RT9246AGC [RICHTEK]

Multi-Phase PWM Controller for CPU Core Power Supply; 多相PWM控制器,用于CPU核心供电
RT9246AGC
型号: RT9246AGC
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for CPU Core Power Supply
多相PWM控制器,用于CPU核心供电

多相元件 控制器
文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9246A  
Multi-Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
The RT9246A is a multi-phase buck DC/DC controller  
integrated with all control functions for GHz CPU VRM.  
The RT9246A controls 2 or 3 buck switching stages  
operating in interleaved phase set automatically. The multi-  
phase architecture provides high output current while  
maintaining low power dissipation on power devices and  
low stress on input and output capacitors. The high  
equivalent operating frequency also reduces the  
component dimension and the output voltage ripple in load  
transient.  
Phase Selection  
z K8 DAC Output with Active Droop Compensation  
for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by Inductor DCR  
Current Sense  
z Hiccup Mode Over-Current Protection  
z Programmable Switching Frequency (50kHz to  
400kHz per Phase), Under-Voltage Lockout and  
Soft-Start  
RT9246Acontrols both voltage and current loops to achieve  
good regulation, response & power stage thermal balance.  
Precise current loop using Inductor DCR as sense  
component builds precise load line for strict VRM DC &  
transient specification and also ensures thermal balance  
of different power stages. The settings of current sense,  
droop tuning, VCORE initial offset and over current protection  
are independent to compensation circuit of voltage loop.  
The feature greatly facilitates the flexibility of CPU power  
supply design and tuning.  
z High Ripple Frequency Times Channel Number  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z AMD® AthlonTM 64 and OpteronTM Processors Voltage  
Regulator  
z Low Output Voltage, High CurrentDC-DC Converters  
z Voltage Regulator Modules  
Pin Configurations  
The DAC output of RT9246A supports K8 CPU by 5-bit  
VID input, precise initial value & smooth VCORE transient  
at VID jump. The IC monitors the VCORE voltage for PGOOD  
and over-voltage protection. Soft-start, over-current  
protection and programmable under-voltage lockout are  
also provided to assure the safety of microprocessor and  
power system.  
(TOP VIEW)  
VID4  
VID3  
VID2  
VID1  
VID0  
NC  
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
PWM1  
PWM2  
PWM3  
2
3
4
5
6
7
8
NC  
ISP1  
ISP2  
ISP3  
NC  
FBRTN  
FB  
COMP  
PGOOD  
DVD  
SS  
RT  
VOSS  
9
20  
19  
18  
17  
16  
15  
Ordering Information  
10  
11  
12  
13  
14  
GND  
RT9246A  
ADJ  
IOUT  
ICOMMON  
IMAX  
Package Type  
C : TSSOP-28  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
TSSOP-28  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9246A-04 March 2007  
www.richtek.com  
1
RT9246A  
Typical Application Circuit  
www.richtek.com  
2
DS9246A-04 March 2007  
RT9246A  
Functional Pin Description  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4),  
VID0 (Pin 5)  
SS (Pin 12)  
Connect this SS pin to GND with a capacitor to set the  
soft-start time interval and to smooth VCORE transient at  
VID Jump.  
DAC voltage identification inputs for K8. These pins are  
internally pulled to 2.2V if left open.  
NC (Pin 6, Pin 20, Pin 24)  
RT (Pin 13)  
No Input Connection  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
FBRTN (Pin 7)  
VOSS (Pin 14)  
VCORE differential sense return.  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the offset value.  
FB (Pin 8)  
Inverting input of the internal error amplifier.  
IMAX (Pin 15)  
COMP (Pin 9)  
Over-Current protection set.  
Output of the error amplifier and input of the PWM  
comparator.  
ICOMMON (Pin 16)  
Common negative input of current sense amplifiers for all  
three channels.  
PGOOD (Pin 10)  
Power good open-drain output.  
IOUT (Pin 17)  
DVD (Pin 11)  
Output current indication pin. The current through IOUT  
pin is proportional to the output current.  
Programmable power UVLO detection or converter enable  
input.  
ADJ (Pin 18)  
Current sense output for active droop adjust. Connect a  
resistor from this pin to GND to set the load droop.  
Oscillator Ferquency vs. RRT  
700  
600  
500  
400  
300  
200  
100  
0
GND (Pin 19)  
IC ground.  
ISP1 (Pin 23), ISP2 (Pin 22), ISP3 (Pin 21)  
Current sense positive input pins for individual converter  
channel current sensing.  
PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25)  
PWM outputs for each driven channel. Connect these pins  
to the PWM input of the MOSFET driver. For systems  
which use 2 channels, connect PWM3 high.  
0
10  
20  
30  
40  
50  
60  
70  
RRT (kΩ)  
VCC (Pin 28)  
IC power supply. Connect this pin to a 5V supply.  
DS9246A-04 March 2007  
www.richtek.com  
3
RT9246A  
Function Block Diagram  
www.richtek.com  
4
DS9246A-04 March 2007  
RT9246A  
Table 1. Output Voltage Program  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Nominal Output Voltage DACOUT  
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.200  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
Shutdown  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
DS9246A-04 March 2007  
www.richtek.com  
5
RT9246A  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND-0.3V to VCC+0.3V  
z Power Dissipation, PD @ TA = 25°C  
TSSOP-28 ------------------------------------------------------------------------------------------------------ 1W  
z Package Thermal Resistance (Note 4)  
TSSOP-28, θJA -------------------------------------------------------------------------------------------------- 100°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V 10%  
z Ambient Temperature Range--------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range--------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Current  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
V
CC  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
PWM 1,2,3 Open  
--  
12  
--  
mA  
I
CC  
4.0  
0.2  
0.9  
--  
4.2  
0.5  
1.0  
60  
4.5  
--  
V
V
V
V
V
V
V
CC  
Rising  
CCRTH  
CCHYS  
DVDTH  
DVDHYS  
Input High  
Input Low  
Enable  
1.1  
--  
V
V
DVD  
Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
f
R
R
= 20kΩ  
OSC  
RT  
f
OSC_ADJ  
1.9  
1.0  
66  
ΔV  
= 20kΩ  
OSC  
RT  
Ramp Valley  
--  
--  
V
V
RV  
Maximum On-Time of Each Channel  
RT Pin Voltage  
62  
0.9  
75  
1.1  
%
1.0  
V
V
R
RT  
= 20kΩ  
1V  
RT  
Reference and DAC  
--  
--  
--  
--  
+1  
+10  
0.8  
--  
%
mV  
V
1  
10  
--  
V
V
DAC  
DACOUT Voltage Accuracy  
ΔV  
DAC  
< 1V  
DAC  
DAC (VID0-VID4) Input Low  
DAC (VID0-VID4) Input High  
ΔV  
ΔV  
ILDAC  
1.2  
V
IHDAC  
To be continued  
www.richtek.com  
6
DS9246A-04 March 2007  
RT9246A  
Parameter  
DAC (VID0-VID4) Pull-up Voltage  
DAC (VID0-VID4) Pull-up Resistance  
VOSS Pin Voltage  
Symbol  
Test Conditions  
Min  
2.0  
10  
Typ  
2.2  
13  
Max  
2.4  
16  
Units  
V
kΩ  
V
0.9  
1.0  
1.1  
RVOSS = 100kΩ  
V
VOSS  
Error Amplifier  
DC Gain  
--  
--  
--  
65  
10  
8
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
C
= 10pF  
COMP  
Current Sense GM Amplifier  
ICOMMON Full Scale Source Current  
ICOMMON Current for OCP  
Protection  
100  
150  
--  
--  
--  
--  
μA  
μA  
IMAX Voltage  
0.84  
340  
0.94  
400  
1.05  
450  
V
V
R
= 10k  
IMAX  
IMAX  
mV  
Over-Voltage Trip (V - V  
)
Δ
R
= 0  
ADJ  
FB  
DAC  
OVT  
Power Good  
Output Low Voltage  
--  
--  
0.2  
V
V
I
= 4mA  
PGOODL  
PGOOD  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
DS9246A-04 March 2007  
www.richtek.com  
7
RT9246A  
Typical Operating Characteristics  
Duty Ratio vs. VCOMP  
Power On  
70  
RRT = 16kΩ  
IOUT = 3A  
60  
50  
40  
30  
20  
10  
0
VCC  
(5V/Div)  
SS  
(2V/Div)  
VOUT  
(1V/Div)  
PGOOD  
(5V/Div)  
0.5  
1
1.5  
2
2.5  
3
3.5  
Time (25ms/Div)  
VCOMP (V)  
Power Off  
Start Up  
IOUT = 3A  
VCC  
(5V/Div)  
PWM  
(5V/Div)  
SS  
(2V/Div)  
SS  
(2V/Div)  
VOUT  
(1V/Div)  
COMP  
(1V/Div)  
PGOOD  
(5V/Div)  
VCORE  
(1V/Div)  
Time (25ms/Div)  
Time (10ms/Div)  
VID Jump  
OVP  
UnitGain  
FB  
(2V/Div)  
SS  
(2V/Div)  
VCORE  
(100mV/Div)  
PWM  
(2V/Div)  
SS  
(500mV/Div)  
Time (5ms/Div)  
Time (5ms/Div)  
www.richtek.com  
8
DS9246A-04 March 2007  
RT9246A  
Applications Information  
output with 1~2ms delay. An SS capacitor about 47nF is  
recommend for typical application.  
VCC POR and DVD ready  
RT9246A is a multi-phase DC/DC controller specifically  
designed to deliver high quality power for next generation  
CPU. Phase currents are sensed by innovative time-  
sharingDCR current sensing technique for channel current  
balance, droop tuning, and over current protection. Using  
one commonGM amplifier for current sensing eliminates  
offset errors and linearity variation betweenGMs.As sub-  
milli-ohm-grade inductors are widely used in modern  
mother boards, slight mismatch of GM amplifiers offset  
and linearity results in considerable current shift between  
phases. The time-sharingDCR current sensing technique  
is extremely important to guarantee phase current balance  
at mass production.  
SS  
VCORE  
PGOOD  
VID Jump  
1~2ms  
1~2ms  
1~2ms  
Figure 1. TimmingDiagramDuring Soft Start Interval  
Voltage Control  
CPU VCORE voltage is Kelvin sensed by FB and FBRTN  
pins and precisely regulated to VID_DAC output by internal  
high gain Error Amplifier (EA). The sensed signal is also  
used for power good and over voltage function. The typical  
OVP trip point is 400mV above VID_DAC output. RT9246A  
pulls PWM outputs low and latches up upon OVP trip to  
prevent CPU from damaging. It can only restart by resetting  
either VCC or DVD pin.  
Converter Initialization, Phase Selection, and  
Power Good Function  
The RT9246A initiates only after two pins are ready: VCC  
pin power on reset (POR) and DVD pin is higher than 1V.  
VCC POR is to make sure RT9246A is powered by a  
voltage for normal work. The rising threshold voltage of  
VCC POR is 4.2V typically.At VCC POR, RT9246Achecks  
PWM3 status to determine phase number of operation.  
Pull high PWM3 for two-phase operation. The unused  
current sense pin should be connected to GND or left  
floating.  
The VID pins are internally pulled high to internal 2.2V  
with 13kΩ resistors and are easily interfaced with CPU  
VIDoutputs. The change of VID_DAC output at VIDJump  
is also smoothed by capacitor connected to SS pin.  
Consequently, VCORE shifts to its new position smoothly.  
DVDis to make sure thatATX12V is ready for companion  
MOSFET drivers(RT960X series) to work normally.  
Connect a voltage divider from ATX12V to DVD pin as  
shown in the Typical Application Circuit. Make sure that  
DVDpin voltage is below its threshold voltage before drivers  
are ready and above its threshold voltage for minimum  
ATX12V during normal operation.  
DCR Current Sensing  
RT9246Aadopts an innovative time-sharingDCR current  
sensing technique to sense the phase currents for phase  
current balance (phase thermal balance) and load line  
regulation as shown in Figure 2. Current sensing amplifier  
GM samples and holds voltages VX across the current  
sensing capacitor CX by turns in a switching cycle.  
According to the Basic Circuit Theory, if  
If either one of VCC andDVDis not ready, RT9246Akeeps  
its PWM outputs high impedance and the companion  
drivers turn off both upper and lower MOSFETs.After VCC  
and DVD are ready, RT9246A initiates its soft start cycle  
as shown in Figure 1.Atime-variant internal current source  
charges the capacitor connected to SS pin. SS voltage  
ramps up piecewise linearly and locks VID_DAC output  
with a specified voltage drop. Consequently, VCORE is built  
up according to VID_DAC output. PGOOD output is  
tripped to high impedance when VCORE reaches VID_DAC  
L
X
= R  
X
x C  
X
then V = ILX x RLX  
X
RLX  
Consequently, the sensing current IX is proportional to  
inductor current ILX and is expressed as :  
I
LX x RLX  
IX =  
RCOMM  
DS9246A-04 March 2007  
www.richtek.com  
9
RT9246A  
L
X
R
I
LX  
LX  
R
C
+
X
X
-
V
X
V
CORE  
+
T1  
+
-
S/H CKT  
T2  
Ix  
T3  
T1  
T4  
R
COMM  
Figure 2  
The sensed current IX is used for current balance and droop  
tuning as described as followed. Since all phases share  
one common GM, GM offset and linearity variation effect  
is eliminated in practical applications. As sub-milli-ohm-  
grade inductors are widely used in modern mother boards,  
slight mismatch ofGM amplifiers offset and linearity results  
in considerable current shift between phases. The time-  
sharing DCR current sensing technical is extremely  
important to guarantee phase current balance at mass  
production.  
Over Current Protection  
RT9246A uses an external resistor RIMAX connected to  
IMAX pin to generate a reference current IIMAX for over  
current protection:  
V
IMAX  
IMAX  
I
IMAX=  
R
where VIMAX is 1.0V typical. OCP comparator compares  
each sensed phase current IX with this reference current  
as shown in Figure 3. Equivalently, the maximum phase  
current is calculated as:  
Phase Current Balance  
3 VIMAX  
R
COMM  
The sampled and held phase current IX are summed and  
I
LX(MAX)=  
2 RIMAX  
R
LX  
averaged to get the averaged current  
. Each phase  
I
X
current IX then is compared with the averaged current.  
OCP Comparator  
The difference between IX and is injected to  
I
X
1/3 I  
+
-
X
corresponding PWM comparator. If phase current IX is  
smaller than the averaged current , RT9246A increases  
the duty cycle of corresponding phase to increase the  
phase current accordingly, vice versa.  
1/2 I  
IMAX  
Figure 3. Over Current Comparator  
RT9246A uses hiccup mode to eliminate nuisance  
detection of OCP or reduce output current when output is  
shorted to ground as shown in Figure 4 and 5.  
www.richtek.com  
10  
DS9246A-04 March 2007  
RT9246A  
where Nis the phase number of operation.  
Over Current Protection  
The averaged current is also injected into the resistor  
I
X
RIOUT connected to IOUT pin for monitoring load current.  
Voltage at IOUT pin VIOUT is proportional to load current  
and is calculated as:  
(5V/Div)  
PWM  
(10A/Div)  
(2V/Div)  
8 x ICORE x RADJ x RLX  
VIOUT = 8IX x RIOUT =  
ICORE  
VSS  
N x RCOMM  
Error  
Amp.  
R
FB1  
(500mV/Div)  
V
-
CORE  
VCORE  
I
VOSS 4  
+
Time (5ms/Div)  
V
ADJ  
8IX  
DAC  
Figure 4. The Over Current Protection in the soft start  
interval  
R
ADJ  
Figure 6. Load Line and Offset Function  
Over Current Protection  
Output Voltage Offset Function  
RT9246A provides programmable initial offset function.  
External resistor RVOSS and voltage source at VOSS pin  
(5A/Div)  
V
VOSS  
I
VOSS  
=
generate offset current  
ICORE  
R
VOSS  
, where VVOSS is 1V typical. One quarter of IVOSS flows  
through RFB1 as shown in Figure 6. Error amplifier would  
hold the inverting pin equal to VDAC VADJ. A constant  
offset voltage is consequently added to VDAC VADJ as :  
(1V/Div)  
VSS  
RFB1  
VCORE = VDAC VADJ +  
4 x RVOSS  
Time (2.5ms/Div)  
Figure 5. Over Current Protection at steady state  
Current Ratio Setting  
Droop and Load Line Setting  
Current ratio adjustment is possible as described below.  
It is important for achieving thermal balance in practical  
application where thermal conditions between phases are  
not identical. Figure 7 shows the application circuit ofGM  
for current ratio requirement. According to Basic Circuit  
Theory, if  
RT9246A injects averaged phase current I  
resistor RADJ connected to ADJ pin to generate a load-  
X
into the  
current-dependent voltage VADJ for droop setting:  
VADJ = 8IX RADJ  
VADJ is then subtracted form VID_DAC output as the real  
reference voltage at non-inverting input of the error amplifier  
as shown if Figure 6. Consequently, load line slope is  
calculated as:  
L
X
= (RSX // RPX) x C  
X
then  
R
LX  
R
PX  
VX =  
x ILX x RLX  
R
SX+RPX  
ΔVCORE 8 x RADJ x RLX  
LoadLine =  
=
ΔICORE  
N x RCOMM  
DS9246A-04 March 2007  
www.richtek.com  
11  
RT9246A  
Phase Current Balance  
With other phase kept unchanged, this phase would share  
(RPX+RSX)/RPX times current than other phases. Figure 8  
and 9 show different current ratio setting for the power  
stage when Phase 3 is programmed 2 times current than  
other phases. Figure 10 and 11 compare the above current  
ratio setting results.  
40  
35  
30  
25  
20  
15  
10  
5
L
X
R
I
LX  
LX  
V
R
X
SX  
+
-
C
X
0
R
0
15  
30  
45  
60  
75  
PX  
V
ICORE (A)  
Figure 10  
CORE  
+
T
Current Ratio Function  
35  
30  
25  
20  
15  
10  
5
Figure 7  
0
Figure 8. Phase 3 Setting for current ratio function  
0
15  
30  
45  
60  
75  
IOUT (A)  
Figure 11  
Dead Zone Elimination  
RT9246A samples and holds inductor valley current by  
time-sharing sourcing a current IX to RCOMM. At light load  
condition when averaged inductor current is smaller than  
half of peak-to-peak inductor ripple current, voltage VX  
across the sensing capacitor is negative at valley. It needs  
a negative IX to sense the voltage. However, RT9246A  
CANNOT provide a negative IX and consequently cannot  
sense negative valley inductor current. This results in dead  
zone of load line performance as shown in Figure 12.  
Therefore a technique as shown in Figure 13 is required  
to eliminate the dead zone of load line at light load  
condition.  
Figure 9. Phase 1~2 Setting for current ratio function  
www.richtek.com  
12  
DS9246A-04 March 2007  
RT9246A  
RCOMM = 330Ω, RADJ = 160Ω, VOUT = 1.300V  
Load Line without dead zone at light loads  
1.31  
1.3V  
RCSN  
-5A ×1mΩ  
330Ω  
1.3  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
w/o Dead Zone Compensation  
RCSN open  
RCSN 85.8kΩ  
Choose RCSN = 82kΩ  
Figure 12 shows that dead zone of load line at light load  
is eliminated by applying this technique.  
RCSN = 82k  
w/i Dead Zone Compensation  
Error Amplifier Characteristic  
For fast response of converter to meet stringent output  
current transient response, RT9246Aprovides large slew  
rate capability and high gain-bandwidth performance.  
0
5
10  
15  
20  
25  
IOUT (A)  
Figure 12  
EA Falling Slew Rate  
LX  
R
LX  
I
LX  
R
X
C
X
V
OUT  
+
-
V
VFB  
X
500mV/Div)  
+
-
R
(2V/Div)  
COMM  
GMx  
Ix  
R
CSN  
VCOMP  
Figure13. Application circuit of GM  
Referring to Figure 13, IX is expressed as:  
Time (250ns/Div)  
Figure 14. EA Rising Transient with 10pF Loading; Slew  
Rate=8V/us  
V
OUT  
CSN  
I
LX_V x RLX  
ILX_V x RLX  
(1)  
I
X
=
+
+
R
RCSN  
RCOMM  
EA Rising Slew Rate  
I
where LX_V is the valley of inductor current. To make sure  
RT9246A could sense the valley current, right hand side  
of Equation (1) should always be positive:  
VFB  
(500mV/Div)  
V
OUT  
CSN  
I
LX_V x RLX  
ILX_V x RLX  
+
+
0  
(2)  
R
RCSN  
RCOMM  
Since RCSN >> RCOMM in practical application, Equation (2)  
could be simplified as:  
V
R
OUT  
CSN  
ILX_V x RLX  
VCOMP  
(2V/Div)  
R
COMM  
Time (250ns/Div)  
For example, assuming the negative inductor valley current  
is 5A at no load, then for  
Figure 15. EA Falling Transient with 10pF Loading;  
Slew Rate=8V/us  
DS9246A-04 March 2007  
www.richtek.com  
13  
RT9246A  
4.7k  
EA  
4.7k  
B
-
A
+
V
REF  
Figure 16. Gain-Bandwidth Measurement by signal Adivided by signal B  
Design Procedure Suggestion  
a.Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
DCR = 1mΩ of inductor at 25°C  
L = 1.5μH  
b.Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
COUT = 8000μF with 5mΩ equivalent ESR.  
1. Compensation Setting  
Current Loop Setting  
a. ModulatorGain, Pole and Zero:  
a.GM amplifier S/H current (current sense component  
DCR, ISPX and ICOMMONpin external resistor value).  
From the following formula:  
Modulator Gain =VIN/VRAMP =12/1.9 = 6.3 (i.e 16dB)  
where VRAMP : ramp amplitude of saw-tooth wave  
LC Filter Pole = 1.45kHz and  
b.Over-current protection trip point (RIMAX resistor).  
VRM Load Line Setting  
a.Droop amplitude (ADJ pin resistor).  
ESR Zero =3.98kHz  
b.No load offset (RCSN  
)
b. EA Compensation Network:  
c.DAC offset voltage setting (VOSS pin and compensation  
network resistor RB1)  
Select R1 = 4.7k, R2 = 15k, C1 = 12nF, C2 = 68pF  
and use the Type 2 compensation scheme shown in  
Figure 17. By calculation, the FZ = 0.88kHz,  
FP = 322kHz and Middle Band Gain is 3.19 (i.e  
10.07dB).  
Power Sequence & SS  
DVD pin external resistor and SS pin capacitor.  
PCB Layout  
C2 68pF  
a.Sense for current sense GM amplifier input.  
C1  
b.Refer to layout guide for other items.  
RB2  
15k  
-
12nF  
RB1  
4.7k  
Voltage Loop Setting  
Design Example  
EA  
+
Figure 17. Type 2 compensation network of EA  
Given:  
Apply for four phase converter  
VIN = 12V  
VCORE = 1.5V  
ILOAD(MAX) = 100A  
VDROOP = 100mV at full load (1mΩ Load Line)  
OCP trip point set at 35A for each channel (S/H)  
www.richtek.com  
14  
DS9246A-04 March 2007  
RT9246A  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path:  
The current sense circuit is the most sensitive part of the converter. The current sense resistors tied to ISP1,2,3 and  
ICOMMONshould be located not more than 0.5 inch from the IC and away from the noise switching nodes. The PCB  
trace of sense nodes should be parallel and as short as possible. R&C filter of choke should place close to PWM and  
the R & C connect directly to the pin of each output choke, use 10 mil differencial pair, and 20 mil gap to other phase  
pair. Less via as possible.  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.Keep  
them away from sensitive small-signal node.  
f . Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
L1  
SW1  
V
V
OUT  
IN  
R
IN  
C
OUT  
R
L
C
IN  
V
L2  
SW2  
Figure 18. Power Stage Ripple Current Path  
DS9246A-04 March 2007  
www.richtek.com  
15  
RT9246A  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.178  
9.601  
1.200  
0.152  
1.050  
0.305  
9.804  
0.033  
0.002  
0.031  
0.007  
0.378  
0.047  
0.006  
0.041  
0.012  
0.386  
D
e
0.650  
0.026  
E
6.300  
4.293  
0.450  
6.500  
4.496  
0.762  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
28-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
16  
DS9246A-04 March 2007  

相关型号:

RT9246APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK