TL032AIP [ROCHESTER]

DUAL OP-AMP, 4600 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8;
TL032AIP
型号: TL032AIP
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL OP-AMP, 4600 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8

放大器 光电二极管
文件: 总75页 (文件大小:2701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
D
D
D
Direct Upgrades for the TL06x Low-Power  
BiFETs  
D
D
Higher Slew Rate and Bandwidth Without  
Increased Power Consumption  
Low Power Consumption . . .  
6.5 mW/Channel Typ  
Available in TSSOP for Small Form-Factor  
Designs  
On-Chip Offset-Voltage Trimming for  
Improved DC Performance  
(1.5 mV, TL031A)  
description  
The TL03x series of JFET-input operational amplifiers offer improved dc and ac characteristics over the TL06x  
family of low-power BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision  
grades as low as 1.5 mV (TL031A) for greater accuracy in dc-coupled applications. The Texas Instruments  
improved BiFET process and optimized designs also yield improved bandwidths and slew rates without  
increased power consumption. The TL03x devices are pin-compatible with the TL06x and can be used to  
upgrade existing circuits or for optimal performance in new designs.  
BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors without  
sacrificing the output drive associated with bipolar amplifiers. This higher input impedance makes the TL3x  
amplifiers better suited for interfacing with high-impedance sensors or very low-level ac signals. These devices  
also feature inherently better ac response than bipolar or CMOS devices having comparable power  
consumption.  
The TL03x family has been optimized for micropower operation, while improving on the performance of the  
TL06x series. Designers requiring significantly faster ac response should consider the ExcaliburTLE206x  
family of low-power BiFET operational amplifiers.  
Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to  
observe common-mode input-voltage limits and output swing when operating from a single supply. DC biasing  
of the input signal is required, and loads should be terminated to a virtual-ground node at midsupply. The TI  
TLE2426 integrated virtual-ground generator is useful when operating BiFET amplifiers from single supplies.  
The TL03x devices are fully specified at 15 V and 5 V. For operation in low-voltage and/or single-supply  
systems, the TI LinCMOS families of operational amplifiers (TLC prefix) are recommended. When moving from  
BiFET to CMOS amplifiers, particular attention should be paid to slew rate, bandwidth requirements, and output  
loading.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from −40°C to 85°C. The M-suffix devices are characterized for operation over the full military  
temperature range of −55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Excalibur is a trademark of Texas Instruments.  
Copyright © 2001, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031x, TL031Ax  
D, JG, OR P PACKAGE  
(TOP VIEW)  
TL032x, TL032Ax  
D, JG, OR P PACKAGE  
(TOP VIEW)  
TL034x, TL034Ax  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN−  
NC  
VCC+  
OUT  
OFFSET N2  
1OUT  
1IN−  
1IN+  
VCC+  
2OUT  
2IN−  
2IN+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1OUT  
1IN−  
1IN+  
VCC+  
2IN+  
2IN−  
2OUT  
4OUT  
4IN−  
4IN+  
VCC−  
3IN+  
3IN−  
3OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
IN+  
VCC−  
VCC −  
8
TL031M, TL031AM  
FK PACKAGE  
(TOP VIEW)  
TL032M, TL032AM  
FK PACKAGE  
(TOP VIEW)  
TL034M, TL034AM  
FK PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
18  
3
2
1
20 19  
18  
3
2
1
20 19  
18 NC  
NC  
2OUT  
NC  
2IN−  
NC  
NC  
1IN−  
NC  
1IN+  
NC  
1IN+  
NC  
VCC+  
NC  
4IN+  
NC  
VCC−  
NC  
4
5
6
7
8
NC  
IN−  
NC  
IN+  
NC  
4
5
6
7
8
4
5
6
7
8
17  
16  
15  
14  
17  
16  
15  
14  
17  
16  
15  
14  
VCC+  
NC  
OUT  
NC  
2IN+  
3IN+  
9 10 11 12 13  
9 10 11 12 13  
9 10 11 12 13  
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
MAX  
CHIP  
CARRIER  
(FK)  
CERAMIC  
CERAMIC  
DIP  
PLASTIC  
PLASTIC  
DIP  
IO  
SMALL  
OUTLINE  
(D)  
T
A
TSSOP  
(PW)  
AT 25°C  
DIP  
(J)  
DIP  
(N)  
(JG)  
(P)  
TL031ACD  
TL032ACD  
TL031ACP  
TL032ACP  
0.8 mV  
1.5 mV  
TL031CD  
TL032CD  
TL034ACD  
TL031CP  
TL032CP  
0°C to 70°C  
TL034ACN  
4 mV  
TL034CD  
TL034CN  
TL034CPW  
TL031AID  
TL032AID  
TL031AIP  
TL032AIP  
0.8 mV  
TL031ID  
TL032ID  
TL034AID  
TL031IP  
TL032IP  
−40°C to 85°C  
−55°C to 125°C  
1.5 mV  
TL034AIN  
4 mV  
TL034ID  
TL034IN  
TL031AMD TL031AMFK  
TL032AMD TL032AMFK  
TL031AMJG  
TL032AMJG  
TL031AMP  
TL032AMP  
0.8 mV  
TL031MD  
TL032MD  
TL034AMD TL034AMFK  
TL031MFK  
TL032MFK  
TL031MJG  
TL032MJG  
TL031MP  
TL032MP  
1.5 mV  
4 mV  
TL034AMJ  
TL034MJ  
TL034AMN  
TL034MN  
TL034MD TL034MFK  
The D and PW packages are available taped and reeled and are indicated by adding an R suffix to device type (e.g., TL034CDR or TL034CPWR).  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
symbol (each amplifier)  
IN−  
IN+  
+
OUT  
equivalent schematic (each amplifier)  
V
CC+  
Q5  
Q14  
Q2  
Q3  
D1  
R4  
Q6  
Q11  
R7  
IN+  
OUT  
Q8  
IN−  
Q10  
JF1 JF2  
Q17  
R3  
Q15  
R6  
C1  
Q12  
JF3  
R8  
JF4  
Q1  
Q4  
Q9  
OFFSET N1  
OFFSET N2  
See Note A  
Q7  
Q16  
R1  
R2  
R5  
Q13  
V
CC−  
NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL031, TL031A.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage (see Note 1): V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −18 V  
CC+  
CC−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V  
ID  
Input voltage, V (any input) (see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
I
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
O
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 mA  
CC+  
CC−  
Duration of short-circuit current at (or below) 25°C (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Package thermal impedance, θ (see Note 5): D package (8 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W  
JA  
D package (14 pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W  
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W  
P package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85°C/W  
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W  
Lead temperature 1,6 mm (1 /16 inch) from case for 10 seconds: D, N, P, or PW package . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1 /16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . 300°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
2. Differential voltages are at IN+ with respect to IN−.  
and V  
.
CC+  
CC−  
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.  
4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
FK  
J
1375 mW  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
880 mW  
880 mW  
672 mW  
715 mW  
715 mW  
546 mW  
275 mW  
275 mW  
210 mW  
1375 mW  
JG  
1050 mW  
recommended operating conditions  
C SUFFIX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN  
5
MAX  
15  
MIN  
5
MAX  
15  
MIN  
5
MAX  
V
CC  
Supply voltage  
15  
4
V
V
V
=
=
5 V  
−1.5  
11.5  
0
4
−1.5  
4
−1.5  
CC  
V
T
Common-mode input voltage  
Operating free-air temperature  
V
IC  
15 V  
14 −11.5  
70 −40  
14 −11.5  
85 −55  
14  
CC  
125  
°C  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031C and TL031AC electrical characteristics at specified free-air temperature  
TL031C, TL031AC  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.54  
0.5  
TL031C  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
4.5  
2.5  
V
Input offset voltage  
mV  
IC  
IO  
0.41  
2.8  
0.34  
0.8  
S
TL031AC  
TL031C  
Full range  
3.8  
1.8  
25°C to  
70°C  
7.1  
7.1  
5.9  
5.9  
V
V
= 0,  
=0,  
= 50 Ω  
O
Temperature coefficient of  
input offset voltage  
aVIO  
μV/°C  
IC  
25°C to  
70°C  
R
S
TL031AC  
25  
V
V
R
= 0,  
=0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
70°C  
25°C  
70°C  
1
9
100  
200  
200  
400  
1
12  
100  
200  
200  
400  
V
= 0, V = 0  
IC  
O
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
See Figure 5  
2
2
V
O
= 0, V = 0  
IC  
IB  
See Figure 5  
50  
80  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
0°C  
3
3
4.3  
4.2  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
70°C  
25°C  
0°C  
3
4.3  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4.1  
−4.2  
12  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.9  
−14  
Maximum negative peak  
output voltage swing  
R = 10 kΩ  
L
70°C  
25°C  
0°C  
14.3  
13.5  
15.2  
Large-signal differential  
3
11.1  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
70°C  
25°C  
25°C  
25°C  
0°C  
4
13.3  
5
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
4
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
min,  
IC = ICR  
CMRR  
dB  
dB  
V
= 0, R = 50 Ω  
O
O
S
70°C  
25°C  
0°C  
Supply-voltage  
rejection ratio  
k
V
= 0, R = 50 Ω  
SVR  
S
(ΔV  
/ΔV )  
CC  
IO  
70°C  
Full range is 0°C to 70°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V = 15 V, V = 10 V  
CC O  
CC  
O
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031C and TL031AC electrical characteristics at specified free-air temperature (continued)  
TL031C, TL031AC  
V
=
5 V  
V
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
mW  
μA  
CC  
CC  
A
MIN  
TYP  
1.9  
MAX  
2.5  
MIN  
TYP  
6.5  
MAX  
8.4  
25°C  
0°C  
70°C  
25°C  
0°C  
1.8  
2.5  
6.3  
8.4  
P
I
Total power dissipation  
Supply current  
V
V
= 0,  
= 0,  
No load  
No load  
D
O
1.9  
2.5  
6.3  
8.4  
192  
184  
189  
250  
250  
250  
217  
211  
210  
280  
280  
280  
CC  
O
70°C  
TL031C and TL031AC operating characteristics at specified free-air temperature  
TL031C, TL031AC  
V
=
5 V  
V
MIN  
1.5  
1
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
2.6  
3.2  
5.1  
5
MAX  
25°C  
0°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at  
L
L
1.8  
2.2  
3.9  
3.7  
4
SR+  
SR−  
See Figure 1  
unity gain  
70°C  
25°C  
0°C  
1.5  
1.5  
1.5  
1.5  
R = 10 kΩ, C = 100 pF  
Negative slew rate at  
L
L
See Figure 1  
unity gain  
70°C  
25°C  
0°C  
5
138  
134  
150  
138  
134  
150  
11%  
10%  
12%  
61  
132  
127  
142  
132  
127  
142  
5%  
4%  
6%  
61  
V
=
10 mV,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 mV,  
70°C  
25°C  
0°C  
V
=
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
70°C  
25°C  
0°C  
V
= 10 mV,  
I(PP)  
RL = 10 kΩ, C = 100 pF  
Overshoot factor  
L
See Figures 1 and 2  
70°C  
f = 10 Hz  
f = 1 kHz  
TL031C  
25°C  
41  
41  
R
= 20 Ω  
Equivalent input  
noise voltage  
S
V
n
nV/Hz  
See Figure 3  
f = 10 Hz  
f = 1 kHz  
61  
61  
TL031AC  
25°C  
25°C  
41  
41  
60  
Equivalent input noise  
current  
I
n
f = 1 kHz  
0.003  
0.003  
pA/Hz  
25°C  
0°C  
1
1
1.1  
1.1  
1
V = 10 mV  
I
R = 10 kΩ, C = 25 pF  
B
Unity-gain bandwidth  
MHz  
L
L
1
See Figure 4  
70°C  
25°C  
0°C  
1
61°  
61°  
60°  
65°  
65°  
64°  
V = 10 mV  
I
φ
m
Phase margin at unity gain  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
70°C  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031I and TL031AI electrical characteristics at specified free-air temperature  
TL031I, TL031AI  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.54  
0.5  
TL031I  
= 0,  
= 0,  
V
V
R
O
5.3  
3.3  
V
Input offset voltage  
mV  
IC  
IO  
0.41  
2.8  
0.34  
0.8  
= 50 Ω  
S
TL031AI  
TL031I  
Full range  
4.6  
2.6  
25°C to  
85°C  
6.5  
6.5  
6.2  
6.2  
V
O
= 0,  
Temperature coefficient  
of  
input offset voltage  
aVIO  
V
IC  
= 0,  
μV/°C  
25°C to  
85°C  
R
= 50 Ω  
S
TL031AI  
25  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
85°C  
25°C  
85°C  
1
0.02  
2
100  
0.45  
200  
0.9  
1
0.02  
2
100  
0.45  
200  
0.9  
pA  
nA  
pA  
nA  
V
= 0, V = 0  
IC  
O
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
V
O
= 0, V = 0  
IC  
IB  
See Figure 5  
0.2  
0.2  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
25°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
3
3
4.3  
4.1  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4.1  
−4.2  
12  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.8  
−14  
Maximum negative peak  
output voltage swing  
R = 10 kΩ  
L
14.3  
11.6  
15.3  
Large-signal differential  
3
8.4  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
4
13.5  
5
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
4
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
min,  
IC = ICR  
CMRR  
dB  
dB  
V
= 0, R = 50 Ω  
O
O
S
Supply-voltage  
rejection ratio  
k
V
= 0,  
R = 50 Ω  
S
SVR  
(ΔV  
/ΔV )  
CC  
IO  
Full range is −40°C to 85°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V  
= 15 V, V = 10 V  
CC  
O
CC O  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031I and TL031AI electrical characteristics at specified free-air temperature (continued)  
TL031I, TL031AI  
V
=
5 V  
V
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
mW  
μA  
CC  
CC  
A
MIN  
TYP  
1.9  
MAX  
2.5  
MIN  
TYP  
6.5  
MAX  
8.4  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
1.4  
2.5  
5.4  
8.4  
P
I
Total power dissipation  
Supply current  
V
V
= 0,  
= 0,  
No load  
No load  
D
O
1.9  
2.5  
6.2  
8.4  
192  
144  
189  
250  
250  
250  
217  
181  
207  
280  
280  
280  
CC  
O
TL031I and TL031AI operating characteristics at specified free-air temperature  
TL031I, TL031AI  
V
=
5 V  
V
MIN  
1.5  
1
=
15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
2.1  
3.3  
5.1  
4.8  
4.9  
132  
123  
146  
132  
123  
146  
5%  
5%  
7%  
61  
MAX  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at  
L
L
1.6  
2.3  
3.9  
3.3  
4.1  
138  
132  
154  
138  
132  
154  
11%  
12%  
13%  
61  
SR+  
SR−  
See Figure 1  
unity gain  
1.5  
1.5  
1.5  
1.5  
Negative slew rate at unity  
R = 10 kΩ, C = 100 pF  
L
L
gain  
See Figure 1  
V
=
10 mV,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 mV,  
V
=
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
V
=
10 mV,  
I(PP)  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL031I  
25°C  
25°C  
25°C  
Equivalent  
input  
noise voltage  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
41  
41  
R
= 20 Ω  
See Figure 3  
S
V
n
nV/Hz  
61  
61  
TL031AI  
41  
41  
60  
Equivalent input noise  
current  
I
n
f = 1 kHz  
0.003  
0.003  
pA/Hz  
25°C  
−40°C  
85°C  
1
1
1.1  
1.1  
1
V = 10 mV  
I
R = 10 kΩ, C = 25 pF  
B
Unity-gain bandwidth  
MHz  
L
L
1
See Figure 4  
0.9  
61°  
60°  
60°  
25°C  
65°  
65°  
64°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−40°C  
85°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031M and TL031AM electrical characteristics at specified free-air temperature  
TL031M, TL031AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.54  
0.5  
TL031M  
= 0,  
= 0,  
V
V
R
O
6.5  
4.5  
V
Input offset voltage  
mV  
IC  
IO  
0.41  
2.8  
0.34  
0.8  
= 50 Ω  
S
TL031AM  
TL031M  
Full range  
5.8  
3.8  
25°C to  
125°C  
5.1  
5.1  
4.3  
4.3  
V
V
= 0,  
O
Temperature coefficient of  
input offset voltage  
aVIO  
= 0,  
μV/°C  
IC  
25°C to  
125°C  
R
= 50 Ω  
S
TL031AM  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
125°C  
25°C  
1
0.2  
2
100  
10  
1
0.2  
2
100  
10  
pA  
nA  
pA  
nA  
V
= 0, V = 0  
IC  
O
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0, V = 0  
IC  
IB  
See Figure 5  
125°C  
7
8
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−55°C  
125°C  
25°C  
3
3
4.3  
4.1  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.8  
−14  
14.3  
10.4  
15  
Maximum negative peak  
output voltage swing  
−55°C  
125°C  
25°C  
R = 10 kΩ  
L
−4.3  
12  
Large-signal differential  
−55°C  
125°C  
25°C  
3
7.1  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
3
12.9  
4
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
25°C  
5
87  
87  
87  
96  
96  
96  
1.9  
1.1  
1.8  
4
94  
94  
94  
96  
95  
96  
6.5  
4.7  
5.8  
pF  
i
25°C  
70  
70  
70  
75  
75  
75  
75  
70  
70  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
= V min,  
IC  
O
ICR  
−55°C  
125°C  
25°C  
CMRR  
dB  
dB  
= 0, R = 50 Ω  
S
Supply-voltage  
rejection ratio  
−55°C  
125°C  
25°C  
k
V
= 0,  
= 0,  
R = 50 Ω  
S
SVR  
O
O
(ΔV  
/ΔV )  
CC  
IO  
2.5  
2.5  
2.5  
8.4  
8.4  
8.4  
P
Total power dissipation  
V
No load  
−55°C  
125°C  
mW  
D
Full range is −55°C to 125°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V = 15 V, V = 10 V  
CC O  
CC  
O
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL031M and TL031AM electrical characteristics at specified free-air temperature (continued)  
TL031M, TL031AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
192  
114  
178  
MAX  
250  
250  
250  
MIN  
TYP  
217  
156  
197  
MAX  
280  
280  
280  
25°C  
I
Supply current  
V
= 0,  
O
No load  
−55°C  
125°C  
μA  
CC  
TL031M and TL031AM operating characteristics at specified free-air temperature  
TL031M, TL031AM  
V
=
5 V  
V
MIN  
1.5  
1
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
1.9  
3.5  
5.1  
4.6  
4.7  
132  
123  
158  
132  
123  
158  
5%  
6%  
8%  
61  
MAX  
25°C  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at  
L
L
1.4  
2.4  
3.9  
3.2  
4.1  
138  
142  
166  
138  
142  
166  
11%  
16%  
14%  
61  
SR+  
SR−  
See Figure 1  
unity gain  
1
1.5  
1
R = 10 kΩ, C = 100 pF  
Negative slew rate at  
L
L
−55°C  
125°C  
25°C  
See Figure 1  
unity gain  
1
V
=
10 mV,  
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 mV,  
V
=
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
V
=
10 mV,  
I(PP)  
−55°C  
125°C  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL031M  
25°C  
25°C  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
41  
41  
Equivalent input  
noise voltage  
R = 20 Ω  
S
See Figure 3  
V
n
nV/Hz  
61  
61  
TL031AM  
41  
41  
Equivalent input noise  
current  
I
n
f = 1 kHz  
0.003  
0.003  
pA/Hz  
25°C  
−55°C  
125°C  
25°C  
1
1
1.1  
1.1  
0.9  
65°  
64°  
62°  
V = 10 mV,  
I
R = 10 kΩ, C = 25 pF  
B
Unity-gain bandwidth  
MHz  
L
L
1
See Figure 4  
0.9  
61°  
57°  
59°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−55°C  
125°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032C and TL032AC electrical characteristics at specified free-air temperature  
TL032C, TL032AC  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.69  
0.57  
TL032C  
= 0,  
= 0,  
V
V
R
O
4.5  
2.5  
V
IO  
Input offset voltage  
mV  
IC  
0.53  
2.8  
0.39  
0.8  
= 50 Ω  
S
TL032AC  
Full range  
3.8  
1.8  
25°C to  
70°C  
TL032C  
= 0,  
= 0,  
11.5  
11.5  
10.8  
10.8  
V
Temperature  
coefficient of input  
offset voltage  
O
aVIO  
V
IC  
μV/°C  
25°C to  
70°C  
R
= 50 Ω  
S
TL032AC  
25  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
70°C  
25°C  
70°C  
1
9
100  
200  
200  
400  
1
12  
100  
200  
200  
400  
V
= 0,  
V
V
= 0  
= 0  
O
IC  
I
Input offset current  
Input bias current  
pA  
pA  
IO  
See Figure 5  
2
2
V
O
= 0,  
IC  
I
IB  
See Figure 5  
50  
80  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
0°C  
3
3
4.3  
4.2  
13  
13  
14  
14  
Maximum positive  
peak output voltage  
swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
70°C  
25°C  
0°C  
3
4.3  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4.1  
−4.2  
12  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.9  
−14  
Maximum negative  
peak output voltage  
swing  
R = 10 kΩ  
L
70°C  
25°C  
0°C  
14.3  
13.5  
15.2  
Large-signal  
3
11.1  
13.3  
4
R = 10 kΩ  
L
V/mV  
differential voltage  
VD  
§
amplification  
70°C  
25°C  
25°C  
25°C  
0°C  
4
5
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
14  
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
IC  
V
O
= V min,  
ICR  
CMRR  
dB  
dB  
= 0, R = 50 Ω  
S
70°C  
25°C  
0°C  
Supply-voltage  
rejection ratio  
V
CC  
=
5 V to 15 V,  
k
SVR  
V
O
= 0, R = 50 Ω  
S
(ΔV  
/ΔV )  
CC  
IO  
70°C  
Full range is 0°C to 70°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V = 2.3 V; at V  
= 15 V, V = 10 V  
CC O  
CC  
O
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032C and TL032AC electrical characteristics at specified free-air temperature (continued)  
TL032C, TL032AC  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
3.8  
MAX  
5
MIN  
TYP  
13  
MAX  
17  
25°C  
Total power dissipation  
(two amplifiers)  
0°C  
70°C  
0°C  
3.7  
5
12.7  
12.6  
422  
420  
120  
17  
P
I
V
= 0,  
= 0,  
No load  
No load  
mW  
D
O
3.8  
5
17  
368  
378  
120  
500  
500  
560  
560  
Supply current  
(two amplifiers)  
V
A
μA  
CC  
O
70°C  
25°C  
V
/V  
Crosstalk attenuation  
= 100 dB  
VD  
dB  
O1 O2  
TL032C and TL032AC operating characteristics at specified free-air temperature  
TL032C, TL032AC  
PARAMETER  
TEST CONDITIONS  
T
V
=
5 V  
V
MIN  
1.5  
1
=
15 V  
UNIT  
V/μs  
V/μs  
ns  
A
CC  
CC  
MIN  
TYP  
1.2  
1.8  
2.2  
3.9  
3.7  
4
MAX  
TYP  
2.9  
2.6  
3.2  
5.1  
5
MAX  
25°C  
0°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at unity  
L
L
SR+  
SR−  
See Figure 1  
gain  
70°C  
25°C  
0°C  
1.5  
1.5  
1.5  
1.5  
R = 10 kΩ, C = 100 pF  
Negative slew rate at unity  
L
L
See Figure 1  
gain  
70°C  
25°C  
0°C  
5
138  
134  
150  
138  
134  
150  
11%  
10%  
12%  
49  
132  
127  
142  
132  
127  
142  
5%  
4%  
6%  
49  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
70°C  
25°C  
0°C  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figures 1 and 2  
70°C  
25°C  
0°C  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
70°C  
f = 10 Hz  
TL032C  
25°C  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
41  
41  
R
= 20 Ω  
See Figure 3  
Equivalent input  
noise voltage  
S
nV/Hz  
V
I
n
49  
49  
TL032AC  
41  
41  
60  
Equivalent input noise current  
Unity-gain bandwidth  
f = 1 kHz  
25°C  
25°C  
0°C  
0.003  
1
0.003  
1.1  
1.1  
1
pA/Hz  
n
V = 10 mV,  
I
1
R = 10 kΩ, C = 25 pF  
B
1
MHz  
L
L
See Figure 4  
70°C  
25°C  
0°C  
1
61°  
61°  
60°  
65°  
65°  
64°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
70°C  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032I and TL032AI electrical characteristics at specified free-air temperature  
TL032I, TL032AI  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.69  
0.57  
TL032I  
= 0,  
= 0,  
V
V
R
O
5.3  
3.3  
V
Input offset voltage  
mV  
IC  
IO  
0.53  
2.8  
0.39  
0.8  
= 50 Ω  
S
TL032AI  
TL032I  
Full range  
4.6  
2.6  
25°C to  
85°C  
11.4  
11.4  
10.8  
10.8  
V
O
= 0,  
Temperature  
coefficient of input  
offset voltage  
aVIO  
V
IC  
= 0,  
μV/°C  
25°C to  
85°C  
R
= 50 Ω  
S
TL032AI  
25  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
85°C  
25°C  
85°C  
1
0.02  
2
100  
0.45  
200  
0.9  
1
0.02  
2
100  
0.45  
200  
0.9  
pA  
nA  
pA  
nA  
V
= 0,  
V
V
= 0  
= 0  
O
IC  
I
Input offset current  
Input bias current  
IO  
See Figure 5  
V
O
= 0,  
IC  
I
IB  
See Figure 5  
0.2  
0.3  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
V
V
ICR  
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
−40°C  
85°C  
25°C  
25°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
3
3
4.3  
4.2  
13  
13  
14  
14  
Maximum positive  
peak output voltage  
swing  
V
R = 10 kΩ  
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
3
−4.2  
−4.1  
−4.2  
8.4  
−12.5  
−12.5  
−12.5  
4
−13.9  
−13.8  
−14  
Maximum negative  
peak output voltage  
swing  
V
R = 10 kΩ  
L
V
11.6  
Large-signal differential  
A
VD  
R = 10 kΩ  
L
V/mV  
§
voltage amplification  
4
13.5  
5
15.3  
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
4
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
Common-mode  
rejection ratio  
V
IC  
V
O
= V min,  
ICR  
CMRR  
dB  
dB  
= 0, R = 50 Ω  
S
Supply-voltage  
rejection ratio  
V
V
= 5 V to 15 V,  
CC  
k
SVR  
= 0, R = 50 Ω  
O
S
(ΔV  
/ΔV )  
CC  
IO  
Full range is −40°C to 85°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V = 2.3 V; at V  
= 15 V, V = 10 V  
CC O  
CC  
O
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032I and TL032AI electrical characteristics at specified free-air temperature (continued)  
TL032I, TL032AI  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
3.8  
MAX  
5
MIN  
TYP  
13  
MAX  
17  
25°C  
Total power  
dissipation  
(two amplifiers)  
−40°C  
85°C  
25°C  
−40°C  
85°C  
2.9  
5
10.9  
12.4  
434  
362  
414  
17  
P
I
V
= 0,  
= 0,  
No load  
No load  
mW  
D
O
3.7  
5
17  
384  
288  
372  
500  
500  
500  
560  
560  
560  
Supply current  
(two amplifiers)  
V
A
μA  
CC  
O
Crosstalk  
attenuation  
V /V  
O1 O2  
= 100 dB  
VD  
25°C  
120  
120  
dB  
TL032I and TL032AI operating characteristics at specified free-air temperature  
TL032I, TL032AI  
V
=
5 V  
V
MIN  
1.5  
1
=
15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
2.1  
3.3  
5.1  
4.8  
4.9  
132  
123  
146  
132  
123  
146  
5%  
5%  
7%  
49  
MAX  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
Positive slew rate at unity  
1.6  
2.3  
3.9  
3.3  
4.1  
138  
132  
154  
138  
132  
154  
11%  
12%  
13%  
49  
SR+  
SR−  
R = 10 kΩ, C = 100 pF  
L
L
gain  
1.5  
1.5  
1.5  
1.5  
Negative slew rate at unity  
R = 10 kΩ, C = 100 pF  
L
L
gain  
V
= 10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL032I  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
41  
41  
R
= 20 Ω  
See Figure 3  
Equivalent input  
noise voltage  
S
nV/Hz  
V
I
n
49  
49  
TL032AI  
25°C  
25°C  
41  
41  
60  
Equivalent input noise  
current  
f = 1 kHz  
0.003  
0.003  
pA/Hz  
n
25°C  
−40°C  
85°C  
1
1
1.1  
1.1  
1
V = 10 mV,  
I
R = 10 kΩ, C = 25 pF  
B
Unity-gain bandwidth  
MHz  
L
L
1
See Figure 4  
0.9  
61°  
61°  
60°  
25°C  
65°  
65°  
64°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−40°C  
85°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032M and TL032AM electrical characteristics at specified free-air temperature  
TL032M, TL032AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
1.5  
25°C  
Full range  
25°C  
0.69  
0.57  
TL032M  
= 0,  
= 0,  
V
V
R
O
6.5  
4.5  
V
Input offset voltage  
mV  
IC  
IO  
0.53  
2.8  
0.39  
0.8  
= 50 Ω  
S
TL032AM  
TL032M  
Full range  
5.8  
3.8  
25°C to  
125°C  
9.7  
9.7  
9.7  
9.7  
V
V
= 0,  
O
Temperature coefficient  
of input offset voltage  
aVIO  
= 0,  
μV/°C  
IC  
25°C to  
125°C  
R
= 50 Ω  
S
TL032AM  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
IC  
S
25°C  
125°C  
25°C  
1
0.2  
2
100  
10  
1
0.2  
2
100  
10  
pA  
nA  
pA  
nA  
V
= 0,  
V
V
= 0  
= 0  
O
IC  
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0,  
IC  
IB  
See Figure 5  
125°C  
7
8
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−55°C  
125°C  
25°C  
3
3
4.3  
4.1  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.8  
−14  
14.3  
10.4  
15  
Maximum negative peak  
output voltage swing  
−55°C  
125°C  
25°C  
R = 10 kΩ  
L
−4.3  
12  
Large-signal differential  
−55°C  
125°C  
25°C  
3
7.1  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
3
12.9  
4
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
25°C  
5
87  
87  
87  
96  
95  
96  
4
94  
94  
94  
96  
95  
96  
pF  
i
25°C  
70  
70  
70  
75  
75  
75  
75  
70  
70  
75  
75  
75  
Common-mode rejection  
ratio  
V
V
= V min,  
ICR  
IC  
O
−55°C  
125°C  
25°C  
CMRR  
dB  
dB  
= 0, R = 50 Ω  
S
Supply-voltage  
rejection ratio  
V
V
= 5 V to 15 V,  
CC  
k
−55°C  
125°C  
SVR  
= 0, R = 50 Ω  
O
S
(ΔV  
/ΔV )  
CC  
IO  
Full range is −55°C to 125°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V = 2.3 V; at V  
= 15 V, V = 10 V  
CC O  
CC  
O
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL032M and TL032AM electrical characteristics at specified free-air temperature (continued)  
TL032M, TL032AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
3.8  
MAX  
5
MIN  
TYP  
13  
MAX  
17  
25°C  
Total power dissipation  
(two amplifiers)  
−55°C  
125°C  
25°C  
2.3  
5
9.4  
17  
P
I
V
= 0,  
= 0,  
No load  
No load  
mW  
D
O
V
O
= 0,  
3.6  
5
11.8  
434  
312  
394  
120  
17  
384  
228  
356  
120  
500  
500  
500  
560  
560  
560  
Supply current  
(two amplifiers)  
−55°C  
125°C  
25°C  
V
A
μA  
CC  
O
V
/V  
Crosstalk attenuation  
= 100 dB  
VD  
dB  
O1 O2  
TL032M and TL032AM operating characteristics at specified free-air temperature  
TL032M, TL032AM  
V
=
5 V  
V
MIN  
1.5  
1
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
1.9  
3.5  
5.1  
4.6  
4.7  
132  
123  
58  
MAX  
25°C  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at unity  
L
L
1.4  
2.4  
3.9  
3.2  
4.1  
138  
142  
166  
138  
142  
166  
11%  
16%  
14%  
49  
SR+  
SR−  
See and Figure 1  
gain  
1
1.5  
1
R = 10 kΩ, C = 100 pF  
Negative slew rate at unity  
L
L
−55°C  
125°C  
25°C  
See and Figure 1  
gain  
1
V
=
10 V,  
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 V,  
132  
123  
158  
5%  
6%  
8%  
49  
V
=
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
V
=
10 V,  
I(PP)  
−55°C  
125°C  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL032M  
25°C  
Equivalent  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
41  
41  
R
= 20 Ω  
See Figure 3  
S
input noise  
nV/Hz  
V
I
n
49  
49  
voltage  
TL032AM  
25°C  
25°C  
41  
41  
Equivalent input noise  
current  
f = 1 kHz  
0.003  
0.003  
pA/Hz  
n
25°C  
−55°C  
125°C  
25°C  
1
1
1.1  
1.1  
0.9  
65°  
64°  
62°  
V = 10 mV,  
I
R = 10 kΩ, C = 25 pF  
B1  
Unity-gain bandwidth  
MHz  
L
L
See Figure 4  
0.9  
61°  
57°  
59°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−55°C  
125°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034C and TL034AC electrical characteristics at specified free-air temperature  
TL034C, TL034AC  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
6
MIN  
TYP  
MAX  
4
25°C  
Full range  
25°C  
0.91  
0.79  
TL034C  
= 0,  
= 0,  
V
V
R
O
8.2  
3.5  
5.7  
6.2  
1.5  
3.7  
V
Input offset voltage  
mV  
IC  
IO  
0.7  
0.58  
= 50 Ω  
S
TL034AC  
TL034C  
Full range  
25°C to  
70°C  
11.6  
11.6  
12  
12  
V
V
= 0,  
O
Temperature coefficient  
of input offset voltage  
aVIO  
= 0,  
μV/°C  
IC  
25°C to  
70°C  
R
= 50 Ω  
S
TL034AC  
25  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
25°C  
70°C  
25°C  
70°C  
1
9
100  
200  
200  
400  
1
12  
100  
200  
200  
400  
V
= 0, V = 0  
IC  
O
I
Input offset current  
Input bias current  
pA  
pA  
IO  
See Figure 5  
= 0, = 0  
IC  
2
2
V
O
V
I
IB  
See Figure 5  
50  
80  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
0°C  
3
3
4.3  
4.2  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
70°C  
25°C  
0°C  
3
4.3  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4.1  
−4.2  
12  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.9  
−14  
Maximum negative peak  
output voltage swing  
R = 10 kΩ  
L
70°C  
25°C  
0°C  
14.3  
13.5  
15.2  
Large-signal differential  
3
11.1  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
70°C  
25°C  
25°C  
25°C  
0°C  
4
13.3  
5
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
14  
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
V
IC  
V
O
= V min,  
ICR  
= 0,  
Common-mode  
rejection ratio  
CMRR  
dB  
dB  
R
= 50 Ω  
S
70°C  
25°C  
0°C  
Supply-voltage  
rejection ratio  
k
V
O
= 0, R = 50 Ω  
SVR  
S
(ΔV  
/ΔV )  
CC  
IO  
70°C  
Full range is 0°C to 70°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V = 15 V, V = 10 V  
CC O  
CC  
O
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034C and TL034AC electrical characteristics at specified free-air temperature (continued)  
TL034C, TL034AC  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
7.7  
MAX  
10  
10  
10  
1
MIN  
TYP  
26  
MAX  
34  
25°C  
0°C  
Total power dissipation  
(two amplifiers)  
7.4  
25.3  
25.2  
0.87  
0.85  
0.84  
120  
34  
P
D
V
O
= 0, No load  
mW  
70°C  
25°C  
0°C  
7.6  
34  
0.77  
0.74  
0.76  
120  
1.12  
1.12  
1.12  
Supply current (four  
amplifiers)  
1
I
V
A
= 0, No load  
= 100  
mA  
dB  
CC  
O
70°C  
25°C  
1
V
/V  
Crosstalk attenuation  
O1 O2  
VD  
TL034C and TL034AC operating characteristics at specified free-air temperature  
TL034C, TL034AC  
V
=
5 V  
V
=
15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
MIN  
1.5  
1
TYP  
2.9  
2.6  
3.2  
5.1  
5
MAX  
25°C  
0°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at unity  
L
L
1.8  
2.2  
3.9  
3.7  
4
SR+  
SR−  
See Figure 1  
gain  
70°C  
25°C  
0°C  
1.5  
1.5  
1.5  
1.5  
R = 10 kΩ, C = 100 pF  
Negative slew rate at unity  
L
L
See Figure 1  
gain  
70°C  
25°C  
0°C  
5
138  
134  
150  
138  
134  
150  
11%  
10%  
12%  
83  
132  
127  
142  
132  
127  
142  
5%  
4%  
6%  
83  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 V,  
70°C  
25°C  
0°C  
V
=
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
70°C  
25°C  
0°C  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
70°C  
f = 10 Hz  
TL034C  
25°C  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
43  
43  
R
= 20 Ω  
See Figure 3  
Equivalent input  
noise voltage  
S
nV/Hz  
V
I
n
83  
83  
TL034AC  
43  
43  
60  
Equivalent input noise current  
Unity-gain bandwidth  
f = 1 kHz  
25°C  
25°C  
0°C  
0.003  
1
0.003  
1.1  
1.1  
1
pA/Hz  
n
V = 10 mV  
I
1
R = 10 kΩ, C = 25 pF  
B
1
MHz  
L
L
See Figure 4  
70°C  
25°C  
0°C  
1
61°  
61°  
60°  
65°  
65°  
64°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
70°C  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
I(PP)  
=
5 V  
CC  
I(PP)  
CC  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034I and TL034AI electrical characteristics at specified free-air temperature  
TL034I, TL034AI  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
3.6  
MIN  
TYP  
MAX  
4
25°C  
Full range  
25°C  
0.91  
0.79  
TL034I  
= 0,  
= 0,  
V
V
R
O
9.3  
7.3  
1.5  
4.8  
V
Input offset voltage  
mV  
IC  
IO  
0.7  
3.5  
0.58  
= 50 Ω  
S
TL034AI  
TL034I  
Full range  
6.8  
25°C to  
85°C  
11.5  
11.5  
11.6  
11.6  
V
O
= 0, V  
IC  
Temperature coefficient  
of input offset voltage  
aVIO  
= 0,  
μV/°C  
25°C to  
85°C  
R
= 50 Ω  
S
TL034AI  
25  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
25°C  
85°C  
25°C  
85°C  
1
0.02  
2
100  
0.45  
200  
0.9  
1
0.02  
2
100  
0.45  
200  
0.9  
pA  
nA  
pA  
nA  
V
= 0, V = 0  
IC  
O
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
V
O
= 0, V = 0  
IC  
IB  
See Figure 5  
0.2  
0.3  
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
V
V
ICR  
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
−40°C  
85°C  
25°C  
25°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
3
3
4.3  
4.1  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
R = 10 kΩ  
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4.1  
−4.2  
12  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.8  
−14  
Maximum negative  
peak  
output voltage swing  
V
R = 10 kΩ  
L
V
14.3  
11.6  
Large-signal differential  
A
VD  
R = 10 kΩ  
L
V/mV  
§
voltage amplification  
3
8.4  
4
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
5
87  
87  
87  
96  
96  
96  
4
94  
94  
94  
96  
96  
96  
pF  
i
70  
70  
70  
75  
75  
75  
75  
75  
75  
75  
75  
75  
V
IC  
V
O
= V min,  
= 0,  
ICR  
Common-mode  
rejection ratio  
CMRR  
dB  
dB  
R
= 50 Ω  
S
Supply-voltage  
rejection ratio  
k
V
O
= 0, R = 50 Ω  
SVR  
S
(ΔV  
/ ΔV )  
CC  
IO  
Full range is −40°C to 85°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V = 15 V, V = 10 V  
CC O  
CC  
O
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034I and TL034AI electrical characteristics at specified free-air temperature (continued)  
TL034I, TL034AI  
V
CC  
=
5 V  
V
CC  
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
7.7  
MAX  
10  
10  
10  
1
MIN  
TYP  
26  
MAX  
34  
25°C  
Total power dissipation  
(four amplifiers)  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
5.8  
21.7  
24.8  
0.87  
0.72  
0.83  
120  
34  
P
D
V
= 0, No load  
mW  
O
7.4  
34  
0.77  
0.58  
0.74  
120  
1.12  
1.12  
1.12  
Supply current  
(four amplifiers)  
1
I
V
A
= 0, No load  
= 100  
mA  
dB  
CC  
O
1
V
/V  
Crosstalk attenuation  
O1 O2  
VD  
TL034I and TL034AI operating characteristics  
TL034I, TL034AI  
V
V
=
5 V  
=
15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
MIN  
1.5  
1
TYP  
2.9  
2.1  
3.3  
5.1  
4.8  
4.9  
132  
123  
146  
132  
123  
146  
5%  
5%  
7%  
83  
MAX  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
25°C  
−40°C  
85°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at unity  
L
L
1.6  
2.3  
3.9  
3.3  
4.1  
138  
132  
154  
138  
132  
154  
11%  
12%  
13%  
83  
SR+  
SR−  
See Figure 1  
gain  
1.5  
1.5  
1.5  
1.5  
R = 10 kΩ, C = 100 pF  
Negative slew rate at unity  
L
L
See Figure 1  
gain  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figures 1 and 2  
V
=
10 V,  
I(PP)  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL034I  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
43  
43  
R
= 20 Ω  
See Figure 3  
Equivalent input  
noise voltage  
TL034AI  
S
nV/Hz  
V
I
n
83  
83  
25°C  
25°C  
43  
43  
60  
Equivalent input noise  
current  
f = 1 kHz  
0.003  
0.003  
pA/Hz  
n
25°C  
−40°C  
85°C  
1
1
1.1  
1.1  
1
V = 10 mV,  
I
R = 10 kΩ, C = 25 pF  
B
Unity-gain bandwidth  
MHz  
L
L
1
See Figure 4  
0.9  
61°  
61°  
60°  
25°C  
65°  
65°  
64°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−40°C  
85°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034M and TL034AM electrical characteristics at specified free-air temperature  
TL034M, TL034AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
3.6  
11  
MIN  
TYP  
MAX  
4
25°C  
Full range  
25°C  
0.91  
0.78  
TL034M  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
9
V
Input offset voltage  
mV  
IC  
IO  
0.7  
3.5  
8.5  
0.58  
1.5  
6.5  
S
TL034AM  
TL034M  
Full range  
25°C to  
125°C  
10.6  
10.6  
10.9  
10.9  
V
V
= 0,  
= 0,  
= 50 Ω  
O
Temperature coefficient of  
input offset voltage  
aVIO  
μV/°C  
IC  
25°C to  
125°C  
R
S
TL034AM  
V
V
R
= 0,  
= 0,  
= 50 Ω  
O
IC  
S
Input offset voltage  
long-term drift  
25°C  
0.04  
0.04  
μV/mo  
25°C  
125°C  
25°C  
1
0.2  
2
100  
10  
1
0.2  
2
100  
10  
pA  
nA  
pA  
nA  
V
= 0, V = 0  
IC  
O
I
I
Input offset current  
Input bias current  
IO  
See Figure 5  
200  
20  
200  
20  
V
O
= 0, V = 0  
IC  
IB  
See Figure 5  
125°C  
7
8
−1.5  
to 4 to 5.4  
−3.4  
11.5  
to 14 to 15.4  
−13.4  
25°C  
Common-mode input  
voltage range  
V
ICR  
V
−1.5  
to 4  
11.5  
to 14  
Full range  
25°C  
−55°C  
125°C  
25°C  
3
3
4.3  
4.1  
13  
13  
14  
14  
Maximum positive peak  
output voltage swing  
V
V
A
R = 10 kΩ  
V
V
OM+  
OM−  
L
3
4.4  
13  
14  
−3  
−3  
−3  
4
−4.2  
−4  
−12.5  
−12.5  
−12.5  
5
−13.9  
−13.8  
−14  
14.3  
10.4  
15  
Maximum negative peak  
output voltage swing  
−55°C  
125°C  
25°C  
R = 10 kΩ  
L
−4.3  
12  
Large-signal differential  
−55°C  
125°C  
25°C  
3
7.1  
4
R = 10 kΩ  
L
V/mV  
VD  
§
voltage amplification  
3
12.9  
4
12  
12  
r
Input resistance  
10  
10  
Ω
i
c
Input capacitance  
25°C  
5
87  
87  
87  
96  
95  
96  
4
94  
94  
94  
96  
95  
96  
pF  
i
25°C  
70  
70  
70  
75  
75  
75  
75  
70  
70  
75  
75  
75  
Common-mode  
rejection ratio  
V
V
= V min,  
IC  
O
ICR  
−55°C  
125°C  
25°C  
CMRR  
dB  
dB  
= 0, R = 50 Ω  
S
Supply-voltage  
rejection ratio  
k
V
O
= 0, R = 50 Ω  
−55°C  
125°C  
SVR  
S
(ΔV  
/ΔV )  
CC  
IO  
Full range is −55°C to 125°C.  
Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated to  
A
T
At V  
= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
§
=
5 V, V  
=
2.3 V; at V = 15 V, V = 10 V  
CC O  
CC  
O
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TL034M and TL034AM electrical characteristics at specified free-air temperature (continued)  
TL034M, TL034AM  
V
CC  
=
5 V  
V
CC  
= 15 V  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
7.7  
MAX  
10  
MIN  
TYP  
26  
MAX  
34  
25°C  
Total power dissipation  
(two amplifiers)  
−55°C  
125°C  
25°C  
4.6  
12  
18.7  
23.6  
0.87  
0.62  
0.79  
120  
45  
P
V
= 0,  
= 0,  
No load  
No load  
mW  
D
O
7.1  
12  
45  
0.77  
0.46  
0.71  
120  
1
1.12  
1.5  
1.5  
Supply current  
(two amplifiers)  
−55°C  
125°C  
25°C  
1.2  
1.2  
I
V
A
mA  
dB  
CC  
O
V
/V  
Crosstalk attenuation  
= 100  
VD  
O1 O2  
TL034M and TL034AM operating characteristics at specified free-air temperature  
TL034M, TL034AM  
V
=
5 V  
V
MIN  
1.5  
1
= 15 V  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
V/μs  
V/μs  
ns  
CC  
CC  
A
MIN  
TYP  
2
MAX  
TYP  
2.9  
1.9  
3.5  
5.1  
4.6  
4.7  
132  
123  
58  
MAX  
25°C  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
Positive slew rate at unity  
L
L
1.4  
2.4  
3.9  
3.2  
4.1  
138  
142  
166  
138  
142  
166  
11%  
16%  
14%  
83  
SR+  
SR−  
See Figure 1  
gain  
1
1.5  
1
R = 10 kΩ, C = 100 pF  
Negative slew rate at unity  
L
L
−55°C  
125°C  
25°C  
See Figure 1  
gain  
1
V
=
10 V,  
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
r
Rise time  
L
L
See Figures 1 and 2  
10 V,  
132  
123  
158  
5%  
6%  
8%  
83  
V
=
I(PP)  
−55°C  
125°C  
25°C  
R = 10 kΩ, C = 100 pF  
t
f
Fall time  
ns  
L
L
See Figure 1  
V
=
10 V,  
I(PP)  
−55°C  
125°C  
R = 10 kΩ, C = 100 pF  
Overshoot factor  
L
L
See Figures 1 and 2  
f = 10 Hz  
TL034M  
25°C  
f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
43  
43  
Equivalent input  
noise voltage  
TL034AM  
R = 20 Ω  
S
See Figure 3  
nV/Hz  
V
I
n
83  
83  
25°C  
25°C  
43  
43  
Equivalent input noise  
current  
f = 1 kHz  
0.003  
0.003  
pA/Hz  
n
25°C  
−55°C  
125°C  
25°C  
1
1
1.1  
1.1  
0.9  
65°  
64°  
62°  
V = 10 mV,  
I
R = 10 kΩ, C = 25 pF  
B1  
Unity-gain bandwidth  
MHz  
L
L
See Figure 4  
0.9  
61°  
57°  
59°  
V = 10 mV,  
I
φ
m
Phase margin at unity gain  
−55°C  
125°C  
R = 10 kΩ, C = 25 pF  
L
L
See Figure 4  
For V  
=
5 V, V  
=
1 V; for V  
=
15 V, V  
= 5 V  
CC  
I(PP)  
CC  
I(PP)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
PARAMETER MEASUREMENT INFORMATION  
V
CC+  
Overshoot  
V
O
+
V
I
90%  
V
CC−  
C
L
R
L
(see Note A)  
10%  
t
NOTE A: C includes fixture capacitance.  
r
L
Figure 1. Slew-Rate and Overshoot Test Circuit  
Figure 2. Rise Time and Overshoot Waveform  
10 kΩ  
V
CC+  
10 kΩ  
V
I
V
O
+
100 Ω  
V
CC+  
V
CC−  
V
O
C
L
R
L
(see Note A)  
V
CC−  
R
R
S
S
NOTE A: C includes fixture capacitance.  
L
Figure 4. Unity-Gain Bandwidth and  
Phase-Margin Test Circuit  
Figure 3. Noise-Voltage Test Circuit  
V
CC+  
Ground Shield  
+
V
CC−  
Picoammeters  
Figure 5. Input-Bias and Offset-Current Test Circuit  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
PARAMETER MEASUREMENT INFORMATION  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
input bias and offset current  
At the picoampere bias current level typical of the TL03x and TL03xA, accurate measurement of the bias current  
becomes difficult. Not only does this measurement require a picoammeter, but test-socket leakages easily can  
exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses  
a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with  
no device in the socket. The device is then inserted into the socket and a second test that measures both the  
socket leakage and the device input bias current is performed. The two measurements are then subtracted  
algebraically to determine the bias current of the device.  
noise  
With the increasing emphasis on low noise levels in many of today’s applications, the input noise voltage density  
is performed at f = 1 kHz, unless otherwise noted.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6−11  
12−14  
15  
Distribution of TL03x input offset voltage  
Distribution of TL03x input offset-voltage temperature coefficient  
Input bias current vs Common-mode input voltage  
Input bias current and input offset current vs Free-air temperature  
Common-mode input voltage vs Supply voltage  
Common-mode input voltage vs Free-air temperature  
Output voltage vs Differential input voltage  
16  
17  
18  
19, 20  
21  
Maximum peak output voltage vs Supply voltage  
Maximum peak-to-peak output voltage vs Frequency  
Maximum peak output voltage vs Output current  
Maximum peak output voltage vs Free-air temperature  
Large-signal differential voltage amplification vs Load resistance  
Large-signal differential voltage amplification and Phase shift vs Frequency  
Large-signal differential voltage amplification vs Free-air temperature  
Output impedance vs Frequency  
22  
23, 24  
25, 26  
27  
28  
29  
30  
Common-mode rejection ratio vs Frequency  
31, 32  
33  
Common-mode rejection ratio vs Free-air temperature  
Supply-voltage rejection ratio vs Free-air temperature  
Short-circuit output current vs Supply voltage  
34  
35  
Short-circuit output current vs Time  
36  
Short-circuit output current vs Free-air temperature  
Equivalent input noise voltage vs Frequency (TL031 and TL031A)  
Equivalent input noise voltage vs Frequency (TL032 and TL032A)  
Equivalent input noise voltage vs Frequency (TL034 and TL034A)  
Supply current vs Supply voltage (TL031 and TL031A)  
Supply current vs Supply voltage (TL032 and TL032A)  
Supply current vs Supply voltage (TL034 and TL034A)  
Supply current vs Free-air temperature (TL031 and TL031A)  
Supply current vs Free-air temperature (TL032 and TL032A)  
Supply current vs Free-air temperature (TL034 and TL034A)  
Slew rate vs Load resistance  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47, 48  
49, 50  
51  
Slew rate vs Free-air temperature  
Overshoot factor vs Load capacitance  
Total harmonic distortion vs Frequency  
52  
Unity-gain bandwidth vs Supply voltage  
53  
Unity-gain bandwidth vs Free-air temperature  
54  
Phase margin vs Supply voltage  
55  
Phase margin vs Load capacitance  
56  
Phase margin vs Free-air temperature  
57  
Voltage-follower small-signal pulse response  
58  
Voltage-follower large-signal pulse response  
59, 60  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TL031  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL031A  
INPUT OFFSET VOLTAGE  
14  
12  
10  
8
16  
14  
12  
10  
8
1681 Units Tested From 1 Wafer Lot  
1433 Units Tested From 1 Wafer Lot  
V
T
=
15 V  
CC  
V
CC  
=
15 V  
= 25°C  
A
T
A
= 25°C  
P Package  
P Package  
6
6
4
4
2
2
0
0
−1.2  
−0.6  
0
0.6  
1.2  
−900  
−600  
−300  
0
300  
600  
900  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − μV  
Figure 6  
Figure 7  
DISTRIBUTION OF TL032A  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL032  
INPUT OFFSET VOLTAGE  
15  
12  
9
12  
1321 Amplifiers Tested From 1 Wafer Lot  
1681 Amplifiers Tested From 1 Wafer Lot  
V
T
=
15 V  
V
T
=
15 V  
CC  
CC  
= 25°C  
= 25°C  
A
A
P Package  
P Package  
9
6
6
3
0
3
0
−1.2  
−0.6  
0
0.6  
1.2  
−900  
−600  
−300  
0
300  
600  
900  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − μV  
Figure 8  
Figure 9  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TL034  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TL034A  
INPUT OFFSET VOLTAGE  
12  
9
15  
12  
9
1716 Amplifiers Tested From 3 Wafer Lots  
1681 Amplifiers Tested From 1 Wafer Lot  
V
CC  
=
15 V  
V
CC  
=
15 V  
T
A
= 25°C  
T
A
= 25°C  
N Package  
D Package  
6
6
3
3
0
0
−1.8  
−1.2  
−0.6  
0
0.6  
1.2  
−1.2  
V
0.6  
0
0.6  
1.2  
1.8  
V
IO  
− Input Offset Voltage − mV  
− Input Offset Voltage − mV  
IO  
Figure 10  
Figure 11  
DISTRIBUTION OF TL031  
INPUT OFFSET-VOLTAGE  
TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TL032  
INPUT OFFSET-VOLTAGE  
TEMPERATURE COEFFICIENT  
24  
18  
12  
6
76 Units Tested From 1 Wafer Lot  
30  
160 Amplifiers Tested From 2 Wafer Lots  
V
T
=
15 V  
CC  
V
CC  
=
15 V  
= 25°C to 125°C  
A
T
A
= 25°C to 125°C  
P Package  
25  
20  
15  
10  
5
P Package  
0
0
−40 −30 −20 −10  
0
10  
20  
30  
40  
−30  
−20  
−10  
0
10  
20  
30  
aVIO  
aVIO  
− Temperature Coefficient − μV/°C  
− Input Offset-Voltage Temperature Coefficient − μV/°C  
Figure 13  
Figure 12  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TL034  
INPUT OFFSET-VOLTAGE  
TEMPERATURE COEFFICIENT  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
30  
25  
20  
15  
10  
5
10  
5
160 Amplifiers Tested From 2 Wafer Lots  
V
T
= 15 V  
= 25°C  
CC  
V
CC  
=
15 V  
A
T
A
= 25°C to 125°C  
D Package  
0
−5  
0
−10  
−40 −30 −20 −10  
0
10  
20  
30  
40  
−15  
−10  
−5  
0
5
10  
15  
aVIO  
V
IC  
− Common-Mode Input Voltage − V  
− Temperature Coefficient − μV/°C  
Figure 14  
Figure 15  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT†  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
12  
8
10  
1
T = 25°C  
A
V
V
V
=
15 V  
CC  
= 0  
= 0  
O
Positive Limit  
IC  
4
I
IB  
0
0.1  
−4  
−8  
−12  
−16  
Negative Limit  
I
IO  
0.01  
0.001  
25  
45  
65  
85  
105  
125  
0
2
4
|V  
6
8
10  
| − Supply Voltage − V  
CC  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
COMMON-MODE INPUT VOLTAGE†  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
20  
15  
10  
5
1.5  
1
R = 1 kΩ  
V
CC  
= 15 V  
L
R = 2 kΩ  
L
R = 5 kΩ  
Positive Limit  
L
R = 10 kΩ  
L
R = 20 kΩ  
L
0.5  
0
0
V
T
=
5 V  
CC  
= 25°C  
A
−5  
−10  
−0.5  
R = 20 kΩ  
L
R = 10 kΩ  
L
R = 5 kΩ  
L
−1  
R = 2 kΩ  
L
−15  
−20  
R = 1 kΩ  
L
Negative Limit  
25 50  
−1.5  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−75 −50 −25  
0
75  
100 125  
T
A
− Free-Air Temperature −°C  
V
ID  
− Differential Input Voltage − V  
Figure 18  
Figure 19  
OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
1.5  
16  
12  
8
R = 5 kΩ  
L
V
= 15 V  
CC  
R = 10 kΩ  
R = 10 kΩ  
T = 25°C  
A
L
L
T
A
= 25°C  
R = 20 kΩ  
L
1
V
R = 50 kΩ  
OM+  
L
0.5  
4
0
0
−4  
−8  
−12  
−0.5  
V
OM−  
R = 50 kΩ  
L
−1  
R = 20 kΩ  
L
R = 10 kΩ  
L
R = 5 kΩ  
L
−1.5  
−16  
0
15  
−15  
−10  
−5  
0
5
10  
2
4
6
8
10  
12  
14  
16  
V
ID  
− Differential Input Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
FREQUENCY  
5
4
3
2
1
0
30  
V
T
=
5 V  
CC  
R = 10 kΩ  
L
= 25°C  
V
= 15 V  
A
CC  
V
OM+  
25  
20  
15  
10  
5
V
OM−  
T
A
= −55°C  
T
= 125°C  
A
V
CC  
=
5 V  
0
0
5
10  
15  
20  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
|I | − Output Current − mA  
O
Figure 22  
Figure 23  
MAXIMUM PEAK OUTPUT VOLTAGE†  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
5
16  
V
T
=
15 V  
CC  
4
3
= 25°C  
14  
12  
10  
8
V
A
OM+  
2
V
OM−  
1
V
=
5 V  
R = 10 kΩ  
CC  
0
L
V
OM+  
−1  
−2  
−3  
−4  
−5  
6
4
V
OM−  
2
0
0
−75 −50 −25  
0
25  
50  
75  
100 125  
5
10  
15  
20  
25  
30  
|I | − Output Current − mA  
O
T
A
− Free-Air Temperature − °C  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
vs  
MAXIMUM PEAK OUTPUT VOLTAGE†  
vs  
FREE-AIR TEMPERATURE  
LOAD RESISTANCE  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
5
V
T
A
=
1 V  
O
V
OM+  
= 25°C  
V
=
15 V  
5 V  
CC  
4
V
=
15 V  
R = 10 kΩ  
CC  
0
L
V
=
CC  
−4  
−8  
−12  
−16  
V
OM−  
0
−75 −50 −25  
0
25  
50  
75  
100 125  
10 k  
100 k  
1 M  
T
A
− Free-Air Temperature −°C  
R − Load Resistance − Ω  
L
Figure 26  
Figure 27  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
100 k  
10 k  
1 k  
0°  
V
=
15 V  
CC  
R = 10 kΩ  
C = 25 pF  
L
30°  
60°  
90°  
120°  
150°  
L
T
A
= 25°C  
A
VD  
100  
10  
Phase Shift  
1
0.1  
180°  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 28  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION†  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
50  
10  
200  
R = 10 kΩ  
L
A
= 100  
VD  
100  
80  
V
CC  
= 15 V  
60  
V
CC  
= 5 V  
A
VD  
= 10  
= 1  
40  
A
VD  
20  
10  
V
CC  
=
15 V  
r (open loop) 250 Ω  
o
T
A
= 25°C  
1
−75 −50 −25  
0
25  
50  
75  
100 125  
1 k  
10 k  
100 k  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 29  
Figure 30  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
T
= 5 V  
= 25°C  
V
T
= 15 V  
= 25°C  
CC  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
A
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 31  
Figure 32  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
SUPPLY-VOLTAGE REJECTION RATIO†  
COMMON-MODE REJECTION RATIO†  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
100  
98  
96  
94  
92  
90  
95  
90  
85  
80  
75  
V
= 5 V to 15 V  
CC  
V
=
=
15 V  
5 V  
CC  
CC  
V
V
IC  
= V min  
ICR  
−75 −50 −25  
0
25  
50  
75  
100 125  
−75 −50 −25  
0
25  
50  
75  
100 125  
T − Free-Air Temperature − °C  
A
T
A
− Free-Air Temperature − °C  
Figure 33  
Figure 34  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
TIME  
30  
20  
30  
20  
V
T
= 0  
= 25°C  
O
V
ID  
= 100 mV  
A
V
ID  
= 100 mV  
10  
10  
0
V
ID  
= −100 mV  
0
−10  
−20  
−30  
V
= −100 mV  
ID  
−10  
−20  
V
T
= 15 V  
= 25°C  
CC  
A
0
2
4
|V  
6
8
10  
12  
14  
16  
0
5
10  
15  
t − Time − s  
20  
25  
30  
| − Supply Voltage − V  
CC  
Figure 35  
Figure 36  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
TL031 and TL031A  
EQUIVALENT INPUT NOISE VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT†  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
25  
20  
70  
60  
V
=
15 V  
5 V  
V
= 15 V  
= 20 Ω  
= 25°C  
CC  
CC  
CC  
R
T
S
A
15  
See Figure 3  
V
V
= 100 mV  
V
=
ID  
10  
5
0
= −100 mV  
ID  
V
=
5 V  
CC  
−5  
50  
40  
−10  
−15  
−20  
−25  
V
CC  
=
15 V  
V
O
= 0  
10  
100  
1 k  
10 k  
100 k  
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 37  
Figure 38  
TL034 and TL034A  
EQUIVALENT INPUT NOISE VOLTAGE  
TL032 and TL032A  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
90  
80  
60  
50  
V
= 15 V  
= 20 Ω  
= 25°C  
V
= 15 V  
= 20 Ω  
= 25°C  
CC  
CC  
R
T
R
T
S
S
A
A
See Figure 3  
See Figure 3  
70  
60  
40  
30  
50  
40  
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
11 k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 39  
Figure 40  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
TL031 and TL031A  
SUPPLY CURRENT†  
vs  
TL032 and TL032A  
SUPPLY CURRENT†  
vs  
SUPPLY VOLTAGE  
250  
200  
SUPPLY VOLTAGE  
500  
400  
300  
200  
100  
0
V
= 0  
O
V
= 0  
No Load  
O
No Load  
T
= 25°C  
A
T
A
= 25°C  
150  
100  
50  
T
= 125°C  
= −55°C  
A
T
A
= 125°C  
= −55°C  
T
A
T
A
0
0
2
4
|V  
6
8
10  
12  
14  
16  
0
2
4
|V  
6
8
10  
12  
14  
16  
| − Supply Voltage − V  
CC  
| − Supply Voltage − V  
CC  
Figure 41  
Figure 42  
TL031 and TL031A  
SUPPLY CURRENT†  
vs  
TL034 and TL034A  
SUPPLY CURRENT†  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
1000  
800  
600  
400  
250  
200  
150  
100  
V
= 0  
V
= 0  
O
O
V
=
=
15 V  
5 V  
CC  
CC  
No Load  
No Load  
V
T
= 25°C  
A
T
= 125°C  
= −55°C  
A
T
A
200  
0
50  
0
−75 −50 −25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 43  
Figure 44  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
TL034 and TL034A  
SUPPLY CURRENT†  
vs  
TL032 and TL032A  
SUPPLY CURRENT†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
V
= 0  
O
V
=
=
15 V  
5 V  
V
= 0  
CC  
CC  
O
No Load  
V
= 15 V  
CC  
No Load  
V
V
= 5 V  
CC  
−75 −50 −25  
0
25  
50  
75  
100 125  
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 45  
Figure 46  
SLEW RATE  
vs  
SLEW RATE  
vs  
LOAD RESISTANCE  
LOAD RESISTANCE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
=
5 V  
CC  
SR−  
C = 100 pF  
L
T
= 25°C  
A
See Figure 1  
SR−  
SR+  
SR+  
V
=
15 V  
CC  
C = 100 pF  
L
T
= 25°C  
A
See Figure 1  
1
10  
100  
1
10  
100  
R − Load Resistance − kΩ  
L
R − Load Resistance − kΩ  
L
Figure 47  
Figure 48  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
SLEW RATE†  
vs  
SLEW RATE†  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
=
5 V  
CC  
R = 10 kΩ  
C = 100 pF  
See Figure 1  
L
L
SR−  
SR−  
SR+  
SR+  
V
= 15 V  
CC  
R = 10 kΩ  
C = 100 pF  
See Figure 1  
L
L
−75 −50 −25  
0
25  
50  
75  
100 125  
−75 −50 −25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T − Free-Air Temperature − °C  
A
Figure 49  
Figure 50  
OVERSHOOT FACTOR  
vs  
LOAD CAPACITANCE  
TOTAL HARMONIC DISTORTION  
vs  
FREQUENCY  
60  
50  
40  
30  
20  
10  
0
0.5  
0.4  
V
=
10 mV  
I(PP)  
V
=
= 1  
15 V  
CC  
R = 10 kΩ  
L
A
VD  
T
= 25°C  
A
V
O(rms)  
= 6 V  
See Figure 1  
T
A
= 25°C  
0.3  
0.2  
V
=
5 V  
CC  
V
CC  
= 15 V  
0.1  
100  
0
50  
100  
150  
200  
250  
1 k  
10 k  
100 k  
C − Load Capacitance − pF  
L
f − Frequency − Hz  
Figure 51  
Figure 52  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH†  
vs  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.1  
1.05  
1.0  
V = 10 mV  
I
V = 10 mV  
I
R = 10 kΩ  
L
R = 10 kΩ  
L
C = 25 pF  
L
C = 25 pF  
L
See Figure 4  
T
A
= 25°C  
V
= 15 V  
See Figure 4  
+
CC  
V
= 5 V  
CC  
0.95  
0.9  
−75 −50 −25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
|− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 53  
Figure 54  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
70°  
68°  
66°  
64°  
62°  
60°  
58°  
56°  
54°  
52°  
50°  
V = 10 mV  
I
R = 10 kΩ  
T = 25°C  
A
L
65°  
63°  
V
CC  
= 15 V  
V = 10 mV  
I
R = 10 kΩ  
See Figure 4  
See Note A  
L
C = 25 pF  
L
T
A
= 25°C  
See Figure 4  
61°  
59°  
57°  
V
CC  
=
5 V  
0
10 20 30 40 50 60 70 80 90 100  
C − Load Capacitance − pF  
L
0
2
4
6
8
10  
12  
14  
16  
NOTE A: Values of phase margin below a load capacitance of 25 pF  
were estimated.  
|V  
| − Supply Voltage − V  
CC  
Figure 55  
Figure 56  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
TYPICAL CHARACTERISTICS  
PHASE MARGIN†  
vs  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
FREE-AIR TEMPERATURE  
PULSE RESPONSE  
67°  
65°  
63°  
61°  
59°  
57°  
55°  
16  
12  
8
V
=
15 V  
CC  
V
= 15 V  
CC  
R = 10 kΩ  
C = 100 pF  
L
L
T
= 25°C  
A
See Figure 1  
4
V
= 5 V  
CC  
0
−4  
−8  
−12  
−16  
V = 10 mV  
I
R = 10 kΩ  
L
C = 25 pF  
L
See Figure 4  
−75 −50 −25  
0
25  
50  
75  
100 125  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
T − Free-Air Temperature −°C  
A
t − Time − μs  
Figure 57  
Figure 58  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
PULSE RESPONSE  
2
8
6
1
0
4
2
V
= 5 V  
CC  
V
= 15 V  
R = 10 kΩ  
C = 100 pF  
CC  
L
0
R = 10 kΩ  
C = 100 pF  
L
L
T
= 25°C  
L
A
−2  
T
= 25°C  
A
See Figure 1  
See Figure 1  
−1  
−2  
−4  
−6  
−8  
0
1
2
3
4
5
6
7
8
0
2
4
6
8
10 12 14 16 18  
t − Time − μs  
t − Time − μs  
Figure 59  
Figure 60  
Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
input characteristics  
The TL03x and TL03xA are specified with a minimum and a maximum input voltage that, if exceeded at either  
input, could cause the device to malfunction.  
Due to of the extremely high input impedance and resulting low bias-current requirements, the TL03x and  
TL03xA are well suited for low-level signal processing; however, leakage currents on printed circuit boards and  
sockets easily can exceed bias-current requirements and cause degradation in system performance. It is a good  
practice to include guard rings around inputs (see Figure 61). These guard rings should be driven from a  
low-impedance source at the same voltage level as the common-mode input.  
Unused amplifiers should be connected as grounded unity-gain followers to avoid oscillation.  
V
I
+
V
O
+
V
I
V
O
+
V
O
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 61. Use of Guard Rings  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
output characteristics  
All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance.  
The TL03x and TL03xA drive higher capacitive loads; however, as the load capacitance increases, the resulting  
response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of  
the load capacitance at which oscillation occurs varies with production lots. If an application appears to be  
sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate  
the problem (see Figure 63). Capacitive loads of 1000 pF and larger can be driven if enough resistance is added  
in series with the output (see Figure 62).  
(a) C = 100 pF, R = 0  
(b) C = 300 pF, R = 0  
(c) C = 350 pF, R = 0  
L
L
L
(d) C = 1000 pF, R = 0  
(e) C = 1000 pF, R = 50 Ω  
(f) C = 1000 pF, R = 2 kΩ  
L
L
L
Figure 62. Effect of Capacitive Loads  
15 V  
R
V
O
5 V  
+
−5 V  
− 15 V  
C
L
10 kΩ  
(see Note A)  
NOTE A: C includes fixture capacitance.  
L
Figure 63. Test Circuit for Output Characteristics  
42  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
high-Q notch filter  
In general, Texas Instruments enhanced-JFET operational amplifiers serve as excellent filters. The circuit in  
Figure 64 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies  
that are interfering with the operation of an application. For this filter, the center frequency can be calculated as:  
1
f
+
O
2p   R1   C1  
With the resistors and capacitors shown in Figure 64, the center frequency is 1 kHz. C1 = C3 = C2 + 2 and  
R1 = R3 = 2 × R2. The center frequency can be modified by varying these values. When adjusting the center  
frequency, ensure that the operational amplifier has sufficient gain at the frequency required.  
15 V  
R1  
R3  
V
O
+
V
I
TL03x  
1.5 MΩ  
1.5 MΩ  
−15 V  
C2  
220 pF  
R3  
C1  
750 kΩ  
C3  
110 pF  
110 pF  
2
1
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
0.2 0.4 0.6 0.8  
1
0.2 0.4 0.6 0.8  
2
f − Frequency − kHz  
Figure 64. High-Q Notch Filter  
43  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
transimpedance amplifier  
The low-power precision TL03x allows accurate measurement of low currents. The high input impedance and  
low offset voltage of the TL03xA greatly simplify the design of a transimpedance amplifier. At room temperature,  
this design achieves 10-bit accuracy with an error of less than 1/2 LSB.  
Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as:  
R1 ) R2  
Fǒ  
Ǔ
V
+ I   R  
IN  
O
R2  
Using the resistor values shown in the schematic for a 1-nA input current, the output voltage equals −0.1 V. If  
the V limit for the TL03xA is measured at 12 V, the maximum input current for these resistor values is 120 nA.  
O
Similarly, one LSB on a 10-bit scale corresponds to 12 mV of output voltage, or 120 pA of input current.  
The following equation shows the effect of input offset voltage and input bias current on the output voltage:  
R1 ) R2  
FǒIIO  
Ǔ
+ ƪVIO  
IB ƫǒ  
Ǔ
R2  
V
) R  
) I  
O
If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes.  
Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL03xA  
inputs (see Figure 65).  
As with all precision applications, special care must be taken to eliminate external sources of leakage and  
interference. Other precautions include using high-quality insulation, cleaning insulating surfaces to remove  
fluxes and other residue, and enclosing the application within a protective box.  
R
F
10 MΩ  
15 V  
TL03xA  
+
Input Current  
V
O
R1 90 kΩ  
−15 V  
SN4117  
R2  
10 kΩ  
Figure 65. Transimpedance Amplifier  
44  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
4-mA to 20-mA current loops  
Often, information from an analog sensor must be sent over a distance to the receiving circuitry. For many  
applications, the most feasible method involves converting voltage information to a current before transmission.  
The following circuits give two variations of low-power current loops. The circuit in Figure 66 requires three wires  
from the transmitting to receiving circuitry, while the second variation in Figure 67 requires only two wires, but  
includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL03xA because  
many inexpensive sensors do not have low output impedance.  
Assuming that the voltage at the noninverting input of the TL03xA is zero, the following equation determines  
the output current:  
R3  
R1   R  
R3  
R2   R  
I
+ V ǒ Ǔ) 5Vǒ Ǔ+ 0.16   V ) 4mA  
O
I
I
S
S
The circuits presently provide 4-mA to 20-mA output current for an input voltage of 0 to 100 mV. By modifying  
R1, R2, and R3, the input voltage range or the output current range can be adjusted.  
Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset  
TL03xA was chosen:  
R3  
R1   R  
R3  
R2   R  
R3  
R3  
R2   R  
R1  
I
+ V ǒ Ǔ) 5Vǒ Ǔ *V  
ǒ
)
)
Ǔ
O
I
I
R1   R  
R
S
S
S
S
S
+ 0.16   V ) 4mA – 0.17   V  
I
I
For example, an offset voltage of 1 mV decreases the output current by 0.17 mA.  
Due to the low power consumption of the TL03xA, both circuits have at least 2 mA available to drive the actual  
sensor from the 5-V reference node.  
45  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
V
CC+  
= 10 V  
100 kΩ  
100 kΩ  
R6  
R7  
TL431  
5 V Ref  
R2  
1 MΩ  
+
R5  
R1  
5 kΩ  
2N3904  
1N4148  
V
I
3.3 kΩ  
TL03xA  
V
EE  
= −5 V  
R4  
R3 80 kΩ  
5 kΩ  
R
S
I
O
Signal Common  
100 Ω  
R
50 Ω  
L
Figure 66. Three-Wire 4-mA to 20-mA Current Loop  
V
CC+  
= 10 V  
IN  
OUT  
LT1019-5  
GND  
5 V Ref  
8
2
3
4
R2 1 MΩ  
LTC1044  
5
10 μF  
R5  
10 μF  
R1  
+
2N3904  
V
I
3.3 kΩ  
5 kΩ  
TL03xA  
R4 5 kΩ  
R3 80 kΩ  
1N4148  
R
S
I
O
Signal Common  
100 Ω  
R
50 Ω  
L
Figure 67. Two-Wire 4-mA to 20-mA Current Loop  
46  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
low-level light-detector preamplifier  
Applications that need to detect small currents require high input-impedance operational amplifiers; otherwise,  
the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide  
a current that is proportional to the light reaching the transistor. The TL03x allows even the small currents  
resulting from low-level light to be detected.  
In Figure 68, if there is no light, the phototransistor is off and the output is high. As light is detected, the  
operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier  
and adjusts the point of light detection by the amplifier.  
15 V  
R6  
10 kΩ  
R1  
10 kΩ  
TL03x  
+
R3 10 kΩ  
C1  
100 pF  
V
O
R7  
R4  
10 kΩ  
TIL601  
10 kΩ  
R5 10 kΩ  
R2  
5 kΩ  
−15 V  
Figure 68. Low-Level Light-Detector Preamplifier  
47  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
audio-distribution amplifier  
This audio-distribution amplifier (see Figure 69) feeds the input signal to three separate output channels. U1A  
amplifies the input signal with a gain of 10, while U1B, U1C, and U1D serve as buffers to the output channels.  
The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL03x allows quick response to the input  
signal while maintaining low power consumption.  
R4  
1 MΩ  
U1B  
V
V
OA  
OB  
CC+  
+
C1  
1 μF  
V
I
+
U1C  
U1D  
U1A  
+
V
R1  
100 kΩ  
R2  
100 kΩ  
V
CC+  
R5  
10 kΩ  
+
C2  
100 μF  
R3  
100 kΩ  
V
OC  
NOTE A: U1A through U1D = TL03x; V  
= 5 V  
CC+  
Figure 69. Audio-Distribution Amplifier Circuit  
48  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
TL03x, TL03xA  
ENHANCED-JFET LOW-POWER LOW-OFFSET  
OPERATIONAL AMPLIFIERS  
SLOS180C − FEBRUARY 1997 − REVISED DECEMBER 2001  
APPLICATION INFORMATION  
instrumentation amplifier with linear gain adjust  
The low offset voltage and low power consumption of the TL03x provide an accurate but inexpensive  
instrumentation amplifier (see Figure 70). This particular configuration offers the advantage that the gain can  
be linearly set by one resistor:  
R6  
R5  
V =  
O
× (V − V )  
B A  
Adjusting R6 varies the gain. The value of R6 always should be greater than, or equal to, the value of R5 to  
ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR  
degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors  
should be 0.1%-tolerance resistors.  
V
CC+  
R1  
R3  
10 kΩ  
0.1%  
10 kΩ  
0.1%  
V
A
+
U1A  
U1C  
+
V
O
R5  
100 kΩ  
R6  
1 MΩ  
U1B  
U1D  
+
+
V
B
R2  
R4  
R7  
100 kΩ  
10 kΩ  
0.1%  
10 kΩ  
0.1%  
V
CC−  
NOTE A: U1A through U1D = TL03x; V  
=
15 V  
CC  
Figure 70. Instrumentation Amplifier With Linear Gain-Adjust Circuit  
49  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
5962-9086102Q2A  
TL031ACD  
TL031ACP  
TL031AID  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
FK  
D
20  
8
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
0 to 70  
P
8
Call TI  
Call TI  
0 to 70  
D
8
Call TI  
Call TI  
-40 to 85  
-40 to 85  
0 to 70  
TL031AIP  
P
8
Call TI  
Call TI  
TL031CD  
D
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL031C  
TL031CDE4  
TL031CDG4  
TL031CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
D
D
P
P
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
TL031C  
TL031C  
TL031C  
TL031C  
TL031C  
TL031CP  
TL031CP  
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TL031CDRE4  
TL031CDRG4  
TL031CP  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TL031CPE4  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TL031CPWLE  
TL031ID  
OBSOLETE  
ACTIVE  
TSSOP  
SOIC  
PW  
D
8
8
TBD  
Call TI  
Call TI  
0 to 70  
75  
75  
75  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
TL031I  
TL031I  
TL031I  
TL031IP  
TL031IP  
TL031IDE4  
TL031IDG4  
TL031IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
P
P
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TL031IPE4  
Pb-Free  
(RoHS)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TL032ACD  
TL032ACDE4  
TL032ACDG4  
TL032ACDR  
TL032ACDRE4  
TL032ACDRG4  
TL032ACP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
D
D
D
D
P
P
D
D
D
D
D
D
P
P
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70 032AC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
032AC  
032AC  
032AC  
032AC  
032AC  
TL032ACP  
TL032ACP  
032AI  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Pb-Free  
(RoHS)  
0 to 70  
TL032ACPE4  
TL032AID  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TL032AIDE4  
TL032AIDG4  
TL032AIDR  
TL032AIDRE4  
TL032AIDRG4  
TL032AIP  
75  
Green (RoHS  
& no Sb/Br)  
032AI  
75  
Green (RoHS  
& no Sb/Br)  
032AI  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
032AI  
Green (RoHS  
& no Sb/Br)  
032AI  
Green (RoHS  
& no Sb/Br)  
032AI  
Pb-Free  
(RoHS)  
TL032AIP  
TL032AIP  
TL032C  
TL032C  
TL032AIPE4  
TL032CD  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TL032CDE4  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TL032CDG4  
TL032CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70 TL032C  
D
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TL032C  
TL032C  
TL032C  
TL032CP  
TL032CP  
T032  
TL032CDRE4  
TL032CDRG4  
TL032CP  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
P
Pb-Free  
(RoHS)  
0 to 70  
TL032CPE4  
TL032CPSR  
TL032CPSRE4  
TL032CPSRG4  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
PS  
PS  
PS  
2000  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
T032  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
T032  
TL032CPWLE  
TL032ID  
OBSOLETE  
ACTIVE  
TSSOP  
SOIC  
PW  
D
8
8
TBD  
Call TI  
Call TI  
0 to 70  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
TL032I  
TL032I  
TL032I  
TL032I  
TL032I  
TL032I  
TL032IP  
TL032IP  
TL032IDE4  
TL032IDG4  
TL032IDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OBSOLETE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
LCCC  
D
D
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-55 to 125  
75  
Green (RoHS  
& no Sb/Br)  
D
8
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
TL032IDRE4  
TL032IDRG4  
TL032IP  
D
8
Green (RoHS  
& no Sb/Br)  
D
8
Green (RoHS  
& no Sb/Br)  
P
8
Pb-Free  
(RoHS)  
TL032IPE4  
TL032MFKB  
P
8
50  
Pb-Free  
(RoHS)  
FK  
20  
TBD  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TL032MJGB  
TL034ACD  
OBSOLETE  
ACTIVE  
CDIP  
SOIC  
JG  
D
8
TBD  
Call TI  
Call TI  
-55 to 125  
0 to 70  
14  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TL034AC  
TL034ACDE4  
TL034ACDG4  
TL034ACDR  
TL034ACDRE4  
TL034ACDRG4  
TL034ACN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
D
D
D
D
D
N
N
D
D
D
D
D
D
N
N
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
0 to 70  
TL034AC  
TL034AC  
TL034AC  
TL034AC  
TL034AC  
TL034ACN  
TL034ACN  
TL034AI  
TL034AI  
TL034AI  
TL034AI  
TL034AI  
TL034AI  
TL034AIN  
TL034AIN  
TL034C  
50  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Pb-Free  
(RoHS)  
0 to 70  
TL034ACNE4  
TL034AID  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TL034AIDE4  
TL034AIDG4  
TL034AIDR  
50  
Green (RoHS  
& no Sb/Br)  
50  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TL034AIDRE4  
TL034AIDRG4  
TL034AIN  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TL034AINE4  
TL034CD  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TL034CDE4  
TL034CDG4  
TL034CDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TL034C  
D
Green (RoHS  
& no Sb/Br)  
TL034C  
TL034C  
TL034C  
TL034C  
TL034CN  
TL034CN  
TL034  
D
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TL034CDRE4  
TL034CDRG4  
TL034CN  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
N
Pb-Free  
(RoHS)  
TL034CNE4  
TL034CNSR  
TL034CNSRE4  
TL034CNSRG4  
TL034CPW  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
NS  
NS  
NS  
PW  
PW  
PW  
2000  
2000  
2000  
90  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
SO  
Green (RoHS  
& no Sb/Br)  
TL034  
SO  
Green (RoHS  
& no Sb/Br)  
TL034  
TSSOP  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
T034  
TL034CPWE4  
TL034CPWG4  
90  
Green (RoHS  
& no Sb/Br)  
T034  
90  
Green (RoHS  
& no Sb/Br)  
T034  
TL034CPWLE  
TL034CPWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2000  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
T034  
T034  
T034  
TL034I  
TL034CPWRE4  
TL034CPWRG4  
TL034ID  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
(1)  
(2)  
(3)  
(4)  
TL034IDE4  
TL034IDG4  
TL034IDR  
TL034IDRG4  
TL034IN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
D
N
N
14  
14  
14  
14  
14  
14  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TL034I  
Green (RoHS  
& no Sb/Br)  
TL034I  
TL034I  
TL034I  
TL034IN  
TL034IN  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
TL034INE4  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TL034MD  
TL034MFKB  
TL034MJB  
TL034MN  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
SOIC  
LCCC  
CDIP  
PDIP  
D
FK  
J
14  
20  
14  
14  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
N
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) Only one of markings shown within the brackets will appear on the physical device.  
Addendum-Page 6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jan-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 7  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TL031CDR  
TL032ACDR  
TL032AIDR  
TL032CDR  
TL032CPSR  
TL032IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
16.4  
12.4  
16.4  
16.4  
16.4  
12.4  
6.4  
6.4  
6.4  
6.4  
8.2  
6.4  
6.5  
6.5  
8.2  
6.9  
5.2  
5.2  
5.2  
5.2  
6.6  
5.2  
9.0  
9.0  
10.5  
5.6  
2.1  
2.1  
2.1  
2.1  
2.5  
2.1  
2.1  
2.1  
2.5  
1.6  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
12.0  
8.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
16.0  
16.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
8
D
8
PS  
D
8
SOIC  
SOIC  
SOIC  
SO  
8
TL034AIDR  
TL034CDR  
TL034CNSR  
TL034CPWR  
D
14  
14  
14  
14  
D
NS  
PW  
TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TL031CDR  
TL032ACDR  
TL032AIDR  
TL032CDR  
TL032CPSR  
TL032IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2500  
2500  
2500  
2000  
2000  
340.5  
340.5  
340.5  
340.5  
367.0  
340.5  
367.0  
367.0  
367.0  
367.0  
338.1  
338.1  
338.1  
338.1  
367.0  
338.1  
367.0  
367.0  
367.0  
367.0  
20.6  
20.6  
20.6  
20.6  
38.0  
20.6  
38.0  
38.0  
38.0  
35.0  
D
8
D
8
PS  
D
8
SOIC  
SOIC  
SOIC  
SO  
8
TL034AIDR  
TL034CDR  
TL034CNSR  
TL034CPWR  
D
14  
14  
14  
14  
D
NS  
PW  
TSSOP  
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TL032AIPE4

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032AMD

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032AMDR

DUAL OP-AMP, 5800uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
TI

TL032AMFK

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032AMJG

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032AMP

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CD

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CDE4

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CDG4

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CDR

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CDRE4

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI

TL032CDRG4

ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS
TI