MAX8564EUB+

更新时间:2024-09-19 00:50:17
品牌:ROCHESTER
描述:SPECIALTY ANALOG CIRCUIT, PDSO10, MO-187CBA, USOP-10

MAX8564EUB+ 概述

SPECIALTY ANALOG CIRCUIT, PDSO10, MO-187CBA, USOP-10

MAX8564EUB+ 数据手册

通过下载MAX8564EUB+数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
19-3290; Rev 2; 6/06  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
General Description  
Features  
The MAX8563/MAX8564/MAX8564A ultra-low-output dual  
and triple LDO controllers allow flexible and inexpensive  
point-of-load voltage conversion in motherboards,  
desknotes, notebooks, and other applications.  
MAX8563: 3 Outputs  
MAX8564/MAX8564A: 2 Outputs  
±±1 ꢀFFedbac ꢁFꢂuꢃbtꢄio  
These parts feature a 0.5V reference voltage with ±±1  
accuracy providing tight regulation of the output volt-  
age. The MAX8563 has three n-channel MOSFET con-  
troller outputs, and the MAX8564/MAX8564A has two  
controller outputs.  
AejustbdꢃF Output ViꢃtbꢂF Diwo ti 0.5V  
Cbo UsF CFrbmꢄa Output Cbpbaꢄtirs  
WꢄeF Suppꢃy ViꢃtbꢂF ꢁboꢂF PFrmꢄts OpFrbtꢄio  
frim 5V ir ±2V ꢁbꢄꢃs  
Each controller output is adjustable from 0.5V to 3.3V  
Ioeꢄvꢄeubꢃ EobdꢃF Ciotriꢃ boe POK Sꢄꢂobꢃ Aꢃꢃiws  
when V  
= ±2V and between 0.5V and ±.8V when V  
DD  
DD  
SFquFoaꢄoꢂ  
= 5V. Each output is independently enabled and asserts  
a POK signal when the output reaches 941 of the set  
value. Each output is protected against a soft short-circuit  
condition by an undervoltage comparator that disables  
the output when it drops to under 801 of the set voltage  
for more than 50µs. For a catastrophic short condition, the  
regulators are shut down immediately if the output drops  
below 601 of the set voltage.  
OvFrꢃibe PritFatꢄio Aꢂbꢄost Sift Shirt-Cꢄrauꢄt  
Cioeꢄtꢄio  
UoeFrviꢃtbꢂF Shirt-Cꢄrauꢄt PritFatꢄio  
DrꢄvF o-ChbooFꢃ MOSꢀETs  
ꢃrdering Information  
PIN-  
PACKAGE  
PKG  
CODE  
The MAX8563 is available in a ±6-pin QSOP  
package, and the MAX8564/MAX8564A are available  
PAꢁT  
TEMP ꢁANGE  
®
in a ±0-pin µMAX package.  
MAX8563EEE  
MAX8564EUB  
-40°C to +85°C ±6 QSOP  
-40°C to +85°C ±0 µMAX  
E±6-±  
U±0-2  
U±0-2  
Applications  
MAX8564AEUB+ -40°C to +85°C ±0 µMAX  
+Denotes lead-free package.  
Motherboards  
Ultra-Low-Dropout  
Voltage Regulators  
Low-Voltage DSP, µP, and  
Microcontroller Power  
Supplies  
Dual/Triple Power Supplies  
Desknotes and Notebooks  
Graphic Cards  
Pin Configurations appear at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Typical ꢃperating Circuit  
5V OR 12V  
IN  
1.8V 5% IN  
C1  
1.2V 5% IN  
C2  
C3  
Q1  
OUT1  
1.5V/1.5A  
C5  
R2  
Q2  
DRV1  
FB1  
V
DD  
C4  
OUT2  
1.05V/3A  
R1  
R3  
C6  
R5  
R4  
DRV2  
C7  
ON  
MAX8563  
OFF  
EN1  
FB2  
EN2  
ON  
POK1  
POK1  
OFF  
3.3V 5% IN  
C8  
GND  
N.C.  
POK2  
N.C.  
POK2  
POK3  
R6  
Q3  
C10  
R7  
OUT3  
2.5V/2A*  
DRV3  
FB3  
POK3  
EN3  
C9  
ON  
OFF  
R8  
R9  
*2.5V OUTPUT ONLY WITH V = 12V  
DD  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
ABSOLUTE MAXIMUM ꢁATINGS  
DD  
DRV±, DRV2, DRV3, EN±, EN2,  
EN3 to GND............................................-0.3V to (V  
V
to GND............................................................-0.3V to +±4V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+±50°C  
Storage Temperature Range.............................-65°C to +±50°C  
Lead Temperature (soldering, ±0s) .................................+300°C  
+ 0.3V)  
DD  
FB±, FB2, FB3, POK±, POK2, POK3 to GND ...........-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
±0-Pin µMAX (derate 5.6mW/°C above +70°C) ........444.4mW  
±6-Pin QSOP (derate 8.3mW/°C above +70°C)........666.7mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTꢁICAL CHAꢁACTEꢁISTICS  
(V = V  
= V  
= V  
= 5V, V = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note ±)  
GND A A  
DD  
EN±  
EN2  
EN3  
PAꢁAMETEꢁ  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENEꢁAL  
V
V
Voltage Range  
4.5  
±3.2  
4.00  
±600  
±200  
25  
V
V
DD  
DD  
Undervoltage-Lockout Threshold  
Rising, 200mV hysteresis (typ)  
3.56  
3.76  
930  
660  
V
V
= V  
= V  
= ±2V (MAX8563)  
EN_  
EN_  
DD  
DD  
V
V
Quiescent Current  
µA  
µA  
DD  
= ±2V (MAX8564/MAX8564A)  
Shutdown Current  
EN± = EN2 = EN3 = GND, V  
= ±2V  
DD  
DD  
LDOs  
T
T
T
T
= 0°C to +85°C  
= -40°C to +85°C  
= +25°C  
0.494  
0.489  
-±00  
0.5  
0.504  
0.509  
+±00  
A
A
A
A
FB_ Accuracy  
V
FB_ Input Bias Current  
nA  
µA  
mA  
mA  
V
= +85°C  
-8  
±00  
±0  
MAX8563, MAX8564  
MAX8564A  
DRV_ Soft-Start Charging Current  
DRV_ Max Sourcing Current  
DRV_ Max Sinking Current  
DRV_ Max Voltage  
T
A
T
A
T
A
T
A
= 0°C to +85°C  
= -40°C to +85°C  
= 0°C to +85°C  
= -40°C to +85°C  
4
3
V
V
= 0.45V  
= 0.6V  
FB_  
FB_  
7
7
3
±.8  
4.7  
8.0  
V
V
= 5V, V  
= 0.46V  
FB_  
DD  
DD  
= ±3.2V, V  
= 0.46V  
±0.9  
FB_  
FB_ Slow Short-Circuit Threshold  
FB_ Fast Short-Circuit Threshold  
Slow Short-Circuit Timer  
FB_ to DRV_ Transconductance  
LOGIC  
Measured at FB_ (falling)  
Measured at FB_ (falling)  
400  
300  
50  
mV  
mV  
µs  
0.±±5  
0.24  
0.460  
0.7  
Mho  
EN_ Input Low Level  
V
V
EN_ Input High Level  
±.3  
T
T
= +25°C  
= +85°C  
-0.±  
+0.±  
A
V
V
= 0 and V  
= ±3.2V  
,
DD  
EN_  
DD  
EN_ Input Leakage Current  
µA  
0.00±  
A
2
_______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
ELECTꢁICAL CHAꢁACTEꢁISTICS (aiotꢄouFe)  
(V = V  
= V  
= V  
= 5V, V = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note ±)  
GND A A  
DD  
EN±  
EN2  
EN3  
PAꢁAMETEꢁ  
CONDITIONS  
Measured at FB_ (falling)  
Measured at FB_ (rising)  
Sinking ±mA, V = 4.5V, V  
MIN  
425  
455  
TYP  
440  
470  
MAX  
455  
485  
0.±  
UNITS  
mV  
POK_ Threshold Falling  
POK_ Threshold Rising at Startup  
POK_ Output Low Level  
mV  
= 0.4V  
FB_  
V
DD  
T
T
= +25°C  
= +85°C  
0.±  
A
POK_ Output High Leakage  
V
= 5.5V  
µA  
DD  
0.00±  
A
NitF ±: Specifications are production tested at T = +25°C. Maximum and minimum specifications over temperature are guaranteed by  
A
design.  
Typical ꢃperating Characteristics  
(Circuit of Figure ±, T = +25°C.)  
A
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
OUTPUT VOLTAGE vs. OUTPUT CURRENT  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.6  
V
= 12V  
V
= 12V  
DD  
V
= 5V  
DD  
DD  
V
V
OUT3  
V
OUT3  
OUT1  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
OUT1  
V
OUT1  
V
OUT2  
V
V
OUT2  
OUT2  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
FEEDBACK VOLTAGE  
vs. TEMPERATURE  
PSRR vs. FREQUENCY  
LOAD TRANSIENT  
MAX8563 toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.5000  
0.4998  
0.4996  
0.4994  
0.4992  
0.4990  
0.4988  
0.4986  
V
V
= 1.5V  
OUT1  
V
= 5V  
I
DD  
OUT2  
= 2V  
IN1  
2A/div  
0
LOAD = 1.25Ω  
V
= 12V  
DD  
V
= 12V  
V
DD  
OUT2  
20mV/div  
AC-COUPLED  
200mV/div  
AC-COUPLED  
V
IN2  
V
DRV2  
2V/div  
0
V
= 12V  
DD  
FIGURE 1, C7 = 100μF 6TPE100MI  
1k  
10k  
100  
100k  
10μs/div  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Typical ꢃperating Characteristics (continued)  
(Circuit of Figure ±, T = +25°C.)  
A
POWER-ON SEQUENCING WITH V  
POWER-ON SEQUENCING WITH V  
DD  
IN  
MAX8563 toc07  
MAX8563 toc08  
V
V
20V/div  
0
DD  
20V/div  
0
V
DD  
ENABLE CONFIGURED AS  
SHOWN IN FIGURE 4  
RD = 100kΩ, RE = 4kΩ  
2V/div  
0
2V/div  
0
V
V
OUT1  
IN1  
V
IN1  
2V/div  
0
2V/div  
0
V
OUT1  
2V/div  
0
2V/div  
0
POK1  
V
POK1  
20ms/div  
10ms/div  
ENABLE-ON SEQUENCING  
SHORT-CIRCUIT PROTECTION  
MAX8563 toc09  
MAX8563 toc10  
V
2V/div  
0
IN1  
2V/div  
0
I
5A/div  
0
OUT1  
EN1  
V
OUT1  
1V/div  
0
2V/div  
0
V
OUT1  
2V/div  
0
V
V
DRV1  
POK1  
2V/div  
0
20ms/div  
20μs/div  
4
_______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Functional Diagram  
V
DD  
VL  
UVLO  
0.5V  
REF  
MAX8563  
MAX8564  
MAX8564A  
GND  
V
DD  
V
DD  
0.5V  
EN1  
DRV1  
FB1  
GM  
VL  
POK1  
POK  
COMPARATOR  
LDO  
CONTROLLER 1  
EN2  
DRV2  
FB2  
LDO  
CONTROLLER 2  
POK2  
EN3  
DRV3  
FB3  
LDO  
CONTROLLER 3  
POK3  
Pin Description  
NAME  
MAX8564/  
PIN  
ꢀUNCTION  
MAX8563  
MAX8564A  
Output n-MOSFET Drive. Drives the gate of an external n-channel MOSFET to regulate output ±.  
DRV± is internally pulled to ground when EN± is logic low. Connect an external series RC circuit  
for compensation. See the Stability Compensation section.  
±
DRV±  
DRV±  
Feedback Input for Output ±. Connect to the center of a resistor-divider between output ± and GND to  
set the output voltage of output ±. The feedback regulation voltage is 0.500V. See the Output Voltage  
Setting section.  
2
3
FB±  
FB±  
Enable Control for Output ±. Drive logic high to enable output ±, or logic low to disable the  
EN±  
EN±  
output. Connect to V  
for always-on operation.  
DD  
Output ± Power-Good Signal. Open-drain output pulls low when output ± is ±21 below the  
nominal regulated voltage.  
4
5
POK±  
GND  
POK±  
GND  
POK2  
Ground  
Output 2 Power-Good Signal. Open-drain output pulls low when output 2 is ±21 below the  
nominal regulated voltage.  
6
N.C.  
No Internal Connection  
_______________________________________________________________________________________  
5
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Pin Description (continued)  
NAME  
PIN  
ꢀUNCTION  
MAX8564/  
MAX8564A  
MAX8563  
Enable Control for Output 2. Drive logic high to enable output 2, or logic low to disable the  
EN2  
output. Connect to V  
for always-on operation.  
DD  
7
Output 3 n-MOSFET Drive. Drives the gate of an external n-channel MOSFET to regulate output 3.  
DRV3 is internally pulled to ground when EN3 is logic low. Connect an external series RC circuit  
for compensation. See the Stability Compensation section.  
DRV3  
Feedback Input for Output 2. Connect to the center of a resistor-divider between output 2 and  
GND to set the output voltage of output 2. The feedback regulation voltage is 0.500V. See the  
Output Voltage Setting section.  
FB2  
8
Feedback Input for Output 3. Connect to the center of a resistor-divider between output 3 and  
GND to set the output voltage of output 3. The feedback regulation voltage is 0.500V. See the  
Output Voltage Setting section.  
FB3  
Output 2 n-MOSFET Drive. Drives the gate of the external n-channel MOSFET to regulate output 2.  
DRV2 is internally pulled to ground when EN2 is logic low. Connect an external series RC circuit  
for compensation. See the Stability Compensation section.  
DRV2  
9
Enable Control for Output 3. Drive logic high to enable output 3, or logic low to disable the  
EN3  
output. Connect to V  
for always-on operation.  
DD  
+5V or +±2V Supply Input. Connect to external +5V or +±2V supply rail. Bypass with a 0.±µF  
ceramic or larger capacitor.  
V
DD  
±0  
Output 3 Power-Good Signal. Open-drain output pulls low when output 3 is ±21 below the  
nominal regulated voltage.  
POK3  
N.C.  
±±  
±2  
No Internal Connection  
Output 2 Power-Good Signal. Open-drain output pulls low when output 2 is ±21 below the  
nominal regulated voltage.  
POK2  
Enable Control for Output 2. Drive logic high to enable output 2, or logic low to disable the  
±3  
±4  
EN2  
FB2  
output. Connect to a V  
for always-on operation.  
