R1211N002C-TR [RICOH]

Step-up DC/DC Controller; 升压型DC / DC控制器
R1211N002C-TR
型号: R1211N002C-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Step-up DC/DC Controller
升压型DC / DC控制器

控制器
文件: 总33页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2001.8.30  
Step-up DC/DC Controller  
R1211X Series  
OUTLINE  
The R1211X Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current.  
Each of the R1211X Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error  
amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high  
efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a  
diode, a power MOSFET, divider resisters, and capacitors.  
Phase compensation has been made internally in the R1211X002B/D Series, while phase compensation can be  
made externally as for R1211X002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed  
typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or  
10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is  
continued for a certain period, the R1211X Series latch the external driver with its off state, or Latch-type protection  
circuit works. The delay time for latch the state can be set with an external capacitor.  
To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector  
threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again.  
FEATURES  
Standby Current • • • • • • • • • • • • • • • • • TYP. 0µA (for B/D version)  
Input Voltage Range • • • • • • • • • • • • • • • 2.5V to 6.0V  
Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor)  
Two Options of Basic Oscillator Frequency • • 300kHz, 700kHz  
Max Duty Cycle • • • • • • • • • • • • • • • • • • Typ. 90%  
High Reference Voltage Accuracy • • • • • • • ±1.5%  
U.V.L.O. Threshold level • • • • • • • • • • • • • Typ. 2.2V (Hysteresis TYP. 0.13V)  
Small Package • • • • • SOT-23-6W or thin (package height MAX. 0.85mm) SON-6 (Under Development)  
APPLICATIONS  
Constant Voltage Power Source for portable equipment.  
Constant Voltage Power Source for LCD and CCD.  
Rev. 1.10  
- 1 -  
BLOCK DIAGRAMS  
Version A  
VFB  
OSC  
EXT  
VIN  
DTC  
AMPOUT  
Vref  
GND  
UVLO  
Latch  
DELAY  
Version B  
VFB  
OSC  
EXT  
DTC  
VIN  
Vref  
GND  
UVLO  
CE  
Chip  
Enable  
Latch  
DELAY  
Rev. 1.10  
- 2 -  
SELECTION GUIDE  
In the R1211X Series, the oscillator frequency, the optional function, and the package type for the ICs can be  
selected at the user’s request.  
The selection can be made with designating the part number as shown below;  
R1211X002X-TR  
a
b
Code  
a
Contents  
Designation of Package Type:  
D: SON-6  
N: SOT23-6W  
b
Designation of Optional Function  
A : 700kHz, with AMPOUT pin (External Phase Compensation Type)  
B : 700 kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)  
C : 300kHz, with AMPOUT pin (External Phase Compensation Type)  
D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)  
PIN CONFIGURATIONS  
SON-6  
SOT-23-6W  
6
5
4
GND  
EXT  
IN  
V
DELAY  
GND  
AMPOUT/CE  
1
2
6
5
(MARK SIDE)  
AMPOUT/CE  
(MARK SIDE)  
VFB  
IN  
V
3
4
EXT  
DELAY  
1
VFB  
3
2
Rev. 1.10  
- 3 -  
PIN DESCRIPTIONS  
Symbol  
Description  
Pin No.  
SON6 SOT23-6W  
1
2
3
4
5
6
1
5
6
4
3
2
DELAY Pin for External Capacitor (for Setting Output Delay of Protection)  
GND  
EXT  
Ground Pin  
External FET Drive Pin (CMOS Output)  
Power Supply Pin  
V
IN  
V
FB  
Feedback Pin for monitoring Output Voltage  
AMPOUT Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D  
or CE Version, Active at “H”)  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
6.5  
Unit  
V
V
IN  
V
IN  
Pin Voltage  
V
V
V
EXT Pin Output Voltage  
DELAY Pin Voltage  
AMPOUT Pin Voltage  
V
V
V
EXT  
DLY  
AMP  
-0.3 V +0.3  
IN  
-0.3 V +0.3  
IN  
-0.3 V +0.3  
IN  
V
CE  
CE Pin Input Voltage  
V
-0.3 V +0.3  
IN  
V
FB  
VFB Pin Voltage  
V
-0.3 V +0.3  
IN  
I
I
AMPOUT Pin Current  
EXT Pin Inductor Drive Output Current  
Power Dissipation  
Operating Temperature Range  
Storage Temperature Range  
mA  
mA  
mW  
°C  
°C  
AMP  
±10  
±50  
250  
EXT  
P
D
Topt  
Tstg  
-40 +85  
-55 +125  
Rev. 1.10  
- 4 -  
ELECTRICAL CHARACTERISTICS  
R1211X002A  
(Topt=25°C)  
TYP. MAX. Unit  
6.0  
Symbol  
Item  
Conditions  
MIN.  
2.5  
V
IN  
Operating Input Voltage  
V
V
V  
T  
V
V
Voltage Tolerance  
Voltage  
V =3.3V  
-40°CTopt 85°C  
0.985  
1.000 1.015  
±150  
V
FB  
FB  
IN  
FB  
/
ppm/°C  
FB  
Temperature Coefficient  
I
V
Input Current  
V =6V, V =0V or 6V  
-0.1  
595  
0.1  
805  
FB  
FB  
IN  
FB  
µA  
kHz  
kHz/°C  
f
Oscillator Frequency  
Oscillator Frequency  
Temperature Coefficient  
V =3.3V, V =V =0V  
700  
±1.4  
OSC  
IN  
DLY  
FB  
f  
/
-40°CTopt 85°C  
OSC  
T  
I
Supply Current 1  
Maximum Duty Cycle  
V =6V, V =V =0V, EXT at no load  
600  
90  
5
900  
94  
10  
DD1  
IN  
DLY  
FB  
µA  
%
maxdty  
V =3.3V, EXT “H” side  
82  
IN  
R
EXT “H” ON Resistance  
V =3.3V, I  
=-20mA  
EXTH  
IN  
EXT  
R
EXT “L” ON Resistance  
V =3.3V, I  
=20mA  
3
6
EXTL  
DLY1  
DLY2  
IN  
EXT  
I
I
Delay Pin Charge Current V =3.3V, V =V =0V  
2.5  
2.5  
5.0  
5.5  
7.5  
9.0  
IN  
DLY  
FB  
µA  
mA  
Delay Pin Discharge Current  
Delay Pin Detector Threshold  
V =V =2.5V, V =0.1V  
IN  
FB  
DLY  
V
0.95  
4.5  
2.1  
0.08  
0.45  
30  
1.00  
9.0  
2.2  
0.13  
0.90  
60  
1.05  
13.5  
2.3  
0.18  
1.50  
90  
V
ms  
V
V
mA  
µA  
DLY  
V =3.3V, V =0V, V =0V2V  
IN  
FB  
DLY  
T
Soft-start Time  
V =3.3V at 90% of rising edge  
IN  
START  
UVLO1  
UVLO2  
AMP1  
V
V
I
UVLO Detector Threshold  
UVLO Detector Hysteresis  
AMP “H” Output Current  
AMP “L” Output Current  
V =3.3V0V, V  
=V =0V  
FB  
IN  
DLY  
V =0V3.3V, V  
=V =0V  
FB  
IN  
DLY  
V =3.3V, V  
=1V, V =0.9V  
IN  
AMP  
FB  
I
V =3.3V, V  
IN  
=1V, V =1.1V  
AMP2  
AMP  
FB  
Rev. 1.10  
- 5 -  
R1211X002B  
Symbol  
(Topt=25°C)  
TYP. MAX. Unit  
Item  
Conditions  
MIN.  
2.5  
V
IN  
Operating Input Voltage  
6.0  
1.000 1.015  
±150  
V
V
V
V
V
Voltage Tolerance  
Voltage  
V =3.3V  
0.985  
FB  
FB  
IN  
FB  
V  
T  
/
-40°CTopt 85°C  
V =6V, V =0V or 6V  
ppm/°C  
FB  
Temperature Coefficient  
I
FB  
V
FB  
Input Current  
-0.1  
595  
0.1  
IN  
FB  
µA  
f
Oscillator Frequency  
V =3.3V, V =V =0V  
700  
805  
kHz  
OSC  
IN  
DLY  
FB  
Oscillator Frequency  
Temperature Coefficient  
f  
T  
/
-40°CTopt 85°C  
±1.4  
kHz/°C  
OSC  
I
Supply Current 1  
V =6V, V =V =0V, EXT at no load  
600  
90  
5
900  
94  
10  
6
DD1  
IN  
DLY  
FB  
µA  
Maximum Duty Cycle  
maxdty  
V =3.3V, EXT “H” side  
IN  
82  
%
R
EXT “H” ON Resistance V =3.3V, I  
=-20mA  
=20mA  
EXTH  
IN  
EXT  
R
EXT “L” ON Resistance  
V =3.3V, I  
IN  
3
EXTL  
EXT  
I
I
Delay Pin Charge Current V =3.3V, V =V =0V  
2.5  
2.5  
5.0  
5.5  
7.5  
9.0  
DLY1  
IN  
DLY  
FB  
µA  
mA  
Delay Pin Discharge Current  
V =V =2.5V, V =0.1V  
DLY2  
IN  
FB  
DLY  
Delay Pin Detector Threshold  
V
DLY  
0.95  
1.00  
1.05  
V
V =3.3V, V =0V, V =0V2V  
IN  
FB  
DLY  
T
V
V
Soft-start Time  
V =3.3V  
4.5  
2.1  
0.08  
9.0  
2.2  
0.13  
0
13.5  
2.3  
0.18  
1
0.5  
0.5  
ms  
V
V
µA  
µA  
µA  
V
START  
UVLO1  
UVLO2  
IN  
UVLO Detector Threshold  
UVLO Detector Hysteresis  
Standby Current  
CE “H” Input Current  
CE “L” Input Current  
CE “H” Input Voltage  
CE “L” Input Voltage  
V =3.3V0V, V  
=V =0V  
FB  
=V =0V  
FB  
IN  
DLY  
V =0V3.3V, V  
IN  
DLY  
I
V =6V, V =0V  
IN CE  
STB  
I
V =6V, V =6V  
-0.5  
-0.5  
1.5  
CEH  
IN  
CE  
I
V =6V, V =0V  
IN CE  
CEL  
V
V
CEH  
V =6V, V =0V6V  
IN  
CE  
0.3  
V
CEL  
V =2.5V, V =2V0V  
IN  
CE  
Rev. 1.10  
- 6 -  
R1211X002C  
Symbol  
(Topt=25°C)  
TYP. MAX. Unit  
6.0  
Item  
Conditions  
MIN.  
2.5  
V
IN  
Operating Input Voltage  
V
V
V  
T  
V
V
Voltage Tolerance  
Voltage  
V =3.3V  
-40°CTopt 85°C  
0.985  
1.000 1.015  
±150  
V
FB  
FB  
IN  
FB  
/
ppm/°C  
FB  
Temperature Coefficient  
I
V
Input Current  
V =6V, V =0V or 6V  
-0.1  
240  
0.1  
360  
FB  
FB  
IN  
FB  
µA  
kHz  
kHz/°C  
f
Oscillator Frequency  
Oscillator Frequency  
Temperature Coefficient  
V =3.3V, V =V =0V  
300  
±0.6  
OSC  
IN  
DLY  
FB  
f  
/
-40°CTopt 85°C  
OSC  
T  
I
Supply Current 1  
Maximum Duty Cycle  
V =6V, V =V =0V, EXT at no load  
300  
90  
5
500  
94  
10  
DD1  
IN  
DLY  
FB  
µA  
%
maxdty  
V =3.3V, EXT “H” side  
82  
IN  
R
EXT “H” ON Resistance  
V =3.3V, I  
=-20mA  
EXTH  
IN  
EXT  
R
EXT “L” ON Resistance  
V =3.3V, I  
=20mA  
3
6
EXTL  
DLY1  
DLY2  
IN  
EXT  
I
I
Delay Pin Charge Current V =3.3V, V =V =0V  
2.0  
2.5  
4.5  
5.5  
7.0  
9.0  
IN  
DLY  
FB  
µA  
mA  
Delay Pin Discharge Current  
Delay Pin Detector Threshold  
V =V =2.5V, V =0.1V  
IN  
FB  
DLY  
V
0.95  
5.0  
2.1  
0.08  
0.45  
25  
1.00  
10.5  
2.2  
0.13  
0.90  
50  
1.05  
16.0  
2.3  
0.18  
1.50  
75  
V
ms  
V
V
mA  
µA  
DLY  
V =3.3V, V =0V, V =0V2V  
IN  
FB  
DLY  
T
Soft-start Time  
V =3.3V  
IN  
START  
UVLO1  
UVLO2  
AMP1  
V
V
I
UVLO Detector Threshold  
UVLO Detector Hysteresis  
AMP “H” Output Current  
AMP “L” Output Current  
V =3.3V0V, V  
=V =0V  
FB  
IN  
DLY  
V =0V3.3V, V  
=V =0V  
FB  
IN  
DLY  
V =3.3V, V  
=1V, V =0.9V  
IN  
AMP  
FB  
I
V =3.3V, V  
IN  
=1V, V =1.1V  
AMP2  
AMP  
FB  
Rev. 1.10  
- 7 -  
R1211X002D  
Symbol  
Item  
Conditions  
MIN.  
2.5  
TYP. MAX.  
6.0  
Unit  
V
V
IN  
Operating Input Voltage  
V
V
V
Voltage Tolerance  
Voltage  
V =3.3V  
0.985  
1.000 1.015  
V
FB  
FB  
IN  
FB  
V  
T  
/
-40°CTopt 85°C  
V =6V, V =0V or 6V  
±150  
ppm/°C  
FB  
Temperature Coefficient  
I
FB  
V
FB  
Input Current  
-0.1  
240  
0.1  
IN  
FB  
µA  
f
Oscillator Frequency  
V =3.3V, V =V =0V  
IN  
300  
360  
kHz  
OSC  
DLY  
FB  
Oscillator Frequency  
Temperature Coefficient  
f  
T  
/
-40°CTopt 85°C  
±0.6  
kHz/°C  
OSC  
I
Supply Current 1  
V =6V, V =V =0V, EXT at no load  
300  
90  
5
500  
94  
10  
6
DD1  
IN  
DLY  
FB  
µA  
Maximum Duty Cycle  
maxdty  
V =3.3V, EXT “H” side  
IN  
82  
%
R
EXT “H” ON Resistance V =3.3V, I  
=-20mA  
=20mA  
EXTH  
IN  
EXT  
R
EXT “L” ON Resistance  
V =3.3V, I  
IN  
3
EXTL  
EXT  
I
I
Delay Pin Charge Current V =3.3V, V =V =0V  
2.0  
2.5  
4.5  
5.5  
7.0  
9.0  
DLY1  
IN  
DLY  
FB  
µA  
mA  
Delay Pin Discharge Current  
V =V =2.5V, V =0.1V  
DLY2  
IN  
FB  
DLY  
Delay Pin Detector Threshold  
V
DLY  
0.95  
1.00  
1.05  
V
V =3.3V, V =0V, V =0V2V  
IN  
FB  
DLY  
T
V
Soft-start Time  
UVLO Detector Threshold  
V =3.3V  
V =3.3V0V, V  
IN  
5.0  
2.1  
10.5  
2.2  
16.0  
2.3  
ms  
V
START  
UVLO1  
IN  
=V =0V  
FB  
DLY  
V
UVLO Detector Hysteresis  
Standby Current  
CE “H” Input Current  
CE “L” Input Current  
CE “H” Input Voltage  
CE “L” Input Voltage  
0.08  
0.13  
0
0.18  
1
0.5  
0.5  
V
µA  
µA  
µA  
V
UVLO2  
V =0V3.3V, V  
V =6V, V =0V  
IN CE  
=V =0V  
FB  
IN  
DLY  
I
STB  
I
V =6V, V =6V  
-0.5  
-0.5  
1.5  
CEH  
IN  
CE  
I
V =6V, V =0V  
IN CE  
CEL  
V
V
CEH  
V =6V, V =0V6V  
IN  
CE  
0.3  
V
CEL  
V =2.5V, V =2V0V  
IN  
CE  
Rev. 1.10  
- 8 -  
TYPICAL APPLICATIONS AND TECHNICAL NOTES  
<R1211X002A/R1211X002C>  
Inductor  
Diode  
VIN  
EXT  
VFB  
C4  
NMOS  
R1  
R2  
C3  
C1  
DELAY  
C2  
R3  
GND AMPOUT  
C5 R4  
NMOS: IRF7601 (International Rectifier)  
Inductor : LDR655312T-100 10µH (TDK) for R1211X002A  
: LDR655312T-220 22µH (TDK) for R1211X002C  
Diode: CRS02 (Toshiba)  
C1: 4.7µF (Ceramic)  
C2: 0.22µF (Ceramic)  
C3: 10µF (Ceramic)  
C4: 680pF(Ceramic)  
C5: 2200pF(Ceramic)  
R1: Output Voltage Setting Resistor 1  
R2: Output Voltage Setting Resistor 2  
R3: 30kΩ  
R4: 30kΩ  
<R1211X002B/R1211X002D>  
Inductor  
Diode  
C4  
R1  
VIN  
EXT  
VFB  
CE  
NMOS  
C3  
C1  
DELAY  
GND  
C2  
R3  
R2  
CE Control  
NMOS: IRF7601 (International Rectifier)  
Inductor: LDR655312T-100 10µH (TDK) for R1211X002B  
LDR655312T-220 22µH (TDK) for R1211X002D  
Diode: CRS02 (Toshiba)  
C1: 4.7µF (Ceramic)  
C2: 0.22µF (Ceramic)  
C3: 10µF (Ceramic)  
C4: 680pF(Ceramic)  
R1: Setting Output Voltage Resistor1  
R2: Setting Output Voltage Resistor2  
R3 : 30kΩ  
[Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage  
requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other  
external components.  
Rev. 1.10  
- 9 -  
Use a 1µF or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical  
applications above.  
In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the  
previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance.  
Connect a 1µF or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the  
previous page. (Recommended value is from 10µF to 22µF.) If the operation of the composed DC/DC converter may  
be unstable, use a tantalum type capacitor instead of ceramic type.  
Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page.  
The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF  
and 1000pF.  
Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of  
the previous page. Refer to the next formula.  
Output Voltage = VFB×(R1+R2)/R2  
R1+R2=100kis recommended range of resistances.  
The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an  
external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin  
reaches delay voltage detector threshold, VDLY, outputs “L” to EXT pin and turns off the external power MOSFET.  
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of  
B/D version. Otherwise, restart with power on.  
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the  
next formula.  
t=C2×VDLY/IDLY1  
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay  
pin outputs “L”.  
As for R1211X002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are  
just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large,  
the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in  
typical applications of the previous page. The recommended resistance value of R3 is in the range from 10kto  
50k. Then, noise level will be decreased.  
As for R1211X002B/D version, EXT pin outputs GND level at standby mode.  
Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose  
the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely.  
Choose the diode with low VF such as Shottky type, and with low reverse current IR, and with fast switching speed.  
When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore  
recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more.  
The performance of power circuit with using this IC depends on external components. Choose the most suitable  
components for your application.  
Rev. 1.10  
- 10 -  
Output Current and Selection of External Components  
<Basic Circuit>  
i2  
Inductor  
Diode  
IOUT  
VOUT  
VIN  
CL  
i1  
Lx Tr  
GND  
<Current through L>  
Discontinuous Mode  
Continuous Mode  
ILxmax  
IL  
IL  
ILxmax  
ILxmin  
ILxmin  
Tf  
Iconst  
t
t
Ton  
Toff  
Ton  
T=1/fosc  
Toff  
T=1/fosc  
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator  
depending on the continuous characteristic of inductor current.  
During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VIN ×t/L.  
Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula.  
ON  
T
2
PON=VIN ×t/L dt  
Formula 1  
0
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is  
described as (VOUT-VIN)×t/L, therefore electric power, POFF is described as in next formula.  
Tf  
POFF=VIN×(VOUT-VIN)×t/L dt  
Formula 2  
0
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average  
electric power, PAV is described as in the next formula.  
ON  
T
Tf  
2
PAV=1/(Ton+Toff)×{∫VIN ×t/L dt + VIN×(VOUT-VIN)×t/L dt} Formula 3  
0
0
In PWM control, when Tf=Toff is true, the inductor current becomes continuos, then the operation of switching  
regulator becomes continuous mode.  
In the continuous mode, the deviation of the current is equal between on time and off time.  
VIN×Ton/L=(VOUT-VIN)×Toff/L  
Formula 4  
Further, the electric power, PAV is equal to output electric power, VOUT×IOUT, thus,  
2
2
2
IOUT = fOSC × VIN ×TON /{2×L ×(VOUT-VIN)}=VIN ×TON/(2×L×VOUT)  
Formula 5  
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes  
Rev. 1.10  
- 11 -  
continuous. The continuous current through the inductor is described as Iconst, then,  
2
2
IOUT = fOSC ×VIN ×tON /(2×L×(VOUT-VIN))+VIN×Iconst/VOUT  
Formula 6  
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows:  
ILxmax = Iconst +VIN×Ton/L  
Formula 7  
Formula 8  
With the formula 4,6, and ILxmax is,  
ILxmax = VOUT/VIN×IOUT+VIN×Ton/(2×L)  
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and  
external components should be selected.  
In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components  
is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the  
ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as  
0.3V) of the diode should be considered.  
TIMING CHART  
R1211X002A/R1211X002C  
DTC  
VREF  
SS  
EXT  
AMPOUT  
OP AMP  
VOUT  
VFB  
R1  
EXT  
R2  
PWM Comparator  
R1211X002B/R1211X002D  
DTC  
VREF  
SS  
EXT  
AMPOUT  
VOUT  
VFB  
R1  
EXT  
R2  
PWM Comparator  
OP AMP  
<Soft-start Operation>  
Soft-start operation is starting from power-on as follows:  
(Step1)  
The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is  
input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB  
voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at “L”, and  
switching does not start.  
(Step2)  
Rev. 1.10  
- 12 -  
When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation  
starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty  
cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator.  
(Step3)  
When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching  
operation becomes normal mode.  
SS  
VFB,VREF  
SS,VREF  
VFB  
DTC  
AMPOUT  
AMPOUT  
Step1  
Step2  
VOUT  
VIN  
<Latch Protection Operation>  
The operation of Latch protection circuit is as follows: When AMPOUT becomes “H” and the IC detects maximum  
duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the  
voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs “L” to EXT pin and turns off the  
external power MOSFET.  
To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of  
R1211X002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise  
up to the normal input voltage.  
During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is  
fixed at GND level.  
The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the  
next formula.  
t=C2×VDLY/IDLY1  
Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay  
pin outputs “L”.  
Output Short  
AMPOUT  
AMPOUT  
Normal  
VDLY  
DTC  
DELAY  
maxduty  
Operation  
Latched  
EXT  
Rev. 1.10  
- 13 -  
TEST CIRCUITS  
R1211X002A/R1211X002C  
*Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test *Consumption Current Test  
3.3V  
6V  
A
V
EXT  
FB  
IN  
V
IN  
OSCILLOSCOPE  
V
F
B
V
GND DELAY  
GND DELAY  
*EXT “H” ON Resistance  
*EXT “L” ON Resistance  
3.3V  
3.3V  
EXT  
EXT  
V
IN  
V
IN  
150  
OSCILLOSCOPE  
V
150Ω  
V
FB  
FB  
V
GND  
GND  
DELAY  
DELAY  
*DELAY Pin Charge Current  
*DELAY PIn Discharge Current  
3.3V  
2.5V  
IN  
V
V
IN  
FB  
V
FB  
V
DELAY  
GND  
GND  
A
DELAY  
A
0.1V  
Rev. 1.10  
- 14 -  
*DELAY Pin Detector Threshold Voltage Test  
*AMP “H” Output Current/”L” Output Current Test  
3.3V  
3.3V  
V
IN  
EXT  
FB  
V
IN  
OSCILLOSC  
AMPOUT  
A
OPE  
1V  
V
FB  
V
DELAY  
GND  
DELAY  
GND  
*UVLO Detector Threshold/Hysteresis Range Test  
V
IN  
EXT  
OSCILLOSC OPE  
FB  
V
DELAY  
GND  
*Soft-start Time Test  
Coil  
Diode  
OUT  
V
C2  
C 5  
NMOS  
V
IN  
OSCILLOSCOPE  
EXT  
Rout  
AMPOUT  
C1  
C3  
R1  
C4  
R4  
V
FB  
R3  
GND  
DELAY  
R2  
<Components>  
Inductor (L)  
Diode (SD)  
Capacitors  
: 22µH (TDK LDR655312T-220)  
: CRS02 (Toshiba)  
C1: 680pF(Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic),  
C3: 68µF (Tantalum)+2.2µF (Ceramic), C4: 2200pF(Ceramic), C5: 22µF(Tantalum)  
NMOS Transistor : IRF7601 (International Rectifier)  
Resistors : R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330Ω  
Rev. 1.10  
- 15 -  
R1211X002B/R1211X002D  
*Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test *Consumption Current Test  
3.3V  
6V  
A
V
EXT  
CE  
V
IN  
IN  
OSCILLOSCOPE  
CE  
FB  
FB  
V
V
GND  
GND  
DELAY  
DELAY  
*EXT “H” ON Resistance  
*EXT “L” ON Resistance  
3.3V  
3.3V  
EXT  
CE  
EXT  
CE  
V
V
IN  
IN  
150Ω  
OSCILLOSCOPE  
150Ω  
V
FB  
V
V
FB  
GND  
GND  
DELAY  
DELAY  
*DELAY Pin Charge Current  
*DELAY PIn Discharge Current  
2.5V  
3.3V  
V
IN  
V
IN  
CE  
FB  
CE  
FB  
V
V
GND  
DELAY  
GND  
DELAY  
A
A
0.1V  
Rev. 1.10  
- 16 -  
*DELAY Pin Detector Threshold Voltage Test  
*Standby Current Test  
3.3V  
6V  
IN  
V
EXT  
CE  
A
V
IN  
CE  
OSCILLOSCOPE  
V
FB  
FB  
V
GND  
DELAY  
GND  
DELAY  
*UVLO Detector Threshold/Hysteresis Range Test  
* CE “L” Input Current/”H” Input Current Test  
EXT  
V
IN  
V
IN  
CE  
OSCILLOSCOPE  
CE  
FB  
A
V
FB  
0V/6V  
V
GND  
DELAY  
DELAY  
GND  
*CE “L” Input Voltage/”H” Input Voltage Test  
IN  
V
EXT  
CE  
OSCILLOSCOPE  
FB  
V
DELAY  
GND  
*Soft-start Time Test  
VOUT  
Coil  
C2  
C5  
NMOS  
OSCILLOSCOPE  
Rout  
V
IN  
EXT  
CE  
C1  
C3  
0V/3.3V  
R1  
R2  
FB  
V
R3  
GNDDELAY  
Rev. 1.10  
- 17 -  
<Components>  
Inductor (L)  
Diode (SD)  
Capacitors  
: 22µH (TDK LDR655312T-220)  
: CRS02 (Toshiba)  
C1: 680pF(Ceramic), C2: 22µF (Tantalum)+2.2µF (Ceramic),  
C3: 68µF (Tantalum)+2.2µF (Ceramic), C5: 22µF (Tantalum)  
NMOS Transistor : IRF7601 (International Rectifier)  
Resistors : R1: 90k, R2: 10k, R3: 30kΩ  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
R1211X002A  
L=10uH  
R1211X002A  
L=10uH  
OUT  
V
=5V  
VOUT=10V  
5.1  
10.2  
10  
5
IN  
V =2.5V  
VIN=2.5V  
VIN=3.3V  
IN  
V =3.3V  
IN  
V =5.0V  
4.9  
9.8  
5.1  
1
10  
100  
[mA]  
1000  
1
10  
100  
1000  
Output Current IOUT [mA]  
OUT  
Output Current I  
R1211X002A  
L=10uH  
R1211X002B  
L=10uH  
OUT  
OUT  
V
V
=15V  
=5V  
15.3  
15  
5
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
14.7  
4.9  
1
10  
100  
[mA]  
1000  
1
10  
100  
OUT  
[mA]  
1000  
OUT  
Output Current I  
Output Current I  
R1211X002B  
L=10uH  
R1211X002B  
L=10uH  
VOUT=10V  
V
OUT=15V  
10.2  
15.3  
15  
10  
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
V
V
IN=3.3V  
IN=5.0V  
9.8  
1
10  
100  
1000  
14.7  
OUT [  
Output Current I  
mA]  
1
10  
100  
1000  
Output Current IOUT [mA]  
Rev. 1.10  
- 18 -  
R1211X002C  
L=22uH  
VOUT=5V  
R1211X002C  
L=22uH  
VOUT=10V  
5.1  
10.2  
10  
5
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
9.8  
4.9  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002C  
L=22uH  
VOUT=15V  
R1211X002D  
L=22uH  
VOUT=5V  
15.3  
5.1  
15  
5
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
14.7  
10.2  
4.9  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002D  
L=22uH  
VOUT=10V  
R1211X002D  
L=22uH  
VOUT=15V  
15.3  
10  
15  
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
9.8  
14.7  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Rev. 1.10  
- 19 -  
2) Efficiency vs. Output Current  
R1211X002A  
L=10uH  
VOUT=5V  
R1211X002A  
R1211X002B  
R1211X002B  
L=10uH  
VOUT=10V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
1
1
1
10  
100  
1000  
1
10  
100  
1000  
1000  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002A  
L=10uH  
VOUT=15V  
L=10uH  
VOUT=5V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
10  
100  
1000  
1
10  
100  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002B  
L=10uH  
VOUT=10V  
L=10uH  
VOUT=15V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
1
10  
100  
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Rev. 1.10  
- 20 -  
R1211X002C  
L=22uH  
VOUT=5V  
R1211X002C  
L=22uH  
OUT=10V  
V
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=2.5V  
VIN=3.3V  
VIN=3.3V  
VIN=5.0V  
1
10  
100  
1000  
1
10  
100  
1000  
1000  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002C  
L=22uH  
OUT=15V  
R1211X002D  
L=22uH  
VOUT=5V  
V
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
1
10  
100  
1
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
R1211X002D  
L=22uH  
VOUT=10V  
R1211X002D  
L=22uH  
VOUT=15V  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=5.0V  
1
10  
100  
1
10  
100  
1000  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Rev. 1.10  
- 21 -  
3) VFB Voltage vs. Input Voltage (Topt =25°C)  
R1211X002X  
1015  
1010  
1005  
1000  
995  
990  
985  
2
3
4
5
6
Input Voltage VIN [V]  
4) Oscillator Frequency vs. Input Voltage (Topt=25°C)  
R1211X002A/B  
900  
R1211X002C/D  
400  
350  
300  
250  
200  
800  
700  
600  
500  
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN [V]  
Input Voltage VIN [V]  
5) Supply Current vs. Input Voltage (Topt=25°C)  
R1211X002A  
600  
R1211X002B  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN [V]  
Input Voltage V [V]  
IN  
Rev. 1.10  
- 22 -  
R1211X002C  
R1211X002D  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN [V]  
Input Voltage VIN [V]  
6) Maximum Duty Cycle vs. Input Voltage (Topt=25°C)  
R1211X002A/B  
96  
R1211X002C/D  
96  
94  
92  
90  
88  
86  
84  
82  
80  
94  
92  
90  
88  
86  
84  
82  
80  
2
3
4
5
6
2
3
4
5
6
Input Voltage VIN [V]  
Input Voltage VIN [V]  
7) VFB Voltage vs. Temperature  
R1211X002X  
1015  
VIN=3.3V  
1010  
1005  
1000  
995  
990  
985  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
Rev. 1.10  
- 23 -  
8) Oscillator Frequency vs. Temperature  
R1211X002A/B VIN=3.3V  
900  
R1211X002C/D VIN=3.3V  
400  
350  
300  
250  
200  
800  
700  
600  
500  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt (°C)  
Temperature Topt (°C)  
9) Supply Current vs. Temperature  
R1211X002A  
VIN=3.3V  
R1211X002B  
VIN=3.3V  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
Temperature Topt(°C)  
R1211X002C  
VIN=3.3V  
R1211X002D  
VIN=3.3V  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
(°C)  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
Temperature Topt  
Rev. 1.10  
- 24 -  
10) Maximum Duty Cycle vs. Temperature  
R1211X002A/B  
VIN=3.3V  
R1211X002C/D VIN=3.3V  
96  
94  
92  
90  
88  
86  
84  
82  
80  
96  
94  
92  
90  
88  
86  
84  
82  
80  
-50  
-25  
0
25  
50  
(°C)  
75  
100  
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
Temperature Topt  
11) EXT”H” Output Current vs. Temperature  
R1211X002X  
VIN=3.3V  
8
7
6
5
4
3
2
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
12) EXT”L” Output Current vs. Temperature  
R1211X002X  
VIN=3.3V  
5
4
3
2
1
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
Rev. 1.10  
- 25 -  
13) Soft-start Time vs. Temperature  
R1211X002A/B  
VIN=3.3V  
R1211X002C/D VIN=3.3V  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
-50  
-25  
0
25  
50  
(°C)  
75  
100  
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
Temperature Topt  
14) UVLO Detector Threshold vs. Temperature  
R1211X002X  
VIN=3.3V  
2300  
2250  
2200  
2150  
2100  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
15) AMP “H” Output Current vs. Temperature  
R1211X002A/C VIN=3.3V  
1600  
1400  
1200  
1000  
800  
600  
400  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt  
(°C)  
Rev. 1.10  
- 26 -  
16) AMP “L” Output Current vs. Temperature  
R1211X002A  
VIN=3.3V  
R1211X002C  
VIN=3.3V  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
(°C)  
Temperature Topt  
17) DELAY Pin Charge Current vs. Temperature  
R1211X002A/B  
VIN=3.3V  
R1211X002C/D VIN=3.3V  
7
6
5
4
3
2
7
6
5
4
3
2
-50  
-25  
0
25  
50  
(°C)  
75  
100  
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
Temperature Topt  
18) DELAY Pin Detector Threshold vs. Temperature  
R1211X002X  
VIN=3.3V  
1040  
1020  
1000  
980  
960  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
Rev. 1.10  
- 27 -  
19) DELAY Pin Discharge Current vs. Temperature  
R1211X002X  
VIN=2.5V  
10  
8
6
4
2
0
-50  
-25  
0
25  
50  
(°C)  
75  
100  
Temperature Topt  
20) CE “L” Input Voltage vs. Temperature  
R1211X002B/D  
VIN=2.5V  
1200  
1100  
1000  
900  
800  
700  
600  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
21) CE “H” Input Voltage vs. Temperature  
R1211X002B/D  
VIN=6.0V  
1200  
1100  
1000  
900  
800  
700  
600  
-50  
-25  
0
25  
50  
75  
100  
(°C)  
Temperature Topt  
Rev. 1.10  
- 28 -  
22) Standby Current vs. Temperature  
R1211X002B/D  
VIN=6.0V  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
