DAC8043AFSZ [ROCHESTER]

SERIAL INPUT LOADING, 1 us SETTLING TIME, 12-BIT DAC, PDSO8, 1.75 MM HEIGHT, LOW PROFILE, SOIC-8;
DAC8043AFSZ
型号: DAC8043AFSZ
厂家: Rochester Electronics    Rochester Electronics
描述:

SERIAL INPUT LOADING, 1 us SETTLING TIME, 12-BIT DAC, PDSO8, 1.75 MM HEIGHT, LOW PROFILE, SOIC-8

PC 输入元件 光电二极管 转换器
文件: 总9页 (文件大小:1379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit Serial Input  
Multiplying D/A Converter  
a
DAC8043A  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Compact SOIC, and TSSOP Packages  
True 12-Bit Accuracy  
5 V Operation @ <10 A  
Fast 3-Wire Serial Input  
Fast 1 s Settling Time  
2.4 MHz 4-Quadrant Multiply BW  
Pin-for-Pin Upgrade for DAC8043  
Standard and Rotated Pinout  
DAC8043A  
V
R
I
DD  
FB  
V
DAC  
REF  
OUT  
12  
LD  
DAC REG  
12  
APPLICATIONS  
GND  
CLK  
SRI  
12-BIT SHIFT  
REGISTER  
Ideal for PLC Applications in Industrial Control  
Programmable Amplifiers and Attenuators  
Digitally Controlled Calibration and Filters  
Motion Control Systems  
0.5  
0.4  
GENERAL DESCRIPTION  
T
V
V
= +25؇C, +85؇C, –40؇C  
A
The DAC8043A is an improved high accuracy 12-bit multiply-  
ing digital-to-analog converter in space-saving 8-lead packages.  
Featuring serial input, double buffering and excellent analog  
performance, the DAC8043A is ideal for applications where PC  
board space is at a premium. Improved linearity and gain error  
performance permit reduced parts count through the elimina-  
tion of trimming components. Separate input clock and load  
DAC control lines allow full user control of data loading and  
analog output.  
= +5V  
DD  
= –10V  
REF  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
The circuit consists of a 12-bit serial-in/parallel-out shift regis-  
ter, a 12-bit DAC register, a 12-bit CMOS DAC and control  
logic. Serial data is clocked into the input register on the rising  
edge of the CLOCK pulse. When the new data word has been  
clocked in, it is loaded into the DAC register with the LD input  
pin. Data in the DAC register is converted to an output current  
by the D/A converter.  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE  
Figure 1. Integral Nonlinearity Error vs. Code  
Consuming only 10 µA from a single 5 V power supply, the  
DAC8043A is the ideal low power, small size, high performance  
solution to many application problems.  
The DAC8043A is specified over the extended industrial  
(–40°C to +85°C) temperature range. DAC8043A is available  
in a PDIP package, and the low profile 1.75 mm height SOIC-8  
surface mount packages. The DAC8043AFRU is available for  
ultra-compact applications in a thin 1.1 mm TSSOP-8 package.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/461-3113  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2006  
DAC8043A–SPECIFICATIONS  
(@ VDD = 5 V, VREF = 10 V, –40؇C < TA < +85؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
E Grade F Grade Unit  
STATIC PERFORMANCE  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Gain Error1  
N
12  
0.5  
0.5  
1.0  
2.0  
5
12  
1.0  
1.0  
2.0  
2.0  
5
Bits  
INL  
DNL  
GFSE  
LSB max  
LSB max  
LSB max  
LSB max  
ppm/°C max  
nA max  
All Grades Monotonic to 12 Bits  
TA = 25°C, Data = FFFH  
T
A = –40°C, +85°C, Data = FFFH  
Gain Tempco2  
Output Leakage Current  