DD  
Feedback Input for Output 2. Connect to the center of a resistor-divider between output 2 and  
GND to set the output voltage of output 2. The feedback regulation voltage is 0.500V. See the  
Output Voltage Setting section.  
Output 2 n-MOSFET Drive. Drives the gate of the external n-channel MOSFET to regulate output 2.  
DRV2 is internally pulled to ground when EN2 is logic low. Connect an external series RC circuit  
for compensation. See the Stability Compensation section.  
±5  
±6  
DRV2  
+5V or +±2V Supply Input. Connect to an external +5V or +±2V supply rail. Bypass with a 0.±µF  
ceramic or larger capacitor.  
V
DD  
6
_______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Typical Application Circuits  
MAX8563: Triple ꢃutput  
5V OR 12V  
1.8V 5% IN  
IN  
C1  
1.2V 5% IN  
C3  
C2  
Q1  
OUT1  
1.5V/1.5A  
C5  
R2  
Q2  
DRV1  
FB1  
V
DD  
C4  
R1  
OUT2  
1.05V/3A  
C6  
R4  
C7  
DRV2  
FB2  
R3  
R5  
ON  
MAX8563  
OFF  
EN1  
ON  
OFF  
POK1  
POK1  
EN2  
3.3V 5% IN  
C8  
GND  
N.C.  
POK2  
N.C.  
POK2  
POK3  
Q3  
R6  
OUT3  
2.5V/2A*  
C10  
R8  
R7  
DRV3  
POK3  
C9  
ON  
OFF  
FB3  
EN3  
R9  
*2.5V OUTPUT ONLY WITH V = 12V  
DD  
Figure 1. MAX8563 Typical Application Circuit  
_______________________________________________________________________________________  
7
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Typical Application Circuits (continued)  
MAX8564/MAX8564A: Dual ꢃutput  
1.8V 5% IN  
C15  
5V OR 12V  
IN  
1.2V 5% IN  
C17  
C11  
Q4  
OUT1  
1.5V/1.5A  
C20  
OFF  
R18  
Q5  
DRV1  
FB1  
V
DD  
C14  
R16  
C18  
R14  
OUT2  
1.05V/3A  
R15  
DRV2  
FB2  
C12  
R17  
MAX8564  
MAX8564A  
ON  
EN1  
ON  
OFF  
POK1  
POK1  
GND  
EN2  
POK2  
POK2  
R13  
Figure 2. MAX8564/MAX8564A Typical Application Circuit  
MAX8564/MAX8564A ExtFrobꢃ  
CimpioFot Lꢄst  
MAX8563 ExtFrobꢃ CimpioFot Lꢄst  
COMPONENTS QTY  
DESCꢁIPTION  
COMPONENTS QTY  
DESCꢁIPTION  
C±±  
±
0.±µF, ±6V X7R ceramic capacitor  
2.2µF, ±0V X5R ceramic capacitors  
(optional ±00µF, ±8mΩ, 6.3V  
aluminum electrolytic, Sanyo  
GTPE±00MI in parallel)  
±00µF, ±8mΩ, 6.3V aluminum  
electrolytic capacitors  
Sanyo GTPE±00MI  
C±, C3, C8  
3
C±2, C±4  
2
C2  
±
3
0.±µF, ±6V X7R ceramic capacitor  
2.2µF, ±0V X5R ceramic capacitors  
(optional ±00µF, ±8mΩ, 6.3V  
aluminum electrolytic, Sanyo  
GTPE±00MI in parallel)  
±00µF, ±8mΩ, 6.3V aluminum  
electrolytic capacitors  
Sanyo GTPE±00MI  
C4, C7, C9  
C±5, C±7  
2
C5, C6, C±0  
Q±/Q2 (dual)  
3
±
±µF, ±6V X7R ceramic capacitors  
C±8, C20  
2
±
±µF, ±6V X7R ceramic capacitors  
Dual n-channel MOSFETs, 30V, ±8mΩ  
Vishay Si4922DY  
Dual n-channel MOSFETs, 30V, ±8mΩ  
Vishay Si4922DY  
Q4/Q5 (dual)  
n-channel MOSFET, 30V, 50mΩ  
Fairchild Semiconductor FDD6630A  
Q3  
±
R±3  
R±4  
R±5  
R±6  
R±7  
R±8  
±
±
±
±
±
±
±65Ω ±±1 resistor  
±82Ω ±±1 resistor  
390Ω ±51 resistor  
665Ω ±±1 resistor  
332Ω ±±1 resistor  
620Ω ±51 resistor  
R±  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
±
±
±
±
±
±
±
±
±
665Ω ±±1 resistor  
620Ω ±51 resistor  
332Ω ±±1 resistor  
390Ω ±51 resistor  
±82Ω ±±1 resistor  
±65Ω ±±1 resistor  
9±0Ω ±51 resistor  
±kΩ ±±1 resistor  
249Ω ±±1 resistor  
8
_______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Detailed Description  
V
IN_  
The MAX8563/MAX8564/MAX8564A triple and dual  
LDO controllers allow flexible and inexpensive voltage  
conversion by controlling the gate of an external  
n-MOSFET in a source-follower configuration. The  
MAX8563/MAX8564/MAX8564A consist of multiple  
identical LDO controllers. Each LDO controller features  
an enable input (EN_) and a power-OK output (POK_).  
The MAX8563/MAX8564/MAX8564A also include a 0.5V  
reference, an internal regulator, and an undervoltage  
lockout (UVLO). The transconductance amplifier mea-  
sures the feedback voltage on FB_ and compares it to  
an internal 0.5V reference connected to the positive  
input. If the voltage on FB_ is lower than 0.5V, the cur-  
rent output on the gate-drive output DRV_ is increased.  
If the voltage on FB_ is higher than 0.5V, the current out-  
put on the gate-drive output is decreased.  
Q1  
MAX8563  
MAX8564  
MAX8564A  
OUT1  
C
C
R
C
DRV_  
C
OUT  
Figure 3. Soft-Start and Compensation Schematic  
this value are covered in the Power MOSFET Selection  
section.  
The maximum input voltage to the drain of the n-MOSFET  
is a function of the breakdown voltage and the thermal  
conditions during operation. The breakdown voltage from  
drain to source is normally provided in the MOSFET data  
sheet. The theoretical maximum input voltage is the set  
output voltage plus the breakdown voltage. The thermal  
constraint is usually the largest concern when discussing  
maximum input voltage. Details on calculating this value  
are covered in the Power MOSFET Selection section. The  
MOSFET package and thermal relief on the board are  
the largest contributors to removing heat from the  
n-MOSFET. Since output voltage is normally set and  
maximum output current is fixed, the input voltage  
becomes the only variable that determines the maxi-  
mum power dissipated. Thus, the maximum input volt-  
age is limited by the power capability of the n-MOSFET,  
if it is less than the breakdown voltage, which is most  
often the case. Ensure input capacitors handle the  
maximum input voltage.  
Bias ꢄoltage (ꢄ )% ꢀꢄ-ꢃ% and SoftꢁStart  
DD  
The MAX8563/MAX8564/MAX8564A bias current  
for internal circuitry is supplied by V . The V  
voltage  
DD  
DD  
range is from 4.5V to ±3.2V. If V  
drops below 3.76V  
DD  
(typ), the MAX8563/MAX8564/MAX8564A assume that  
the supply and reference voltages are too low and acti-  
vate the UVLO circuitry. During UVLO, the internal regu-  
lator (VL) and the internal bandgap reference are forced  
off, DRV_ is pulled to GND, and POK_ is pulled low.  
Before any internal startup circuitry is activated, V must  
DD  
be above the UVLO threshold. After UVLO indicates that  
V
is high enough, the internal VL regulator, the internal  
DD  
bandgap reference, and the bias currents are activated.  
If EN_ is logic-high after the internal reference and bias  
currents are activated, then the corresponding DRV_ out-  
put initiates operation in soft-start mode. Once the voltage  
on FB_ reaches 941 of the regulation threshold, the full  
output current of the LDO controller is permitted.  
During a power-up sequence where V  
and EN_ rise  
DD  
before the input to the drain of the n-MOSFET, the  
MAX8563/MAX8564/MAX8564A drive DRV_ high but the  
When an LDO is activated, the respective DRV_ is pulled  
up from GND with a typical soft-start current of DRV soft-  
start. The soft-start current limits the slew of the output  
voltage and limits the initial spike of current that the drain  
of the external n-MOSFET receives. The size of the com-  
output does not rise. As DRV_ rails and V  
is still below  
FB_  
801 of the regulation voltage, the MAX8563/MAX8564/  
MAX8564A assume that an output short-circuit fault is  
present and shut down that regulator. To avoid this error  
condition, connect a resistor-divider from V  
to IN_ with  
DD  
pensation capacitor (C ) limits the slew rate (see Figure  
C
the middle node connected to the respective EN_ (see  
Figure 4). Use the following equations to calculate the  
resistor values.  
3). This output voltage slew rate is equal to (DRV_soft-  
start /C )mV/ms, where C is in µF. The maximum startup  
C
C
drain current is the ratio of C  
soft-start current.  
to C multiplied by the  
C
OUT  
When V  
is off or at a low-voltage state:  
IN_  
Input ꢄoltage (Drain ꢄoltage of the  
External nꢁMꢃSFET)  
The minimum input voltage to the drain of the n-MOSFET  
is a function of the desired output voltage and the  
dropout voltage of the n-MOSFET. Details on calculating  
R
E
0.7 >  
× V V  
+ V  
IN_  
(
)
DD  
IN_  
R +R  
E
D
When V  
is on or at a high-voltage state:  
IN_  
_______________________________________________________________________________________  
9
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
The POK_ is an open-drain output that provides the sta-  
tus of the output voltage and pulls low depending upon  
V
DD  
circuit conditions. During startup, once the FB_ reaches  
the POK_ threshold, the POK_ signal goes high. The  
POK_ threshold has 30mV of hysteresis. When the out-  
put voltage drops ±21 below the nominal regulated  
voltage, POK_ pulls low. All POK_ outputs pull low  
when UVLO is activated or when the internal VL regula-  
tor and reference are not ready.  
MAX8563  
MAX8564  
MAX8564A  
R
D
E
EN_  
R
IN_  
ꢃutput ꢀndervoltage and  
ꢃverload Protection  
When an overload event or short circuit occurs, the  
device that is most vulnerable is the external n-MOSFET.  
The MAX8563/MAX8564/MAX8564A monitor the output  
voltage to protect the MOSFET. When DRV_ is at its maxi-  
mum voltage and the output voltage drops below 801  
but is still greater than 601 of its nominal voltage for  
more than 50µs, the MAX8563/MAX8564/MAX8564A  
shut down that particular regulator output by pulling  
DRV_ to GND. Note that there is an additional inherent  
delay in turning off the MOSFET. The delay is a function  
of the compensation capacitor and the MOSFET. If the  
output recovers to greater than 801 within 50µs, it is not  
considered to be in overload and no action is taken.  
When the output voltage drops below 601 of its nominal  
voltage, the MAX8563/MAX8564/MAX8564A immediately  
shut down that particular regulator output by pulling  
Figure 4. Voltage-Divider on EN_  
R
E
±.3 <  
× V V  
+ V  
IN_  
(
)
DD  
IN_  
R +R  
E
D
Set R = ±00kΩ. The above equations also assume that  
D
> V  
V
> ±V when V  
is on or at a high-voltage  
IN_  
DD  
IN_  
state, and that V > 3V.  
DD  
Example: Connect ±00kΩ from EN to V  
and 4kΩ from  
DD  
EN_ to IN_. Thus, when V  
= ±2V and V _ = 0V, then  
DD  
IN  
V
EN  
V
EN  
_ = 0.46V. When V  
= ±2V and V _ = ±.2V, then  
DD IN  
_ = ±.6V.  
Alternately, to avoid fault shutdown due to the delay of  
V
relative to V , pull EN_ low with a separate control  
DD  
IN  
logic and only drive high when V reaches a steady-  
IN  
DRV_ to GND. To restart that particular LDO, V  
must  
DD  
state value.  
be recycled below the UVLO or the corresponding EN_  
must be recycled. The overload protection is shown in  
the Typical Operating Characteristics.  
ꢃutput ꢄoltage  
The output voltage range at the source of the n-MOSFET  
is from 0.5V to 3.3V when V  
is ±2V and from 0.5V to  
DD  
Design Procedure  
±.8V when V  
is 5V. The maximum output voltage is a  
DD  
ꢃutput ꢄoltage Setting  
The minimum output voltage for each controller of the  
MAX8563/MAX8564/MAX8564A is typically 0.5V. The  
maximum output voltage is adjustable up to 3.3V with  
function of the minimum gate-to-source voltage (V ) of  
GS  
the MOSFET and V  
.
DD  
The external n-MOSFET contains a parasitic diode from  
source to drain. If the output is ever anticipated to  
exceed the input, current flows from source to drain. If  
this is undesirable, external protection is needed. A  
simple solution is the placement of a diode in series,  
from IN_ to the drain of the n-MOSFET, so that reverse  
current is not possible. Due to the forward-voltage drop  
of the diode, the maximum output voltage is reduced  
and additional power is consumed in the diode.  
V
= ±2V, and up to ±.8V with V  
= 5V. To set the out-  
DD  
DD  
put voltage, connect the FB_ pin to the center of a volt-  
age-divider between OUT_ and GND (Figure 5). The  
resistor-divider current should be at least ±mA per ±A of  
maximum output current; i.e., for a 3A maximum output  
current, set the resistor-divider bias current to 3mA:  
I
OUT(MAX)  
I
OUT(MIN)  
Enable and PꢃK  
The MAX8563/MAX8564/MAX8564A have independent  
enable control inputs (EN±, EN2, and EN3). Drive EN±  
high to enable output ±. Drive EN2 high to enable out-  
put 2. Drive EN3 high to enable output 3. When EN_ is  
driven low, the corresponding DRV_ is internally pulled  
to GND and POK_ is internally pulled low.  
±000  
V
V
500  
I
OUT(MAX)  
FB  
OUT(MIN)  
FB  
R
= ±000 ×  
=
B
I
I
OUT(MAX)  
±0 ______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
V
V
OUT  
R
= R  
×
± = R × 2 × V  
±  
(
)
A
B
B
OUT  
OUT_  
FB  
MAX8563  
MAX8564  
MAX8564A  
R
A
B
To set the output voltage to 0.5V, disconnect R from  
B
FB_ and connect it to OUT_; this change maintains the  
minimum load requirement on the output. In this case,  
FB_  
R can vary from ±kΩ to ±0kΩ.  
A
R
Input and ꢃutput Capacitor Selection  
The input filter capacitor aids in providing low input  
impedance to the regulator and also reduces peak cur-  
rents drawn from the power source during transient  
conditions. Use a minimum 2.2µF ceramic capacitor  
from IN_ (drain of the external pass n-MOSFET) to GND  
(see Figures ± and 2). If large line transients or load  
transients are expected, increase the input capaci-  
tance to help minimize output voltage changes.  
Figure 5. Adjustable Output Voltage  
current (load current) is the maximum voltage dropout  
across the MOSFET, V . Make sure that V  
_
_
DS MIN  
DS MIN  
meets the condition below to avoid entering dropout,  
where output voltage starts to decrease and any ripple  
on the input also passes through to the output:  
The output filter capacitor and its equivalent series  
resistance (ESR) contribute to the stability of the regula-  
tor (see the Stability Compensation section) and affect  
the load-transient response. If large step loads (no load  
to full load) are expected, and a very fast response  
(less than a few microseconds) is required, use a  
±00µF, ±8mΩ POSCAP for the output capacitor. If a  
larger capacitance is desired, keep the capacitance  
V
> V  
_
+ V  
IN_MIN  
DS MIN OUT  
where V  
is the minimum input voltage at the drain  
IN_MIN  
of the MOSFET. V  
_
has a positive temperature  
DS MIN  
coefficient; therefore, the value of V  
operating junction temperature should be used.  
_
at the highest  
DS MIN  
For thermal management, the maximum power dissipa-  
tion in the MOSFET is calculated by:  
ESR product (C  
x R  
) in the ±µs to 5µs range.  
ESR  
OUT  
P = (V  
- V  
) x I  
OUT OUT_MAX  
D
IN_MAX  
If the application expects smaller load steps (less than  
501 of full load), then use a 6.8µF ceramic capacitor or  
larger per ampere of maximum output current. This  
option reduces the size and cost of the regulator circuit.  
Note that some ceramic dielectrics exhibit large capaci-  
tance variation with temperature. Use X7R or X5R  
dielectrics to ensure sufficient capacitance at all operat-  
ing temperatures. Tantalum and aluminum capacitors  
are not recommended.  
The MOSFET is typically in an SMT package. Refer to  
the MOSFET data sheet for the PC board area needed  
to meet the maximum operating junction temperature  
required.  
Stability Compensation  
Connect a resistor, R , and a capacitor, C , in series  
C
C
from the DRV_ pin to GND. The values of the compen-  
sation network depend upon the external MOSFET  
characteristics, the output current range, and the pro-  
grammed output voltage. The following parameters are  
needed from the MOSFET data sheet: the input capaci-  
Poꢂer MꢃSFET Selection  
The MAX8563/MAX8564/MAX8564A use an n-channel  
MOSFET as the series pass transistor instead of a p-  
channel MOSFET to reduce cost. The selected MOS-  
FET must have a gate threshold voltage that meets the  
following criteria:  
tance (C  
at V  
= ±V), the typical forward transcon-  
DS  
ISS  
ductance (g ), and the current at which g  
was  
FS  
FS  
DFS  
measured (I  
). Calculate the transconductance of  
the FET at the maximum load current (I  
):  
OUT_MAX  
V
V  
- V  
DD OUT_  
GS_MAX  
where V  
is the controller bias voltage, and V  
GS_MAX  
DD  
I
OUT_MAX  
g
= g  
×
is the maximum gate voltage required to yield the on-  
C(MAX)  
FS  
I
DFS  
resistance (R  
data sheet. R  
) specified by the manufacturer’s  
multiplied by the maximum output  
DS_ON  
DS_ON  
______________________________________________________________________________________ ±±  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
For the best transient response in applications with  
±.5A  
8.8A  
large step loads (see the Input and Output Capacitor  
Selection section for output capacitance requirements),  
use the following equations to select the compensation  
components:  
g
= 30S x  
=±2.4S  
C(MAX)  
±2.4S x  
±.5V x ±00μF x ±2.4S x  
±8mΩ +±  
2
C
= 0.±6 x  
C
±2.4S x ±.5V + ±.5A  
(
)
0.±6 × V  
× C  
×
OUT  
OUT  
2500pF = 0.90μF, use ±μF.  
g
× g  
(
×R  
ESR  
+±  
)
C(MAX)  
C(MAX)  
C
=
C  
±.5V x ±00μF x ±2.4S x ±8mΩ +±  
(
)
C
ISS  
2
R
= 59 x  
C
g
× V  
+I  
(
)
C(MAX)  
OUT OUT_MAX  
±μF ±2.4S x ±.5V + ±.5A  
(
)
V
x C  
g
x R  
+±  
= 599.4Ω, use 620Ω.  
(
)
OUT  
OUT C(MAX)  
ESR  
R
= 59 ×  
C
C
x g  
× V  
+ I  
(
)
C
C(MAX)  
OUT  
OUT_MAX  
PC Board -ayout Guidelines  
Due to the high-current paths and tight output accuracy  
required by most applications, careful PC board layout is  
required. An evaluation kit (MAX8563EVKIT) is available  
to speed design.  
where C  
is the output capacitance and R  
is the  
OUT  
ESR  
ESR of C  
.
OUT  
To use a low-cost ceramic capacitor (see the Input and  
Output Capacitor Selection section for load-transient  
response characteristics), use the following equations  
to select the compensation components:  
It is important to keep all traces as short as possible to  
maximize the high-current trace dimensions to reduce the  
effect of undesirable parasitic inductance. The MOSFET  
dissipates a fair amount of heat due to the high currents  
involved, especially during large input-to-output voltage  
differences. To dissipate the heat generated by the  
MOSFET, make power traces very wide with a large  
amount of copper area. An efficient way to achieve good  
power dissipation on a surface-mount package is to lay  
out copper areas directly under the MOSFET package on  
multiple layers and connect the areas through vias. Use a  
ground plane to minimize impedance and inductance. In  
addition to the usual high-power considerations, here are  
four tips to ensure high output accuracy:  
C
x g  
OUT  
OUT  
x V  
C(MAX)  
C
=
C  
ISS  
C
g
(
+ I  
)
C(MAX)  
OUT_MAX  
C
OUT  
R
= ±5 x  
C
C
x g  
C(MAX)  
C
Example  
OUTPUT ± of Figure ± is used in this example. Table ±  
shows the values required to calculate the compensa-  
tion. The values were taken from the appropriate data  
sheets and Figure ±.  
Ensure that the feedback connection to C  
short and direct.  
is  
OUT_  
TbdꢃF ±. PbrbmFtFrs ꢁFquꢄrFe ti  
CbꢃauꢃbtF CimpFosbtꢄio  
Place the feedback resistors next to the FB pin.  
Place R and C next to the DRV_ pin.  
C
C
PAꢁAMETEꢁ CONDITIONS  
MOSFET C = ±V  
VALUE  
2500  
30  
UNITS  
pF  
S
Ensure FB_ and DRV_ traces are away from noisy  
sources to ensure tight accuracy.  
V
ISS  
DS  
MOSFET GFS  
IDFS = 8.8A  
Figure ±  
Figure ±  
Figure ±  
Figure ±  
V
±.5  
V
OUT±  
I
±.5  
A
OUT_MAX  
C
±00  
±8  
µF  
OUT±  
ESR  
R
mΩ  
±2 ______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Pin Configurations  
TOP VIEW  
DRV1  
1
2
3
4
5
6
7
8
16 V  
DD  
FB1  
EN1  
15 DRV2  
14 FB2  
POK1  
GND  
N.C.  
MAX8563  
13 EN2  
12 POK2  
11 N.C.  
10 POK3  
DRV1  
FB1  
1
2
3
4
5
10  
9
V
DD  
DRV2  
FB2  
MAX8564  
MAX8564A  
EN1  
8
DRV3  
FB3  
POK1  
GND  
7
EN2  
9
EN3  
6
POK2  
QSOP  
μMAX  
Chip Information  
TRANSISTOR COUNT: ±80±  
PROCESS: BiCMOS  
______________________________________________________________________________________ ±3  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.mbxꢄm-ꢄa.aim/pbacbꢂFs.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
F
1
±4 ______________________________________________________________________________________  
±±1% ꢀltraꢁ-oꢂ ꢃutput ꢄoltage% Dual and Triple  
-inear nꢁFET Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.mbxꢄm-ꢄa.aim/pbacbꢂFs.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
1
Revision History  
Pages changes at Rev 2: ±, ±2, ±4, ±5  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products% ±20 San Gabriel Drive% Sunnyvale% CA 94086 408ꢁ737ꢁ7600 ____________________ ±5  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

MAX8564EUB+ 相关器件

型号 制造商 描述 价格 文档
MAX8564EUB+T MAXIM Analog Circuit, 1 Func, BICMOS, PDSO10, MO-187CBA, USOP-10 获取价格
MAX8566 MAXIM High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 获取价格
MAX8566 ADI 高效率、10A、PWM降压型调节器,内置开关 获取价格
MAX8566ETJ MAXIM High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 32-Lead TQFN Package 获取价格
MAX8566ETJ+ MAXIM High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 获取价格
MAX8566_09 MAXIM High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 获取价格
MAX8566_11 MAXIM High-Efficiency, 10A, PWM Internal-Switch Step-Down Regulator 32-Lead TQFN Package 获取价格
MAX8568A MAXIM Complete Backup-Management ICs for Lithium and NiMH Batteries 获取价格
MAX8568AETE MAXIM Complete Backup-Management ICs for Lithium and NiMH Batteries 获取价格
MAX8568AETE-T MAXIM Battery Charge Controller, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220WEED-2, TQFN-16 获取价格

MAX8564EUB+ 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6