23) Load Transient Response  
R1211X002A  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=5V , IOUT=1-100mA  
5.6  
300  
200  
100  
0
VOUT  
5.0  
4.4  
IOUT  
Time [5ms/div]  
R1211X002A  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=10V , IOUT=1-100mA  
11.2  
10.0  
8.8  
300  
VOUT  
200  
100  
0
IOUT  
Time [5ms/div]  
R1211X002A  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=15V , IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
Rev. 1.10  
- 29 -  
R1211X002B  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=5V , IOUT=1-100mA  
5.6  
5.0  
4.4  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002B  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=10V , IOUT=1-100mA  
11.2  
10.0  
8.8  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002B  
L=10uH  
VIN=3.3V , C3=22uF  
VOUT=15V , IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002C  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=5V , IOUT=1-100mA  
5.6  
5.0  
4.4  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
Rev. 1.10  
- 30 -  
R1211X002C  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=10V , IOUT=1-100mA  
11.2  
10.0  
8.8  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002C  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=15V , IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002D  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=5V , IOUT=1-100mA  
5.6  
5.0  
4.4  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
R1211X002D  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=10V , IOUT=1-100mA  
11.2  
10.0  
8.8  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
Rev. 1.10  
- 31 -  
R1211X002D  
L=22uH  
VIN=3.3V , C3=22uF  
VOUT=15V , IOUT=1-50mA  
16.8  
15.0  
13.2  
300  
200  
100  
0
VOUT  
IOUT  
Time [5ms/div]  
24) Power-on Response  
R1211X002A  
16  
L=10uH  
VIN=3.3V , IOUT=10mA  
R1211X002B  
L=10uH  
VIN=3.3V , IOUT=10mA  
16  
14  
12  
10  
8
14  
12  
10  
8
(c)VOUT=15V  
(c)VOUT=15V  
(b)VOUT=10V  
(a)VOUT=5V  
(b)VOUT=10V  
(a)VOUT=5V  
6
6
4
4
2
2
VIN  
VIN  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Time [5ms/div]  
Time [5ms/div]  
R1211X002C  
L=22uH  
R1211X002D  
L=22uH  
VIN=3.3V , IOUT=10mA  
(c)VOUT=15V  
VIN=3.3V , IOUT=10mA  
(c)VOUT=15V  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
(b)VOUT=10V  
(a)VOUT=5V  
(b)VOUT=10V  
(a)VOUT=5V  
6
6
4
4
2
2
VIN  
VIN  
20  
0
0
0
5
10  
15  
25  
0
5
10  
15  
20  
25  
Time [5ms/div]  
Time [5ms/div]  
Rev. 1.10  
- 32 -  
25) Turn-on speed with CE pin  
R1211X002B  
16  
L=10uH  
VIN=3.3V , IOUT=10mA  
R1211X002D  
L=22uH  
VIN=3.3V , IOUT=10mA  
16  
14  
12  
10  
8
14  
12  
10  
8
(c)VOUT=15V  
(c)VOUT=15V  
(b)VOUT=10V  
(a)VOUT=5V  
(b)VOUT=10V  
(a)VOUT=5V  
CE  
6
6
4
4
2
2
CE  
20  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
25  
Time [5ms/div]  
Time [5ms/div]  
Rev. 1.10  
- 33 -  

相关型号:

R1211N002C-TR-FB

Switching Controller, 0.05A, 805kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002C-TR-FE

Switching Controller, Current-mode, 360kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002D

Step-up DC/DC Controller
RICOH

R1211N002D-TR

Step-up DC/DC Controller
RICOH

R1211N002D-TR-FB

Switching Controller, 0.05A, 805kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002D-TR-FE

Switching Controller, Current-mode, 360kHz Switching Freq-Max, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R1211N002X

Power Management ICs
ETC

R1211NS10C

Silicon Controlled Rectifier, 1927000mA I(T), 1000V V(DRM),
LITTELFUSE

R1211NS10E

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1000V V(DRM), 1000V V(RRM), 1 Element, 101A223, 3 PIN
IXYS

R1211NS12C

Silicon Controlled Rectifier, 1927000mA I(T), 1200V V(DRM),
LITTELFUSE

R1211NS12D

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1200V V(DRM), 1200V V(RRM), 1 Element, 101A223, 3 PIN
LITTELFUSE

R1211NS12E

Silicon Controlled Rectifier, 2497A I(T)RMS, 1927000mA I(T), 1200V V(DRM), 1200V V(RRM), 1 Element, 101A223, 3 PIN
LITTELFUSE