RT9206PS [RICHTEK]

High Efficiency, Synchronous Buck with Dual Linear Controllers; 高效率,同步降压型带双线性控制器
RT9206PS
型号: RT9206PS
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

High Efficiency, Synchronous Buck with Dual Linear Controllers
高效率,同步降压型带双线性控制器

控制器
文件: 总21页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9206  
High Efficiency, Synchronous Buck with Dual Linear  
Controllers  
General Description  
Features  
l Wide Input Range (4.75V to 28V)  
The RT9206 is a low cost, combo power controller, which  
integrates a synchronous step-down voltage-mode PWM  
and two HV linear controllers. Directly drive external  
N-MOSFET makes it easy to implement a high efficiency  
and cost attractive power solution. Voltage mode control  
loop and constant operation frequency with external  
compensation network provide better stability in wide  
operation range. Adjustable operation frequency up to  
600kHz can minimize the inductor size and PCB space. It  
is particularly suitable in wide input voltage range (from  
4.75V to 28V) and multi-output applications.  
l 0.8V Internal Reference  
l High Efficiency Synchronous Buck Topology  
l Integrate two HV Linear Controllers  
l Low cost N-MOSFET Design  
l Duty Cycle from 0% to 90%.  
l Adjustable switching frequency from 200kHz to  
600kHz, Default 200kHz  
l Sense OCP by low Side MOSFET RDS(ON)  
l Power Good Signal Output  
l RoHS Compliant and 100% Lead (Pb)-Free  
Linear controller features flexible linear power design.  
Delivered power can be simply decided by external  
N-MOSFET selection. Output voltage level is chosen via  
external resistor divider. The 0.8V internal reference can  
satisfy most of the applications. Under voltage lockout  
provide cost effective protection of output.  
Applications  
l LCD Monitor  
l Desk Note  
l IEEE1394 Client  
l Desktop IA  
l Broadband  
RT9206 provides complete safety protection function: soft  
start, over currentprotection, overvoltage andunder voltage  
protection. Set current limit by choosing different MOSFET.  
Synchronous Buck control mode provides excellent over  
voltage protection by turning on low side MOSFET to  
prevent any damage of end device from abnormal voltage  
stress as over voltage condition occurs.  
Pin Configurations  
(TOP VIEW)  
LDRV1  
VDD  
16  
15  
LFB1  
BOOT  
UGATE  
PHS  
VINT  
LGATE  
GND  
2
3
4
5
LDRV2  
LFB2  
14  
13  
12  
COMP  
FB  
PGOOD  
SS/EN  
6
7
8
11  
10  
Ordering Information  
RT9206  
RT  
9
SOP-16  
Package Type  
S : SOP-16  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Note :  
RichTek Pb-free and Green products are :  
}RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
}Suitable for use in SnPb or Pb-free soldering processes.  
}100%matte tin (Sn) plating.  
DS9206-11 March 2007  
www.richtek.com  
1
RT9206  
Typical Application Circuit  
R1 10  
C15 500pF  
R2 11k  
V
12V  
IN  
C1  
1uF  
C3  
220uF  
C2  
1uF  
R4  
3.3k  
1N4148  
V
V
D1  
15  
Q3  
OUT1  
1
2
3
4
5
16  
15  
14  
C9  
1uF  
LDRV1  
LFB1  
R
C16 500pF  
R3 11k  
RT9206CS  
BOOT  
OUT2  
3.3V  
VDD  
BOOT  
UGATE  
PHS  
Si4800BDY  
C6  
10uF  
Q4  
V
2.5V  
0 R13  
OUT3  
Q1  
L1  
C10  
1000uF  
V
C11  
1uF  
LDRV2  
LFB2  
OUT1  
5V  
13  
12  
4.7uH  
C8 4.7uF  
C7  
10uF  
R11  
5.6k  
COMP  
FB  
VINT  
0
Q2  
6
7
11  
10  
9
LGATE  
GND  
C17  
R14  
390pF  
C13  
1000uF  
PGOOD  
SS/EN  
C14  
33nF  
8
RT  
R
R12  
4.3K  
RT  
Q5  
R10  
51k  
R8  
3k  
1uF  
C
EN  
SS  
R9  
560  
PGOOD  
Figure 1. Typical Application for 12V Input  
R1 10  
V
24V  
IN  
C1  
1uF  
C3  
220uF  
C2  
1uF  
C15 500pF  
R4  
R2 11k  
3.3k  
1N4148  
D1  
Q3  
V
OUT1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
C9  
1uF  
LDRV1  
LFB1  
R
V
C16 500pF  
R3 11k  
BOOT  
RT9206CS  
15  
0
OUT2  
VDD  
BOOT  
UGATE  
PHS  
Si4800BDY  
3.3V  
C6  
10uF  
V
Q4  
R13  
OUT3  
Q1  
C10  
1000uF 1uF  
C11  
V
LDRV2  
LFB2  
COMP  
FB  
L1  
OUT1  
5V  
2.5V  
33uH  
C8 4.7uF  
0
C7  
10uF  
R11  
5.6k  
VINT  
Q2  
11  
10  
9
LGATE  
GND  
220pF  
C13  
R14  
PGOOD  
SS/EN  
Q5  
C14  
33nF  
RT  
R
R12  
8.2K  
RT  
R10  
51k  
4.7uF  
C
R8  
3k  
EN  
SS  
R9  
560  
PGOOD  
Figure 2. Typical Application for 24V Input  
Note : RBOOT is a must to suppress ringing spike.  
www.richtek.com  
2
DS9206-11 March 2007  
RT9206  
Function Block Diagram  
+
-
+
LCTR1  
0.8V  
LDRV1  
LFB1  
LCTR2  
0.8V  
+
-
LDRV2  
LFB2  
VDD  
+
VINT  
6.0V  
Reg  
+
Thermal  
Protection  
UV  
0.6V  
-
+
-
UV  
BOOT  
0.6V  
UGATE  
PHS  
VINT  
LGATE  
GND  
+
-
Driver  
Control  
Logic  
UV  
0.6V  
0.8V  
COMP  
FB  
+
-
GM  
+
PWM  
CP  
-
RAMP  
Generator  
Soft Start  
SS/EN  
+
-
OSC  
RT  
OVP  
1V  
PGOOD  
-
PG  
+
0.72V  
DS9206-11 March 2007  
www.richtek.com  
3
RT9206  
Operation  
Introduction  
Power On Reset (POR)  
The RT9206 is a combo controller, which integrates an  
