL95338s  
sharing a common SMBus. Connect the ADDR0 and ADDR1 pins to either ground or VDD.  
Bits 1 and 2 are for ADDR0 and ADDR1 pins, respectively. The “1” means the pin voltage is high, while the “0”  
means the pin voltage is low. From Bits 3 to 7, the value is fixed as 10010. The address is latched at rising VDD 2P7  
POR threshold.  
Table 1. Address Table  
Read/  
Write  
Binary  
Address  
Hex  
Address  
ADDR0  
ADDR1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1001,0001  
1001,0000  
1001,0101  
1001,0100  
1001,0011  
1001,0010  
1001,0111  
1001,0110  
0X91H  
0X90H  
0X95H  
0X94H  
0X93H  
0X92H  
0X97H  
0X96H  
The data (SDA) and clock (SCL) pins have Schmitt-trigger inputs that can accommodate slow edges. Choose pull-up  
resistors for SDA and SCL to achieve rise times according to the SMBus specifications.  
The illustration in this datasheet is based on current sensing-resistors R = 20mΩand R = 10mΩ, unless otherwise  
s1  
s2  
specified.  
Table 2. Register Summary  
Register Read/ Number  
Address Write of Bits  
Register Names  
Description  
Default  
SystemCurrentLimit  
0X14  
R/W  
11  
[12:2]11-bit, LSB size 4mA, total range 6080mA, with 10mΩ 1.5A  
RS1  
ForwardRegulatingVoltage  
0X15  
R/W  
12  
[14:3]12-Bit, LSB size 12mV, see PROG Table 21 on page 38 5.004V  
9.000V  
12.000V  
16.008V  
20.004V  
Control0  
0X39  
0X3A  
0X3C  
0X3D  
0X3F  
R/W  
R
16  
16  
16  
16  
11  
Configure various options  
Indicate various status  
0x0000h  
0x0000h  
0x0000h  
0x0000h  
Information1  
Control1  
R/W  
R/W  
R/W  
Configure various options  
Configure various options  
Control2  
ForwardInputCurrent  
[12:2]11-bit, LSB size 4mA, total range 6080mA, with  
20mΩ RS1  
Set by  
PROG pin  
ADPInputCurrentProchot#  
0X47  
0X48  
R/W  
R/W  
6
6
[12:7] ADP input current Prochot# threshold. Default 3.072A, 3.072A  
128mA resolution for 20mΩ Rs1, only for Forward mode.  
SystemInputCurrentProchot#  
[13:8] System current towards switcher Prochot# threshold.  
Default 4.096A, 256mA resolution for 10mΩ Rs2  
4.096A  
.
FN8896 Rev.2.00  
Nov 30, 2017  
Page 20 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 2. Register Summary (Continued)  
Register Read/ Number  
Register Names  
Address Write of Bits  
Description  
Default  
ReverseRegulatingVoltage  
ReverseOutputCurrent  
InputVoltageLimit  
0X49  
0X4A  
0X4B  
R/W  
R/W  
R/W  
12  
6
[14:3] 12-bit, LSB size 12mV  
Reverse mode regulating voltage reference  
5.004V  
[12:7] 6-bit, LSB size 128mA, total range 4.096A  
Reverse mode maximum current limit  
0.512A  
4.096V  
6
[13:8] 6-bit, LSB size 512mV  
Forward low VIN loop voltage reference  
Control3  
0X4C  
0X4D  
0X4E  
0XFE  
0XFF  
R/W  
R
16  
16  
8
Configure various options  
Indicate various status  
0x0000h  
0x0000h  
0x00h  
Information2  
Control4  
R/W  
R
[7:0] 8-bit, configure various options  
Manufacturers ID register  
Device ID register - 0x0D  
ManufacturerID  
DeviceID  
8
0x49h  
R
8
0x0Dh  
5.1  
Setting System Side Current Limit  
To set the system side current limit, which is the output current in Forward mode or the input current in Reverse  
mode, write a 16-bit SystemCurrentLimit command (0X14H or 0b00010100) using the Write-word protocol shown  
in Figure 5 on page 15 and the data format shown in Table 3 for a 10mΩ Rs2 or Table 4 for a 5mΩ Rs2.  
The ISL95338 limits the system current by limiting the CSOP-CSON voltage. By using the recommended current-  
sense resistor value Rs2 = 10mΩ, the register’s LSB always translates to 4mA of output current. The  
SystemCurrentLimit register accepts any output current command but only the valid register bits will be written to  
the register and the maximum value is clamped at 6080mA for Rs2 = 10mΩ.  
After POR, the SystemCurrentLimit register is reset to 0x05DCH (1.5A). The SystemCurrentLimit register can be  
read back to verify its content.  
Table 3. SystemCurrentLimit Register 0x14H (11-Bit, 4mA Step, 10mΩ Sense Resistor, x36)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of system current limit.  
1 = Add 4mA of system current limit.  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
0 = Add 0mA of system current limit.  
1 = Add 8mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 16mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 32mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 64mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 128mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 256mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 512mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 1024mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 2048mA of system current limit.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 21 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 3. SystemCurrentLimit Register 0x14H (11-Bit, 4mA Step, 10mΩ Sense Resistor, x36) (Continued)  
Bit  
Description  
<12>  
0 = Add 0mA of system current limit.  
1 = Add 4096mA of system current limit.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 6080mA  
Note: The gain for the system side current-sensing amplifiers is different for Forward mode and Reverse mode. The gain in Reverse  
mode is half of that in Forward mode. Therefore, in Reverse mode, the sensing current value needs to be doubled compared to the  
value set in the SystemCurrentLimit register.  
Table 4. ForwardOutputCurrentLimit Register 0x14H (11-Bit, 8mA Step, 5mΩ Sense Resistor, x36)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of system current limit.  
1 = Add 8mA of system current limit.  
<3>  
<4>  
0 = Add 0mA of system current limit.  
1 = Add 16mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 32mA of system current limit.  
<5>  
0 = Add 0mA of system current limit.  
1 = Add 64mA of system current limit.  
<6>  
0 = Add 0mA of system current limit.  
1 = Add 128mA of system current limit.  
<7>  
0 = Add 0mA of system current limit.  
1 = Add 256mA of system current limit.  
<8>  
0 = Add 0mA of system current limit.  
1 = Add 512mA of system current limit.  
<9>  
0 = Add 0mA of system current limit.  
1 = Add 1024mA of system current limit.  
<10>  
<11>  
<12>  
0 = Add 0mA of system current limit.  
1 = Add 2048mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 4096mA of system current limit.  
0 = Add 0mA of system current limit.  
1 = Add 8192mA of system current limit.  
<13:15>  
Not used  
Maximum  
<12:2> = 10111110000 12160mA  
5.2  
Setting Input Current Limit in Forward Mode  
To set the input current limit in Forward mode, write a 16-bit ForwardInputCurrent command (0x3FH or  
0b00111111) using the Write-word protocol shown in Figure 5 on page 15 and the data format shown in Table 5 for  
a 20mΩ Rs1 or Table 6 on page 23 for a 10mΩ Rs1.  
The ISL95338 limits the input current in Forward mode by limiting the CSIP-CSIN voltage. By using the  
recommended current-sense resistor values, the register’s LSB always translates to 4mA of input current. Any  
input current limit command will be accepted but only the valid register bits will be written to the  
ForwardInputCurrent register and the maximum values are clamped at 6080mA for Rs1 = 20mΩ.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 22 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
.
Table 5. ForwardInputCurrent Register 0x3FH (11-Bit, 4mA Step, 20mΩ Sense Resistor, x18)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4mA of input current limit in Forward mode.  
<3>  
<4>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 16mA of input current limit in Forward mode.  
<5>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 32mA of input current limit in Forward mode.  
<6>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 64mA of input current limit in Forward mode.  
<7>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 128mA of input current limit in Forward mode.  
<8>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 256mA of input current limit in Forward mode.  
<9>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 512mA of input current limit in Forward mode.  
<10>  
<11>  
<12>  
<13:15>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 1024mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 2048mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4096mA of input current limit in Forward mode.  
Not used  
Maximum  
<12:4> = 10111110000 6080mA.  
Table 6. ForwardInputCurrent Register 0x3FH (11-BIT, 8mA STEP, 10mΩ Sense Resistor, x18)  
Bit  
<1:0>  
<2>  
Description  
Not used  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8mA of input current limit in Forward mode.  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 16mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 32mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 64mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 128mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 256mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 512mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 1024mA of input current limit in Forward mode.  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 2048mA of input current limit in Forward mode.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 23 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 6. ForwardInputCurrent Register 0x3FH (11-BIT, 8mA STEP, 10mΩ Sense Resistor, x18) (Continued)  
Bit  
Description  
<11>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 4096mA of input current limit in Forward mode.  
<12>  
0 = Add 0mA of input current limit in Forward mode.  
1 = Add 8192mA of input current limit in Forward mode.  
<13:15>  
Not used  
Maximum  
<12:4> = 10111110000 12160mA  
5.3  
Setting System Regulating Voltage in Forward Mode  
To set the regulating voltage in Forward mode, write a 16-bit ForwardRegulatingVoltage command (0x15H or  
0b00010101) using the Write-word protocol shown in Figure 5 on page 15 and the data format as shown in Table 7.  
The output regulating voltage range in Forward mode is 2V to 24V. The ForwardRegulatingVoltage register accepts  
any voltage command, but only the valid register bits will be written to the register. The maximum value is clamped  
at 24.576V. The ISL95338 accepts a 0V command, but the register value does not change. The VOUTS pin is the  
output voltage regulation sense point in Forward mode.  
In Forward mode, the customer also can configure the regulating output voltage by setting the external voltage  
divider on the VOUTS pin without changing the ForwardRegulatingVoltage register value.  
Table 7. ForwardRegulatingVoltage Register 0x15H (12mV Step)  
Bit  
<2:0>  
<3>  
Description  
Not used  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 12mV of regulating voltage in Forward mode.  
<4>  
<5>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 24mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 48mV of regulating voltage in Forward mode.  
<6>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 96mV of regulating voltage in Forward mode.  
<7>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 192mV of regulating voltage in Forward mode.  
<8>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 384mV of regulating voltage in Forward mode.  
<9>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 768mV of regulating voltage in Forward mode.  
<10>  
<11>  
<12>  
<13>  
<14>  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 1536mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 3072mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 6144mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 12288mV of regulating voltage in Forward mode.  
0 = Add 0mV of regulating voltage in Forward mode.  
1 = Add 24576mV of regulating voltage in Forward mode.  
<15>  
Not used  
24576mV  
Maximum  
Note: The default reading value of this register is 6.288V when the chip is powering up without writing any values because of the  
DAC initial value. Thus, write the needed value in this register before enabling forward output voltage.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 24 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
5.4  
Setting PROCHOT# Threshold for ADP Side Overcurrent Condition  
To set the PROCHOT# assertion threshold for ADP side input overcurrent condition in Forward mode, write a  
16-bit ADPsideProchot# command (0x47H or 0b01000111) using the Write-word protocol shown in Table 5 on  
page 23 and the data format shown in Table 8. By using the recommended current-sense resistor values, the  
register’s LSB always translates to 128mA of input current. The ADPsideProchot# register accepts any current  
command, but only the valid register bits will be written to the register. The maximum values are clamped at  
6400mA for Rs1 = 20mΩ.  
After POR, the ADPsideProchot# register is reset to 0x0C00H. The ADPsideProchot# register can be read back to  
verify its content.  
If the input current exceeds the ADPsideProchot# register setting, PROCHOT# signal will assert after the  
debounce time programmed by the Control2 register Bit<10:9> and latch on for a minimum time programmed by  
Control2 register Bit<8:6>.  
Table 8. ADPsideProchot# Register 0x47H (20mΩ Sensing Resistor, 128mA Step, x18 Gain)  
Bit  
<6:0>  
<7>  
Description  
Not used  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 128mA of ADPsideProchot# threshold.  
<8>  
<9>  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 256mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 512mA of ADPsideProchot# threshold.  
<10>  
<11>  
<12>  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 1024mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 2048mA of ADPsideProchot# threshold.  
0 = Add 0mA of ADPsideProchot# threshold.  
1 = Add 4096mA of ADPsideProchot# threshold.  
<15:13>  
Not used  
Maximum  
<12:7> = 110010, 6400mA  
5.5  
Setting PROCHOT# Threshold for System Side Overcurrent Condition  
To set the PROCHOT# signal assertion threshold for system side input overcurrent condition in Reverse mode,  
write a 16-bit SystemsideProchot# command (0x48H or 0b01001000) using the Write-word protocol shown in  
Table 5 on page 23 and the data format shown in Table 9. By using the recommended current-sense resistor values,  
the register’s LSB always translates to 256mA of system side current. The SystemsideProchot# register accepts any  
current command, but only the valid register bits will be written to the register. The maximum values are clamped  
at 12.8A for Rs2 = 10mΩ.  
After POR, the SystemsideProchot# register is reset to 0x1000H. The SystemsideProchot# register can be read  
back to verify its content.  
If the system side current exceeds the SystemsideProchot# register setting, the PROCHOT# signal will assert after  
the debounce time programmed by the Control2 register Bit<10:9> and latch on for a minimum time programmed  
by Control2 register Bit<8:6>.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 25 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 9. SystemsideProchot# Register 0x48H (10mΩ Sensing Resistor, 256mA Step, x18 Gain)  
Bit  
<7:0>  
<8>  
Description  
Not used  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 256mA of SystemsideProchot# threshold.  
<9>  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 512mA of SystemsideProchot# threshold.  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 1024mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 2048mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 4096mA of SystemsideProchot# threshold.  
0 = Add 0mA of SystemsideProchot# threshold.  
1 = Add 8192mA of SystemsideProchot# threshold.  
<15:14>  
Not used  
Maximum  
<13:8> = 110010, 12800mA  
5.6  
Setting PROCHOT# Debounce Time and Duration Time  
Control2 register Bit<10:9> configures the PROCHOT# signal debounce time before its assertion for  
ADPsideProchot# and SystemsideProchot#.  
Control2 register Bit<8:6> configures the minimum duration of Prochot# signal once asserted.  
5.7  
Control Registers  
Control0, Control1, Control2, Control3, and Control4 registers configure the operation of the ISL95338. To change  
certain functions or options after POR, write a 16-bit control command to Control0 register (0x39H or 0b00111001),  
and a 16-bit control command to Control1 register (0x3CH or 0b00111100), Control2 register (0x3DH or  
0b00111101), Control3 register (0x4CH or 0b00111100), or Control4 register (0x4EH or 0b00111101) using the  
Write-word protocol shown in Figure 5 and the data format shown in Tables 10, 11, 12, 13, and 14, respectively.  
Table 10. Control0 Register 0x39H  
Bit  
Bit Name  
Description  
<15:13> Forward Buck and  
Buck-boost Phase  
Comparator Threshold  
Offset  
Bit<15:13> adjusts phase comparator threshold offset for forward buck and buck-boost  
000 = 0mV  
001 = 1mV  
010 = 2mV  
011 = 3mV  
100 = -4mV  
101 = -3mV  
110 = -2mV  
111 = -1mV  
<12:10> Forward and Reverse  
Boost Phase  
Bit<12:10> adjusts phase comparator threshold offset for forward and reverse boost  
000 = 0mV  
Comparator Threshold  
Offset  
001 = 0.5mV  
010 = 1mV  
011 = 1.5mV  
100 = -2mV  
101 = -1.5mV  
110 = -1mV  
111 = -0.5mV  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 26 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 10. Control0 Register 0x39H  
Bit  
Bit Name  
Description  
<9:7>  
Reverse Buck and  
Buck-boost Phase  
Comparator Threshold  
Offset  
Bit<9:7> adjusts phase comparator threshold offset for reverse buck and buck-boost  
000 = 0mV  
001 = 1mV  
010 = 2mV  
011 = 3mV  
100 = -4mV  
101 = -3mV  
110 = -2mV  
111 = -1mV  
<6:5>  
High-Side FET Short  
Detection Threshold  
Bit<6:5> configures the high-side FET short detection PHASE node voltage threshold during  
low-side FET turning on.  
00 = 400mV (default)  
01 = 500mV  
10 = 600mV  
11 = 800mV  
<4:3>  
<2>  
Not used  
Disable Input Voltage  
Regulation Loop  
Bit<2> disables or enables the input voltage regulation loop.  
0 = Enable input voltage regulation loop (default)  
1 = Disable input voltage regulation loop  
<1>  
<0>  
ADP Side Discharge  
Bit<1> enable or disable ADP side charger function  
0 = Disable (default)  
1 = Enable  
System Side Discharge Bit<0> enable or disable system side charger function  
0 = Disable (default)  
1 = Enable  
Table 11. Control1 Register 0x3CH  
Bit  
Bit Name  
Description  
<15>  
Disable Diode-  
Emulation Comparator  
Bit<15> enables or disables diode-emulation comparator.  
0 = Diode-emulation comparator enabled (default)  
1 = Diode-emulation comparator disabled  
<14>  
<13>  
Allow Sinking Current  
During Negative DAC  
Transition  
Bit<14> enables or disables sinking current during negative DAC transition.  
0 = Sinking current during negative DAC transition enabled (default)  
1 = Sinking current during negative DAC transition disabled  
Skip Trim During Restart Bit<13> enables or disables trim read during restart. Make sure to program this bit when PGOOD  
is high.  
0 = Read trim during restart  
1 = Skip trim during restart  
<12>  
Skip Autozero During  
Restart  
Bit<12> enables or disables autozero during restart. Make sure to program this bit when PGOOD  
is high.  
0 = Autozero during restart  
1 = Skip autozero during restart  
<11>  
<10>  
Reverse Mode Function Bit<11> enables or disables Force Reverse mode function.  
0 = Disable Force Reverse mode function (default)  
1 = Enable Force Reverse mode function  
Audio Filter  
Bit<10> enables or disables the audio filter function. No audio filter function in Buck-Boost mode.  
0 = Disable (default)  
1 = Enable  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 27 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 11. Control1 Register 0x3CH (Continued)  
Description  
Bit  
Bit Name  
<9:7>  
Switching Frequency  
Bit<9:7> configures the switching frequency.  
000 = 1000khz  
001 = 910kHz  
010 = 850kHz  
011 = 787kHz  
100 = 744kHz  
101 = 695kHz  
110 = 660kHz  
111 = 620kHz  
<6>  
<5>  
Not used  
Disable System Side  
Current-Amp When in  
Bit<5> enables or disables the system side current amplifier when in FWD mode without ADP.  
0 = Enable system side current amplifier (default)  
FWD Mode without ADP 1 = Disable system side current amplifier  
<4>  
<3>  
<2>  
Bypass Mode  
Bit<4> enables or disables the Bypass mode.  
0 = Disable (default)  
1 = Enable  
Fast REF mode  
Bit<3> enables or disables the fast REF mode.  
0 = Disable (default)  
1 = Enable  
Stop Switching in FWD Bit<2> enables or disables the buck-boost switching VOUT output. When disabled, ISL95338  
Mode  
stops switching and REF drops to OV. Only valid in Forward mode.  
0 = Enable switching (default)  
1 = Disable switching  
<1>  
<0>  
OV Enable or Disable  
During Slew-Down  
Bit<1> enable or disable OV fault when VDAC slew rate down in Forward and Reverse mode.  
0 = Enable OV (default)  
1 = Disable OV  
Force 5.04V VDAC  
Bit<0> enable or disable force 5.04VDAC in Forward and Reverse mode.  
0 = Disable force 5.04V VDAC (default)  
1 = Enable force 5.04V VDAC  
Table 12. Control2 Register 0x3DH  
Description  
Bit  
Bit Name  
<15>  
OV Control  
OV enable or disable  
0 = Enable OV (default)  
1 = Disable OV  
<14>  
<13>  
UV Control  
Bit<14> enable or disable UV  
0 = Enable UV (default)  
1 = Disable UV  
Fault Restart Debounce  
for Reverse Enable  
Bit<13> configures fault restart debounce for reverse enable.  
0 = Debounce time is 1.3s (default)  
1 = Debounce time is 150ms  
<12>  
Fault Restart Debounce  
Bit<13> configures fast fault restart debounce.  
0 = Debounce time is 1.3s or 150ms, depends on bit<13> setting (default)  
1 = Debounce time is 200us or 10us, depends on bit<13> setting  
<11>  
Forward Restart  
Debounce for Forward  
Enable  
Bit<13> configures fault restart debounce for forward enable.  
0 = Debounce time is 1.3s (default)  
1 = Debounce time is 150ms  
<10:9>  
PROCHOT# Debounce  
Bit<10:9> configures the Prochot# debounce time before its assertion for ADPsideProchot#  
and SystemsideProchot#.  
00: 7µs (default)  
01: 100µs  
10: 500µs  
11: 1ms  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 28 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 12. Control2 Register 0x3DH (Continued)  
Description  
Bit  
Bit Name  
<8:6>  
PROCHOT# Duration  
Bit<8:6> configures the minimum duration of Prochot# signal once asserted.  
000 = 10ms (default)  
001 = 20ms  
010 = 15ms  
011 = 5ms  
100 = 1ms  
101 = 500µs  
110 = 100µs  
111 = 0s  
<5>  
<4>  
Not used  
Reverse Fast Swap  
Forward Fast Swap  
Bit<4> configures reverse fast swap.  
0 = Disable reverse fast swap (default)  
1 = Enable reverse fast swap  
<3>  
Bit<3> configures forward fast swap.  
0 = Disable forward fast swap (default)  
1 = Enable forward fast swap  
<2>  
<1>  
Not used  
Not used  
Disable WOC Fault  
Bit<1> enables and disables WOC fault.  
0 = Enable WOC (default)  
1 = Disable WOC  
<0>  
System Side WOC  
Threshold  
Bit<0> configures the System Side WOC fault comparator value.  
0 = 20mV (default)  
1 = 30mV  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 29 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 13. Control3 Register 0x4CH  
Bit  
Bit Name  
Description  
<15>  
Re-Read PROG Pin  
Resistor  
Bit<15> re-read PROG pin resistor or not before switching.  
0 = Re-read PROG pin resistor (default)  
1 = Do not re-read PROG pin resistor  
<14>  
<13>  
<12>  
Not used  
Not used  
Reverse Startup  
Debounce Time  
Bit<12> configures startup debounce time for reverse mode.  
0 = Debounce time is 200us (default)  
1 = Debounce time is 10us  
<11>  
Forward Startup  
Debounce Time  
Bit<11> configures startup debounce time for forward mode.  
0 = Debounce time is 200us (default)  
1 = Debounce time is 10us  
<10:8>  
Force Operating Mode  
Bit<10:8> enables or disables Force Operating mode.  
0XX: No effect  
100: No switching, do not use  
101: Buck mode  
110: Boost mode  
111: Buck-Boost mode  
<7>  
<6>  
Not used  
Current Loop Feedback  
Gain  
Bit<6> configures current loop feedback gain for high current.  
0 = Gain x 1 (default)  
1 = Gain x 0.5  
<5>  
Input Current Limit Loop  
Bit<5> disables input current limit loop.  
0 = Enable input current limit loop (default)  
1 = Disable input current limit loop  
<4>  
<3>  
Not Used  
Not used  
Disabled REF Amplifier  
for Use with External  
Reference  
Bit<5> disables REF amplifier.  
0 = Enable REF amplifier (default)  
1 = Disable REF amplifier  
<2>  
<1>  
<0>  
Digital Reset  
Bit<2> resets all SMBus register values to POR default value and restarts switching.  
0 = Idle (default)  
1 = Reset  
Buck-Boost Switching  
Period  
Bit<1> configures switching period in Buck-Boost mode.  
0 = Period x 1 (default)  
1 = Period x 2 (half switching frequency)  
PGOOD Setting  
Bit<0> configures PGGOD assert condition.  
0 = PGOOD suppressed until VREF equals to VDAC (default)  
1 = PGOOD assert when switching starts  
Table 14. Control4 Register 0x4EH  
Bit  
<15:8>  
7
Bit Name  
Description  
Not used  
Reverse Mode Current  
PROCHOT#  
Bit<7> enables or disables trigger PROCHOT# with current in Reverse mode.  
0 = Enable (default)  
1 = Disable  
6
Forward Sleep Mode  
Bit<7> enables or disables Chip Sleep mode in Forward mode regardless of ADP voltage.  
RVSEN pin or Control1 bit <11> can override this function.  
0 = Disable (default)  
1 = Enable  
<5:2>  
Not used  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 30 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
Table 14. Control4 Register 0x4EH (Continued)  
Description  
Bit  
Bit Name  
1
PROCHOT# Clear  
Bit<1> clears PROCHOT#.  
0 = Idle (default)  
1 = Clear PROCHOT#  
0
PROCHOT# Latch  
Bit<0> manually resets PROCHOT#.  
0 = PROCHOT# signal auto-clear  
1 = hold PROCHOT# low once tripped  
5.8  
Regulating Voltage Register in Reverse Mode  
The ReverseRegulatingVoltage register contains SMBus readable and writable Reverse mode output regulation  
voltage reference. The default value is 5.004V. This register accepts any voltage command but only the valid  
register bits will be written to the register. However, the register shouldn’t be programmed higher than the  
recommended operating voltage.  
In Reverse mode, the user also can configure the regulating output voltage on the ADP side by setting the external  
voltage divider on the ADP pin, without changing the ReverseRegulatingVoltage register value.  
Table 15. ReverseRegulatingVoltage Register 0x49H  
Bit  
<2:0>  
<3>  
Description  
Not used  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 12mV of regulating voltage in Reverse mode.  
<4>  
<5>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 24mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 48mV of regulating voltage in Reverse mode.  
<6>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 96mV of regulating voltage in Reverse mode.  
<7>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 192mV of regulating voltage in Reverse mode.  
<8>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 384mV of regulating voltage in Reverse mode.  
<9>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 768mV of regulating voltage in Reverse mode.  
<10>  
<11>  
<12>  
<13>  
<14>  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 1536mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 3072mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 6144mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 12288mV of regulating voltage in Reverse mode.  
0 = Add 0mV of regulating voltage in Reverse mode.  
1 = Add 24576mV of regulating voltage in Reverse mode.  
<15>  
Not used  
27456mV  
Maximum  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 31 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
5.9  
Output Current Limit Register in Reverse Mode  
The ReverseCurrentLimit register contains SMBus readable and writable reverse current limit. The default is  
512mA. This register accepts any current command, but only the valid register bits will be written to the register. The  
maximum values are clamped at 4096mA for R = 20mΩ.  
s1  
Table 16. ReverseCurrentLimit Register 0x4AH  
Bit  
<6:0>  
<7>  
Description  
Not used  
0 = Add 0mA of output current limit in Reverse mode.  
1 = Add 128mA of output current limit in Reverse mode.  
<8>  
<9>  
0 = Add 0mA of output current limit in Reverse mode.  
1 = Add 256mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 512mA of output current limit in Reverse mode.  
<10>  
<11>  
<12>  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 1024mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 2048mA of output current limit in Reverse mode.  
0 = Add 0mV of output current limit in Reverse mode.  
1 = Add 4096mA of output current limit in Reverse mode.  
<15:13>  
Not used  
4096mA  
Maximum  
5.10 Input Voltage Limit Register  
The InputVoltageLimit register contains SMBus readable and writable input voltage limits. The default is 4.096V.  
This register accepts any command, but only the valid register bits will be written to the register. The maximum  
values are clamped at 18V.  
Table 17. InputVoltageLimit Register 0x4BH  
Bit  
<7:0>  
<8>  
Description  
Not used  
0 = Add 0mV of input voltage limit.  
1 = Add 512mV of input voltage limit.  
<9>  
0 = Add 0mA of input voltage limit.  
1 = Add 1024mV of input voltage limit.  
<10>  
<11>  
<12>  
<13>  
0 = Add 0mV of input voltage limit.  
1 = Add 2048mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 4096mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 8192mV of input voltage limit.  
0 = Add 0mV of input voltage limit.  
1 = Add 16384mV of input voltage limit.  
<15:14>  
Not used  
18000mV  
Maximum  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 32 of 48  
ISL95338  
5. ISL95338 SMBus Commands  
5.11 Information Register  
The Information Register contains SMBus readable information about manufacture and operating modes.  
Tables 18 and 19 identify the bit locations of the information available.  
Table 18. Information1 Register 0x3AH  
Bit  
Description  
<3:0>  
<4>  
Not used  
Not used  
Not used  
Not used  
Not used  
<6:5>  
<9:7>  
<10>  
<11>  
Bit<11> indicates if SystemSideProchot# is tripped or not.  
0 = SystemSideProchot# is not tripped  
1 = SystemSideProchot# is tripped  
<12>  
Bit<12> indicates if ADPsideProchot# is tripped or not.  
0 = ADPSideProchot# is not tripped  
1 = ADPSideProchot# is tripped  
<14:13>  
Bit<14:13> indicates the active control loop.  
00 = Voltage control loop is active  
01 = System current loop is active  
10 = ADP current limit loop is active  
11 = Input voltage loop is active  
<15>  
Bit<15> indicates if the internal reference circuit is active or not. Bit<15> = 0 indicates that ISL95338 is in low  
power mode.  
0 = Reference is not active  
1 = Reference is active  
Table 19. Information2 Register 0x4DH  
Bit  
Description  
<4:0>  
<7:5>  
Program Resister read out  
Bit<7:5> indicates the ISL95338 operation mode.  
001: Forward Boost  
010: Forward Buck  
011: Forward Buck-Boost  
101: Reverse Boost  
110: Reverse Buck  
111: Reverse Buck-Boost  
<11:8>  
Bit<11:8> indicates the ISL95338 state machine status.  
0000 = OFF  
0010 = ADP  
0100 = VSYS  
0110 = Enable Reverse mode  
1000 = Enable LDO5  
1110 = WAIT  
<12>  
<13>  
<14>  
Not used  
Not used  
Bit<14> indicates forward switching enable.  
0 = Not enabled  
1 = Enabled  
<15>  
Not used  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 33 of 48  
ISL95338  
6. Application Information  
6. Application Information  
6.1  
R3 Modulator  
COMP  
+
-
S
R
V
CR  
PWM  
Q
L
PWM  
V
O
+
-
VW  
PHASE  
V
W
I
L
C
O
HYSTERETIC  
WINDOW  
+
GM  
V
CR  
-
C
R
COMP  
Figure 25. R3 Modulator Operation Principles in Steady  
State  
Figure 24. R3 Modulator  
PWM  
PHASE  
VW  
UGATE  
LGATE  
COMP  
VCR  
IL  
Figure 26. R3 Modulator Operation Principles in  
Dynamic Response  
Figure 27. Diode Emulation  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 34 of 48  
ISL95338  
6. Application Information  
CCM/DCM BOUNDARY  
VW  
VCR  
IL  
LIGHT DCM  
VW  
VCR  
IL  
DEEP DCM  
VW  
VCR  
IL  
Figure 28. Period Stretching  
The ISL95338 uses Intersil’s patented Robust Ripple Regulator (R3) modulation scheme. The R3 modulator  
combines the best features of fixed frequency PWM and hysteretic PWM, while eliminating many of their  
shortcomings. Figure 24 on page 34 conceptually shows the R3 modulator circuit and Figure 25 on page 34 shows  
the operation principles in steady state.  
The fixed voltage window between VW and COMP is called the VW window in the following discussion. The  
modulator charges the ripple capacitor C with a current source equal to g (V - V ) during PWM on-time and  
R
m
IN  
O
discharges the ripple capacitor C with a current source equal to g V during PWM off-time, where g is a gain  
R
m
O
m
factor. The C voltage V , therefore, emulates the inductor current waveform. The modulator turns off the PWM  
r
CR  
pulse when V reaches VW and turns on the PWM pulse when it reaches COMP.  
CR  
Because the modulator works with V , which is a large amplitude and noise-free synthesized signal, it achieves  
cr  
lower phase jitter than a conventional hysteretic mode modulator.  
Figure 26 on page 34 shows the operation principles during dynamic response. The COMP voltage rises during  
dynamic response, turning on PWM pulses earlier and more frequently temporarily, which allows for higher  
control loop bandwidth than a conventional fixed frequency PWM modulator at the same steady-state switching  
frequency.  
The R3 modulator can operate in Diode Emulation (DE) mode to increase light-load efficiency. For example, in  
Buck DE mode the low-side MOSFET conducts when the current is flowing from source-to-drain and does not  
allow reverse current, emulating a diode. As shown in Figure 27 on page 34, when LGATE is on, the low-side  
MOSFET carries current, creating negative voltage on the phase node due to the voltage drop across the  
ON-resistance. The IC monitors the current by monitoring the phase node voltage. It turns off LGATE when the  
phase node voltage reaches zero to prevent the inductor current from reversing the direction and creating  
unnecessary power loss. Similar operations apply for other modes, such as Boost and Buck-boost mode.  
If the load current is light enough, as Figure 27 shows, the inductor current will reach and stay at zero before the  
next phase node pulse. At this stage, the regulator is in Discontinuous Conduction Mode (DCM). If the load current  
is heavy enough, the inductor current will never reach 0A and the regulator will be in CCM, although the controller  
will be in DE mode.  
Figure 28 shows the operation principle in Diode Emulation mode at light load. The load gets incrementally lighter  
in the three cases from top to bottom. The PWM on-time is determined by the VW window size, therefore, it is the  
same, making the inductor current triangle the same in the three cases. The R3 modulator clamps the ripple  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 35 of 48  
ISL95338  
6. Application Information  
capacitor voltage V in DE mode to make it mimic the inductor current. It takes the COMP voltage longer to hit  
CR  
V
, naturally stretching the switching period. The inductor current triangles move further apart from each other,  
CR  
such that the inductor current average value is equal to the load current. The reduced switching frequency helps  
increase light-load efficiency.  
6.2  
ISL95338 Bidirectional Buck-Boost Voltage Regulator  
The ISL95338 bidirectional buck-boost voltage regulator drives an external N-channel MOSFET bridge comprised  
of two transistor pairs as shown in Figure 2. The first pair, Q1 and Q2, is a buck arrangement with the transistor  
center tap connected to an inductor “input”, as is the case with a buck converter in Forward mode. The second  
transistor pair, Q3 and Q4, is a boost arrangement with the transistor center tap connected to the same inductor’s  
“output”, as is the case with a boost converter in Forward mode. This arrangement supports the same operation  
mode in reverse direction.  
• In Forward Buck mode, Q1 and Q2 turn on and off alternatively, while Q3 remains off and Q4 remains on.  
• In Forward Boost mode, Q3 and Q4 turn on and off alternatively, while Q1 remains on and Q2 remains off.  
• In Forward Buck-Boost mode, Q1 and Q3 turn on at the same time, Q3 turns off and Q4 turns on, Q1 turns off and  
Q2 turns on, and after Q2 and Q4 turn off at the same time, and Q1 and Q3 turn on again.  
• In Forward Bypass mode, Q1 and Q4 are always on, while Q2 and Q3 are always off.  
• In Reverse Buck mode, Q3 and Q4 turn on and off alternatively, while Q2 remains off and Q1 remains on.  
• In Reverse Boost mode, Q1 and Q2 turn on and off alternatively, while Q4 remains on and Q3 remains off.  
• In Reverse Buck-Boost mode, Q4 and Q2 turn on at the same time, Q2 turns off and Q1 turns on, Q4 turns off and  
Q3 turns on, and after Q3 and Q1 turn off at the same time and Q4 and Q2 turn on again.  
• In Reverse Bypass mode, Q1 and Q4 are always on, except during the needed refresh time, while Q2 and Q3 are  
always off.  
• In Reverse mode the output sensing point is CSIP pin.  
Table 20. Operation Mode  
Mode  
Forward Buck  
Q1  
Control FET  
ON  
Q2  
Sync. FET  
OFF  
Q3  
OFF  
Q4  
ON  
Forward Boost  
Control FET  
Control FET  
OFF  
Sync. FET  
Sync. FET  
ON  
Forward Buck-Boost  
Forward Bypass  
Reverse Buck  
Control FET  
ON  
Sync. FET  
OFF  
ON  
OFF  
Sync. FET  
OFF  
Control FET  
ON  
Reverse Boost  
Sync. FET  
Sync. FET  
ON  
Control FET  
Control FET  
OFF  
Reverse Buck-Boost  
Reverse Bypass  
Sync. FET  
OFF  
Control FET  
ON  
56ꢀ  
&6,1  
9$'3  
&6,3  
9287  
56ꢂ  
&621 6<67(0  
/2$'  
&623  
4ꢃ  
4ꢁ  
4ꢀ  
4ꢂ  
/ꢀ  
Figure 29. Buck-Boost Regulator Topology  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 36 of 48  
ISL95338  
6. Application Information  
The ISL95338 optimizes the operation mode transition algorithm by considering the input and output voltage ratio  
and the load condition. When ADP voltage V is rising and is higher than 94% of the system bus voltage VSYS,  
ADP  
the ISL95338 will transit from Boost mode to Buck-Boost mode. If V  
is higher than 120% of VSYS, the  
ADP  
ISL95338 will transit from Buck-Boost mode to Buck mode under any circumstance. At a heavier load, the mode  
transition point changes accordingly to accommodate the duty cycle change due to the power loss on the voltage  
regulator circuit.  
When the ADP voltage V  
is falling and is lower than 106% of the system bus voltage VSYS, the ISL95338 will  
ADP  
transit from Buck mode to Buck-Boost mode. If V  
is lower than 80% of VSYS, the ISL95338 will transit from  
ADP  
Buck-Boost mode to Boost mode.  
VADP  
BUCK  
BUCK  
120%  
BUCK-BOOST  
106%  
VSYS  
94%  
BUCK-BOOST  
BOOST  
80%  
BOOST  
VADP  
Figure 30. Operation Mode  
When the reverse function is enabled with the SMBus command or RVSEN pin, and if reverse voltage VSYS is  
higher than 4.1V, the ISL95338 operates in Reverse mode.  
The customer can enable Bypass mode with Control1 register Bit 4. When the Bypass mode control bit is enabled,  
the REF will ramp to the input voltage, and the switcher will continue switching until the output voltage is in the  
300mV window to the input. When the regulating voltage is within the 300mV window to the input voltage, the  
latch will be set to stop the switching, Q1 and Q4 will be always on while Q2 and Q3 will be always off, and UV  
and OV will be disabled. To exit Bypass mode, unprogram control1 register Bit 4, then the REF will ramp to DAC  
and the switching will resume.  
6.3  
Soft-Start  
The ISL95338 includes a low power LDO with nominal 5V output, which input is OR-ed from the VOUT pin and  
ADP pin. The ISL95338 also includes a high power LDO with nominal 5V output, which input is from the DCIN  
pin connected to the ADP and the system bus, through an external OR-ing diode circuit. Both LDO outputs are tied  
to the VDD pin to provide the bias power and gate drive power for ISL95338. The VDDP pin is the ISL95338 gate  
drive power supply input. Use an R-C filter to generate the VDDP pin voltage from the VDD pin voltage.  
When VDD > 2.7V, the ISL95338 digital block is activated. The soft-start time can be set by the external capacitor  
on REF pin. The ISL95338 sources 1µA current out of the REF pin to charge this external capacitor. Its voltage will  
be used as the output voltage reference in the soft-start procedure.  
6.4  
Programming Options  
The resistor from the PROG pin to GND programs the forward output voltage configuration of the ISL95338.  
Table 21 shows the programing options.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 37 of 48  
ISL95338  
6. Application Information  
Table 21. Prog Pin Programming Options  
Prog-GND  
Resistance  
(kΩ)  
Default Forward  
Min  
0
Max  
28  
Regulating Voltage  
5.004  
35.7  
82.5  
147  
237  
71.5  
133  
215  
open  
9.000  
12.000  
16.008  
20.004  
The switching frequency can be changed through SMBus Control1 register Bit<9:7> after POR. Refer to SMBus  
Control1 register programming table for a detailed description.  
After POR, the ISL95338 will source 10µA current out of the PROG pin and read the PROG pin voltage to determine  
the resistor value. If ISL95338 is powered up from reverse side, it will not read PROG resistor. Once FRWEN is  
enabled, ISL95338 will reset the forward regulating voltage register to its default values according to the PROG  
pin setting.  
By default, the ADP current-sensing resistor R is 20mΩ and VSYS current-sensing resistor R is 10mΩ. Using  
s1  
s2  
these R = 20mΩand R = 10mΩ options would result in 4mA/LSB correlation in the SMBus current commands.  
s1  
s2  
If R and R values are different from these R = 20mΩand R = 10mΩ options, the SMBus command needs to  
s1  
s2  
s1  
s2  
be scaled accordingly to obtain the correct current. Smaller current-sense resistor values reduce the power loss  
whereas larger current-sense resistor values give better accuracy.  
The illustration in this datasheet is based on current-sensing resistors R = 20mΩ and R = 10mΩ unless specified  
s1  
s2  
otherwise.  
6.5  
DE Operation  
In DE mode of operation, the ISL95338 employs a phase comparator to monitor the PHASE node voltage to the  
ground or VOUT or ADP voltage during the low-side switching FET on-time to detect the inductor current zero  
crossing, depending on the operation mode (Buck, Buck-Boost and Boost) and power delivery direction (Forward  
or reverse direction), refer to the Table 22. The phase comparator needs a minimum on-time of the low-side  
switching FET for it to recognize inductor current zero crossing. If the low-side switching FET on-time is too short  
for the phase comparator to successfully recognize the inductor zero crossing, the ISL95338 may lose diode  
emulation ability. To prevent such a scenario, the ISL95338 employs a minimum low-side switching FET on-time.  
When the intended low-side switching FET on-time is shorter than the minimum value, the ISL95338 stretches the  
switching period to keep the low-side switching FET on-time at the minimum value, which causes the CCM  
switching frequency to drop below the set point.  
Table 22. Voltage Comparator for DE Operation  
Mode  
Buck  
Direction  
Forward  
Forward  
Forward  
Reverse  
Reverse  
Reverse  
Voltage Comparator  
PHASE 1to GND  
PHASE 1to VOUT  
PHASE 1to VOUT  
PHASE 2 to GND  
PHASE 1to ADP  
PHASE 1to ADP  
Boost  
Buck-Boost  
Buck  
Boost  
Buck-Boost  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 38 of 48  
ISL95338  
6. Application Information  
6.6  
Forward Mode  
When the forward function is enabled with the SMBus command or FRWEN pin (voltage is higher than 0.8V) and  
DCIN is powered by ADP, and if the ADP is plugged in and its value is higher than 4.1V, the ISL95338 can operate  
in Forward Buck mode, Forward Boost mode, Forward Buck-Boost mode, or Forward Bypass mode. After the  
forward output voltage reaches the regulating output voltage range set by register 0X15H Bit<14:3>, forward  
power-good FWGPG will assert to High.  
6.7  
Reverse Mode for USB OTG (On-the-Go)  
When the reverse function is enabled with the SMBus command (Control1 Bit 11) or RVSEN pin, and if an  
external voltage is on system side and its value is higher than 4.1V, the ISL95338 can operate in Reverse Buck  
mode, Reverse Boost mode, Reverse Buck-Boost mode, or Reverse Bypass mode. RVSEN is the digital input pin.  
The 1.3s or 150ms debounce time can be set by Control2 register Bit<13>. After the reverse output voltage reaches  
the output voltage set by register 0X49H Bit<14:3>, reverse power-good RVSPG will assert to High.  
Before Reverse mode starts switching, the CSIP pin voltage needs to drop below the reverse output overvoltage  
protection threshold (ReverseRegulatingVoltage + 1177mV) first.  
The default reverse output voltage is 5V and programmable up to 20V in Reverse Buck, Reverse Buck-Boost, and  
Reverse Boost mode. In Reverse Bypass mode, the maximum value of reverse output voltage is programmable up  
to 20V. The reverse voltage register 0X49H can be used to configure the reverse output voltage.  
6.8  
Fast REF  
To achieve fast REF in some applications, the fast REF function can be programmed by Control1 Bit3. If this bit is  
programmed, 1uA current source for REF pin will be replaced with 5k impedance to get faster transitions for REF  
voltage.  
6.9  
Fast Swap  
The ISL95338 provides fast swap function in Forward mode and Reverse mode. Users can implement the fast swap  
function in Forward mode in one of two ways (pin reverse or software reverse) by following the steps below:  
• Pin reverse fast swap enable:  
(1) Program Control2 Bit4 (Reverse Fast Swap).  
(2) Skip trim during restart by programming control1 Bit 13.  
(3) Skip autozero during restart by programming control1 Bit 12.  
(4) Enable RVSEN pin.  
• Software reverse fast swap enable:  
(1) Program Control1 Bit0 (Force 5.04V VDAC).  
(2) Program Control1 Bit3 (Fast REF).  
(3) Skip trim during restart with programming control1 Bit 13.  
(4) Skip autozero during restart with programming control1 Bit 12.  
(5) Program Control1 Bit11 (Force Reverse mode).  
Similarly, users can implement the fast swap function in Reverse mode in one of two ways (pin reverse or software  
reverse) by following the steps below:  
• Pin forward fast swap enable:  
(1) Program Control2 Bit3 (Forward Fast Swap).  
(2) Skip trim during restart by programming control1 Bit 13.  
(3) Skip autozero during restart by programming control1 Bit 12.  
(4) Disable RVSEN pin.  
(5) Enable FWREN pin.  
• Software forward fast swap enable:  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 39 of 48  
ISL95338  
6. Application Information  
(1) Program Control1 Bit0 (Force 5.04V VDAC).  
(2) Program Control1 Bit3 (Fast REF).  
(3) Skip trim during restart by programming control1 Bit 13.  
(4) Skip autozero during restart by programming control1 Bit 12.  
(5) Un-program Control1 Bit11 (Force Reverse mode).  
6.10 Way Overcurrent Protection (WOCP)  
The ISL95338 provides Way Overcurrent Protection (WOCP) against the MOSFET short, system side and ADP  
side short, and inductor short scenarios. The ISL95338 monitors the CSIP-CSIN voltage and CSON-CSOP voltage  
and compares them to the WOCP threshold 12A for ADP current and 20A for system side current in Forward  
mode.  
When the WOC comparator is tripped, the ISL95338 counts one time within each 10µs window. If the ISL95338  
counts WOC to 7 times in 50ms, it stops switching immediately. After the 1.3s or 150ms debounce time is set by  
Control2 register Bit<12>, the ISL95338 goes through the start-up sequence to retry.  
The WOCP function can be disabled through Control2 register Bit<1>.  
6.11 ADP Input Overvoltage Protection  
If the ADP pin input voltage exceeds 26.4V for more than 10µs, the ISL95338 will declare an ADP overvoltage  
condition and stop switching. When the ADP voltage drops below 25.608V for more than 100µs, the ISL95338  
will start to switch.  
6.12 System Output Overvoltage Protection  
The ISL95338 provides system rail output overvoltage protection. If the system voltage VOUTS is 1095mV higher  
than the ForwardRegulatingVoltage register set value for more than 100us, it will declare the system overvoltage,  
de-assert FWRPG, and stop switching. It will resume switching with the 100us debounce when VOUTS is less than  
542mV plus the setting reference voltage for forward.  
6.13 System Output Undervoltage Protection  
The ISL95338 provides system rail output undervoltage protection. If the system voltage VOUTS is 818mV lower  
than the ForwardRegulatingVoltage register set value for more than 1ms, it will declare the system undervoltage,  
de-assert FWRPG, and restart.  
6.14 ADP Output Overvoltage Protection  
The ISL95338 provides ADP rail output overvoltage protection. If the ADP voltage ADPS is 1177mV higher than  
the ReverseRegulatingVoltage register set value for more than 100us, it will declare the ADP overvoltage, de-assert  
RVSPG, and stop switching. The ISL95338 will resume switching with the 100us debounce when ADPS is less  
than 583mV plus the setting reference voltage for reverse.  
6.15 ADP Output Undervoltage Protection  
The ISL95338 provides ADP rail output undervoltage protection. If the ADP voltage VADPS is 1177mV lower  
than the ReverseRegulatingVoltage register set value for more than 1ms, it will declare the ADP undervoltage, de-  
assert RVSPG, and stop switching.  
6.16 Over-Temperature Protection  
The ISL95338 will stop switching for self protection when the junction temperature exceeds +140°C.  
When the temperature falls below +120°C, and after a 100µs delay, the ISL95338 will start switching.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 40 of 48  
ISL95338  
6. Application Information  
6.17 Switching Power MOSFET Gate Capacitance  
The ISL95338 includes an internal 5V LDO output at the VDD pin, which can be used to provide the switching  
MOSFET gate driver power through the VDDP pin with an R-C filter. The 5V LDO output overcurrent protection  
threshold is 115mA nominal. When selecting the switching power MOSFET, the MOSFET gate capacitance should  
be considered carefully to avoid overloading the 5V LDO, especially in Buck-Boost mode when four MOSFETs  
are switching at the same time. For one MOSFET, the gate drive current can be estimated by Equation 1:  
(EQ. 1)  
I
= Q f  
g
SW  
driver  
where:  
• Q is the total gate ADP which can be found in the MOSFET datasheet  
g
• f is switching frequency  
SW  
6.18 ADP Side Input Filter  
The ADP cable parasitic inductance and capacitance could cause some voltage ringing or an overshoot spike at the  
ADP connector node when the ADP is hot plugged in. This voltage spike could damage the ISL95338 pins  
connecting to the ADP connector node. One low cost solution is to add an RC snubber circuit at the ADP connector  
node to clamp the voltage spike as shown in Figure 31. A practical value of the RC snubber is 2.2Ω to 2.2µF;  
however, the appropriate values and power rating should be carefully characterized based on the actual design.  
Additionally, it is not recommended to add a pure capacitor at the ADP connector node, which can cause an even  
bigger voltage spike due to the ADP cable or the ADP current path parasitic inductance.  
ADAPTER  
CONNECTOR  
Ri  
2.2  
Ci  
ACIN  
2.2µF  
RC SNUBBER  
ISL95338  
Figure 31. Adapter Input RC Snubber Circuit  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 41 of 48  
ISL95338  
7. General Application Information  
7. General Application Information  
This design guide is intended to provide a high-level explanation of the steps necessary to design a single-phase  
power converter. It is assumed that the reader is familiar with many of the basic skills and techniques referenced in  
the following section. In addition to this guide, Intersil provides complete reference designs that include  
schematics, bill of materials, and example board layouts.  
7.1  
Select the LC Output Filter  
The duty cycle of an ideal buck converter in CCM is a function of the input and the output voltage. This  
relationship is written by Equation 2:  
V
OUT  
(EQ. 2)  
(EQ. 3)  
---------------  
D =  
V
IN  
The output inductor peak-to-peak ripple current is written by Equation 3:  
V
OUT 1 D  
-------------------------------------  
=
I
P-P  
f
SW L  
A typical step-down DC/DC converter will have an I of 20% to 40% of the maximum DC output load current for  
P-P  
a practical design. The value of I is selected based upon several criteria such as MOSFET switching loss,  
P-P  
inductor core loss, and the resistive loss of the inductor winding.  
The DC copper loss of the inductor can be estimated by Equation 4:  
2
(EQ. 4)  
P
= I  
DCR  
COPPER  
LOAD  
where I  
is the converter output DC current.  
LOAD  
The copper loss can be significant so attention has to be given to the DCR selection. Another factor to consider  
when choosing the inductor is its saturation characteristics at elevated temperatures. A saturated inductor could  
cause destruction of circuit components.  
A DC/DC buck regulator must have output capacitance C , into which ripple current I can flow. Current I  
P-P  
O
P-P  
develops a corresponding ripple voltage V across C which is the sum of the voltage drop across the capacitor  
P-P  
O,  
ESR and of the voltage change stemming from ADP moved in and out of the capacitor. These two voltages are  
written by Equations 5 and 6:  
(EQ. 5)  
V  
= I  
P-P ESR  
ESR  
I
P-P  
-----------------------------  
(EQ. 6)  
V  
=
C
8C  
O f  
SW  
If the output of the converter has to support a load with high pulsating current, several capacitors will need to be  
paralleled to reduce the total ESR until the required V is achieved. The inductance of the capacitor can cause a  
P-P  
brief voltage dip if the load transient has an extremely high slew rate. Low inductance capacitors should be  
considered in this scenario. A capacitor dissipates heat as a function of RMS current and frequency. Be sure that  
I
is shared by a sufficient quantity of paralleled capacitors so that they operate below the maximum rated RMS  
P-P  
current at f . Take into account that the rated value of a capacitor can fade as much as 50% as the DC voltage  
SW  
across it increases.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 42 of 48  
ISL95338  
7. General Application Information  
7.2  
Select the Input Capacitor  
The important parameters for the input capacitance are the voltage rating and the RMS current rating. For reliable  
operation, select capacitors with voltage and current ratings above the maximum input voltage and capable of  
supplying the RMS current required by the switching circuit. Their voltage rating should be at least 1.25 times  
greater than the maximum input voltage, while a voltage rating of 1.5 times is a preferred rating. The “Typical  
Application Circuit” on page 2 is a graph of the input capacitor RMS ripple current, normalized relative to output  
load current, as a function of duty cycle and is adjusted for converter efficiency. The normalized RMS ripple  
current calculation is written as Equation 7:  
2
D k  
12  
(EQ. 7)  
--------------  
D  1 D+  
-----------------------------------------------------------------------  
I
MAX  
I
=
RMS,NORMALIZED  
C
I
IN  
MAX  
where:  
• I  
is the maximum continuous I  
of the converter  
LOAD  
MAX  
• k is a multiplier (0 to 1) corresponding to the inductor peak-to-peak ripple amplitude expressed as a ratio of I  
(0 to 1)  
MAX  
• D is the duty cycle that is adjusted to take into account the efficiency of the converter, which is written as  
Equation 8:  
V
OUT  
EFF  
(EQ. 8)  
--------------------------  
D =  
V
IN  
In addition to the capacitance, some low ESL ceramic capacitance is recommended to decouple between the drain  
of the high-side MOSFET and the source of the low-side MOSFET.  
0.60  
0.48  
k = 0.25  
k = 0.5  
k = 0  
0.36  
k = 1  
k = 0.75  
0.24  
VS = ±2.5V  
0.12  
0
0
0.1  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.2  
Duty Cycle  
Figure 32. Normalized RMS Input Current at EFF = 1  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 43 of 48  
ISL95338  
7. General Application Information  
7.3  
Select the Switching Power MOSFET  
Typically, a MOSFET cannot tolerate even brief excursions beyond their maximum drain-to-source voltage rating.  
The MOSFETs used in the power stage of the converter should have a maximum VDS rating that exceeds the sum  
of the upper voltage tolerance of the input power source and the voltage spike that occurs when the MOSFET  
switches off.  
Several power MOSFETs are readily available that are optimized for DC/DC converter applications. The preferred  
high-side MOSFET emphasizes low gate ADP so that the device spends the least amount of time dissipating power  
in the linear region. Unlike the low-side MOSFET, which has the drain-to-source voltage clamped by its body  
diode during turn off, the high-side MOSFET turns off with a VDS of approximately V - V  
, plus the spike  
IN  
OUT  
across it. The preferred low-side MOSFET emphasizes low r  
when fully saturated to minimize conduction  
DS(ON)  
loss. It should be noted that this is an optimal configuration of MOSFET selection for low duty cycle applications  
(D < 50%). For higher output, low input voltage solutions, a more balanced MOSFET selection for high- and  
low-side devices may be warranted.  
For the low-side (LS) MOSFET, the power loss can be assumed to be conductive only and is written as Equation 9:  
2
(EQ. 9)  
P
I  
r  
DSON_LS 1 D  
CON_LS  
LOAD  
For the high-side (HS) MOSFET, the conduction loss is written as Equation 10:  
2
(EQ. 10)  
(EQ. 11)  
P
= I  
r  
DSON_HS D  
CON_HS  
LOAD  
For the high-side MOSFET, the switching loss is written as Equation 11:  
IN IVALLEY tSWONf  
IN IPEAK tSWOFFf  
V
V
SW  
SW  
------------------------------------------------------------------------------ --------------------------------------------------------------------------  
P
=
+
SW_HS  
2
2
where:  
• I  
• I  
is the difference of the DC component of the inductor current minus 1/2 of the inductor ripple current  
VALLEY  
is the sum of the DC component of the inductor current plus 1/2 of the inductor ripple current  
PEAK  
• t  
is the time required to drive the device into saturation  
SW(ON)  
SW(OFF)  
• t  
is the time required to drive the device into cut-off  
7.4  
Select the Bootstrap Capacitor  
The selection of the bootstrap capacitor is written by Equation 12:  
Q
g
-----------------------  
(EQ. 12)  
C
=
BOOT  
V  
BOOT  
where:  
• Q is the total gate ADP required to turn on the high-side MOSFET  
g
V  
is the maximum allowed voltage decay across the boot capacitor each time the high-side MOSFET is  
BOOT  
switched on  
As an example, suppose the high-side MOSFET has a total gate ADP Q of 25nC at V = 5V and a V  
BOOT  
of  
g
GS  
200mV. The calculated bootstrap capacitance is 0.125µF; for a comfortable margin, select a capacitor that is double  
the calculated capacitance. In this example, 0.22µF will suffice. Use an X7R or X5R ceramic capacitor.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 44 of 48  
ISL95338  
7. General Application Information  
7.5  
Select the Resistor Divider for VOUTS and ADPS  
ISL95338  
VOUTS  
VSYS  
ADPS  
R4  
VADP  
R1  
R2  
R3  
1M  
1.5M 1.5M  
1M  
Figure 33. Resistor Divider for VOUTS and ADPS  
ADPS and VOUTS are output voltage feedback pins, in Reverse mode and Forward mode, respectively, which  
allow the customer to change output voltage by the resistor divider (R , R , and R , R ), as shown in Figure 2.  
1
2
3
4
There are two parallel resistors (1M and 1.5M) inside from VOUTS and ADPS to ground. For example, in Forward  
mode, VSYS voltage magnitude can be revised by tuning R and R values, written by Equation 13. Thus, there is  
1
2
no need to change the Forward Regulating Voltage register (0x15H) through GUI. The same process can be applied  
at the ADPS pin.  
1.5M\\1M\\R   
2
--------------------------------------------------------  
(EQ. 13)  
V
= V  
SYS  
OUTS  
1.5M\\1M\\R + R  
2
1
FN8896 Rev.2.00  
Nov 30, 2017  
Page 45 of 48  
ISL95338  
8. Revision History  
8. Revision History  
Rev.  
2.00  
1.00  
0.00  
Date  
Description  
Added Way Overcurrent Protection (WOCP) function to datasheet.  
Removed Way Overcurrent Protection (WOCP) function  
Initial release  
Nov 30, 2017  
Oct 5, 2017  
Aug 15, 2017  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 46 of 48  
ISL95338  
9. Package Outline Drawing  
For the most recent package outline drawing, see L32.4x4A.  
9. Package Outline Drawing  
L32.4x4A  
32 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 2/16  
8X 0.36  
8X 0.179  
6
4.00 ±0.05  
2.80  
6
A
B
PIN 1  
PIN #1  
28X 0.40  
INDEX AREA  
INDEX AREA  
8X 0.179  
(4X)  
0.15  
24X 0.40  
32X 0.20  
4
0.10  
M
C
A B  
TOP VIEW  
BOTTOM VIEW  
(3.80)  
(2.80)  
SEE DETAIL “X”  
0.90 ±0.10  
//  
0.10C  
C
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
(28X 0.40)  
(32X 0.20)  
5
C
0.2 REF  
(32X 0.60)  
TYPICAL RECOMMENDED LAND PATTERN  
0.00 MIN  
0.05 MAX  
DETAIL “X”  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance: Decimal ±0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 47 of 48  
ISL95338  
10. About Intersil  
10. About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The  
company's products address some of the largest markets within the industrial and infrastructure, mobile computing,  
and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation, and related parts, see the respective product  
information page found at www.intersil.com.  
For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary.  
You can report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2017. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice,  
provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned  
to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no  
responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8896 Rev.2.00  
Nov 30, 2017  
Page 48 of 48  

相关型号:

ISL95338HRTZ

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338HRTZ-T

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338HRTZ-T7A

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338HRTZ-TK

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ-T

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95338IRTZ-TK

Bidirectional Buck-Boost Voltage Regulator; TQFN32; Temp Range: See Datasheet
RENESAS

ISL95521AHRZ

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95521AHRZ-T

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95521AIRZ-T

Hybrid Power Boost (HPB) and Narrow VDC (NVDC) Combo Battery Charger with SMBus Interface
RENESAS

ISL95710

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL

ISL95710UIU10Z

Terminal Voltage 3V or 5V, 128 Taps Up/Down Interface
INTERSIL