UPD16879GS-BGG-A [RENESAS]

IC,MOTOR CONTROLLER,CMOS,SSOP,38PIN;
UPD16879GS-BGG-A
型号: UPD16879GS-BGG-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC,MOTOR CONTROLLER,CMOS,SSOP,38PIN

电动机控制
文件: 总34页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD16879  
MONOLITHIC QUAD H BRIDGE DRIVER CIRCUIT  
The µPD16879 is a monolithic quad H bridge driver IC that employs a CMOS control circuit and a MOSFET output  
circuit. Because it uses MOSFETs in its output stage, this driver IC consumes less power than conventional driver  
ICs that use bipolar transistors.  
Because the µPD16879 controls a motor by inputting serial data, its package has been shrunk and the number of  
pins reduced. As a result, the performance of the application set can be improved and the size of the set has been  
reduced.  
This IC employs a current-controlled 64-step micro step driving method that drives stepper motor with low  
vibration.  
The µPD16879 is a housed in a 38-pin shrink SOP to contribute to the miniaturization of application set.  
This IC can simultaneously drive two stepper motors and is ideal for the mechanisms of camcorders.  
FEATURES  
Four H bridge circuits employing power MOS FETs  
Current-controlled 64-step micro step driving  
Motor control by serial data (8 bits × 13 bytes)  
PWM-frequency, output current and number of output pulse can be setting by serial data.  
3-V power supply.  
Minimum operating voltage: 2.7 V  
Low consumption current.  
VDD pin current (operating mode) : 3 mA (MAX.)  
Power save circuit bult in.  
VDD pin current (power save mode) : 100 µA (MAX.) fCLK: OFF state  
VDD pin current (power save mode) : 300 µA (MAX.) fCLK: 4.5 MHz input  
38-pin shrink SOP (7.62 mm (300))  
ORDERING INFORMATION  
Part Number  
Package  
µPD16879GS-BGG  
38-pin plastic shrink SOP (7.62 mm (300))  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. S14188EJ1V0DS00 (1st edition)  
Date Published July 2000 N CP(K)  
Printed in Japan  
2000  
©
µPD16879  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C)  
When mounted on a glass epoxy board (100 mm × 100 mm × 1 mm, 15% copper foil)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
Control part  
Rating  
–0.5 to +6.0  
–0.5 to +11.2  
–0.5 to VDD + 0.5  
0.5  
Unit  
V
VM  
Output part  
V
Input voltage  
VIN  
V
Reference voltage  
H bridge drive current  
VREF  
IM(DC)  
IM(pulse)  
PT  
External input  
DC  
V
±0.15  
A/ch  
A/ch  
W
PW < 10 ms, Duty < 5 %  
±0.3  
Power consumption  
1.0  
Peak junction temperature  
Storage temperature  
TCH(MAX)  
Tstg  
150  
°C  
°C  
–55 +150  
RECOMMENDED OPERATING RANGE (TA = +25°C)  
When mounted on a glass epoxy board (100 mm × 100 mm × 1 mm, 15% copper foil)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
MIN.  
2.7  
4.0  
0
TYP.  
250  
MAX.  
5.5  
Unit  
V
Control part  
Output part  
VM  
11  
V
Input voltage  
VIN  
VDD  
275  
VDD  
100  
+0.1  
+0.2  
6.0  
V
Reference voltage  
EXP pin input voltage  
EXP pin input current  
H bridge drive current  
VREF  
External input  
225  
mV  
V
VEXPIN  
IEXPIN  
IM(DC)  
IM(pulse)  
fCLK  
µA  
A/ch  
A/ch  
MHz  
V
DC  
0.1  
0.2  
PW < 10 ms, Duty < 5%  
Clock frequency (OSCIN)  
Clock frequency amplitude  
Serial clock frequency  
Video sync signal width  
LATCH signal wait time  
SCLK wait time  
COSC = 68 pF, VREF = 250 mV  
3.9  
4.5  
VfCLK  
0.7 × VDD  
VDD  
5.0  
fSCLK  
MHz  
ns  
PW(VD)  
t(VD-LATCH)  
t(SCLK-LATCH)  
tsetup  
fCLK = 4.5 MHz  
Refer to Fig. 1  
250  
400  
400  
80  
ns  
ns  
SDATA setup time  
ns  
SDATA hold time  
thold  
80  
ns  
Reset signal pulse width  
Operating temperautre  
Peak junction temperature  
tRST  
100  
10  
µs  
TA  
85  
°C  
°C  
TCH(MAX)  
125  
2
Data Sheet S14188EJ1V0DS00  
µPD16879  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, TA = 25°C, VDD = 3 V, VM = 5.4 V, fCLK = 4.5 MHz, COSC = 68 pF, CFIL = 1000 pF,  
VREF = 250 mV, EVR = 100 mV (10000))  
Parameter  
Symbol  
IMO(RESET)  
IDD  
Conditions  
No load, Reset period  
MIN.  
TYP.  
MAX.  
1.0  
Unit  
µA  
mA  
µA  
µA  
µA  
V
Off state VM pin current  
Operating state VDD pin current  
VDD pin current  
Output open  
Reset period  
tCLK = off  
3.0  
IDD(RESET)  
IDD(PS)1  
IDD(PS)2  
VIH  
100  
100  
300  
Power save state VDD pin current  
fCLK = 4.5 MHZ  
High level input voltage  
Low level input voltage  
Input hysteresis vosltage  
LATCH, SCLK, SDATA, VD, VD  
RESET, OSCIN, VREFsel  
0.7 × VDD  
VIL  
0.3 × VDD  
V
VH  
0.3  
V
Monitor output voltage 1  
VOMα(H)  
VOMβ(H)  
4th byte  
0.9 × VDD  
0.3  
V
(EXTOUT α, β)  
VOMα(L)  
VOMβ(L)  
0.1 × VDD  
V
Monitor output voltage 2  
(EXP 0,1 open drain)  
VOEXP(H)  
VOEXP(L)  
IIH  
Pull up (VDD)  
IOEXP = 100 µA  
VIN = VDD  
0.9 × VDD  
V
V
0.1 × VDD  
High level input current  
Low level input current  
1.0  
µA  
µA  
µA  
µA  
IIL  
VIN = 0  
1.0  
1.0  
Reset pin high level input current  
Reset pin low level input current  
H bridge ON resistance  
Chopping frequencyNote 1  
Internal reference voltage  
VD delay timeNote 2  
IIH(RST)  
IIL(RST)  
RON  
VRST = VDD  
1.0  
6.0  
VRST = 0  
IM = 100 mA, upper + lower  
fOSC  
Refer to table 1 (TYP.)  
kHz  
mV  
ns  
VREF  
tVD  
IM  
225  
250  
275  
250  
Sin wave peak output current  
(reference value)Note 3  
L = 15 mH/R = 70 ( 1 kHz)  
RS = 6.8 , fOSC = 72.58 kHz  
EVR = 220 mV (11100)  
53  
mA  
FIL pin voltageNote 4  
VEVR  
EVR = 200 mV (11010)  
370  
400  
20  
430  
mV  
VREF = 250 mV external input  
FIL pin step voltageNote 4  
H bridge turn on timeNote 5  
H bridge turn off timeNote 5  
VEVRSTEP  
tONH  
Minimum step  
IM = 100 mA  
mV  
µs  
2.0  
2.0  
tOFFH  
µs  
Notes 1. When data are less than 7 (000111), PWM chopping doesn’t do it, and output pulse doesn’t occur.  
When data are beyong 49, PWM chopping frequency becomes a 225 kHz fixation.  
2. By OSCIN and VD sync circuit  
3. FB pin is monitored.  
4. FIL pin is monitored. A voltage about twice that of the EVR value is output to the FIL pin.  
5. 10% to 90% of the pulse peak value without filter capacitor (CFIL)  
3
Data Sheet S14188EJ1V0DS00  
µPD16879  
Fig 1. Delay Time of Serial Data  
V
D
D
V
t
(VD-LATCH)  
LATCH  
SCLK  
104 clocks (8 bits × 13 bytes)  
t
(SCLK-LATCH)  
t
(SCLK-LATCH)  
Ignored because LATCH is at low level  
Ignored because LATCH is at low level  
50%  
LATCH  
D3  
D1  
D2  
SDATA  
SCLK  
50%  
50%  
t
(SCLK-LATCH)  
t
setup  
t
hold  
Table 1. Chopping Frequency (3rd byte D5 to D0 bit data, fCLK = 4.5 MHz) Typical Value  
Input data  
D5 to D0 bit  
Chopping frequency  
(kHz)  
Input data  
D5 to D0 bit  
Chopping frequency  
(kHz)  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
35.71  
40.18  
45.00  
50.00  
53.57  
59.21  
62.50  
68.18  
72.58  
77.59  
80.36  
86.54  
90.00  
93.75  
97.83  
102.27  
107.14  
112.50  
118.42  
118.42  
125.00  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
132.35  
132.35  
140.63  
140.63  
150.00  
150.00  
160.71  
160.71  
160.71  
173.08  
173.08  
173.08  
187.50  
187.50  
187.50  
204.55  
204.55  
204.55  
204.55  
225.00  
Note When data are less than 7 (000111), PWM chopping doesn’t do it, and output pulse doesn’t occur.  
When data are beyond 49, PWM chopping frequency becomes a 225 kHz fixation.  
4
Data Sheet S14188EJ1V0DS00  
µPD16879  
Table 2. Relation Between Rotation Angle, Phase Current, and Vector Quantity  
(64-DIVISION MICRO STEP)  
(Value of µPD16879 for reference)  
STEP  
Rotation angle (θ)  
A phase current  
TYP.  
0
B phase current  
TYP.  
100  
Vector quantity  
TYP.  
MIN.  
MAX.  
MIN.  
MAX.  
θ 0  
θ 1  
0
100  
5.6  
2.5  
9.8  
17.0  
26.5  
36.1  
45.3  
54.1  
62.6  
68.4  
75.7  
82.3  
88.1  
93.2  
97.4  
100.7  
103  
100  
100.48  
100  
θ 2  
11.3  
16.9  
22.5  
28.1  
33.8  
39.4  
45  
12.4  
22.1  
31.3  
40.1  
48.6  
58.4  
65.7  
72.3  
78.1  
83.2  
87.4  
90.7  
93.2  
19.5  
29.1  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
95.7  
98.1  
100  
93.2  
90.7  
87.4  
83.2  
78.1  
72.3  
65.7  
58.4  
48.6  
40.1  
31.3  
22.1  
12.4  
2.5  
98.1  
95.7  
92.4  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.1  
19.5  
9.8  
103  
100.7  
97.4  
93.2  
88.1  
82.3  
75.7  
68.4  
62.6  
54.1  
45.3  
36.1  
26.5  
17.0  
θ 3  
100.02  
100.02  
99.99  
99.98  
99.97  
99.98  
99.97  
99.98  
99.99  
100.02  
100.02  
100  
θ 4  
θ 5  
θ 6  
θ 7  
θ 8  
θ 9  
50.6  
56.3  
61.9  
67.5  
73.1  
78.8  
84.4  
90  
θ 10  
θ 11  
θ 12  
θ 13  
θ 14  
θ 15  
θ 16  
100.48  
100  
100  
0
Remark These data do not indicate guaranteed values.  
5
Data Sheet S14188EJ1V0DS00  
µPD16879  
PIN CONFIGURATION  
1
2
RESET  
OSCOUT  
OSCIN  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
LGND  
COSC  
3
FIL  
FIL  
FIL  
FIL  
A
B
C
D
4
SCLK  
5
SDATA  
LATCH  
6
7
VD  
V
V
V
REF  
DD  
8
V
D
9
B2  
M3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
FB  
B
D2  
B1  
FB  
D
VM2  
D1  
A2  
V
M4  
FB  
A
C2  
A1  
FB  
C
VM1  
C1  
EXT  
β
EXP0  
EXP1  
EXTα  
PGND  
V
REFsel  
6
Data Sheet S14188EJ1V0DS00  
µPD16879  
PIN FUNCTION  
Package: 38-pin plastic shrink SOP  
Pin  
1
Pin name  
LGND  
COSC  
FILA  
FILB  
FILC  
FILD  
VREF  
VDD  
Pin function  
Control circuit GND pin  
2
Chopping capacitor connection pin  
α 1 ch filter capacitor connection pin  
α 2 ch filter capacitor connection pin  
β 1 ch filter capacitor connection pin  
β 2 ch filter capacitor connection pin  
Reference voltage input pin (250 mV typ)Note 1  
Control circuit supply voltage input pin  
Output circuit supply voltage input pin  
β 2 ch output pin  
3
4
5
6
7
8
9
VM3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
D2  
FBD  
β 2 ch sense resistor connection pin  
β 2 ch output pin  
D1  
VM4  
Output circuit supply voltage input pin  
β 1 ch output pin  
C2  
FBC  
β 1 ch sense resistor connection pin  
β 1 ch ouptut pin  
C1  
EXP0  
EXP1  
VREFsel  
PGND  
EXT α  
EXT β  
VM1  
External extension pin (open drain)  
External extension pin (open drain)  
Reference voltage select pinNote 1  
Output circuit GND pin  
α ch logic circuit monitor pin  
β ch logic circuit monitor pin  
Output circuit supply voltage input pin  
α 1 ch output pin  
A1  
FBA  
α 1 ch sense resistor connection pin  
α 1 ch output pin  
A2  
VM2  
Output circuit supply voltage input pin  
α 2 ch output pin  
B1  
FBB  
α 2 ch sense resistor connection pin  
B2  
α 2 ch output pin  
VD  
Video sync signal input pinNote 2  
Video sync signal input pinNote 2  
LATCH signal input pin  
VD  
LATCH  
SDATA  
SCLK  
OSCIN  
OSCOUT  
RESET  
Serial data input pin  
Serial clock input pin (4.5 MHz typ)  
Original oscillation input pin (4.5 MHz typ)  
Original oscillation output pin  
Reset signal input pin  
Remark Plural terminal (VM) is not only 1 terminal and connect all terminals.  
Notes 1. A standard voltage to use is chosen.  
VREFsel: High level  
VREFsel: Low level  
using external input VREF  
using internal reference voltage (VREF pin fixed GND level)  
2. Input the video sync singnal to VD pin or VD pin. A free terminal is to do the following treatment.  
When input VD: VD pin connect to VDD pin.  
When input VD: VD pin connect to GND pin.  
7
Data Sheet S14188EJ1V0DS00  
µPD16879  
I/O PIN EQUIVALENT CIRCUIT  
Pin name  
Equivalent circuit  
Pin name  
VREF  
Equivalent circuit  
VD  
V
DD  
VDD  
VD  
Internal 250 mV  
LATCH  
SDATA  
SCLK  
OSCIN  
RESET  
VREFsel  
PAD  
PAD  
PAD  
PAD  
V
REFsel  
OSCOUT  
EXTα  
EXP0  
EXP1  
V
DD  
V
DD  
EXTβ  
PAD  
FILA  
FILB  
FILC  
FILD  
VDD  
Buffer  
A1, A2  
B1, B2  
C1, C2  
D1, D2  
VM  
Parasitic diodes  
PAD  
FB  
8
Data Sheet S14188EJ1V0DS00  
VD  
OSCOUT  
VD  
SDATA LATCH  
34 33  
EXP1  
V
REF  
OSCIN  
36  
SCLK  
35  
EXP0  
V
REFsel  
37  
17  
19  
32  
31  
18  
7
RESET  
38  
8
V
DD  
M1  
Vref  
select  
250 mV  
B.G.R  
× 2  
V
23  
27  
9
SERIAL-PARARELLE DECODER  
PULSE GENERATER  
VM2  
VM3  
VM4  
EXTOUT SELECTOR  
1/N  
13  
2
21  
22  
EXTα  
α
β
CURRENT SET  
CURRENT SET  
COSC  
OSC  
β
EXT  
+
+
+
+
+
+
+
+
FILTER  
FILTER  
FILTER  
FILTER  
V
M
V
M
V
M
VM  
1
LGND  
PGND  
H BRIDGE  
20  
H BRIDGE  
H BRIDGE  
H BRIDGE  
2ch  
β 1ch  
β
α 1ch  
α 2ch  
6
3
28  
15  
FB  
16  
14  
5
11  
FB  
12  
10  
25  
24  
26  
29  
FB  
30  
4
A
1
FILA  
B
1
FILB  
C
1
C2  
FILC  
FILD  
FB  
A
A
2
B
B
2
C
D
D
1
D
2
µ
µ
CPU  
100 kΩ × 2  
4.5 MHz TYP.  
Using internal reference  
V
D
V
D
SCLK  
EXP0 EXP1  
OSCIN  
36  
OSCOUT  
37  
SDATA LATCH  
34 33  
V
REFsel  
V
REF  
19  
17  
7
32  
31  
35  
18  
38  
RESET  
2.7 V to 5.5 V  
VDD  
8
REGULATOR  
Vref  
select  
250 mV  
B.G.R  
× 2  
V
V
M1  
M2  
23  
27  
9
SERIAL-PARALLELE DECODER  
PULSE GENERATOR  
EXTOUT SELECTOR  
VM3  
1/N  
OSC  
+
13  
2
V
M4  
21  
22  
EXTα  
α
β
CURRENT SET  
CURRENT SET  
COSC  
β
EXT  
BATTERY  
4.0 V to 11 V  
68 pF  
+
+
+
+
+
+
+
FILTER  
FILTER  
FILTER  
FILTER  
VM  
V
M
VM  
VM  
1
LGND  
PGND  
H BRIDGE  
H BRIDGE  
H BRIDGE  
H BRIDGE  
20  
1ch  
1ch  
1ch  
1ch  
β
α
β
α
26  
30  
15  
FB  
16  
5
11  
FB  
12 10  
6
25  
FB  
3
28  
4
14  
24  
29  
FB  
A
1
A
2
FIL  
A
C
2
FILC  
D
D1  
D2  
FIL  
D
B
B
1
B
2
FIL  
B
C
C1  
A
6.8 Ω × 2  
1000 pF  
6.8 Ω  
6.8 Ω  
1000 pF  
MOTOR 2  
1000 pF × 2  
µ
µ
MOTOR 1  
Initialization  
RESET  
V
D
V
D
S1  
S2  
S3  
S5 PS  
S6 PS  
S9 Enable  
S4 pulse 0  
S8  
S7 release PS  
S11  
S12 data error  
S14  
S10 release PS  
S13 normal data  
LATCH  
DATA  
SCLK  
OSCOUT  
S7  
Start point wait  
(FF1)  
H level fixation  
S8  
S9  
S1  
S2  
S2  
S3  
S9  
S10  
S12  
S13  
S3  
S4  
S10  
S11  
S11  
S12  
S4  
S13  
S14  
It reverts from the VD  
start after a PS release.  
S8  
Start point wait+  
Start point magnetize wait  
(FF2)  
L level fixation  
S4  
ENABLE OUTNote 1  
L level fixation  
Start from  
Stop from  
LATCH ↓  
LATCH ↓  
CHOPPING  
EXP 0, 1  
Pulse count is done  
in enable period too  
EXP can be change in PS period too.  
S5 to S7  
S3  
S2  
S9  
S13  
S10  
S11  
S8  
Pulse isSno4thing  
because pulse  
data is "0"  
Pulse is nothing  
Pulse is nothing  
because PS data  
because  
PULSE OUT  
error data.  
PULSE GATE  
(FF3)  
PULSE CHECKNote 2  
(FF7)  
Output L level  
because  
error data  
CHECK SUMNote 3  
Notes 1.  
2.  
ENABLE is set at the falling edge of FF1 when the level changes from  
low to high, and at the falling edge of FF2 when the level changes from  
high to low.  
SCLK  
µ
µ
FF7 is an output signal that is used to check for the presence or  
absence of a pulse in the serial data, is updated at the falling edge of  
LATCH and reset once at the rising edge of LATCH. If CHECK SUM  
is other than "00h", FF7 goes low, inhibiting pulse output, even if a  
pulse is generated.  
SDATA  
1st byte 13th byte  
D3  
D1  
D2  
D4  
D5  
D6  
D7  
D0  
(LSB)  
Data is held at rising edge SCLK  
3.  
CHECK SUM output is updated at the falling edge of LATCH.  
µPD16879  
TIMING CHART (2)  
CLK  
(PULSE OUT)  
MOB  
(CW mode)  
Current direction: A2 to A1  
H bridge  
,
β
α
1ch output  
Current direction: A1 to A2  
Current direction: B2 to B1  
Current direction: B2 to B1  
H bridge  
,
β
α
2ch output  
Current direction: B1 to B2  
(Expanded view)  
CCW mode  
CW mode  
CW mode  
CLK  
PULSE OUT  
1
3
4
4
4
6
5
2
3
CCW  
CW  
3
5
2
Position No.  
Note CW mode : Position No is incremented.  
CCW mode: Position No is decremented.  
CW  
H bridge  
1ch output  
CCW  
CW  
CW  
H bridge  
2ch output  
CCW  
CW  
CW  
CCW  
Remarks 1. The current value of the actual wave is approximated to the value shown on the page 5.  
2. The C1, C2, D1, and D2 pins of β channel correspond to the A1, A2, B1, and B2 pins of α channel.  
3. The CW mode is set if the D6 bit of the fifth and ninth bytes of the data is “0”.  
4. The CCW mode is set if the D6 bit of the fifth and ninth bytes of the data is “1”.  
12  
Data Sheet S14188EJ1V0DS00  
µPD16879  
STANDARD CHARACTERISTICS CURVES  
I
DD vs. VDD characteristics  
PT  
vs. T  
A
characteristics  
7.0  
6.0  
5.0  
4.0  
3.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
A
= 25°C  
operating  
125°C/W  
2.0  
1.0  
0
1
2
3
6
4
5
–20  
0
20  
40  
100 120  
60  
80  
(°C)  
Control circuit supply voltage VDD (V)  
Ambient temperature T  
A
I
DD(PS) vs. VDD characteristics  
I
DD(RESET) vs. VDD characteristics  
350  
T
A
= 25°C  
T
A
= 25°C  
PS mode  
RESET  
µ
µ
600  
500  
400  
300  
200  
300  
250  
200  
150  
100  
50  
I
DD(PS)2  
I
DD(PS)1  
100  
0
0
1
2
3
6
4
5
1
2
3
6
4
5
Control circuit supply voltage VDD (V)  
Control circuit supply voltage VDD (V)  
VREF vs. T  
A
characteristics  
V
IH, VIL vs. VDD characteristics  
254  
253  
V
V
DD = 3.0 V  
FIL/2  
T
A
= 25°C  
4.0  
3.0  
2.0  
1.0  
0
252  
251  
250  
249  
V
IL  
V
IH  
248  
247  
246  
245  
–20  
120  
0
20  
40  
100  
60  
80  
(°C)  
1
2
3
6
4
5
Ambient temperature T  
A
Control circuit supply voltage VDD (V)  
13  
Data Sheet S14188EJ1V0DS00  
µPD16879  
IM vs. EVR characteristics  
IM vs. VM characteristics  
70  
60  
50  
40  
30  
20  
50  
40  
30  
20  
T
R
A
= 25°C, 70 , 15 mV, V  
= 6.8 , fOSC = 72.58 kHz  
M
= 5.4 V  
TA = 25°C, 70 , 15 mH, RS = 6.8 Ω  
fOSC = 72.58 kHz, EVR = 100 mV (10000)  
S
10  
0
10  
0
50  
100  
150  
200  
250  
2
4
6
8
10  
12  
EVR setting voltage EVR (mV)  
Output circuit supply voltage VM (V)  
RON vs. VM characteristics  
IM vs. RS characteristics  
8.0  
60  
50  
40  
30  
20  
10  
0
TA = 25°C, 70 , 15 mH, VM = 5.4 V  
fOSC = 72.58 kHz, EVR = 100 mV (10000)  
TA = 25°C  
6.0  
4.0  
2.0  
0
4
6
8
10  
2
4
6
8
10  
12  
2
12  
14  
Output circuit supply voltage VM (V)  
Current sense resistor RS ()  
RON vs. TA characteristics  
8.0  
6.0  
4.0  
2.0  
0
VM = 4.0 V  
VM = 5.4 V  
VM = 8.0 V  
VM = 11 V  
20  
40  
60  
80  
0
–20  
100 120  
Ambient temperature TA (°C)  
14  
Data Sheet S14188EJ1V0DS00  
µPD16879  
I/F CIRCUIT DATA CONFIGURATION (fCLK = 4.5 MHz EXTERNAL CLOCK INPUT)  
Input data consists of serial data (8 bits × 13 bytes).  
Input serial data with the LSB first, from the first byte to 13th byte.  
[1st byte]  
[2nd byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
8 bit data  
inputNote  
First point  
wait  
First point wait  
227.6 µs to  
58.03 ms  
8 bit data  
inputNote  
First point  
magnetize  
wait  
First point  
magnetize  
wait  
Setting  
227.6 µs to  
58.03 ms  
Setting  
(1 to 255)  
t = 227.6 µs  
(1 to 255)  
t = 227.6 µs  
Note Input other than “0”  
Note Input other than “0”  
[3rd byte]  
[4th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
EXP1  
Setting  
Z/LNote 1  
Bit  
D7  
Bit  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
Setting  
Power save  
OFF/ONNote 1  
1 or 0  
EXP0  
Z/LNote 1  
Data  
EXT α Output EXT β Output  
6 bit data  
input  
Chopping  
frequency  
Chopping  
frequency  
35.71 kHz to  
225 kHz  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
EnableNote 2  
RotationNote 3  
Pulse out  
FF7  
EnableNote 2  
RotationNote 3  
Pulse out  
FF7  
Setting  
(8 to 48)Note 2  
FF3  
FF3  
ChecksumNote 4 FF2  
Chopping FF1  
Notes 1. Z: High impedance/L: low level  
2. 0 to 7 input: PWM and pulse out nothing  
49 to 63 input: 225 kHz fixed  
Notes 1. Data “1”: Normal/Data “0”: Power save  
2. High: Conducts/Low: Stops  
3. High: Reverse (CCW)/Low: Forward (CW)  
4. High: Normal data/Low: Error data  
5. Select one of D0 to D6 and input ”1”.  
If two or more of D0 to D6 are selected,  
they are positively ORed for output.  
Refer to 4 page  
15  
Data Sheet S14188EJ1V0DS00  
µPD16879  
[5th byte]  
[6th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
Enable α  
Rotation α  
Not use  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
α ch ON/OFF  
α ch CCW/CW  
Not use  
8 bit data  
input  
α channel  
Pulse  
α channel  
Number of  
pulse in 1 VD  
0 to 1020  
pulses  
1 or 0  
0
Number  
5 bit data  
input  
α channel  
α channel  
Current setNote  
EVR: 50 to  
250 mV  
Setting (0 to  
255)  
Current set  
n = 4  
pulsesNote  
Setting  
(11 to 31)  
Note Fixed to 50 mV if 0 to 10 input.  
Note Output pulse is nothing if data input 256, 512,  
Refer to 4 page.  
and 768.  
[7th byte]  
[8th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
16 bti data  
low-order  
8 bit data  
input  
α channel  
α channel  
Pulse cycle  
222 ns to  
16 bit data  
High-order  
8 bit data  
input  
α channel  
α channel  
Pulse cycle  
222 ns to  
Pulse Cycle  
Pulse Cycle  
14.563 ms  
Setting (1 to  
65535)  
14.563 ms  
Setting (1 to  
65535)  
t = 222 ns  
t = 222 ns  
Note D0 bit of 7th byte is LSB, and D7 bit of 8th byte is MSB.  
[9th byte]  
[10th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
1 or 0  
Function  
Enable β  
Rotation β  
Not use  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
β ch ON/OFF  
β ch CCW/CW  
Not use  
8 bit data  
input  
β channel  
Pulse  
β channel  
Number of  
pulse in 1 VD  
0 to 1020  
pulses  
1 or 0  
0
Number  
5 bit data  
input  
β channel  
β channel  
Current setNote  
EVR: 50 to  
250 mV  
Setting (0 to  
255)  
Current set  
n = 4  
pulsesNote  
Setting (11 to  
31)  
Note Fixed to 50 mV if 0 to 10 input.  
Note Output pulse is nothing if data input 256, 512,  
Refer to 4 page.  
and 768.  
16  
Data Sheet S14188EJ1V0DS00  
µPD16879  
[11th byte]  
[12th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
16 bit data  
low-order  
8 bit data  
input  
β channel  
β channel  
Pulse cycle  
222 ns to  
16 bit data  
high-order  
8 bit data  
input  
β channel  
β channel  
Pulse cycle  
222 ns to  
Pulse Cycle  
Pulse Cycle  
14.563 ms  
Setting (1 to  
65535)  
14.563 ms  
Setting (1 to  
65535)  
t = 222 ns  
t = 222 ns  
Note D0 bit of 11th byte is LSB, and D7 bit of 12th byte is MSB.  
[13th byte]  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
Function  
Setting  
8 bit data  
input  
Checksum  
ChecksumNote  
Note Data is input so that the sum of the first through the 13th bytes is 00h.  
17  
Data Sheet S14188EJ1V0DS00  
µPD16879  
DATA CONFIGURATION  
Input data is composed of the serial data on 8 bits × 13 bytes. Input serial data with the LSB first, i.e., starting  
from the D0 bit (LSB) of the first byte. Therefore, the D7 bit of the 13th byte is the most significant bit (MSB).  
The establishment of the delay time to the output from the power supply injection, chopping frequency, output  
current, number of pulse, pulse cycle, and so on are possible with this product.  
The µPD16879 has an EXT pin for monitoring the internal operations, the parameter to be monitored can be  
selected by serial data.  
The µPD16879 built in power save function. If set power save mode, consumption current decreased to about  
1/10.  
Input serial data during first point wait time (FF1: high level).  
This product uses separated external reference clock (fCLK). If they don’t input fCLK, this product can’t operate  
normally.  
The establishment value which shows it in this document is at the time of fCLK = 4.5 MHz. Please be careful  
because establishment value is different in the case of one except for fCLK = 4.5 MHz.  
Detail of Data Configuration  
Ho to input serial data is below.  
[1st byte]  
The 1st byte specifies the delay between data being read and data being output. This delay is called the first  
point wait time, and the motor can be driven from that point at which the first point wait time is “0”. This time is  
counted at the rising edge of VD (or falling edge of VD). The first point wait time can be set to 58.03 ms (when a 4.5  
MHz clock input) and can be fine-tuned by means of 8-bit division (227.6 µs step: with 4.5 MHz clock).  
Always input data other than “0” to this byte because the first point wait time is necessary for latching data. If “0”  
is input to this byte, data cannot be updated. Transfer serial data during the first point wait time.  
Table 3. 1st Byte Data Configuration  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
First point wait  
Data  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
00000000 Prohibition  
00001001 About 2.05 ms  
11111111 About 58.03 ms  
n
N × 1024/4.5 MHz  
18  
Data Sheet S14188EJ1V0DS00  
µPD16879  
[2nd byte]  
The 2nd byte specifies the delay between the first point wait time being cleared and the output pulse being  
generated. This time called the first point magnetize wait time, and the output pulse is generated from the point at  
which the start up wait time. The first point magnetize wait time is counted at the falling edge of the first point wait  
time. The first point magnetize wait time can be set to 58.03 ms (when a 4.5 MHz clock input) and can be fine-tuned  
by means of 8-bit division (227.6 µs step: with 4.5 MHz clock).  
Always input data other than “0” to this byte because the first point magnetize wait time is necessary for latching  
data. If “0” is input to this byte, data cannot be updated.  
Table 4. 2nd Byte Data Configuration  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
First point wait  
Data  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
00000000 Prohibition  
00101001 About 9.33 ms  
11111111 About 58.03 ms  
n
N × 1024/4.5 MHz  
[3rd byte]  
The 3rd byte sets the chopping frequency and external extension pins (EXP0, EXP1).  
The chopping frequency sets by bits D0 to D5.  
The EXP pins goes low (current sink) when the input data is “0”, and high (high-impedance state) when the input  
data is “1”. Pull this pin up to VDD for use.  
Table 5. 3rd Byte Data Configuration  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
EXP1 sets  
EXP0 sets  
Chopping frequency sets  
D7: EXP1 sets  
D6: EXP0 sets  
“1”: High impedance  
“1”: High impedance  
“0”: Low level (Current sink)  
“0”: Low level (Current sink)  
The chopping frequency is set to 0 kHz and to a value in the range of 35.71 kHz to 225 kHz (4.5 MHz clock input).  
Refer to table 1 (4 page).  
[4th byte]  
The 4th byte selects a parameter to be output EXT α and EXT β pins (logic operation monitor pin). And, power  
save mode sets too.  
Table 6. 4th Byte Data Configuration  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
Power save sets  
Test parameter select  
19  
Data Sheet S14188EJ1V0DS00  
µPD16879  
The test parameter is selected by bits D0 to D6. There are two EXT pins. EXT α indicates the operating status of  
α channel, and EXT β indicates that of β channel. The relationship between each bit and each EXT pin is as shown  
in Table 7.  
Table 7. Output Data of Test Parameter  
Bit  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
EXT α  
EXT β  
Enable α  
Enable β  
Rotation α  
Pulseout α  
FF7 α  
Rotation β  
Pulseout β  
FF7 β  
FF3 α  
FF3 β  
Checksum  
Chopping  
FF2  
FF1  
If two or more signals that output signals to EXT α and EXT β are selected, they are positively ORed for output.  
The meanings of the symbols listed in Table 7 are as follows:  
Enable  
: Output setting (High level: Conducts/Low level: Stops)  
Rotation  
: Rotation setting (High level: Reverse (CCW)/Low level: Forward (CW))  
Pulse out : Output pulse signal  
FF7  
: Presence/absence of pulse in LATCH cycle (Outputs H level if output pulse information exists in  
serial data.)  
FF3  
FF2  
FF1  
: Pulse gate (output while pulse exists)  
: Outputs high level during first point wait time + first point magnetize wait time  
: Outputs high level during first point wait time  
Checksum : Checksum output (High level: when normal data is transmitted/Low level: when abnormal data is  
transmitted)  
Chopping : Chopping wave output  
Power save mode sets by D7 bit.  
D7 bit data is “1”: Normal mode  
D7 bit data in “0”: Power save mode  
When power save mode is selected, circuit consumption current can be reduced. Detail of power save function is  
refer to “About Power Save Mode (25 page)”.  
[5th byte]  
The 5th byte sets the enable, rotation, and output current of α channel.  
The enable sets by bit D7, the rotation sets by bit D6, and the output current sets by bits D0 to D4. Bit D5 is fixed  
“0”. Bit D5 isn’t use.  
Table 8. 5th Byte Data Configuration (α channel data)  
Bit  
D7  
D6  
D5  
0
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
Enable sets  
Rotation sets  
Output current sets  
20  
Data Sheet S14188EJ1V0DS00  
µPD16879  
Enable sets by D7 bit.  
D7 bit data is “0”: Output high impedance (but, internal counter increase)  
D7 bit data is “1”: Output conducts  
Rotation sets by D6 bit.  
D6 bit data is “0”: Forward turn (CW mode)  
D6 bit data is “1”: Reverse turn (CCW mode)  
Output current sets by D0 to D4 bits.  
The 250 mV (typical) voltage input from external source or internal reference voltage is internally doubled and  
input to a 5-bit D/A converter. By dividing this voltage by 5-bit data, a current setting reference voltage can be set  
inside the IC within the range of 100 to 500 mV, in units of 20 mV. If external source is used, the VREFsel pin connects  
VDD pin. If internal reference voltage is used, the VREFsel pin and VREF pin connect GND pin. The 64 steps micro-step  
(setting reference voltage is maximum) control is possible.  
Table 9. Output Current Setting Reference Voltage Data (α channel data)  
EVR setting  
50 mV  
D4  
0
D3  
1
D2  
0
D1  
1
D0 FIL pin voltage  
EVR setting  
160 mV  
170 mV  
180 mV  
190 mV  
200 mV  
210 mV  
220 mV  
230 mV  
240 mV  
250 mV  
D4  
1
D3  
0
D2  
1
D1  
1
D0 FIL pin voltage  
1
0
1
0
1
0
1
0
1
0
1
100 mV  
120 mV  
140 mV  
160 mV  
180 mV  
200 mV  
220 mV  
240 mV  
260 mV  
280 mV  
300 mV  
0
1
0
1
0
1
0
1
0
1
320 mV  
340 mV  
360 mV  
380 mV  
400 mV  
420 mV  
440 mV  
460 mV  
480 mV  
500 mV  
60 mV  
0
1
1
0
1
0
1
1
70 mV  
0
1
1
0
1
1
0
0
80 mV  
0
1
1
1
1
1
0
0
90 mV  
0
1
1
1
1
1
0
1
100 mV  
110 mV  
120 mV  
130 mV  
140 mV  
150 mV  
1
0
0
0
1
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
1
0
1
0
0
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
Remark If D0 to D4 bits input “00000” to “01010”, EVR value fixed 50 mV (FIL pin voltage fixed 100 mV).  
FIL pin (peak voltage) is output about double of EVR setting value.  
[6th byte]  
The 6th byte sets pulse number during 1VD period of α channel. The pulse number setting 1020 pulses maximum.  
It is set by eight bits in terms of software. However, the actual circuit uses 10-bit counter with the low-order two bits  
fixed to “0”. Therefore, the number of pulses that is actually generated during fall edge of the first point wait time +  
first point magnetize wait time (FF2) cycle is the number of pulses input x 4. The number of pulses can be set in a  
range of 0 to 1020 and in units of four pulses.  
Table 10. 6th Byte Data Configuration (α channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
00000000  
00000001  
11111111  
n
Pulse number/VD  
Data  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
0
4
1020  
n × 4  
21  
Data Sheet S14188EJ1V0DS00  
µPD16879  
[7th, 8th byte]  
The 7th byte and 8th byte set the pulse cycle of the α channel.  
The pulse cycle is specified using 16 bits: bits D0 (least significant bit) to D7 of the 7th byte, and bits D0 to D7  
(most significant bit) of the 8th byte. The pulse cycle can be set to a value in the range of 222 ns to 14.563 ms in  
units of 222 ns (with a 4.5 MHz clock).  
Table 11 (A). 7th Byte Data Configuration (α channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
Table 11 (B). 8th Byte Data Configuration (α channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
MSB  
[9th byte]  
The 9th byte sets the enable, rotation, and output current of β channel.  
The enable sets by bit D7, the rotation sets by bit D6, and the output current sets by bits D0 to D4. Bit D5 is fixed  
“0”. Bit D5 isn’t use.  
Table 12. 9th Byte Data Configuration (β channel data)  
Bit  
D7  
D6  
D5  
0
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
Enable sets  
Rotation sets  
Output current sets  
Enable sets by D7 bit.  
D7 bit data is “0”: Output high impedance (but, internal counter increase)  
D7 bit data is “1”: Output conducts  
Rotation sets by D6 bit.  
D6 bit data is “0”: Forward turn (CW mode)  
D6 bit data is “1”: Reverse turn (CCw mode)  
Output current sets by D0 to D4 bits.  
The 250 mV (typical) voltage input from external source or internal reference voltage is internally doubled and  
input to a 5-bit D/A converter. By dividing this voltage by 5-bit data, a current setting reference voltage can be set  
inside the IC within the range of 100 to 500 mV, in units of 20 mV. If external source is used, the VREFsel pin connects  
VDD pin. If internal reference voltage is used, the VREFsel pin and VREF pin connect GND pin. The 64 steps micro-step  
(setting reference voltage is maximum) control is possible.  
22  
Data Sheet S14188EJ1V0DS00  
µPD16879  
Table 13. Output Current Setting Reference Voltage Data (β channel data)  
EVR setting  
50 mV  
D4  
0
D3  
1
D2  
0
D1  
1
D0 FIL pin voltage  
EVR setting  
160 mV  
170 mV  
180 mV  
190 mV  
200 mV  
210 mV  
220 mV  
230 mV  
240 mV  
250 mV  
D4  
1
D3  
0
D2  
1
D1  
1
D0 FIL pin voltage  
1
0
1
0
1
0
1
0
1
0
1
100 mV  
120 mV  
140 mV  
160 mV  
180 mV  
200 mV  
220 mV  
240 mV  
260 mV  
280 mV  
300 mV  
0
1
0
1
0
1
0
1
0
1
320 mV  
340 mV  
360 mV  
380 mV  
400 mV  
420 mV  
440 mV  
460 mV  
480 mV  
500 mV  
60 mV  
0
1
1
0
1
0
1
1
70 mV  
0
1
1
0
1
1
0
0
80 mV  
0
1
1
1
1
1
0
0
90 mV  
0
1
1
1
1
1
0
1
100 mV  
110 mV  
120 mV  
130 mV  
140 mV  
150 mV  
1
0
0
0
1
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
1
0
1
0
0
1
1
1
1
1
1
0
1
0
1
1
1
1
1
0
1
0
Remark If D0 to D4 bits input “00000” to “01010”, EVR value fixed 50 mV (FIL pin voltage fixed 100 mV).  
FIL pin (peak voltage) is output about double of EVR setting value.  
[10th byte]  
The 10th byte sets pulse number during 1VD period of β channel. The pulse number setting 1020 pulses  
maximum. It is set by eight bits in terms of software. However, the actual circuit uses 10-bit counter with the low-  
order two bits fixed to “0”. Therefore, the number of pulses that is actually generated during fall edge of the first point  
wait time + first point magnetize wait time (FF2) cycle is the number of pulses input × 4. The number of pulses can  
be set in a range of 0 to 1020 and in units of four pulses.  
Table 14. 10th Byte Data Configuration (β channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
00000000  
00101001  
11111111  
n
Pulse number/VD  
Data  
0 or 1  
MSB  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
0
164  
1020  
n × 4  
23  
Data Sheet S14188EJ1V0DS00  
µPD16879  
[11th, 12th byte]  
The 11th byte and 12th byte set the pulse cycle of the β channel.  
The pulse cycle is specified using 16 bits: bits D0 (least significant bit) to D7 of the 7th byte, and bits D0 to D7  
(most significant bit) of the 8th byte. The pulse cycle can be set to a value in the range of 222 ns to 14.563 ms in  
units of 222 ns (with a 4.5 MHz clock).  
Table 15 (A). 11th Byte Data Configuration (β channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
LSB  
Table 15 (B). 12th Byte Data Configuration (β channel data)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
0 or 1  
MSB  
[13th byte]  
The 13th byte is checksum data.  
Please input the data that sum of the 1st byte to 13th byte is “0”.  
When the sum is “0”, the stepping operation continued. If the sum is not “0” because data transmission is  
abnormal, the stepping operation is inhibited and EXT pin (at the Checksum selecting) is held at low level.  
24  
Data Sheet S14188EJ1V0DS00  
µPD16879  
About Power Save Mode  
It is possible that circuit electric current is made small in the power saving (the following PS) mode.  
Data maintenance just before the PS mode and the maintenance of the phase position are done in the PS mode.  
Circuit consumption current in the PS mode becomes 300 µA (MAX.) at the time of the outside clock (OSCIN) = 4.5  
MHz, and becomes 100 µA (MAX.) at the time of the outside clock (OSCIN) stopped. It can be reduced in less than  
1/10 in normal mode.  
(How to be within PS mode)  
The establishment of the PS mode is done by a D7 bits of the 4th byte.  
Please follow the following process when it is within PS mode.  
(1) Normal operation (Pulse number > 1, enable: conducts)  
(2-1) Normal operation (Pulse number = 0, enable: conducts)  
(2-2) Normal operation (Pulse number = 0, enable: stops)  
(3) Please input PS data.  
(Effective timing of PS mode)  
Chopping movement stops at the LATCH falling timing which PS data are contained to.  
First point wait count and first point magnetize wait count stop at the next VD rising timing which PS data are  
contained to. FF1 is fixed on the high level, and FF2 is fixed on low level.  
Enable becomes low level at the LATCH falling timing which PS data are contained to.  
And, the outside expansion circuit (EXP terminal) works at the time of PS mode too.  
(PS mode release movement)  
Chopping movement resumes at the LATCH falling timing which PS release data are contained to.  
First point wait count and first point magnetize wait count resume at the next VD rising timing which PS release  
data are contained to.  
Enalbe becomes high level at the first FF1 falling timing which PS release data are contained to. (When enable  
data is high level)  
25  
Data Sheet S14188EJ1V0DS00  
µPD16879  
Data Update Timing  
The serial data of this product is set and update at the following timing.  
Table 16. Update Timing of The Data (1)  
Data  
First point wait time  
Data set  
LATCH falling edge  
Update timing  
Next VD rising edge or, next VD falling  
edge  
First point magnetize wait time  
LATCH falling edge  
LATCH falling edge  
LATCH falling edge  
LATCH falling edge  
FF1 falling edge  
EXP  
LATCH falling edge  
LATCH falling edge  
Refer to 25 page  
Chopping  
Power save  
The timing at which data is to be update differ, as shown in Table 17, depending on the enable status.  
Table 17. Update Timing of The Data (2)  
Change of enable  
Pulse cycle  
Pulse number  
Rotation  
1 1  
0 1  
1 0  
0 0  
FF2  
FF2  
FF2  
FF2  
FF2  
FF2  
FF2  
FF1  
FF2  
FF2  
FF2  
FF2  
Enable  
EVR  
LATCH  
LATCH  
LATCH  
V
D
LATCH  
FF1  
FF2  
Pulse out  
Pulse cycle, Pulse number, Rotation are update  
Enable is update (at the change of enable: 0 to 1)  
Output current (EVR) is updated  
26  
Data Sheet S14188EJ1V0DS00  
µPD16879  
Initialization  
The IC operation can be initialized as follows:  
(1) Turns ON VDD.  
(2) Make RESET input low level signal.  
In initial mode, the operating status of the IC is as shown in Table 18.  
Table 18. Operations in Initial Mode  
Item  
Current consumption  
OSC  
Specification  
100 µA  
Input of external clock is inhibited.  
Input inhibited.  
VD, VD  
FF1 to FF7  
Pulse out  
Low level  
Low level  
EXP0, EXP1  
Low level in the case of (1) above.  
Previous value is retained in the case of (2) above.  
Serial operation  
Can be accessed after initialization in the case of (1) above.  
Can be accessed after RESET has gone high level in the case of (2) above.  
Step pulse output is inhibited and FF7 is made low level if the following conditions are satisfied.  
(1) If the set number of pulses (6th/10th byte) is “0”.  
(2) If the checksum value is other than “0”.  
(3) If the first point wait time (FF1) is set to 1VD or longer.  
(4) If the first point wait time + first point magnetize wait time (FF2) is set to 1VD or longer.  
(5) If the first point wait time (FF1) is completed earlier than falling timing of LATCH.  
(6) If VD is not input.  
27  
Data Sheet S14188EJ1V0DS00  
µPD16879  
Hints on correct use  
(1) With this product, input the data for first point wait time and first point magnetize wait time.  
Because the serial data are set or updated by these wait times, if the first point wait time and first point  
magnetize wait time are not input, the data are not updated.  
(2) The first point wait time must be longer than LATCH.  
(3) If the falling of the FF2 is the same as the falling of the last output pulse, a count error occurs, and the IC may  
malfunction.  
(4) Transmit the serial data during the first point wait time (FF1). If it is input at any other time, the data may not  
be transmitted correctly.  
(5) If the LGND potential is undefined, the data may not be input correctly. Keep the LGND potential to the  
minimum level. It is recommended that LGND and PGND be divided for connection (single ground) to prevent  
the leakage of noise from the output circuit.  
28  
Data Sheet S14188EJ1V0DS00  
µPD16879  
PACKAGE DRAWINGS  
38-PIN PLASTIC SSOP (7.62 mm (300))  
38  
20  
detail of lead end  
G
F
P
L
1
19  
A
E
H
I
J
S
B
C
N
S
K
M
M
D
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
12.7±0.3  
0.65 MAX.  
0.65 (T.P.)  
+0.05  
0.37  
D
0.1  
E
F
G
H
I
0.125±0.075  
1.675±0.125  
1.55  
7.7±0.2  
5.6±0.2  
J
1.05±0.2  
+0.1  
0.2  
K
0.05  
L
M
N
0.6±0.2  
0.10  
0.10  
+7°  
3°  
P
3°  
P38GS-65-BGG-1  
29  
Data Sheet S14188EJ1V0DS00  
µPD16879  
RECOMMENDED SOLDERING CONDITIONS  
Solder this product under the following recommended conditions.  
For soldering methods and conditions other than those recommended, consult NEC.  
For details of the recommended soldering conditions, refer to information document “Semiconductor Device  
Mounting Technology Manual”.  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Recommended Condition  
IR35-00-3  
Package peak temperature: 235°C, Time: 30 secs max. (210°C min.); Number of  
times: 3 times max.; Number of day: none; Flux: Rosin-based flux with little  
chlorine content (chlorine: 0.2 Wt%, ax.) is recommended  
VPS  
Package peak temperature: 215°C, Time: 40 secs max. (200°C min.); Number of  
times: 3 times max.; Number of day: none; Flux: Rosin-based flux with little  
chlorine content (chlorine: 0.2 Wt%, ax.) is recommended.  
VP15-00-3  
WS60-00-1  
Wave soldering  
Package peak temperature: 260°C; Time: 10 secs max.; Preheating  
temperature: 120°C max; Number of times: once; Flux: Rosin-based flux with  
little chlorine content (chlorine: 0.2 Wt%, ax.) is recommended.  
Caution Do not use two or more soldering methods in combination.  
30  
Data Sheet S14188EJ1V0DS00  
µPD16879  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
31  
Data Sheet S14188EJ1V0DS00  
µPD16879  
The information in this document is current as of May, 2000. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data  
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products  
and/or types are available in every country. Please check with an NEC sales representative for  
availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without prior  
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.  
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of  
third parties by or arising from the use of NEC semiconductor products listed in this document or any other  
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any  
patents, copyrights or other intellectual property rights of NEC or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of customer's equipment shall be done under the full  
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third  
parties arising from the use of these circuits, software and information.  
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers  
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize  
risks of damage to property or injury (including death) to persons arising from defects in NEC  
semiconductor products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment, and anti-failure features.  
NEC semiconductor products are classified into the following three quality grades:  
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products  
developed based on a customer-designated "quality assurance program" for a specific application. The  
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular  
application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's  
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not  
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness  
to support a given application.  
(Note)  
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.  
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for  
NEC (as defined above).  
M8E 00. 4  

相关型号:

UPD16879GS-BGG-E2-A

IC,MOTOR CONTROLLER,CMOS,SSOP,38PIN
RENESAS

UPD168807K9-4EG-E1-A

1.9A SWITCHING CONTROLLER, 1500kHz SWITCHING FREQ-MAX, PQCC48, 6 X 6 MM, 0.40 MM PITCH, PLASTIC, VQFN-48
RENESAS

UPD16882

MONOLITHIC CD-ROM/DVD-ROM 3-PHASE SPINDLE MOTOR DRIVER
NEC

UPD16882GS

MONOLITHIC CD-ROM/DVD-ROM 3-PHASE SPINDLE MOTOR DRIVER
NEC

UPD16882GS-A

IC,MOTOR CONTROLLER,CMOS/MOS,SOP,30PIN
RENESAS

UPD16886

MONOLITHIC 1.5-CHANNEL H BRIDGE DRIVER CIRCUIT FOR CAMERAS
NEC

UPD16886MA-6A5

MONOLITHIC 1.5-CHANNEL H BRIDGE DRIVER CIRCUIT FOR CAMERAS
NEC

UPD16886MA-6A5-A

Brush DC Motor Controller, 2.8A, MOS, PDSO24, 5.72 MM, PLASTIC, TSSOP-24
NEC

UPD16886MA-6A5-E1-A

IC,MOTOR CONTROLLER,MOS,TSSOP,24PIN
RENESAS

UPD16886MA-6A5-T1

IC,MOTOR CONTROLLER,MOS,TSSOP,24PIN
RENESAS

UPD16886MA-6A5-T2

IC,MOTOR CONTROLLER,MOS,TSSOP,24PIN
RENESAS

UPD16901

FLASH MEMORY VOLTAGE STEPUP DC/DC CONVERTER IC
NEC