TCGFS  
ILKG  
IOUT Pin Measured  
Data = 000H, IOUT Pin Measured  
5
5
T
A = –40°C, +85°C, Data = 000H, IOUT Pin Measured  
25  
0.03  
0.15  
25  
0.03  
0.15  
nA max  
LSB max  
LSB max  
Zero-Scale Error3  
IZSE  
Data = 000H  
TA = –40°C, +85°C, Data = 000H  
REFERENCE INPUT  
Input Resistance  
RREF  
CREF  
Absolute Tempco < 50 ppm/°C  
7/15  
5
7/15  
5
kmin/max  
pF typ  
Input Capacitance2  
ANALOG OUTPUT  
Output Capacitance2  
COUT  
Data = 000H  
Data = FFFH  
25  
30  
25  
30  
pF typ  
pF typ  
DIGITAL INPUTS  
Digital Input Low  
Digital Input High  
Input Leakage Current  
Input Capacitance2  
VIL  
VIH  
IIL  
0.8  
2.4  
0.8  
2.4  
V max  
V min  
VLOGIC = 0 V to 5 V  
VLOGIC = 0 V  
0.001/ 1 0.001/ 1 µA typ/max  
10  
CIL  
10  
pF max  
INTERFACE TIMING2, 4  
Data Setup  
Data Hold  
Clock Width High  
Clock Width Low  
Load Pulsewidth  
LSB CLK to LD DAC  
tDS  
tDH  
tCH  
tCL  
tLD  
tASB  
10  
5
25  
25  
25  
0
10  
5
25  
25  
25  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
AC CHARACTERISTICS1, 2  
Output Current Settling Time tS  
To 0.01% of Full Scale, Ext Op Amp OP42  
Data = 000H to FFFH to 000H, VREF = 0 V  
VREF = 20 V p-p, Data = 000H, f = 10 kHz  
VREF = 6 V rms, Data = FFFH, f = 1 kHz  
10 Hz to 100 kHz Between RFB and IOUT  
1
20  
1
–85  
17  
1
20  
1
–85  
17  
2.4  
µs max  
nVs max  
mV p-p  
dB typ  
nV/Hz max  
MHz typ  
DAC Glitch  
Q
Feedthrough (VOUT/VREF  
)
FT  
THD  
en  
Total Harmonic Distortion  
Output Noise Density5  
Multiplying Bandwidth  
BW  
–3 dB, VOUT/VREF, VREF = 100 mV rms, Data = FFFH 2.4  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
PDISS  
4.5/5.5  
10  
50  
4.5/5.5  
10  
50  
V min/max  
µA max  
VLOGIC = 0 V or VDD  
VLOGIC = 0 V or VDD  
µW max  
Power Supply Sensitivity  
PSS  
VDD  
=
5%  
0.002  
0.002  
%/% max  
NOTES  
1Using internal feedback resistor RFB, see Figure 19 test circuit with VREF = 10 V.  
2These parameters are guaranteed by design and not subject to production testing.  
3Calculated from worst case RREF: IZSE(LSB) = (RREF × ILKG × 4096)/VREF  
.
4All input control signals are specified with tR = tF = 2 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
5Calculation from en = 4KTRB where: K = Boltzmann Constant (J/°K), R = Resistance (), T = Resistor Temperature (°K), B = 1 Hz Bandwidth.  
Specifications subject to change without notice.  
REV. B  
–2–  
DAC8043A  
PIN FUNCTION DESCRIPTIONS  
ABSOLUTE MAXIMUM RATINGS*  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
#(*) Name Function  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FB to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
18 V  
18 V  
R
1(7) VREF  
DAC Reference Input Pin. Establishes DAC full-  
scale voltage. Constant input resistance versus  
code.  
Logic Inputs to GND . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
VIOUT to GND . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
I
OUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . 50 mA  
2 (8) RFB  
3 (1) IOUT  
Internal Matching Feedback Resistor. Connect  
to external op amp output.  
DAC Current Output, full-scale output 1 LSB  
Package Power Dissipation . . . . . . . . . . . . . (TJ max – TA)/θJA  
Thermal Resistance θJA  
8-Lead PDIP Package (N-8) . . . . . . . . . . . . . . . . . 103°C/W  
8-Lead SOIC Package (R-8) . . . . . . . . . . . . . . . . . 158°C/W  
8-Lead TSSOP Package (RU-8) . . . . . . . . . . . . . . 240°C/W  
Maximum Junction Temperature (TJ max) . . . . . . . . . 150°C  
Operating Temperature Range . . . . . . . . . . 40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
less than reference input voltage –VREF  
.
4 (2) GND Analog and Digital Ground.  
5 (3) LD  
Load Strobe, Level-Sensitive Digital Input.  
Transfers shift-register data to DAC register  
while active low. See truth table for operation.  
6 (4) SRI  
12-Bit Serial Register Input, data loads directly  
into the shift register MSB first. Extra leading  
bits are ignored.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
7 (5) CLK Clock Input, positive-edge clocks data into shift  
register.  
8 (6) VDD  
Positive Power Supply Input. Specified range of  
operation 5 V 10%.  
ORDERING GUIDE  
*Note Pin numbers in parenthesis represent the rotated pinout of the  
DAC8043A1ES and DAC8043A1FS models.  
DAC8043AE/F PIN CONFIGURATIONS  
1
8
7
6
5
V
V
DD  
REF  
2
3
4
CLK  
SRI  
LD  
R
FB  
TOP VIEW  
(Not to Scale)  
8
5
1
4
I
8
5
1
4
OUT  
GND  
TSSOP-8  
DAC8043A  
FRU  
PDIP-8  
DAC8043A  
EP/FP  
SOIC-8  
DAC8043A  
ES/FS  
DAC8043A1E AND DAC8043A1F PIN CONFIGURATION  
(Rotated Pinout)  
1
2
3
4
8
7
6
5
I
R
V
OUT  
FB  
GND  
LD  
REF  
DD  
TOP VIEW  
(Not to Scale)  
V
SRI  
CLK  
SOIC-8  
DAC8043A1ES  
DAC8043A1FS  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the DAC8043A features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
DAC8043A  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SRI  
CLK  
tLD1  
tASB  
LD  
DATA LOADED MSB(D11) FIRST  
Dxx  
DAC REGISTER LOAD  
SRI  
tDS  
tDH  
tCL  
CLK  
LD  
tCH  
tLD  
tS  
FS  
؎1 LSB  
ERROR BAND  
V
OUT  
ZS  
Figure 2. Timing Diagram  
Table I. Control-Logic Truth Table  
CLK  
LD Serial Shift Register Function  
DAC Register Function  
u
H
L
u
Shift-Register-Data Advanced One Bit Latched  
H or L  
L
No Effect  
No Effect  
Updated with Current Shift Register Contents  
Latched All 12 Bits  
NOTES  
u positive logic transition.  
The DAC Register LD input is level-sensitive. Any time LD is logic-low data in the serial register will directly control the  
switches in the R-2R DAC ladder.  
Typical Performance Characteristics  
35  
30  
25  
20  
15  
10  
5
50  
SS = 200 UNITS  
= –40؇C TO +85؇C  
SS = 200 UNITS  
= 25؇C  
T
A
T
A
V
V
= 5V  
DD  
REF  
V
V
= 5V  
DD  
REF  
40  
30  
= 10V  
= 10V  
20  
10  
0
0
0
1
2
–1.0  
–0.5  
0.0  
0.5  
1.0  
FULL SCALE TEMPCO – ppm/؇C  
TOTAL UNADJUSTED ERROR – LSB  
Figure 3. Total Unadjusted Error Histogram  
Figure 4. Full-Scale Output Tempco Histogram  
REV. B  
–4–  
DAC8043A  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
80  
V = 5V ؎10%  
DD  
T
V
= 25؇C  
A
= 5V  
DD  
60  
40  
20  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC INPUT VOLTAGE – Volts  
FREQUENCY – Hz  
Figure 5. Supply Current vs. Logic Input Voltage  
Figure 8. Power Supply Rejection vs. Frequency  
10  
0.5  
0.4  
0.3  
V
V
= 5V  
DD  
V
V
= 5V  
= 0V OR V  
DD  
LOGIC  
= 10V  
REF  
DD  
SUPERIMPOSED: T = –40؇C, +25؇C, +85؇C  
A
1
0.2  
0.1  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.01  
0.001  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
512  
1024  
1536  
2048 2560  
3072 3584  
4096  
TEMPERATURE – ؇C  
CODE – Decimal  
Figure 9. Linearity Error vs. Digital Code  
Figure 6. Supply Current vs. Temperature  
4
2
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
V
A
= 5V  
REF  
= 25؇C  
DD  
V
V
= 5V  
DD  
= 10V  
= 10V  
REF  
T
T
= 25؇C  
A
CODE = F55H  
CODE = 800H  
0
–2  
–4  
CODE = FFFH  
0
–2000  
–1000  
0
1000  
2000  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
OPAMP OFFSET V V  
OS  
Figure 7. Supply Current vs. Clock Frequency  
Figure 10. Linearity Error vs. External Op Amp VOS  
REV. B  
–5–  
DAC8043A  
V
T
= 5V  
= 25؇C  
DD  
0.5  
0.25  
0
V
V
f
= 5V  
A
DD  
= 10V  
REF  
= 2.5MHz  
V
CLK  
OUT  
CODE: 7FF TO 800  
(10mV/DIV)  
H
H
LD  
(5V/DIV)  
–0.25  
–0.5  
20mV  
0
5
10  
TIME – 200ns/DIV  
|VREF| – Volts  
Figure 11. Midscale Transition Performance  
Figure 14. Linearity Error vs. Reference Voltage  
1.2  
SAMPLE SIZE = 50  
5V  
V
V
T
= 5V  
DD  
1.0  
= 10V  
REF  
CLK  
= 25؇C  
(5V/DIV)  
A
0.8  
CODE = FFF  
H
0.6  
0.4  
V
OUT  
(5V/DIV)  
CODE = 000  
H
0.2  
0
5V  
0
100  
200  
300  
400  
500  
600  
TIME – 1s/DIV  
HOURS OF OPERATION AT 150؇C  
Figure 12. Large Signal Settling Time  
Figure 15. Long-Term Drift Accelerated by Burn-In  
0
ALL BITS ON  
0.032  
0.018  
–70  
(MSB) B  
B
11  
10  
V
= 4V p-p  
REF  
12  
24  
36  
48  
60  
72  
84  
96  
108  
OUTPUT OP AMP: OP42  
B
9
8
7
6
5
4
–75  
–80  
B
B
B
B
0.010  
B
B
B
B
3
2
1
0
0.0056  
–85  
–90  
–95  
(LSB) B  
0.0032  
0.0018  
ALL BITS OFF  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
FREQUENCY – Hz  
Figure 13. Reference Multiplying Bandwidth vs. Fre-  
quency and Code  
Figure 16. THD vs. Frequency  
REV. B  
–6–  
DAC8043A  
PARAMETER DEFINITIONS  
INTEGRAL NONLINEARITY (INL)  
reference voltage or current, ac or dc that is within the limits  
stated in the Absolute Maximum Ratings.  
This is the single most important DAC specification. ADI mea-  
sures INL as the maximum deviation of the analog output (from  
the ideal) from a straight line drawn between the end points. It  
is expressed as a percent of full-scale range or in terms of LSBs.  
Refer to Analog Devices Data Reference Manual for additional  
digital-to-analog converter definitions.  
10k⍀  
20k⍀  
S1  
10k⍀  
20k⍀  
S2  
10k⍀  
20k⍀  
S3  
V
REF  
20k⍀  
20k⍀  
S12  
*
GND  
I
INTERFACE LOGIC INFORMATION  
OUT  
10k⍀  
The DAC8043A has been designed for ease of operation. The  
timing diagram, Figure 2, illustrates the input register loading  
sequence. Note that the most significant bit (MSB) is loaded  
first. Once the 12-bit input register is full, the data is transferred  
to the DAC register by taking LD momentarily low.  
R
FEEDBACK  
*
BIT 1 (MSB)  
BIT 2  
DIGITAL INPUTS  
BIT 3  
BIT 12 (LSB)  
(SWITCHES SHOWN FOR DIGITAL INPUTS "HIGH")  
*THESE SWITCHES PERMANENTLY "ON"  
Figure 18. Simplified DAC Circuit  
DIGITAL SECTION  
The twelve output current steering NMOS FET switches are in  
series with each R-2R resistor.  
The DAC8043A’s digital inputs, SRI, LD, and CLK, are TTL  
compatible. The input voltage levels affect the amount of cur-  
rent drawn from the supply; peak supply current occurs as the  
digital input (VIN) passes through the transition region. See the  
Supply Current vs. Logic Input Voltage graph located in the  
typical performance characteristics curves. Maintaining the  
digital input voltage levels as close as possible to the supplies,  
VDD and GND, minimizes supply current consumption. The  
DAC8043A’s digital inputs have been designed with ESD resis-  
tance incorporated through careful layout and the inclusion of  
input protection circuitry. Figure 17 shows the input protection  
diodes and series resistor; this input structure is duplicated on  
each digital input. High voltage static charges applied to the  
inputs are shunted to the supply and ground rails through for-  
ward biased diodes. These protection diodes were designed to  
clamp the inputs to well below dangerous levels during static  
discharge conditions.  
To further ensure accuracy across the full temperature range,  
permanently “ON” MOS switches were included in series with  
the feedback resistor and the R-2R ladder’s terminating resistor.  
Figure 18 shows the location of the series switches. During any  
testing of the resistor ladder or RFEEDBACK (such as incoming  
inspection), VDD must be present to turn “ON” these series  
switches.  
DYNAMIC PERFORMANCE  
OUTPUT IMPEDANCE  
The DAC8043A’s output resistance, as in the case of the output  
capacitance, varies with the digital input code. This resistance,  
looking back into the IOUT terminal, may be between 10 k(the  
feedback resistor alone when all digital inputs are LOW) and  
7.5 k(the feedback resistor in parallel with approximate 30 kΩ  
of the R-2R ladder network resistance when any single bit logic  
is HIGH). Static accuracy and dynamic performance will be  
affected by these variations.  
V
DD  
5k  
LD, CLK, SRI  
APPLICATIONS INFORMATION  
In most applications, linearity depends upon the potential of the  
IOUT and GND pins being at the same voltage potential. The  
DAC is connected to an external precision op amp inverting  
input. The external amplifiers noninverting input should be tied  
directly to ground without the usual bias current compensating  
resistor. (See Figures 19 and 20.) The selected amplifier should  
have a low input bias current and low drift over temperature.  
The amplifiers input offset voltage should be nulled to less than  
200 microvolts (less than 10% of 1 LSB). All grounded pins  
should tie to a single common ground point to avoid ground loops.  
The VDD power supply should have a low noise level with  
adequate bypassing. It is best to operate the DAC8043A from  
the analog power supply and grounds.  
GND  
Figure 17. Digital Input Protection  
GENERAL CIRCUIT INFORMATION  
The DAC8043A is a 12-bit multiplying D/A converter with a  
very low temperature coefficient. It contains an R-2R resistor  
ladder network, data input and control logic, and two data  
registers.  
The digital circuitry forms an interface in which serial data can  
be loaded under microprocessor control into a 12-bit shift regis-  
ter and then transferred, in parallel, to the 12-bit DAC register.  
The analog portion of the DAC8043A contains an inverted  
R-2R ladder network consisting of silicon-chrome, highly-stable  
(50 ppm/°C) thin-film resistors, and twelve pairs of NMOS  
current-steering switches, see Figure 18. These switches steer  
binarily weighted currents into either IOUT or GND; this yields a  
constant current in each ladder leg, regardless of digital input  
code. This constant current results in a constant input resis-  
tance at VREF equal to R. The VREF input may be driven by any  
UNIPOLAR 2-QUADRANT MULTIPLYING  
The most straightforward application of the DAC8043A is in  
the 2-quadrant multiplying configuration shown in Figure 19. If  
the reference input signal is replaced with a fixed dc voltage  
REV. B  
–7–  
DAC8043A  
reference, the DAC output will provide a proportional dc voltage  
output according to the transfer equation:  
–(VREF – 1 LSB) when the DAC is loaded with all ones. Thus  
the digital coding is offset binary. The voltage output transfer  
equation for various input data and reference (or signal) values  
follows:  
V
OUT = –D/4096 × VREF  
where D is the decimal data loaded into the DAC register and  
REF is the externally applied reference voltage source.  
VOUT2 = (D/2048 – 1) × VREF  
V
where D is the decimal data loaded into the DAC register and  
V
DD  
VREF is the externally applied reference voltage source.  
R
V
R
R
FB  
REF  
FB  
Precision resistors will be necessary to avoid ratio errors. Other-  
wise trimming will be required to achieve full accuracy specifica-  
tions available from the DAC8043A device. See the various  
Analog Devices Digital Potentiometer products for automated  
trimming solutions (e.g., the AD5204 for low voltage applica-  
tions or the AD7376 for high voltage applications).  
10pF  
2R  
2R  
V
؎10V  
AC  
P
I
OUT  
GND  
DIGITAL INPUTS OMITTED FOR CLARITY  
OP77  
V
OUT  
Figure 19. Unipolar (2-Quadrant) Operation  
BIPOLAR 4-QUADRANT MULTIPLYING  
Figure 20 shows a suggested circuit to achieve 4-quadrant mul-  
tiplying operation. The summing amplifier multiplies VOUT1 by  
2, and offsets the output with the reference voltage so that a  
midscale digital input code of 2048 places VOUT2 at zero volts.  
The negative full-scale voltage will be VREF when the DAC is  
loaded with all zeros. The positive full-scale output will be  
V
20k⍀  
20k⍀  
DD  
V
R
FB  
R
REF  
R
2R  
10pF  
FB  
2R  
V
AC  
10k⍀  
؎10V  
I
OUT  
P
OP213  
V
OUT1  
OP213  
GND  
DIGITAL INPUTS OMITTED FOR CLARITY  
V
OUT2  
(0V TO –V  
)
REF  
Figure 20. Bipolar (4-Quadrant) Operation  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters).  
(R-8)  
S-Suffix  
Dimensions shown in millimeters and (inches).  
8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters.  
–8–  
REV. B  

相关型号:

DAC8043AFSZ-REEL

IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,SOP,8PIN
ADI

DAC8043AFSZ-REEL3

12-Bit Serial Input Multiplying D/A Converter
ADI

DAC8043AFSZ3

12-Bit Serial Input Multiplying D/A Converter
ADI

DAC8043AZ

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043AZ/883

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043AZ/883C

12-Bit Digital-to-Analog Converter
ETC

DAC8043EZ

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043FP

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043FPZ

12-Bit Serial Input Multiplying CMOS Digital-to-Analog Converter
ADI

DAC8043FS

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI

DAC8043FSZ

12-Bit Serial Input Multiplying CMOS Digital-to-Analog Converter
ADI

DAC8043FZ

12-Bit Serial Input Multiplying CMOS D/A Converter
ADI