RT9210PC [RICHTEK]

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination; 5V双路同步降压DC-DC PWM控制器,用于DDR内存VDDQ和VTT终端
RT9210PC
型号: RT9210PC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
5V双路同步降压DC-DC PWM控制器,用于DDR内存VDDQ和VTT终端

双倍数据速率 控制器
文件: 总17页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
RT9210  
Dual 5V Synchronous Buck DC-DC PWM Controller  
for DDR Memory VDDQ and VTT Termination  
General Description  
Features  
z Operating with Single 5V Supply Voltage  
z High Power VDDQ, VTT and VREF for DDR Memory  
z VTT Tracks (VDDQ/2) to ±30mV  
The RT9210 is a dual high power, high efficiency  
synchronous buck DC-DC controller optimized for high  
performance double data rate (DDR) memory applications.  
It is designed to convert voltage supplies ranging from  
4.5V to 5.5V into efficiently 2.5VDDQ for powering DDR  
memory, VTT for signal termination and a buffered amplifier  
for VREF reference. VTT tracks (VDDQ/2) to ±30mV, and  
VTT accurately tracks VREF. The RT9210 integrates all of  
the control, output adjustment, monitoring and protection  
functions into a single package.  
z VTT Regulator Internally Compensated  
z Support S3Sleep Mode  
z Drives All Low Cost N-MOSFETs  
z Voltage Mode PWM Control  
z 300kHz Fixed Frequency Oscillator  
z Fast Transient Response :  
Full 0% to 100% Duty Ratio  
z Internal Soft-Start  
The VTT supply can be turned off independently of VDDQ  
during S3 sleep mode, the VTT output is maintained by a  
low power window regulator when V2_SD pin being  
triggered high.  
z Adaptive Non-Overlapping Gate Driver  
z Over-Current Fault Monitor on VCC, No Current  
Sense Resistor Required  
z RoHS Compliant and 100% Lead (Pb)-Free  
The RT9210 provides simple, single feedback loop, voltage  
mode control with fast transient response for VDDQ  
regulator. The VTT regulator features internal compensation  
that eases the circuitry design. It includes two phase-  
locked 300kHz sawtooth-wave oscillators which are placed  
90° to minimize interference between the two PWM  
regulators.  
Applications  
z DDR Memory Termination Supply  
z SSTL_2 and SSTL_3 Interfaces  
z Graph Card, Motherboard,Desktop Servers  
z High Power TrackingDC-DC Regulators  
Pin Configurations  
The RT9210 protects against over-current conditions by  
inhibiting PWM operation. It also monitors the current in  
the VDDQ regulator by using the RDS(ON) of the upper  
MOSFET which eliminates the need for a current sensing  
resistor.  
(TOP VIEW)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PGND1  
LGATE1  
UGATE1  
BOOT1  
PHASE1  
VREF  
2
3
4
5
6
PVCC1  
OCSET/SD  
V2_SD  
PGOOD  
NC  
SENSE2  
NC  
VCC  
FB1  
Ordering Information  
RT9210  
COMP1  
SENSE1  
VREF_IN  
GNDA  
7
8
9
Package Type  
C : TSSOP-24  
S : SOP-24  
10  
11  
12  
NC  
BOOT2  
UGATE2  
LGATE2  
PGND2  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
TSSOP-24 & SOP-24  
cial Standard)  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9210-05 March 2007  
www.richtek.com  
1
Preliminary  
RT9210  
Typical AppIication Circuit  
V
CC  
5V  
V
IN  
2.5V/3.3V/5V  
V
IN (>V  
)
DDQ  
2.5V/3.3V/5V  
C10  
470uF  
C2  
1uF  
R6  
10k  
D1  
1N4148  
R1  
3.48k  
C1  
1nF  
RT9210  
C9  
0.1uF  
PHKD6N02LT  
Q5  
RESET  
15  
19  
2
VCC  
Q1  
PGOOD  
C12 to C15  
150uF (x 4)  
1uH  
L1  
V
DDQ  
21  
7
OCSET/SD  
SENSE1  
BOOT1  
1.8V  
1
UGATE1  
Q2  
20  
8
3
VTT_SD  
V2_SD  
VREF_IN  
VREF  
PHASE1  
PVCC1  
LGATE1  
PGND1  
22  
23  
VREF_IN  
C3 100pF  
4
V
24  
C4  
CC  
5V  
D2  
1N4148  
6
COMP1  
0.1uF  
11  
12  
10  
14  
13  
17  
C5  
BOOT2  
UGATE2  
PHASE2  
LGATE2  
5.6nF  
C6  
C11  
0.1uF  
PHKD6N02LT  
VREF_OUT  
100pF  
R4  
6.34k  
Q3  
5
C16 to C17  
150uF (x 2)  
1uH  
FB1  
L2  
C7  
V
TT  
PGND2  
0.1uF  
0.9V  
SENSE2  
R2  
1k  
C8  
Q4  
GNDA  
15nF  
9
R3  
1.25k  
R5  
100  
www.richtek.com  
2
DS9210-05 March 2007  
Preliminary  
RT9210  
Functional Pin Description  
UGATE1 (Pin 1)  
VREF_IN (Pin 8)  
VDDQ upper gate driver output. Connect to gate of the high-  
side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the upper MOSFET has turned off.  
This pin is used as an option to overdrive the internal  
resistor divider network that sets the voltage for both VREF  
and the reference voltage for the VTT supply. A 100pF  
capacitor between VREF_INand ground is recommended  
for proper operation.  
BOOT1 (Pin 2)  
GNDA (Pin 9)  
Bootstrap supply pin for the upper gate driver. Connect  
the bootstrap capacitor between BOOT1 pin and the  
PHASE1 pin. The bootstrap capacitor provides the charge  
to turn on the upper MOSFET.  
Signal ground for the IC. All voltage levels are measured  
with respect to this pin. Ties the pin directly to ground  
plane with the lowest impedance.  
PHASE1 (Pin 3)  
BOOT2 (Pin 11)  
Connect this pin to the source of the upper MOSFET and  
the drain of the lower MOSFET. PHASE1 is used to  
monitor the voltage drop across the upper MOSFET of  
the VDDQ regulator for over-current protection.  
Bootstrap supply pin for the upper gate driver. Connect  
the bootstrap capacitor between BOOT2 pin and the  
PHASE2 pin. The bootstrap capacitor provides the charge  
to turn on the upper MOSFET.  
VREF (Pin 4)  
UGATE2 (Pin 12)  
Buffered internal reference voltage of VDDQ / 2. This output  
should be used to provide the reference voltage for the  
Northbridge chipset andDDR memory.  
VTT upper gate driver output. Connect to gate of the high-  
side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the upper MOSFET has turned off.  
FB1 (Pin 5)  
PGND2 (Pin 13)  
VDDQ feedback voltage. This pin is the inverting input of  
the error amplifier. FB1 senses the VDDQ through an  
external resistor divider network.  
Return pin for high currents flowing in low-side power  
N-MOSFET. Ties the pin directly to the low-side MOSFET  
source and ground plane with the lowest impedance.  
COMP1 (Pin 6)  
LGATE2 (Pin 14)  
VDDQ external compensation. This pin internally connects  
to the output of the error amplifier and input of the PWM  
comparator. Use a RC + C network at this pin to  
compensate the feedback loop to provide optimum  
transient response.  
VTT lower gate driver output. Connect to gate of the low-  
side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the lower MOSFET has turned off.  
SENSE1 (Pin 7)  
VCC (Pin 15)  
This pin is connected directly to the regulated output of  
VDDQ supply. This pin is also used as an input to create  
the voltage at VREF.  
Connect this pin to a well-decoupled 5V bias supply. It is  
also the positive supply for the lower gate driver, LGATE2.  
DS9210-05 March 2007  
www.richtek.com  
3
Preliminary  
RT9210  
NC (Pin 10 , 16 , 18)  
LGATE1 (Pin 23)  
No internal connection.  
VDDQ lower gate drive output. Connect to gate of the low-  
side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the lower MOSFET has turned off.  
SENSE2 (Pin 17)  
This pin is connected directly to the regulated output of  
VTT supply. This pin is also used as the feedback pin of  
the VTT regulator and as the regulation point for the window  
regulator that is enable in V2_SD mode.  
PGND1 (Pin 24)  
Return pin for high currents flowing in low-side power  
N-MOSFET. Ties the pin directly to the low-side MOSFET  
source and ground plane with the lowest impedance.  
PGOOD (Pin 19)  
PGOODis an open-drain output used to indicate that both  
the VDDQ and VTT regulators are within normal operating  
voltage ranges.  
V2_SD (Pin 20)  
A TTL compatible high level at this pin puts the VTT  
controller intosleepmode. In sleep mode, both UGATE2  
and LGATE2 are driven low, effectively floating the VTT  
supply. While the VTT supply floats, it is held to about  
50% of VDDQ via a low current window regulator which  
drivers VTT via the SENSE2 pin. The window regulator  
can overcome up to at least 10mA of leakage on VTT.  
While V2_SD is high, PGOOD is low.  
OCSET/SD (Pin 21)  
Connect a resistor (ROCSET) from this pin to the drain of  
the upper MOSFET of the VDDQ regulator sets the over-  
current trip point. ROCSET, an internal 40μAcurrent source  
, and the upper MOSFET on-resistance, RDS(ON), set the  
VDDQ converter over-current trip point (IOCSET) according  
to the following equation:  
40uA × ROCSET  
IOCSET =  
RDS(ON) of the upper MOSFET  
An over-current trip cycles the soft-start function. Pulling  
the pin to ground resets the device and all external  
MOSFETs are turned off allowing the two output voltage  
power rails to float.  
PVCC1 (Pin 22)  
Connect this pin to a well-decoupled 5V supply. It is also  
the positive supply for the lower gate driver, LGATE1.  
www.richtek.com  
4
DS9210-05 March 2007  
Preliminary  
RT9210  
Function Block Diagram  
VCC  
Thermal  
SHDN  
+
Bias  
OC  
137.5%  
62.5%  
0.8V  
Ref.  
Power  
On  
Reset  
OCSET/SD  
POR  
OV  
UV  
40uA  
-
OVP  
&
UVP  
0.8V  
FB1  
Soft-  
Start  
1
Power  
Good  
BOOT1  
PGOOD  
+
EA  
+
PWM1  
+
-
-
UGATE1  
COMP1  
VREF  
OC  
Control  
Logic  
PHASE1  
PVCC1  
LGATE1  
PGND1  
OV  
UV  
Thermal  
SHDN  
-
+
200k  
200k  
300kHz  
Oscillator  
VREE_IN  
SENSE1  
PGND2  
PWM2  
-
LGATE2  
+
+
EA  
-
Control  
Logic  
Zf  
OC  
OV  
UV  
SENSE2  
V2_SD  
FB2  
VCC  
90 deg  
shift  
Window  
Regulator  
Zc  
Thermal  
UGATE2  
BOOT2  
SHDN  
GNDA  
DS9210-05 March 2007  
www.richtek.com  
5
Preliminary  
RT9210  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------------------- 7V  
7V  
z BOOT, VBOOT - VPHASE------------------------------------------------------------------------------------------------  
z
Input, Output or I/O Voltage ----------------------------------------------------------------------------------------- GND-0.3V to 7V  
z Package Thermal Resistance  
TSSOP-24, θJA --------------------------------------------------------------------------------------------------------- 100°C/W  
SOP-24, θJA ------------------------------------------------------------------------------------------------------------ 90°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV  
MM (Machine Mode)-------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions  
(Note 3)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------------------- 5V 5%  
z Ambient Temperature Range---------------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range---------------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Current  
Symbol  
Test Conditions  
Min  
Typ Max  
Units  
V
CC  
OCSET/SD = V , UGATE1 & 2  
LGATE1 & 2 Open  
CC  
Nominal Supply Current  
--  
--  
5
3
--  
--  
mA  
mA  
I
I
CC  
Shutdown Supply  
Power-On Reset  
POR Threshold  
Hysteresis  
OCSET/SD = 0V  
CCSD  
3.7  
--  
4.1  
0.5  
4.5  
--  
V
V
V
V
V
V
= 4.5V, V Rising  
CCRTH  
OCSET/SD  
CC  
= 4.5V  
CCHYS  
OCSET/SD  
Reference (for V1 and V2 Error Amp)  
Reference Voltage  
%
Sense1  
Sense1 = 2.5V  
49.0 50.0 51.0  
-- --  
0.784 0.8 0.816  
V
REF2  
(V2 Error Amp Reference)  
V1 Error Amp Reference Voltage  
Tolerance  
2
%
V
ΔV  
1EAR  
Error Amp Reference  
Oscillator  
V
REF  
V
V
= 5V  
= 5V  
CC  
Free Running Frequency  
Ramp Amplitude  
Error Amplifier  
DC Gain  
275  
--  
300  
1.9  
325  
--  
kHz  
f
OSC  
CC  
ΔV  
V
P-P  
OSC  
--  
--  
--  
90  
10  
6
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
To be continued  
www.richtek.com  
6
DS9210-05 March 2007  
Preliminary  
RT9210  
Parameter  
Window Regulator  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Load Current  
--  
--  
--  
--  
mA  
%
I
±10  
± 7  
LOAD  
V2_SD = V  
±10mA load on V2  
,
CC  
Output Voltage Error  
ΔV  
OUT  
PWM Controller Gate Drivers  
Upper Gate Source (UGATE1 and 2)  
BOOT = 10V  
--  
7
--  
R
UGATE  
Ω
BOOT V  
= 1V  
UGATE  
Upper Gate Sink (UGATE1 and 2)  
Lower Gate Source (LGATE1 and 2)  
Lower Gate Sink (LGATE1 and 2)  
Upper Gate Rising Time (UGATE1 and 2)  
Upper Gate Falling Time (UGATE1 and 2)  
Lower Gate Rising Time (LGATE1 and 2)  
Lower Gate Falling Time (LGATE1 and 2)  
Dead Time  
--  
--  
--  
--  
--  
--  
--  
--  
5
4
--  
--  
R
R
R
V
V
V
= 1V  
Ω
Ω
UGATE  
UGATE  
V  
= 1V  
LGATE  
CC  
LGATE  
2
--  
= 1V  
Ω
LGATE  
LGATE  
70  
50  
50  
32  
--  
--  
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
C
C
C
C
= 3.3nF  
= 3.3nF  
= 3.3nF  
= 3.3nF  
R_UGATE  
F_UGATE  
R_LGATE  
F_LGATE  
DT  
Load  
Load  
Load  
Load  
--  
--  
--  
100  
Protection  
FB1 Over-Voltage Trip  
FB1 Rising  
FB1 Falling  
125  
--  
137.5  
62.5  
40  
--  
%
%
ΔFB  
ΔFB  
I
1OVT  
FB1 Under-Voltage Trip  
75  
1UVT  
OCSET/SD Current Source  
OCP Blocking Time  
34  
--  
46  
V
= 4.5V  
μA  
ns  
OCSET  
OCSET/ SD  
320  
--  
540  
0.2  
Logic-Low Voltage  
OCSET/SD  
Shutdown  
Enable  
--  
V
IL  
V
Logic-High Voltage  
2.0  
--  
--  
4
--  
--  
V
IH  
Soft-Start Interval  
ms  
T
SS  
Power Good  
Upper Threshold  
Lower Threshold  
FB1 & Sense2 Rising  
FB1 & Sense2 Rising  
110  
80  
115  
85  
120  
90  
%
%
V
V
PGOOD+  
PGOOD-  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
DS9210-05 March 2007  
www.richtek.com  
7
Preliminary  
RT9210  
Typical Operating Characteristics  
POR ( Start Up)  
OCSET/SD ( Start Up)  
Vocset/sd  
VCC  
5V/Div  
1V/Div  
VDDQ  
VTT  
VDDQ  
VTT  
1V/Div  
Time (5ms/Div)  
Time (5ms/Div)  
Power Good Rising  
Power Good Falling  
5V/Div  
5V/Div  
5V/Div  
5V/Div  
VCC  
VCC  
PGOOD  
PGOOD  
2V/Div  
2V/Div  
VDDQ  
VDDQ  
Time (5ms/Div)  
Time (5ms/Div)  
Power Off  
Power On  
IDDQ = 10A, ITT = 5A  
IDDQ = ITT = 5A  
1V/Div  
VCC  
VDDQ  
VTT  
1V/Div  
VCC  
2V/Div  
VDDQ  
500mV/Div  
1V/Div  
VTT  
UGATE1  
5V/Div  
UGATE  
10V/Div  
Time (5ms/Div)  
Time (200μs/Div)  
DS9210-05 March 2007  
www.richtek.com  
8
Preliminary  
RT9210  
UGATE Phase Shift  
LGATE Phase Shift  
5V/Div  
5V/Div  
5V/Div  
LGATE1  
UGATE1  
UGATE2  
5V/Div  
LGATE2  
Time (1μs/Div)  
Time (1μs/Div)  
VTT Sleep Mode  
VTT Return from Sleep Mode  
5V/Div  
5V/Div  
Vvs_sd  
Vvs_sd  
2V/Div  
2V/Div  
VDDQ  
VTT  
VDDQ  
VTT  
20mV/Div  
20mV/Div  
5V/Div  
5V/Div  
UGATE2  
UGATE2  
Time (5μs/Div)  
Time (5μs/Div)  
VTT Short  
VDDQ Short  
500mV/Div  
500mV/Div  
1V/Div  
VTT  
VDDQ  
500mV/Div  
VFB1  
VFB1  
10V/Div  
10V/Div  
UGATE1  
UGATE2  
Time (10ms/Div)  
Time (10ms/Div)  
DS9210-05 March 2007  
www.richtek.com  
9
Preliminary  
RT9210  
VDDQ Transient  
VTT Transient  
50mV/Div  
VDDQ  
50mV/Div  
VDDQ  
50mV/Div  
VTT  
50mV/Div  
5A/Div  
VTT  
5A/Div  
IDDQ  
ITT  
VIN = 5V, VDDQ = 2.5V, COUT = 2000μF  
Time (250μs/Div)  
VIN = 5V, VTT = 1.25V, COUT = 2000μF  
Time (250μs/Div)  
IOCSET vs. Temperature  
VTT Sink & Source  
55  
100mV/Div  
VDDQ  
50  
45  
40  
35  
30  
100mV/Div  
VTT  
COUT = 2000μF  
VIN = 5V,  
VDDQ = 2.5V,  
VTT = 1.25V  
ITT  
5A/Div  
-40  
-10  
20  
50  
80  
110  
140  
Time (100μs/Div)  
Temperature  
(°C)  
Reference Voltage vs. Temperature  
Frequency vs. Temperature  
0.802  
0.801  
0.8  
350  
300  
250  
200  
150  
100  
50  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
0.793  
0.792  
0.791  
-40  
-10  
20  
50  
80  
110  
140  
-40  
-10  
20  
50  
80  
110  
140  
Temperature  
Temperature  
(°C)  
(°C)  
www.richtek.com  
10  
DS9210-05 March 2007  
Preliminary  
RT9210  
POR vs. Temperature  
4.4  
4.2  
4
Rising  
Falling  
3.8  
3.6  
3.4  
3.2  
3
-40  
-10  
20  
50  
80  
110  
140  
Temperature  
(°C)  
DS9210-05 March 2007  
www.richtek.com  
11  
Preliminary  
RT9210  
Applications Information  
Inductor  
The response time is the time required to slew the inductor  
current from an initial current value to the transient current  
level. The inductor limit input current slew rate during  
the load transient. Minimizing the transient response time  
can minimize the output capacitance required. The  
response time is different for application of load and removal  
of load to a transient. The following equations give the  
approximate response time for application and removal of  
a transient load :  
The inductor is required to supply constant current to the  
output load. The inductor is selected to meet the output  
voltage ripple requirements and minimize the converter's  
response time to the load transient.  
A larger value of inductance reduces ripple current and  
voltage. However, the larger value of inductance has a larger  
physical size, lower output capacitor and slower transient  
response time.  
L× ΔIOUT  
L × ΔIOUT  
VIN VOUT  
Agood rule for determining the inductance is to allow the  
peak-to-peak ripple current in the inductor to be  
approximately 30% of the maximum output current. The  
inductance value can be calculated by the following  
equation :  
TFall =  
TRise =  
VOUT  
Where  
TRise is the response time to the application of load,  
TFall is the response time to the removal of load,  
(VIN VOUT)× VOUT  
L =  
VIN ×FS × ΔIOUT  
I
OUT is the transient load current step.  
Δ
Where  
Input Capacitor  
VIN is the input voltage,  
The input capacitor is required to supply theAC current to  
the Buck converter while maintaining theDC input voltage.  
The capacitor should be chosen to provide acceptable ripple  
on the input supply lines. Use a mix of input bypass  
capacitors to control the voltage overshoot across the  
MOSFETs. Use small ceramic capacitors for high  
frequency decoupling and bulk capacitors to supply the  
current. Place the small ceramic capacitors close to the  
MOSFETs and between the drain of Q1/Q3 and the source  
of Q2/Q4.  
VOUT is the output voltage,  
FS is the switching frequency,  
ΔIOUT is the peak-to-peak inductor ripple current.  
The inductance value determines the converter's ripple  
current and the ripple current. The ripple voltage is  
calculated by the following equation :  
(VIN VOUT)× VOUT  
ΔI =  
VIN ×Fs×L  
Increasing the value of inductance reduces the ripple  
current and voltage. However, the large inductance value  
raise the converter's response time to a load transient.  
The key specifications for input capacitor are the voltage  
rating and the RMS current rating. For reliable operation,  
select the bulk capacitor with voltage and current ratings  
above the maximum input voltage and largest RMS current.  
The capacitor voltage rating should be at least 1.25 times  
greater than the maximum input voltage and voltage rating  
of 1.5 times is a conservative guideline. The RMS current  
rating for the input capacitor of a buck regulator should be  
greater than approximately 0.5 the DC load current.  
One of the parameters limiting the converter's response  
to a load transient is the time required to change the  
inductor current. Given a sufficiently fast control loop  
design, the RT9210 will provide 0% to 100% duty cycle in  
response to a load transient.  
www.richtek.com  
12  
DS9210-05 March 2007  
Preliminary  
RT9210  
Output Capacitor  
For the Buck converter the average inductor current is  
equal to the output load current. The conduction loss is  
defined as :  
The output capacitor is required to maintain theDC output  
voltage and supply the load transient current. The capacitor  
must be selected and placed carefully to yield optimal  
results and should be chosen to provide acceptable ripple  
on the output voltage.  
PCD (high side switch) = IO2 * RDS(ON) * D  
PCD (low side switch) = IO2 * RDS(ON) * (1-D)  
The switching loss is more difficult to calculate. The reason  
is the effect of the parasitic components and switching  
times during the switching procedures such as turn-on /  
turn-off delays and rise and fall times. With a linear  
approximation, the switching loss can be expressed as :  
The key specification for output capacitor is its ESR. Low  
ESR capacitors are preferred to keep the output voltage  
ripple low. The bulk capacitor's ESR will determine the  
output ripple voltage and the initial voltage drop after a  
high slew-rate transient. For transient response, a  
combination of low value, high frequency and bulk  
capacitors placed close to the load will be required. High  
frequency decoupling capacitors should be placed as close  
to the power pins of the load as possible. In most cases,  
multiple electrolytic capacitors of small case size perform  
better than a single large case capacitor.  
PSW = 0.5 * VDS(OFF) * IO * (TRise + TFall) * F  
Where  
VDS(OFF) is drain to source voltage at off time,  
T
Rise  
is rise time,  
TFall is fall time,  
F is switching frequency.  
The capacitor value must be high enough to absorb the  
inductor's ripple current. The output ripple is calculated  
The total power dissipation in the switching MOSFET can  
be calculate as :  
as :  
ΔVOUT = ΔIOUT ×ESR  
PHigh Side Switch  
=
Another concern is high ESR induced output voltage ripple  
may trigger UV or OV protections will cause IC shutdown.  
IO2 * RDS(ON) D + 0.5 * VDS(OFF)* IO* (TRise + TFall)* F  
PLow Side Switch = IO2 * RDS(ON) * (1-D)  
*
MOSFET  
In RT9210, the VDDQ only sources current but the VTT  
can sink and source current. When sourcing current, the  
upper MOSFET supports most of the switching losses.  
On the contrary, the lower MOSFET supports most of the  
switching losses when VTT is sinking.  
The MOSFET should be selected to meet power transfer  
requirements is based on maximum drain-source voltage  
(VDS), gate-source drive voltage (VGS), maximum output  
current, minimum on-resistance (RDS(ON)) and thermal  
management.  
Losses while Sourcing Current  
In high-current applications, the MOSFET power  
dissipation, package selection and heatsink are the  
dominant design factors. The losses can be divided into  
conduction and switching losses.  
PHigh Side Switch = IO2 * RDS(ON)* D + 0.5 * VDS(OFF)* IO* (TRise  
+ TFall)* F  
PLow Side Switch = IO2 * RDS(ON) * (1-D)  
Conduction losses are related to the on resistance of  
MOSFET, and increase with the load current. Switching  
losses occur on each ON/OFF transition. The conduction  
losses are the largest component of power dissipation for  
both the upper and the lower MOSFETs.  
Losses while Sinking Current  
PHigh Side = IO2 * RDS(ON) * D  
PLow Side = IO2 * RDS(ON)* (1-D) + 0.5 * VDS(OFF)* IO* (TRise  
TFall)* F  
+
For input voltages of 3.3V and 5V, conduction losses often  
dominate switching losses. Therefore, lowering the RDS(ON)  
of the MOSFETs always improves efficiency.  
DS9210-05 March 2007  
www.richtek.com  
13  
Preliminary  
RT9210  
Feedback Compensation  
The output LC filter introduces a double pole,40dB/  
decade gain slope above its corner resonant frequency,  
and a total phase lag of 180 degrees. The Resonant  
frequency of the LC filter expressed as follows :  
The RT9210 is a voltage mode controller; the control loop  
is a single voltage feedback path including an error amplifier  
and PWM comparator as Figure 1 shows. In order to  
achieve fast transient response and accurate output  
regulation, a adequate compensator design is necessary.  
The goal of the compensation network is to provide  
adequate phase margin (greater than 45 degrees) and the  
highest 0dB crossing frequency. And to manipulate loop  
frequency response that its gain crosses over 0dB at a  
slope of -20dB/dec.  
1
FP(LC) =  
2π × LO ×CO  
The next step of compensation design is to calculate the  
ESR zero. The ESR zero is contributed by the ESR  
associated with the output capacitance. Note that this  
requires that the output capacitor should have enough ESR  
to satisfy stability requirements. The ESR zero of the  
output capacitor expressed as follows :  
Vin  
1
FZ(ESR) =  
2π × CO ×ESR  
Lo  
Vout  
PWM  
Compensation Frequency Equations  
Co  
The compensation network consists of the error amplifier  
and the impedance networks ZC and ZF as Figure 2 shows.  
ESR  
Zf  
Zf  
-
C1  
Zc  
Zc  
+
-
PWM  
Comparator  
+
R1  
VREF  
VOUT  
R2  
C2  
Compensator  
VRAMP  
FB1  
-
EA  
+
COMP1  
Rf  
Figure 1  
RT9210  
VREF  
Modulator Frequency Equations  
Figure 2  
The modulator transfer function is the small-signal transfer  
function of VOUT/VE/A. This transfer function is dominated  
by a DC gain and the output filter (LO and CO), with a  
double pole  
FP1 = 0  
FZ1  
1
=
2π ×R2 × C2  
1
FP1 =  
frequency at FLC and a zero at FESR. The DC gain of the  
modulator is the input voltage (VIN) divided by the peak-  
2π ×R2(C1// C2)  
Figure 3 shows theDC-DC converter's gain vs. frequency.  
The compensation gain uses external impedance networks  
ZC and ZF to provide a stable, high bandwidth loop.  
to-peak oscillator voltage VRAMP  
.
The first step is to calculate the complex conjugate poles  
contributed by the LC output filter.  
www.richtek.com  
14  
DS9210-05 March 2007  
Preliminary  
RT9210  
High crossover frequency is desirable for fast transient  
response, but often jeopardize the system stability. In  
order to cancel one of the LC filter poles, place the zero  
before the LC filter resonant frequency. In the experience,  
place the zero at 75% LC filter resonant  
frequency.Crossover frequency should be higher than the  
ESR zero but less than 1/5 of the switching frequency.  
3. Use fewer, but larger output capacitors, keep the  
capacitors clustered, and use multiple layer traces with  
heavy copper to keep the parasitic resistance low. Place  
the output capacitors as close to the load as possible.  
4. The inductor, output capacitor and the MOSFET should  
be as close to each other as possible. This helps to reduce  
the EMI radiated.  
The second pole be place at half the switching frequency.  
5. Place the switching MOSFET as close to the input  
capacitors as possible. The MOSFET gate traces to the  
IC must be as short, straight, and wide as possible. Use  
copper filled polygons on the top and bottom layers for  
the PHASE nodes.  
80
Loop Gain  
60  
40
Compensation  
Gain  
20  
6. Place the CBOOT as close as possible to the BOOT and  
PHASE pins.  
0
Modulator  
Gain  
7. The feedback part of the system should be kept away  
from the inductor and other noise sources, and be placed  
close to the IC. Connect to the GND pin with a single  
trace, and connect this local GND trace to the output  
capacitorGND.  
-20  
-40  
-60  
100k  
1M  
10  
100  
1k  
10k  
Frequency (Hz)  
Figure 3  
8. Minimize the leakage current paths on the OCSET/SD  
pin and locate the resistor as close to the OCSET/SD pin  
as possible because the internal current source isonly  
40μA.  
Layout Consideration  
The layout is very important when designing high frequency  
switching converters. Layout will affect noise pickup and  
can cause a good design to perform with less than  
expected results.  
9. In multilayer PCB, use one layer as ground plane and  
have a control circuit ground (analog ground), to which all  
signals are referenced. The goal is to localize the high  
current path to a separate loop that does not interfere  
with the more sensitive analog control function. These two  
grounds must be connected together on the PC board  
layout at a single point.  
1. Even though double-sided PCB is usually sufficient for  
a good layout, four-layer PCB is the optimum approach to  
reducing the noise. Use the two internal layers as the  
power andGNDplanes, the top layer for power connections  
with wide, copper filled areas, and the bottom layer for the  
noise sensitive traces.  
2. There are two sets of critical components in a DC-DC  
converter. The switching components are the most critical  
because they switch large amounts of energy, and  
therefore tend to generate large amounts of noise. The  
others are the small signal components that connect to  
sensitive nodes or supply critical bypass current and signal  
coupling. Make all critical component ground connections  
with vias toGNDplane.  
DS9210-05 March 2007  
www.richtek.com  
15  
Preliminary  
RT9210  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.047  
0.006  
0.041  
0.012  
0.311  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.190  
7.700  
1.200  
0.150  
1.050  
0.300  
7.900  
0.033  
0.002  
0.031  
0.007  
0.303  
D
e
0.650  
0.026  
E
6.300  
4.300  
0.450  
6.500  
4.500  
0.750  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
24-Lead TSSOP Plastic Package  
www.richtek.com  
16  
DS9210-05 March 2007  
Preliminary  
RT9210  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
15.189  
7.391  
2.362  
0.330  
1.194  
0.229  
0.102  
10.008  
0.381  
Max  
15.596  
7.595  
2.642  
0.508  
1.346  
0.330  
0.305  
10.643  
1.270  
Min  
Max  
A
B
C
D
F
H
I
0.598  
0.291  
0.093  
0.013  
0.047  
0.009  
0.004  
0.394  
0.015  
0.614  
0.299  
0.104  
0.020  
0.053  
0.013  
0.012  
0.419  
0.050  
J
M
24-Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9210-05 March 2007  
www.richtek.com  
17  

相关型号:

RT9210PS

Dual 5V Synchronous Buck DC-DC PWM Controller for DDR Memory VDDQ and VTT Termination
RICHTEK

RT9212

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9212GC

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9212PC

Dual 5V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9214

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214GS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214GSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9216B

VFM STEP UP DC/DC CONVERTER
ETC

RT9218

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218B

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK