RT5795A [RICHTEK]

暂无描述;
RT5795A
型号: RT5795A
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

暂无描述

文件: 总15页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT5795A  
2A, 5.5V, Low IQ ACOT Synchronous Step-Down Converter  
General Description  
Features  
2.5V to 5.5V Input Voltage Range  
Advanced COT Control loop design  
Fast Transient Response  
The RT5795A is a full featured 5.5V, 2A, Advanced  
Constant-On-Time (ACOT) synchronous step-down  
converter with two integrated MOSFETs. The advanced  
COT operation allows transient responses to be optimized  
over a wide range of loads, and output capacitors to  
efficiently reduce external component count. The RT5795A  
provides up to 2.7MHz switching frequency to minimize  
the size of output inductor and capacitors. The RT5795A  
is available in the WDFN-8SL 2x2 package.  
Internal 100mΩ and 80mΩ Synchronous Rectifier  
Highly Accurate VOUT Regulation Over Load/Line  
Range  
Robust Loop Stability with Low-ESR COUT  
Ordering Information  
RT5795A  
Applications  
Mobile Phones and HandheldDevices  
Pin 1 Orientation***  
(2) : Quadrant 2, Follow EIA-481-D  
Package Type  
QW : WDFN-8SL 2x2 (W-Type)  
(Exposed Pad-Option 2)  
STB, Cable Modem, and xDSL Platforms  
WLANASIC Power / Storage (SSDand HDD)  
General Purpose for POL LV Buck Converter  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Pin Configuration  
Note :  
(TOP VIEW)  
***Empty means Pin1 orientation is Quadrant 1  
Richtek products are :  
1
2
3
4
8
7
6
5
EN  
PGND  
AGND  
FB  
VIN  
LX  
PGOOD  
VOS  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
9
WDFN-8SL 2x2  
Suitable for use in SnPb or Pb-free soldering processes.  
Marking Information  
2L : Product Code  
W : Date Code  
2LW  
Simplified Application Circuit  
RT5795A  
PGOOD  
Power Good  
VIN  
EN  
V
IN  
LX  
V
OUT  
PGND  
AGND  
R1  
R2  
VOS  
FB  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
1
RT5795A  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
EN  
Enable control input. Pull High to Enable.  
2,  
Power ground. The exposed pad must be soldered to a large PCB and connected  
to PGND for maximum power dissipation.  
PGND  
9 (Exposed Pad)  
3
4
AGND  
FB  
Analog ground. Should be electrically connected to GND close to the device.  
Feedback voltage input.  
Output voltage sense pin for the internal control loop. Must be connected to  
output.  
5
6
VOS  
Power good open-drain output. This pin is pulled to low if the output voltage is  
below regulation limits. Can be left floating if not used.  
PGOOD  
Switch node. The Source of the internal high-side power MOSFET, and Drain of  
the internal low-side (synchronous) rectifier MOSFET.  
7
8
LX  
VIN  
Power input supply voltage, 2.5V to 5.5V.  
Functional Block Diagram  
EN  
VOS  
TON  
AGND  
VIN  
UVLO  
OTP  
Shutdown  
Control  
LX  
Error Amplifier  
Comparator  
+
-
+
+
-
FB  
Logic  
Control  
LX  
Driver  
Current  
Limit  
LX  
V
REF  
Ramp  
Detector  
Generator  
PGOOD  
+
-
LX  
LX  
FB  
AZC  
PGND  
V
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS5795A-06 November 2019  
RT5795A  
Operation  
Power Good  
The RT5795A is a low voltage synchronous step-down  
converter that can support input voltage ranging from 2.5V  
to 5.5V and the output current can be up to 2A. The  
RT5795A uses ACOTTM mode control. To achieve good  
stability with low-ESR ceramic capacitors, theACOT uses  
a virtual inductor current ramp generated inside the IC.  
This internal ramp signal replaces the ESR ramp normally  
provided by the output capacitor's ESR. The ramp signal  
and other internal compensations are optimized for low-  
ESR ceramic output capacitors.  
When the output voltage is higher than PGOOD rising  
threshold, the PGOOD flag is high.  
Output Under-Voltage Protection (UVP)  
When the output voltage is lower than 66% reference  
voltage after soft-start, the UVP is triggered.  
Over-Current Protection (OCP)  
The RT5795A senses the current signal when the high-  
side and low-side MOSFET turns on. As a result, The  
OCP is a cycle-by-cycle current limit. If an over-current  
condition occurs, the converter turns off the next on pulse  
until inductor current drops below the OCP limit. If the  
OCP is continually activated and the load current is larger  
than the current provided by the converter, the output  
voltage drops. Also, when the output voltage triggers the  
UVP also, the current will drop to ZC and trigger the re-  
soft start sequence.  
In steady-state operation, the feedback voltage, with the  
virtual inductor current ramp added, is compared to the  
reference voltage. When the combined signal is less than  
the reference, the on-time one-shot is triggered, as long  
as the minimum off-time one-shot is clear and the  
measured inductor current (through the synchronous  
rectifier) is below the current limit. The on-time one-shot  
turns on the high-side switch and the inductor current  
ramps up linearly. After the on-time, the high-side switch  
is turned off and the synchronous rectifier is turned on  
and the inductor current ramps down linearly. At the same  
time, the minimum off-time one-shot is triggered to prevent  
another immediate on-time during the noisy switching  
time and allow the feedback voltage and current sense  
signals to settle. The minimum off-time is kept short so  
that rapidly-repeated on-times can raise the inductor  
current quickly when needed.  
Soft-Start  
An internal current source charges an internal capacitor  
to build the soft-start ramp voltage. The typical soft-start  
time is 150μs.  
Over-Temperature Protection (OTP)  
The RT5795Ahas an over-temperature protection. When  
the device triggers the OTP, the device shuts down until  
the temperature is back to normal.  
PWM Frequency and Adaptive On-Time Control  
The on-time can be roughly estimated by the equation :  
VOUT  
1
TON  
=
where fOSC is nominal 2.7MHz  
V
fOSC  
IN  
Under-Voltage Protection (UVLO)  
The UVLO continuously monitors the VCC voltage to make  
sure the device works properly. When the VCC is high  
enough to reach the UVLO high threshold voltage, the  
step-down converter softly starts or pre-bias to its regulated  
output voltage. When the VCC decreases to its low  
threshold voltage, the device shuts down.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
3
RT5795A  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 0.3V to 6V  
Switch Voltage, LX -------------------------------------------------------------------------------------------------------- 0.3V to 6V  
< 50ns------------------------------------------------------------------------------------------------------------------------ 2.5V to 7V  
Other Pins------------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
PowerDissipation, PD @ TA = 25°C  
WDFN-8SL 2x2 ------------------------------------------------------------------------------------------------------------ 1.538W  
Package Thermal Resistance (Note 2)  
WDFN-8SL 2x2, θJA ------------------------------------------------------------------------------------------------------- 65°C/W  
WDFN-8SL 2x2, θJC ------------------------------------------------------------------------------------------------------ 8°C/W  
Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------------- 2kV  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage, VIN ----------------------------------------------------------------------------------------------- 2.5V to 5.5V  
Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 3.6V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Unit  
Under-Voltage Lockout  
Threshold  
VUVLO  
VCC rising  
EN = 0V  
2.28  
2.35  
2.48  
--  
V
Under-Voltage Lockout  
Hysteresis  
VUVLOHY  
--  
400  
mV  
Shutdown Supply Current  
Quiescent Current  
ISHDN  
IQ  
--  
--  
--  
1
A  
A  
V
Active, VFB = 0.5V, no switching  
30  
--  
Voltage Reference  
VREF  
0.441 0.45 0.459  
High-Side  
Current Limit  
Peak current  
Valley current  
2.5  
2
3.2  
2.4  
4
ILIM  
A
Low-Side  
2.9  
VOUT falling referenced to VOUT  
nominal  
Power Good Threshold  
Power Good Hysteresis  
VPGTH  
VPGHY  
IPG  
15  
--  
10  
5
5  
--  
%
%
A  
V
Hysteresis referenced to VOUT  
nominal  
Power Good Leakage  
Current  
VPG = 5V  
--  
0.01  
--  
0.1  
0.3  
Power Good Low Level  
Voltage  
VPGL  
Isink = 500A  
--  
Enable Rising Threshold  
Enable Falling Threshold  
VENR  
VENF  
Rising  
Falling  
1
--  
--  
--  
V
V
--  
0.4  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS5795A-06 November 2019  
RT5795A  
Parameter  
High-Side RP-MOSFET  
Low-Side RN-MOSFET  
Symbol  
Test Conditions  
Min  
--  
Typ  
100  
80  
Max  
--  
Unit  
Switch  
On-Resistance  
m  
--  
--  
Thermal Shutdown  
Temperature  
--  
--  
150  
20  
--  
--  
C  
C  
Thermal Shutdown  
Hysteresis  
Switching Frequency  
fOSC  
--  
--  
2.7  
1
--  
--  
MHz  
Output Discharge Resistor  
k  
Note 1. Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package. The copper area is 70mm2 connected with IC exposed pad.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
5
RT5795A  
Typical Application Circuit  
RT5795A  
PGOOD  
6
7
8
1
Power Good  
VIN  
EN  
V
IN  
180k  
10µF  
L
V
LX  
OUT  
5
4
2, 9 (Exposed Pad)  
3
R1  
R2  
C
OUT  
VOS  
FB  
PGND  
AGND  
Table 1. Suggested Component Values  
V
OUT (V)  
R1 (k)  
R2 (k)  
39.2  
L (H)  
COUT (F)  
1.2V  
1.8V  
2.5V  
3.3V  
65.3  
117.6  
178.6  
248.3  
0.47  
22  
22  
22  
22  
39.2  
1
1
1
39.2  
39.2  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS5795A-06 November 2019  
RT5795A  
Typical Operating Characteristics  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.3V  
VIN = 5V  
VIN = 3.3V  
VIN = 5V  
VOUT = 1.2V, L = 0.47μH  
VOUT = 1.2V, L = 0.47μH  
0
0
0
0.5  
1
1.5  
2
0.001  
0.01  
0.1  
1
10  
10  
2
Output Current (A)  
Output Current (A)  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.3V  
VIN = 5V  
VIN = 3.3V  
VIN = 5V  
VOUT = 2.5V, L = 1μH  
1.5 2  
VOUT = 2.5V, L = 1μH  
0.001  
0.01  
0.1  
1
0.5  
1
Output Current (A)  
Output Current (A)  
Output Voltage vs. Output Current  
Output Voltage vs. Output Current  
1.250  
1.240  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.170  
1.160  
1.150  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
VIN = 5V  
VIN = 3.3V  
VIN = 5V  
VIN = 3.3V  
VOUT = 1.2V, L = 0.47μH  
VOUT = 2.5V, L = 1μH  
0
0.5  
1
1.5  
0.5  
1
1.5  
2
Output Current (A)  
Output Current (A)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
7
RT5795A  
Output Voltage vs. Input Voltage  
Output Voltage vs. Input Voltage  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
VOUT = 1.2V, IOUT = 0A, L = 0.47μH  
3.5 4.5 5.5  
VOUT = 2.5V, IOUT = 0A, L = 1μH  
2.5  
3
4
5
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
VOUT = 1.2V, IOUT = 0A, L = 0.47μH  
VIN = 5V, VOUT = 1.2V, IOUT = 1A, L = 0.47μH  
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (°C)  
Output Current Limit vs. Input Voltage  
Output Current Limit vs. Temperature  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
VOUT = 1.2V, L = 0.47μH  
VIN = 3.3V, VOUT = 1.2V, L = 0.47μH  
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (°C)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS5795A-06 November 2019  
RT5795A  
Input Voltage vs. Temperature  
Output Voltage vs. Temperature  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
UVLO Turn On  
UVLO Turn Off  
VIN = 3.6V, IOUT = 0.5A  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Enable Threshold vs. Temperature  
Load Transient Response  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT  
(20mV/Div)  
Enable On  
Enable Off  
IOUT  
(1A/Div)  
VIN = 5V, VOUT = 2.5V, IOUT = 1A to 2A, L = 1μH  
Time (50μs/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Load Transient Response  
Load Transient Response  
VOUT  
(20mV/Div)  
VOUT  
(20mV/Div)  
IOUT  
(1A/Div)  
IOUT  
(1A/Div)  
VIN = 3.3V, VOUT = 1.2V, IOUT = 1A to 2A, L = 0.47μH  
Time (50μs/Div)  
VIN = 5V, VOUT = 2.5V, IOUT = 0A to 2A, L = 1μH  
Time (50μs/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
9
RT5795A  
Load Transient Response  
Voltage Ripple  
VOUT  
(20mV/Div)  
VOUT  
(20mV/Div)  
VLX  
(5V/Div)  
IOUT  
(1A/Div)  
VIN = 3.3V, VOUT = 1.2V, IOUT = 2A, L = 0.47μH  
VIN = 3.3V, VOUT = 1.2V, IOUT = 0A to 2A, L = 0.47μH  
Time (50μs/Div)  
Time (500ns/Div)  
Voltage Ripple  
Voltage Ripple  
VOUT  
VOUT  
(20mV/Div)  
(20mV/Div)  
VLX  
VLX  
(5V/Div)  
(5V/Div)  
VIN = 5V, VOUT = 2.5V, IOUT = 2A, L = 1μH  
VIN = 3.3V, VOUT = 1.2V, IOUT = 1A, L = 0.47μH  
Time (500ns/Div)  
Time (500ns/Div)  
Power On from VIN  
Voltage Ripple  
VOUT  
VEN  
(5V/Div)  
(20mV/Div)  
VOUT  
(1V/Div)  
VLX  
(5V/Div)  
VLX  
(5V/Div)  
IOUT  
(2A/Div)  
VIN = 5V, VOUT = 2.5V, IOUT = 1A, L = 1μH  
VIN = 5V, VOUT = 1.2V, IOUT = 2A  
Time (500ns/Div)  
Time (100μs/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS5795A-06 November 2019  
RT5795A  
Power Off from VIN  
VEN  
(5V/Div)  
VOUT  
(1V/Div)  
VLX  
(5V/Div)  
IOUT  
(2A/Div)  
VIN = 5V, VOUT = 1.2V, IOUT = 2A  
Time (100μs/Div)  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
11  
RT5795A  
Application Information  
The RT5795A is a single-phase step-down converter.  
Advance Constant-on-Time (ACOT) with fast transient  
response. An internal 0.45V reference allows the output  
voltage to be precisely regulated for low output voltage  
applications. A fixed switching frequency (2.7MHz)  
oscillator and internal compensation are integrated to  
minimize external component count. Protection features  
include over current protection, under voltage protection  
and over temperature protection.  
will retry automatically. When the UVP condition is  
removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
Post Short  
VIN  
(2V/Div)  
VOUT  
(500mV/Div)  
Output Voltage Setting  
VLX  
(5V/Div)  
The output voltage is set by an external resistive divider  
according to the following equation :  
IOUT  
(2A/Div)  
R1  
VIN = 5V, VOUT = 1.2V, L = 1μH  
VOUT VREF x (1  
)
R2  
where VREF equals to 0.45V typical. The resistive divider  
allows the FB pin to sense a fraction of the output voltage  
as shown in Figure 1.  
Time (1ms/Div)  
CIN and COUT Selection  
V
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the top MOSFET. To  
prevent large ripple voltage, a low ESR input capacitor  
sized for the maximum RMS current should be used. RMS  
current is given by :  
OUT  
R1  
FB  
RT5795A  
R2  
GND  
VOUT  
V
IN  
IRMS IOUT(MAX)  
1  
V
VOUT  
Figure 1. Setting the Output Voltage  
Low Supply Operation  
IN  
This formula has a maximum at VIN = 2VOUT, where IRMS  
=
IOUT / 2. This simple worst case condition is commonly  
used for design because even significant deviations do  
not result in much difference. Choose a capacitor rated at  
a higher temperature than required.  
The RT5795A is designed to operate down to an input  
supply voltage of 2.5V. One important consideration at  
low input supply voltages is that the RDS(ON) of the P-  
Channel and N-Channel power switches increases. The  
user should calculate the power dissipation when the  
RT5795A is used at 100% duty cycle with low input  
voltages to ensure that thermal limits are not exceeded.  
Several capacitors may also be paralleled to meet size or  
height requirements in the design.  
The selection of COUT is determined by the effective series  
resistance (ESR) that is required to minimize voltage ripple  
and load step transients, as well as the amount of bulk  
capacitance that is necessary to ensure that the control  
loop is stable. Loop stability can be checked by viewing  
the load transient response. The output ripple, ΔVOUT, is  
determined by :  
Under Voltage Protection (UVP)  
Hiccup Mode  
For the RT5795A, it provides Hiccup Mode Under Voltage  
Protection (UVP). When the output voltage is lower than  
66% reference voltage after soft-start, the UVP is triggered.  
If the UVP condition remains for a period, the RT5795A  
1
VOUT  I ESR   
L   
8fCOUT  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS5795A-06 November 2019  
RT5795A  
The output ripple is highest at maximum input voltage  
since ΔIL increases with input voltage. Multiple capacitors  
placed in parallel may be needed to meet the ESR and  
RMS current handling requirements.Dry tantalum, special  
polymer, aluminum electrolytic and ceramic capacitors are  
all available in surface mount packages. Special polymer  
capacitors offer very low ESR, but have lower capacitance  
density than other types. Tantalum capacitors have the  
highest capacitance density, but it is important to only  
use types that have been surge tested for use in switching  
power supplies. Aluminum electrolytic capacitors have  
significantly higher ESR, but can be used in cost-sensitive  
applications provided that consideration is given to ripple  
current ratings and long term reliability. Ceramic capacitors  
have excellent low ESR characteristics, but can have a  
high voltage coefficient and audible piezoelectric effects.  
Thermal Considerations  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. The  
junction to ambient thermal resistance, θJA, is layout  
dependent. For WDFN-8SL 2x2 packages, the thermal  
resistance, θJA, is 65°C/W on a standard JEDEC 51-7  
four-layer thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by the following  
formula :  
The high Q of ceramic capacitors with trace inductance  
can also lead to significant ringing.  
Using Ceramic Input and Output Capacitors  
Higher value, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
PD(MAX) = (125°C 25°C) / (65°C/W) = 1.538W for  
WDFN-8SL 2x2 package  
for switching regulator applications. However, care must  
be taken when these capacitors are used at the input and  
output. When a ceramic capacitor is used at the input  
and the power is supplied by a wall adapter through long  
wires, a load step at the output can induce ringing at the  
input, VIN. At best, this ringing can couple to the output  
and be mistaken as loop instability. At worst, a sudden  
inrush of current through the long wires can potentially  
cause a voltage spike at VIN large enough to damage the  
part.  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curve in Figure 2 allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
2.0  
Four-Layer PCB  
1.6  
1.2  
0.8  
0.4  
0.0  
Table 2. Capacitors for CIN and COUT  
Component  
Supplier  
CapacitanceCase  
Part No.  
(F)  
10F  
22F  
Size  
1206  
1206  
MuRata GRM31CR71A106KA01  
MuRata GRM31CR71A226KA01  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 2. Derating Curve of Maximum PowerDissipation  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS5795A-06 November 2019  
www.richtek.com  
13  
RT5795A  
Layout Considerations  
Flood all unused areas on all layers with copper. Flooding  
with copper will reduce the temperature rise of power  
components. Connect the copper areas to any DC net  
(VIN, VOUT, GND, or any other DC rail in the system).  
Follow the PCB layout guidelines for optimal performance  
of the RT5795A.  
Connect the terminal of the input capacitor(s), CIN, as  
close as possible to the VINpin. This capacitor provides  
the AC current into the internal power MOSFETs.  
Connect the FB pin directly to the feedback resistors.  
The resistive voltage divider must be connected between  
VOUT andGND.  
LX node experiences high frequency voltage swing and  
should be kept within a small area. Keep all sensitive  
small-signal nodes away from the LX node to prevent  
stray capacitive noise pick up.  
Input capacitor must be placed  
as close to the IC as possible.  
C
C
IN  
V
IN  
GND  
LX should be connected to inductor by  
wide and short trace. Keep sensitive  
components away from this trace  
IN  
1
2
3
4
8
7
6
5
EN  
PGND  
AGND  
FB  
VIN  
LX  
PGOOD  
VOS  
9
R2  
L
C
OUT  
OUT  
R1  
C
V
V
OUT  
OUT  
The feedback and must be connected as close to the  
device as possible. Keep sensitive component away.  
Figure 3. PCB Layout Guide  
Copyright 2019 Richtek Technology Corporation. All rights reserved.  
is a registered trademark of Richtek Technology Corporation.  
©
www.richtek.com  
14  
DS5795A-06 November 2019  
RT5795A  
Outline Dimension  
2
1
2
1
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min.  
0.700  
0.000  
0.175  
0.200  
1.900  
1.150  
1.550  
1.900  
0.750  
0.850  
Max.  
0.800  
0.050  
0.250  
0.300  
2.100  
1.250  
1.650  
2.100  
0.850  
0.950  
Min.  
0.028  
0.000  
0.007  
0.008  
0.075  
0.045  
0.061  
0.075  
0.030  
0.033  
Max.  
0.031  
0.002  
0.010  
0.012  
0.083  
0.049  
0.065  
0.083  
0.033  
0.037  
A
A1  
A3  
b
D
Option1  
D2  
E2  
Option2  
E
Option1  
Option2  
e
L
0.500  
0.020  
0.250  
0.350  
0.010  
0.014  
W-Type 8SL DFN 2x2 Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify  
that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek  
product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use;  
nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent  
or patent rights of Richtek or its subsidiaries.  
DS5795A-06 November 2019  
www.richtek.com  
15  

相关型号:

RT5796A

暂无描述
RICHTEK

RT5800

暂无描述
RICHTEK

RT5C348B

4-WIRE SERIAL INTERFACE
RICOH

RT5C475A

PC Card Support
ETC

RT5N141C

Transistor With Resistor
ISAHAYA

RT5N431C

Transistor With Resistor
ISAHAYA

RT5P141C

Transistor With Resistor
ISAHAYA

RT5P14BC

Transistor With Resistor
ISAHAYA

RT5P230C

Transistor With Resistor
ISAHAYA

RT5P231C

Transistor
ISAHAYA

RT5P430C

Transistor With Resistor
ISAHAYA

RT6010

Dual Channel High Efficiency and High Accuracy Average Current Control LED Backlight Buck Controller
RICHTEK