adjustable frequency, voltage mode synchronous step  
down controller and two HV linear controllers. The  
synchronous step down controller consists of an internal  
precision reference, an internal oscillator, an error amplifier,  
a PWM comparator, control logic and floating gate driver,  
a programmable soft-start, a power good indicator, an over  
voltage protection, an overtemperature protection and short  
circuit protection.  
The power on reset circuit assures that the MOSFET driver  
outputs remain in the off state whenever the VDD supply  
voltages lower than the POR threshold.  
Over-Current Protection  
Whenever the over-current is occurred in soft-start or in  
normal operation period, It will shut down PWM signal,  
the MOSFET driver outputs remain in the off state, and  
latch soft-start signal low until restart VDD supply voltage.  
The output voltage of the synchronous converter is set  
and controlled by the output of the error amplifier, which is  
the amplified error signal from the sensed output voltage  
and the voltage on non-inverting input, which is connected  
with internal 0.8V reference voltage. The amplified error  
signal is compared to a fixed frequency linear sawtooth  
ramp and generates fixed frequency pulse of variable duty-  
cycle, which drivers the twoN-Channel external MOSFETs.  
Over-Voltage Protection  
Once over-voltage protection occurred, it will turn on low  
side MOSFET and latch soft-start signal low to prevent  
end device form abnormal voltage stress. Restart VDD  
supply voltage will release the protection.  
Power Good Indicator  
The power good indicator is an open drain output to show  
whether the synchronous converter output ready or not.  
The power good indicator is available after soft-start end.  
The timing of the synchronous converter is provide through  
an internal oscillator circuit and can be programmed  
between 200kHz to 600kHz via an external resistor  
connected between RT pin and ground.  
Short-Circuit Protection  
The short-circuit phenomenon is sensed by the drop of  
output voltage, synchronous converter and two linear  
controller. Once the short-circuitoccurred, the dropof output  
voltage lower than the under voltage threshold, 0.6V on  
feedback, the PWM signal will shut down and both of the  
external MOSFET will turn off and soft-start signal latch  
low. Soft-start signal, SS, is also connected to two linear  
controller error amplifier non-inverting input. Therefore,  
whenever the drop of output of the synchronous converter  
or two linear controllers lower than under voltage threshold,  
all MOSFET drivers will turn off.  
Soft-Start  
RT9206 has a programmable soft-start to control the output  
voltage rise time and limit the current surge at the start-  
up. The soft-start will begin while VDD rises above POR  
threshold for correct start-up. Soft-start function operates  
by an internal sourcing current to charge an external  
capacitor to around the voltage ofVINT.Thesoft-start signal,  
SS pin, is the third input non-inverting input of the PWM  
comparator. Before soft-start signal reach the bottom of  
the sawtooth ramp, inverting input of the PWM comparator,  
the soft-start current is twiceof the normal soft-start current.  
Once the soft-start signal reach the bottom of the ramp,  
the soft-start current became normal, and start to increase  
duty cycle from zero to the point the feedback loop takes  
control.  
www.richtek.com  
4
DS9206-11 March 2007  
RT9206  
Pin Description  
LDRV1(Pin 1)  
The formula between resistor setting and operational  
frequency are as follows:  
Linear controller 1 (LCTR1) driver. Connect to the gate of  
external N-Channel MOSFET pass transistor to form a  
positive linear regulator  
62´ 108  
RRT =  
FOSC - 200´ 103  
VDD (Pin 2)  
GND (Pin 10)  
Input supply voltage  
Ground  
LDRV2 (Pin 3)  
LGATE (Pin 11)  
Linear controller 2 (LCTR2) driver. Connect to the gate of  
external N-Channel MOSFET pass transistor to form a  
positive linear regulator  
Low side gate driver. Drives low side N-MOSFET with a  
voltage swing between VINT andGND  
VINT (Pin 12)  
LFB2 (Pin 4)  
Internal 6.0V regulator output. The low side gate driver and  
control circuit and external bootstrap diode are powered  
by this voltage. Decouple this pin to power ground with a  
4.7uF or greater ceramic capacitor close to the VINT pin.  
LDO2 feedback input. The feedback set point is 0.8V.  
Connect to a resistive divider between the positive linear  
regulator output andGND to adjust the output voltage.  
COMP (Pin 5)  
PHS (Pin 13)  
Switching regulator compensation pin.  
Inductor connection with (-) terminal bootstrap flying  
capacitor connection.  
FB (Pin 6)  
Switching regulator feedback input. The feedback set point  
is 0.8V. Connect to a resistive divider between the switching  
regulator output andGND to adjust the output voltage.  
UGATE (Pin 14)  
High side gate driver.Drives highsideN-Channel MOSFET  
with a voltage swing between BOOT and PHS  
PGOOD (Pin 7)  
BOOT (Pin 15)  
Open drain power good indicator. PGOOD is low when  
switching regulator output voltage is lower than 10% of its  
regulation voltage. Connect a pull high resistor between  
PGOOD and switching regulator output for pull high logic  
levelvoltage.  
High side floating driver supply with (+) terminal bootstrap  
flying capacitor connection. Voltage swing is from a diode  
drop below VINT to VIN+VINT  
LFB1 (Pin 16)  
SS/EN (Pin 8)  
LDO1 feedback input. The feed back set point is 0.8V.  
Connect to a resistive divider between the positive linear  
regulator output andGND to adjust the output voltage.  
Soft start input with 8uA sourcing current and IC enable  
control.  
RT (Pin 9)  
Operational frequency setting. Connect a resistor between  
RT andGND to set operational frequency. The operational  
frequency will nominally run at 200kHz when open.  
DS9206-11 March 2007  
www.richtek.com  
5
RT9206  
Absolute Maximum Ratings (Note 1)  
l Supply Voltage (VIN) ------------------------------------------------------------------------------------------------ - 0.3 to 30V  
l PHS--------------------------------------------------------------------------------------------------------------------- - 0.6V to 30V  
l PHS (PHS Transient Time Interval < 50ns) --------------------------------------------------------------------- - 5V  
l BOOT, UG to PHS --------------------------------------------------------------------------------------------------- - 0.3V to 7V  
l BOOT toGND -------------------------------------------------------------------------------------------------------- - 0.3V to 35V  
l LDRI1, LDRI2 --------------------------------------------------------------------------------------------------------- - 0.3V to 30V  
l PowerGood Voltage------------------------------------------------------------------------------------------------- - 0.3V to 7V  
l The other pins -------------------------------------------------------------------------------------------------------- - 0.3V to 7V  
l PowerDissipation, PD @ TA = 25°C  
SOP-16 ---------------------------------------------------------------------------------------------------------------- 0.625W  
l PackageThermal Resistance  
SOP-16, qJA --------------------------------------------------------------------------------------- 90°C/W  
l JunctionTemperature ----------------------------------------------------------------------------------------------- 150°C  
l Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C  
l OperationTemperature Range------------------------------------------------------------------------------------- - 20°C to 85°C  
l StorageTemperature Range --------------------------------------------------------------------------------------- - 65°C to 150°C  
l ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 3)  
l AmbientTemperature Range -------------------------------------------------------------------------------------- 0°C to 70°C  
l Junction Temperature Range -------------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VIN = 12V, FADJ left floating, TA = 25°C, Unless Otherwise specification)  
Parameter  
System Supply Input  
Operation voltage Range  
Power On Reset  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
(Note 4)  
4.75  
3.8  
200  
--  
--  
28  
4.7  
600  
4
V
V
V
DD  
POR  
Power On Reset Hysteresis  
Supply Current  
--  
1.3  
1
mV  
mA  
mA  
%
I
I
V
V
=30V, V =V  
SS INT  
DD  
DD  
DD  
Shut Down Current  
Power Good under Threshold  
PG Fault Condition  
Soft Start  
--  
3.5  
92  
=30V, V <0.4V  
DD  
SS  
VFB  
VPG  
82  
--  
--  
--  
0.2  
V
I
= - 4mA, VFB = 80%  
PG  
Soft start Current  
4
--  
8
12  
--  
mA  
V
I
SS  
Normal Operation Voltage  
Shut down Voltage  
V
V
INT  
SS  
0.4  
0.7  
--  
V
V
SS  
To be continued  
www.richtek.com  
6
DS9206-11 March 2007  
RT9206  
Parameter  
PWM Section Reference Voltage  
Feedback Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max Units  
0.784  
5.0  
0.8  
6
0.816  
6.5  
--  
V
V
V
V
FB  
Internal Voltage  
I
= 10mA  
= 12V  
INT  
INT  
Internal Voltage Source Current  
20  
--  
mA  
I
V
IN  
INT  
PWM Section  
Oscillator  
Free Run Frequency  
160  
-30  
--  
200  
--  
240  
+30  
--  
kHz  
%
F
F
OSC  
Operation Frequency Setting  
Ramp Amplitude  
By setting RT (Note 5)  
OSC  
1.9  
90  
V
Maximum Duty Cycle  
Error Amplifier  
85  
--  
%
GM  
--  
1.6  
90  
90  
--  
ms  
mA  
mA  
Compensation Source Current  
Compensation Sink Current  
Gate Driver  
45  
45  
140  
140  
Upper Gate Source (UGATE1 & 2)  
Upper Gate Sink (UGATE1 & 2)  
Lower Gate Source (LGATE1 & 2)  
Lower Gate Sink (LGATE1 & 2)  
Upper Gate Rising Time  
Upper Gate Falling Time  
Lower Gate Rising Time  
Lower Gate Falling Time  
Minimum On Time  
--  
--  
--  
--  
--  
--  
--  
--  
--  
5
5
8
8
W
W
W
W
ns  
ns  
ns  
ns  
ns  
R
R
R
R
UGATE  
UGATE  
3
5
LGATE  
1.5  
30  
30  
30  
30  
--  
3
LGATE  
--  
T
T
T
T
V
V
V
V
= 12V, C  
= 12V, C  
= 12V, C  
= 12V, C  
= 3nF  
= 3nF  
= 3nF  
= 3nF  
R_UGATE  
F_UGATE  
R_LGATE  
F_LGATE  
DD  
DD  
DD  
DD  
LOAD  
LOAD  
LOAD  
LOAD  
--  
--  
--  
400  
Protection  
Over Current Threshold  
Over Voltage Protection  
Under Voltage Protection  
-270  
0.9  
-300  
1
-330  
1.1  
mV  
V
VFB  
VFB  
0.54  
0.6  
0.66  
V
Linear Controller Section  
Error Amplifier  
Feedback Voltage  
Output Current  
LFB1 / LFB2  
0.780  
10  
0.8  
--  
0.824  
--  
V
LDRV1/LDRV2  
mA  
Protection  
Under Voltage Protection  
Over Temperature Protection  
LFB1 / LFB2  
0.54  
125  
0.6  
0.66  
--  
V
170  
°C  
DS9206-11 March 2007  
www.richtek.com  
7
RT9206  
Note 1. Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended. The human body model is a 100pF capacitor  
discharged through a 1.5kW resistor into each pin.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. VDD-VOUT2 or VDD-VOUT3 must be higher than 4V to keep linear controller operation  
62´ 108  
R
=
Note 5.  
RT  
FOSC - 200´ 103  
Note 6. The LDOs are not suitable for low noise applications  
www.richtek.com  
8
DS9206-11 March 2007  
RT9206  
Typical Operating Characteristics  
Power On  
Power On  
IOUT1 = 4A  
IOUT2 = 0.5A  
IOUT3 = 0.5A  
2V/Div  
10V/Div  
5V/Div  
VIN  
VIN  
2V/Div  
VOUT1  
2V/Div  
VOUT3  
2V/Div  
VOUT2  
2V/Div  
2V/Div  
VOUT1  
VOUT2  
VOUT3  
5V/Div  
IOUT1 = 4A  
IOUT2 = 0.5A  
IOUT3 = 0.5A  
5V/Div  
PGOOD  
PGOOD  
VIN = 24V, f = 200kHz  
VIN = 12V, f = 200kHz  
Time (100ms/Div)  
Time (200ms/Div)  
Power Off  
Power Off  
IOUT1 = 4A  
IOUT2 = 0.5A  
IOUT3 = 0.5A  
IOUT1 = 4A  
IOUT2 = 0.5A  
IOUT3 = 0.5A  
20V/Div  
5V/Div  
5V/Div  
VIN  
5V/Div  
VIN  
VOUT1  
2V/Div  
VOUT1  
2V/Div  
2V/Div  
5V/Div  
VOUT3  
VOUT2  
2V/Div  
VOUT3  
5V/Div  
VOUT2  
PGOOD  
PGOOD  
VIN = 24V, f = 200kHz  
Time (20ms/Div)  
VIN = 12V, f = 200kHz  
Time (20ms/Div)  
Bootstrap Wave Form  
Bootstrap Wave Form  
10V/Div  
20V/Div  
5V/Div  
BOOT  
PHS  
BOOT  
10V/Div  
PHS  
10V/Div  
UGATE  
20V/Div  
UGATE  
LGATE  
5V/Div  
LGATE  
20V/Div  
VIN = 24V  
VIN = 12V  
Time (1ms/Div)  
Time (1ms/Div)  
DS9206-11 March 2007  
www.richtek.com  
9
RT9206  
Dead Time  
Dead Time  
LGATE  
UGATE  
LGATE  
2V/Div  
2V/Div  
UGATE  
5V/Div  
10V/Div  
VIN = 24V, IOUT1 = 4A  
Time (20ns/Div)  
VIN = 12V, IOUT1 = 4A  
Time (20ns/Div)  
Dead Time  
Dead Time  
UGATE  
LGATE  
UGATE  
LGATE  
5V/Div  
2V/Div  
10V/Div  
2V/Div  
VIN = 12V, IOUT1 = 4A  
Time (20ns/Div)  
VIN = 24V, IOUT1 = 4A  
Time (20ns/Div)  
Dynamic Loading  
Dynamic Loading  
UGATE  
10V/Div  
UGATE  
10V/Div  
LGATE  
5V/Div  
LGATE  
5V/Div  
VOUT1  
100mV/Div  
VOUT1  
100mV/Div  
IOUT1  
5A/Div  
IOUT1  
5A/Div  
VIN = 12V  
VIN = 12V  
Time (10ms/Div)  
Time (10ms/Div)  
www.richtek.com  
10  
DS9206-11 March 2007  
RT9206  
Soft Start vs. Temperature  
Short Latch  
6.1  
6.05  
6
VIN = 12V  
f = 200kHz  
VIN = 12V  
20V/Div  
UGATE  
5.95  
5.9  
2V/Div  
VOUT1  
5.85  
5.8  
10A/Div  
IL  
-50  
-25  
0
25  
50  
75  
100 125 150  
Time (20ms/Div)  
(°C)  
Temperature  
Oscillator Frequency vs. Temperature  
Reference Voltage vs. Temperature  
240  
0.82  
0.815  
0.81  
VIN = 12V  
f = 200kHz  
VIN = 12V  
RT = floating  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
0.805  
0.8  
0.795  
0.79  
0.785  
-50  
-25  
0
25  
50  
75  
100 125 150  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature  
(°C)  
Temperature  
(°C)  
POR(Rising/Falling) vs. Temperature  
Quiescent Current vs. Input Voltage  
5
4.75  
4.5  
4.25  
4
1055  
1050  
1045  
1040  
1035  
1030  
1025  
VIN = 12V  
f = 200kHz  
VSS = 0V  
Rising  
Falling  
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
0
4
8
12  
16  
20  
24  
28  
32  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
VIN (V)  
DS9206-11 March 2007  
www.richtek.com  
11  
RT9206  
Efficiency vs. Load Current  
Fosc vs. RRT  
96  
94  
92  
90  
88  
86  
84  
82  
80  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 12V  
VIN = 12V  
VIN = 24V  
VOUT = 5V  
Frequency = 200kHz  
0
1
2
3
4
5
6
7
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70  
Load Current (A)  
RRT (k )  
W
Over Current Threshold vs. Temperature  
450  
400  
350  
300  
250  
200  
VIN = 12V  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
www.richtek.com  
12  
DS9206-11 March 2007  
RT9206  
Application Information  
Synchronous Buck Converter  
is1  
is2  
The RT9206 is specifically designed for synchronous buck  
converter with wide input voltage from 4.75V to 28V and  
operating frequency from 200kHz to 600kHz. To fully utilize  
its advantages, peripheral components should be  
appropriately selected. The following information provides  
basic considerations for component selection.  
Output Inductor Selection  
The selection of output inductor is based on the  
considerations of efficiency, output power and operating  
frequency. Low inductance value has smaller size, but  
results in low efficiency, large ripple current and high output  
ripple voltage. Generally, an inductor that limits the ripple  
current (DIL) between 20% and 50% of output current is  
appropriate. Figure 1 shows the typical topology of  
synchronous step-down converter and its related  
waveforms.  
Figure 1.The waveforms of synchronous step-down  
converter  
According to Figure 1 the ripple current of inductor can be  
calculated as follows :  
D
VOUT  
VIN  
VIN - VOUT = L ΔIL ;Δt = ;D =  
Δt  
fs  
VOUT  
(1)  
L = (VIN - VOUT)´  
VIN ´ fs ´ ΔIL  
i
i
L
L
S1  
Where :  
VIN= Maximum input voltage  
= Output Voltage  
+ V -  
L
I
i
OUT  
C
i
S2  
+
S1  
+
r
V
V
OUT  
C
OR  
-
R
S2  
L
V
V
OUT  
IN  
Dt=S1 turn on time  
DIL=Inductor current ripple  
fS= Switching frequency  
D=Duty Cycle  
+
V
C
OC  
-
OUT  
-
Ts  
rC= Equivalent series resistor of output capacitor  
Vg1  
Vg2  
Ton  
Toff  
Output Capacitor Selection  
The selection of output capacitor depends on the output  
ripple voltage requirement. Practically, the output ripple  
voltage is a function of both capacitance value and the  
equivalent series resistance (ESR) rC. Figure 2 shows the  
related waveforms of output capacitor.  
VIN-VOUT  
VL  
-VOUT  
iL  
IL=IOUT  
ΔIL  
DS9206-11 March 2007  
www.richtek.com  
13  
RT9206  
V
-V  
iL  
V
d
IN OUT  
d
dt  
OUT  
L
iL  
iL  
=
=
Input Capacitor Selection  
dt  
L
The selection of input capacitor is mainly based on its  
maximum ripple current capability. The buck converter  
draws pulsewise current from the input capacitor during  
the on time of S1 as shown in Figure 1. The RMS value of  
ripple current flowing through the input capacitor is  
described as :  
I O  
T
S
ic  
ΔI  
1/2  
L
0
ΔIL  
(A)  
(6)  
Irms = IO D(1-D)  
The input capacitor must be cable of handling this ripple  
current. Sometime, for higher efficiency the low ESR  
capacitor is necessarily.  
V
OC  
ΔV  
OC  
Power MOSFET Selection  
The selection of MOSFETs is based on consideration of  
maximum gate-source voltage (Vgs), drain-source voltage  
(Vdss), maximum drain current (Id), drain-source on-state  
resistance Rds(on)and thermalmanagement. The MOSFETs  
are driven byVINT that is internally regulated as 6.0V. Low  
threshold voltage MOSFET should be selected toguarantee  
that it could fully turn on at Vgs = 6.0V.  
V
OR  
ΔI x rc  
L
0
t1  
t2  
Figure 2. The related waveforms of output capacitor.  
The total power dissipation of external MOSFETs consists  
of conduction and switching losses. The conduction losses  
of high-side and low-side MOSFETs are described by  
equation (7) and (8), respectively.  
The AC impedance of output capacitor at operating  
frequency is quite smaller than the load impedance, so  
the ripple current ( DIL) of the inductor current flows mainly  
through output capacitor. The output ripple voltage is  
described as :  
(High-side MOSFET)  
PH - con =I02 ´ D´ Rds(on)´ q r  
(W)  
(W)  
(7)  
(8)  
(2)  
ΔVOUT = ΔVOR + ΔVOC  
(Low-side MOSFET)  
PL - con =I02 ´ (1-D)´ Rds(on)´ q r  
1
t2  
(3)  
(4)  
ΔVOUT = ΔIL ´ rC +  
ic d t  
ò
t1  
Where  
Co  
q r  
is temperature dependency of Rds(on)  
ΔVOUT = ΔIL ´ rC + 1 VOUT (1- D)TS2  
The total switching loss is approximated as.  
Vds(off)  
8 COL  
Psw =IOUT ´  
´ (tr + tf)´ fs  
(W)  
(9)  
where DVOR is caused by ESR and DVOC by capacitance.  
2
Where  
Vds(off) is voltage from drain to source at MOSFET  
off time.  
For electrolytic capacitor application, typically 90~95% of  
the output voltage ripple is contributed by the ESR of output  
capacitor. So Equation (4) could be simplified as :  
tr and tf are rise-time and fall-time, respectively.  
IOUT= Load current  
(5)  
ΔVOUT = ΔIL ´ rC  
Users could connect capacitors in parallel to get calculated  
ESR.  
fs= Switching frequency  
www.richtek.com  
14  
DS9206-11 March 2007  
RT9206  
The MOSFET should be capable of handling the power  
loss over the entire operating range.  
V
OUT  
Ra  
Design Example:  
-
+
FB  
(LFB1,LFB2)  
Design the power stage for a synchronous step-down  
converter having the following specifications:  
Rb  
0.8V  
VIN = 12V, VOUT = 5V, IOUT = 5A, DVOUT < 25mV, switching  
frequency = 200kHz, to determine the value of inductor  
and output capacitor (Using electrolytic capacitor).  
Figure 3. The connected diagram of external voltage  
divider and reference voltage  
First, select ripple current of inductor is 20% of output  
current, from equation (1)  
5
If high value resistors are used, the input bias current of  
FB pin could cause a slight increase in output voltage.  
The output voltage set point can be more accurate by using  
precision resistor.  
L = (12 - 5)´  
= 14.58mH  
12´ 200K ´ 0.2´ 5  
Select L = 15mH  
Soft-start setting  
From equation (5)  
Figure 4 shows the typical soft-start timing waveforms of  
RT9206. The soft-start time of Buck converter can be set  
by selecting the soft-start capacitance value. The delay  
time between input voltage applied and output voltage  
starting to ramp up (TDELAY) is calculated as: The total  
time from input voltage applied to output voltage buildup  
(TVR) is calculated as :  
25mV=1 x rC  
Select two electrolytic capacitors C = 470mF,rC = 43mW  
in parallel.  
Setting the Current Limit  
The RT9206 limits output current by sensing low side  
MOSFET voltage drop (VSD) when it turns on. The drop  
voltage caused by on-state resistance RDS(ON) is described  
as :  
TVR = 57´ CSS ´ 106  
(ms) (13)  
The effective soft-start time (TSS) during that outputvoltage  
ramps up from zero to set voltage is calculated as :  
VSD=RDS(ON) x IL  
(10)  
When VSD >300mV, the current limit function will be  
activated and latch the controller. So the current limit  
function can be set by MOSFETs selection. The relation  
of maximum inductor current IL(LIM) and on-state resistance  
of MOSFET (RDS(ON)) is described as :  
TSS = (320´ VOUT )´ 106 ´ CSS  
(ms) (14)  
VIN  
300´ 10-3  
Besides, appropriate soft-start capacitor should be selected  
so that the start-up current will not trigger the current limit  
function.And make sure that the input power source could  
supply the soft-start current.  
(W)  
(11)  
RDS(ON) =  
IL(LIM)  
Setting the Output voltage  
The output voltage is set by external voltage divider and  
reference voltage. The feedback pin (FB, LFB1, and LFB2)  
is connected to the inverting input of error amplifier and is  
referenced to 0.8V reference voltage at non-inverting input  
as shown in Figure 3.The output voltage is set by the  
following equation.  
The total time from input voltage applied to power good  
signal pull-high (TPGOOD) is calculated as :  
TPG = 640´ CSS ´ 106  
(ms) (15)  
Ra  
(12)  
VOUT = (1+  
)´ 0.8  
Rb  
DS9206-11 March 2007  
www.richtek.com  
15  
RT9206  
V
V
Boost Component Selection  
DD  
SS  
The booststrap gate drive circuit is used to drive high side  
N-channel MOSFET. The boost capacitor should be a good  
quality and can operate in high frequency. The value of  
boost capacitor depends on the total gate charge (Q g) to  
V
H
OUT  
turn on the MOSFETs. Assuming steady state operation,  
the following equation can be used to calculate the  
capacitance value to achieve the targeted ripple voltage  
PGOOD  
T
VR  
DVBOOT  
.
T
QHg  
SS  
(F)  
CBOOT =  
T
ΔVBOOT  
PGOOD  
Figure 4. The soft-stat timing diagram of RT9206  
The capacitor in the range of 0.1uF to 1uF is generally  
adequate for most applications.  
For the example of CSS = 1mF, VIN = 12V, VOUT = 5V, then  
The VINT pin bypass capacitor CINT needs to charge the  
boost capacitor, to drive the lowside MOSFET, and to power  
the RT9206. CINT should locate near VINT andGND pins  
with short and wide traces. Generally, a 4.7uF high  
frequency ceramic capacitor is recommended.  
TVR = 57ms, TSS = 133ms and TPGOOD = 640ms.  
Shutdown  
The power stage can be shutdown by pulling soft-start pin  
below 0.7V. During shutdown, both of high side MOSFET  
(S1) and low side MOSFET (S2) are turned off.  
Feedback Compensation  
The RT9206 is a voltage mode controller. The control loop  
is a single voltage feedback loop including a trans-  
conductance error amplifier and a PWM comparator.  
Setting the switching frequency  
The switching frequency can be set by a resistor (RRT)  
connecting between RT and GND pins. Equation (16)  
describes the relationship of RRT and switching frequency.  
As RT open the normally operated frequency is 200kHz.  
To achieve fast transient response and accurate output  
regulation, appropriate feedback compensation is  
necessary. The goal of the compensation network is to  
provide a closed loop transfer function with the highest  
0dB crossing frequency and adequate phase margin.  
Generally, the phase margin in a range of 45° ~ 60° is  
desirable. Figure 4 shows the simplified diagram of  
synchronous buck converter and control loop.  
62´ 108  
fS - 200´ 103  
RRT =  
(W)  
(16)  
R
RT  
Connecting Between  
RT and GND Pins  
f (kHz) (kW)  
R
RT  
S
250  
120  
300  
350  
400  
450  
500  
550  
600  
55  
37.5  
30.6  
24.4  
22.5  
19.3  
16.8  
www.richtek.com  
16  
DS9206-11 March 2007  
RT9206  
Next, deriving the transfer function d(s)/vC (s) of the direct  
i
i
L
L
S1  
duty ratio pulse-width modulator (PWM Generator). The  
+ V -  
L
transfer functionT (s) of the modulator is given by  
m
i
I
C
OUT  
+
S1  
i
S2  
+
d(S)  
1
(19)  
Tm(S) =  
=
r
V
C
OR  
-
S2  
VC(S)  
Vr  
V
R
IN  
L
V
OUT  
-
+
where, Vr is the amplitude of ramp-waveform which is listed  
in datasheet.  
V
C
OC  
-
OUT  
For simplification, the transfer function of PWM generator  
and Buck converter can iscombined. The resulting is shown  
in equation (20)  
Sensor  
Gain  
V
REF  
Compensator  
d
Ra  
VOUT(S)  
VC(S)  
1+ rc x CO x S  
VIN  
V
C
-
G(S) =  
=
x
+
gm  
L
Vr  
S2 x L + CO x S(  
+ rc x CO) + 1  
+
-
RL  
Rc1  
Cc1  
Cc2  
(20)  
PWM  
Generator  
Rb  
The transfer function of Equation (20) is a second order  
system and Bode plot is shown in Figure 7.  
Gain  
Figure 5. The simplified diagram for synchronous Buck  
converter and control loop.  
VIN/Vr  
From control system point of view, the block diagram of  
Figure 5 is shown in Figure 6.  
f
fp  
fz  
G(S)  
PWM  
Generator  
BUCK  
Converter  
Phase  
Compensator  
Vc(s)  
V
V
REF  
+
d(s)  
OUT  
C(s)  
1/Vr  
Gp(s)  
-
f
0°  
Rb  
H (s)  
-90°  
Ra+Rb  
Sensor Gain  
-180°  
Figure 6. The control block diagram of synchronous  
Buck converter  
Figure 7. The Bode plot of Buck power stage  
First, deriving the accurate small-signal models of power  
stage, the equation (18) is the transfer function of  
vO(s)/d(s), which be obtained by space averaging  
technique.  
In Figure 7, the resonance of the output LC filter produces  
a double pole and - 40dB/decade slop. The resonance  
frequency is expressed as follows :  
1
fP =  
(Hz)  
(21)  
VOUT(S)  
d(S)  
1+ rc x CO x S  
2p x L x CO  
GP(S) =  
=
x VIN  
L
S2 x L x CO + S(  
+ rc x CO) +1  
RL  
(18)  
DS9206-11 March 2007  
www.richtek.com  
17  
RT9206  
The effective series resistance (ESR) of capacitor and  
Where the fC is zero crossover frequency defined as the  
frequency when the loop gain equals unity. Typically, fC be  
chosen in range 1/10 ~ 1/20 of switching frequency. fC  
determines how fast the dynamic load response is. The  
higher fC with the faster dynamic response, and the phase  
margin in the range of 45° ~ 60° is desirable.  
capacitance introduces one zero into system, the zero is  
given as :  
1
2p x rc x CO  
(Hz)  
(22)  
fZ =  
In the voltage-mode Buck converter shown in Figure 5, the  
So, the transfer function of compensator C(s) must be  
designed to meet these requirements. In many applications,  
use an electrolytic capacitor as the output capacitor, if the  
zero (fZ) caused by effective series resistance (ESR) of  
capacitor is a few kHz and smaller than 8 times fP, the  
type 2 (PI) can be used to get desired compensation. Figure  
9 shows the typical type 2 trans-conductance error  
amplifier and the Bode plot is also shown in Figure 10.  
loop gain of system is  
1
TL(S) = C(S) x  
x GP(S) x H(S) = C(S) x G(S) x H(S)  
(23)  
Vr  
The desired loop gain and phase margin is show in the  
Bode plot of Figure 8.  
G(s)  
Gain  
V
OUT  
V
REF  
Power  
stage  
Ra  
VIN/Vr  
Vc  
+
gm  
-
Rc1  
Cc1  
Cc2  
Rb  
f
fp  
fz  
TL(s)  
Figure 9. The typical type 2 trans-conductance error  
amplifier.  
Desired  
loop gain  
fc  
f
Gain(dB)  
Phase  
gmRc1  
f
f
°
0
Phase  
fcz  
fcp  
°
-90  
Phase  
margin  
°
-180  
Boost  
-90  
f
Figure 10. The Bode plot of type 2 trans-conductance  
error amplifier  
Figure 8. The Bode plot of desired loop gain and phase  
margin  
www.richtek.com  
18  
DS9206-11 March 2007  
RT9206  
The design procedure as following :  
Step2. Determine the zero crossover frequency and  
compensated type.  
(1). Selecting the zero crossover frequency fC is 1/10 ~  
1/20 switching frequency. Then according equation (24)  
set the resistor RC1 to determine the zero crossover  
frequency.  
Select desired zero-crossover frequency :  
fC £ fS/10 ~ fS/20  
Select fC = 20kHz  
Vr ´ L ´ fC  
VOUT  
(W) (24)  
RC1 »  
´
Step3. Determine desired location of poles and zeros for  
type2 compensator.  
VIN ´ gm ´ rC  
VREF  
(2). Place the zero of compensator is 70% fp that is  
resonance frequency of power stage. The compensator  
capacitor Cc1 can be selected to set the zero. The  
equation is shown in following :  
Select:  
fCZ = 0.7 ´ fP = 0.7 ´ 1.34kHz = 938Hz  
Assume  
fS  
fCP =  
= 100kHz  
2
L´ CO  
Step4. Calculate the real parameters-resistor and  
capacitors for type2 compensator.  
(F)  
(25)  
CC1 =  
0.7´ RC1  
From equation (21), the RC1 is calculated as following :  
(3). Set a second pole to suppress the switching noise.  
Assume the pole is one half of switching frequency  
fs, which results in capacitor Cc2 as shows in following:  
fC ´ L ´ Vr  
VOUT  
VREF  
RC1 =  
´
rC ´ VIN ´ gm  
1
1
CC2 =  
»
(F) (26)  
20kHz ´ 15mH ´ 1.9  
5V  
1
p ´ RC1´ fs  
=
´
= 8.4kW  
p ´ RC1´ fs -  
22mW´ 12V ´ 1.6m s 0.8V  
CC1  
Design example  
Design example of type 2 compensator: the schematic is  
shown in Figure 4, where the parameters as following:  
Select RC1 = 8.2kW  
Calculate CC1 from equation (25)  
VIN=12V,  
VOUT=5V,  
IOUT=5A,  
switching  
frequency=200kHz, L=15mH, CO=940mF, rC=22mW, the  
parameters of RT9206 as following: gm=1.6ms, ramp  
amplitude=1.9V,and reference voltageVref=0.8V.  
L´ CO  
15m ´ 940m  
CC1 =  
=
= 20.7nF  
0.7´ RC1  
0.7´ 8.2k  
Select CC1 = 22nF  
Step1. Determine the power stage poles and zeros. The  
pole caused by the output inductor and output capacitor is  
calculated as :  
Second capacitor CC2 can be calculated using equation  
(26)  
1
1
1
1
C
=
=
=194pF  
fP =  
fZ =  
=
=1.34kHz  
C2  
p ´ R ´ f  
p ´ 8.2k200kHz  
C1  
S
2p L´ CO 2p 15m ´ 940m  
1
1
Select CC2 = 220pF  
=
= 7.7kHz  
2p ´ rC ´ CO 2p ´ 22mΩ´ 940mF  
DS9206-11 March 2007  
www.richtek.com  
19  
RT9206  
Linear Regulator  
Output Capacitor Selection  
(1). The IC needs a bypassing ceramic capacitor C1 as a  
R-C filter to isolate the pulse current from power stage  
and supply to IC, so the ceramic capacitor C1 should  
be placed adjacent to the IC.  
Solid tantalum capacitors are recommended for use on  
the output capacitors of LDO because their typical ESR is  
veryclose to the ideal valuerequiredfor loopcompensation.  
Tantalums also have good temperature stability: a good  
quality tantalum will typically show a capacitance value  
that varies less than 10-15% across the full temperature  
range of 125°C to -40°C. ESR will vary only about 2X going  
from the high to low temperature limits.  
(2). Place the high frequency ceramic decoupling close  
to the power MOSFETs.  
(3). The feedback part should be placed as close to IC as  
possible and keep away from the inductor and all noise  
sources.  
Linear Regular MOSFETs Selection  
(4). The components of bootstraps (C8, C9 andD1) should  
be closed to each other and close to MOSFETs.  
Themainconsideration of passMOSFETsof linearregulator  
ispackage selectionfor efficient removal of heat. The power  
dissipation of a linear regulator is  
(5).The PCB trace from UGATE and LGATE of controller to  
MOSFETs should be as short as possible and can  
carry 1A peak current.  
Plinear = (VIN - VOUT)´ IOUT  
(W) (26)  
The criterion for selection of package is the junction  
temperature below the maximum desired temperature with  
the maximum expected ambient temperature.  
(6). Place all of the components as close to IC as possible.  
Figure 11 shows the typical PCB layout of synchronous  
Buck converter with RT9206 controller  
Layout Consideration  
Layout is very important in high frequency switching  
converter design. If designed improperly, the PCB could  
radiate excessive noise and contribute to the converter  
instability. First, place the PWM power stage components.  
Mount all the power components and connections in the  
top layer with wide copper areas. The MOSFETs of Buck,  
inductor, and output capacitor should be as close to each  
other as possible. This can reduce the radiation of EMI  
due to the high frequency current loop. If the output  
capacitors are placed in parallel to reduce the ESR of  
capacitor, equal sharing ripple current should be  
considered. Place the input capacitor directly to the drain  
of high-side MOSFET. The MOSFETs of linear regulator  
should have wide pad to dissipate the heat. In multilayer  
PCB, use one layer as power ground and have a separate  
control signal ground as the reference of the all signal. To  
avoid the signal ground is effect by noise and have best  
load regulation, it should be connected to the ground  
terminal of output. Furthermore, follows below guidelines  
can get better performance of IC:  
Figure 11. The PCB layout of synchronous Buck  
converter with RT9206 controller  
www.richtek.com  
20  
DS9206-11 March 2007  
RT9206  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
9.804  
3.810  
1.346  
0.330  
1.194  
0.178  
0.102  
5.791  
0.406  
10.008  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.198  
1.270  
0.386  
0.150  
0.053  
0.013  
0.047  
0.007  
0.004  
0.228  
0.016  
0.394  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
16-Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9206-11 March 2007  
www.richtek.com  
21  

相关型号:

RT9209

Synchronous Buck PWM DC-DC with Enable & PGOOD
RICHTEK

RT9209AGS

Synchronous Buck PWM DC-DC with Enable & PGOOD
RICHTEK

RT9209APS

Synchronous Buck PWM DC-DC with Enable & PGOOD
RICHTEK

RT9209GS

Synchronous Buck PWM DC-DC with Enable & PGOOD
RICHTEK

RT9209PS

Synchronous Buck PWM DC-DC with Enable & PGOOD
RICHTEK

RT9210

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9210GC

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9210GS

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9210PC

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9210PS

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9212

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9212GC

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK