BA4580YFVM-M [ROHM]

Automotive Low Noise Operational Amplifiers;
BA4580YFVM-M
型号: BA4580YFVM-M
厂家: ROHM    ROHM
描述:

Automotive Low Noise Operational Amplifiers

文件: 总30页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifier Series  
AutomotiveLow Noise  
Operational Amplifiers  
BA4580Yxxx-M, BA4584YFV-M  
General Description  
Key Specifications  
BA4580Yxxx-M, BA4584YFV-M integrate two or four  
independent Op-Amps on a single chip. These  
Op-Amp have some features of low noise and low  
distortion characteristics and can operate from ±2.0V  
to ±16V(split supply).  
BA4560Yxxx-M, BA4584YFV-M are manufactured for  
automotive requirements of car navigation system, car  
audio, etc.  
Wide operating supply voltage  
(split supply):±2.0V to ±16V  
-40to +105℃  
5V/µs(Typ.)  
Wide Temperature Range:  
High Slew Rate:  
Total Harmonic Distortion:  
Input Referred Noise Voltage:  
0.0005%(Typ.)  
5nV/ Hz (Typ.)  
Packages  
SOP8  
W(Typ.) xD(Typ.) xH(Max.)  
5.00mm x 6.20mm x 1.71mm  
2.90mm x 4.00mm x 0.90mm  
5.00mm x 6.40mm x 1.35mm  
Features  
AEC-Q100 Qualified  
High voltage gain  
MSOP8  
SSOP-B14  
low noise  
low distortion  
Wide operating supply voltage  
Internal ESD protection circuit  
Wide operating temperature Range  
Application  
Car Navigation System  
Car Audio  
Simplified schematic  
VCC  
-IN  
OUT  
+IN  
VEE  
Figure 1. Simplified schematic (one channel only)  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
1/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Pin Configuration  
BA4580YF-M : SOP8  
BA4580YFVM-M : MSOP8  
Pin No.  
Symbol  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
OUT1  
-IN1  
+IN1  
VEE  
VCC  
OUT2  
-IN2  
+IN2  
1
2
3
4
8
7
6
5
+IN1  
VEE  
+IN2  
-IN2  
CH1  
- +  
CH2  
+ -  
OUT2  
VCC  
BA4584YFV-M : SSOP-B14  
Pin No.  
Symbol  
OUT1  
-IN1  
1
2
3
+IN1  
VCC  
+IN2  
-IN2  
1
2
3
14 OUT4  
OUT1  
-IN1  
+IN1  
4
13  
12  
-IN4  
+IN4  
CH1  
- +  
CH4  
+ -  
5
6
VCC 4  
11  
10  
VEE  
+IN3  
-IN3  
OUT3  
7
OUT2  
OUT3  
-IN3  
5
6
7
8
+IN2  
-IN2  
+ -  
CH3  
- +  
CH2  
9
9
8
10  
11  
12  
13  
14  
+IN3  
VEE  
OUT2  
+IN4  
-IN4  
OUT4  
Package  
MSOP8  
SOP8  
SSOP-B14  
BA4584YFV-M  
BA4580YF-M  
BA4580YFVM-M  
Ordering Information  
B A 4 5 8 x Y x x x  
-
M x x  
Parts Number.  
BA4580Yxxx  
BA4584Yxx  
Package  
Packaging and forming specification  
M: Automotive (car navigation system, car  
audio, etc.)  
E2: Embossed tape and reel  
(SOP8/SSOP-B14)  
F
: SOP8  
FV : SSOP-B14  
FVM: MSOP8  
TR: Embossed tape and reel  
(MSOP8)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
2/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Line-up  
Number of  
channels  
Topr  
Supply voltage  
±2.0V to ±16V  
Package  
Reel of 2500  
Orderable Parts Number  
SOP8  
BA4580YF-ME2  
Dual  
-40°C to +105°C  
MSOP8  
SSOP-B14  
Reel of 3000  
Reel of 2500  
BA4580YFVM-MTR  
BA4584YFV-ME2  
Quad  
Absolute Maximum Ratings (Ta=25)  
Parameter  
Ratings  
Symbol  
Unit  
BA4580Y  
BA4584Y  
Supply Voltage  
VCC-VEE  
SOP8  
+36  
V
780*1*4  
590*2*4  
-
-
Power Dissipation  
Pd  
MSOP8  
-
mW  
SSOP-B14  
1350*3*4  
Differential Input Voltage *5  
Input Common-mode Voltage Range  
Input Current *6  
Vid  
Vicm  
Ii  
+36  
V
V
(VEE-0.3) to (VEE+36)  
-10  
mA  
+4 to +32  
(±2 to ±16)  
Operating Supply Voltage  
Vopr  
V
Output current  
Iout  
Topr  
±50  
mA  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
-40 to +105  
-55 to +150  
+150  
Tstg  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature  
environment may cause deterioration of characteristics.  
*1 To use at temperature above Ta25reduce 6.2mW/.  
*2 To use at temperature above Ta25reduce 4.8mW/.  
*3 To use at temperature above Ta25reduce 10.8mW/.  
*4 Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
*5 The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
*6 Excessive input current will flow if a differential input voltage in excess of approximately 0.6V is applied between  
the input unless some limiting resistance is used.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
3/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Electrical Characteristics  
BA4580Yxxx-M (Unless otherwise specified VCC=+15V, VEE=-15V, Ta=25)  
Limits  
Parameter  
Input Offset Voltage *7  
Input Offset Current *7  
Input Bias Current *8  
Symbol  
Vio  
Unit  
mV  
nA  
nA  
mA  
V
Condition  
Min.  
-
Typ.  
Max.  
3
0.3  
RS10k  
Iio  
-
5
100  
6
200  
-
-
Ib  
-
500  
Supply Current  
ICC  
-
9
-
-
-
-
-
-
-
-
-
-
-
-
RL=∞, All Op-Amps, VIN+=0V  
Maximum Output Voltage  
Large Signal Voltage Gain  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Slew Rate  
VOM  
Av  
±12  
±13.5  
110  
±13.5  
110  
110  
5
RL2kΩ  
90  
dB  
V
RL10k, OUT=±10V  
Vicm  
CMRR  
PSRR  
SR  
±12  
-
80  
80  
-
dB  
dB  
RS10kΩ  
RS10kΩ  
V/μs RL2kΩ  
MHz f=10kHz  
MHz RL=2kΩ  
Gain Band Width  
GBW  
fT  
-
10  
Unity Gain Frequency  
-
5
Av=20dB, OUT=5Vrms  
RL=2kΩ  
f=1kHz, 20Hz~20kHz BPF  
Total Harmonic Distortion  
+Noise  
THD+N  
-
0.0005  
5
%
-
nV/ Hz RS=100, Vi=0V, f=1kHz  
Input Referred Noise Voltage  
Vn  
-
0.8  
110  
μVrms RIAA, RS=2.2 k, 30kHz LPF  
Channel Separation  
CS  
-
dB  
R1=100, f=1kHz  
*7  
*8  
Absolute value  
Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
4/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584Y (Unless otherwise specified VCC=+15V, VEE=-15V, Ta=25)  
Limits  
Parameter  
Input Offset Voltage *9  
Input Offset Current *9  
Input Bias Current *10  
Supply Current  
Symbol  
Vio  
Unit  
mV  
nA  
nA  
mA  
V
Condition  
Min.  
-
Typ.  
Max.  
3
0.3  
RS10kΩ  
Iio  
-
5
100  
11  
200  
-
-
Ib  
-
500  
ICC  
-
17  
-
RL=∞, All Op-Amps, VIN+=0V  
Maximum Output Voltage  
Large Signal Voltage Gain  
Input Common-mode Voltage Range  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
Slew Rate  
VOM  
AV  
±12  
±13.5  
110  
±13.5  
110  
110  
5
RL2kΩ  
90  
-
dB  
V
RL10k, OUT=±10V  
Vicm  
CMRR  
PSRR  
SR  
±12  
-
-
80  
80  
-
-
dB  
dB  
RS10kΩ  
-
RS10kΩ  
-
V/μs RL2kΩ  
MHz f=10kHz  
MHz RL=2kΩ  
Gain Band Width  
GBW  
fT  
-
10  
-
Unity Gain Frequency  
-
5
-
Av=20dB, OUT=5Vrms  
RL=2kΩ  
f=1kHz, 20Hz~20kHz BPF  
Total Harmonic Distortion  
+Noise  
THD+N  
-
0.0005  
5
-
%
-
-
nV/ Hz RS=100, Vi=0V, f=1kHz  
Input Referred Noise Voltage  
Vn  
-
0.8  
-
μVrms RIAA, RS=2.2k, 30kHz LPF  
Channel Separation  
CS  
-
110  
-
dB  
R1=100, f=1kHz  
*9  
Absolute value  
*10 Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
5/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Description of electrical characteristics  
Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown.  
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general document.  
1. Absolute maximum ratings  
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of  
absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of  
characteristics.  
1.1 Power supply voltage (VCC-VEE)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without  
deterioration and destruction of characteristics of IC.  
1.3 Input common-mode voltage range (Vicm)  
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without  
deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assure  
normal operation of IC. When normal operation of IC is desired, the input common-mode voltage of characteristics  
item must be followed.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25(normal temperature).  
As for package product, Pd is determined by the temperature that can be permitted by IC chip in the package  
(maximum junction temperature)and thermal resistance of the package.  
2. Electrical characteristics item  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the  
input voltage difference required for setting the output voltage at 0V.  
2.2 Input offset current (Iio)  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.3 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at  
non-inverting terminal and input bias current at inverting terminal.  
2.4 Circuit current (ICC)  
Indicates the IC current that flows under specified conditions and no-load steady status.  
2.5 Output saturation voltage (VOM)  
Signifies the voltage range that can be output under specific output conditions.  
2.6 Large signal voltage gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and Inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
2.7 Input common-mode voltage range (Vicm)  
Indicates the input voltage range where IC operates normally.  
2.8 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the  
fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.9 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation  
of DC.  
PSRR = (Change of power supply voltage) / (Input offset fluctuation)  
2.10 Slew Rate (SR)  
SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage  
as unit time.  
2.11 Gain Band Width (GBW)  
The product of the open-loop voltage gain and the frequency at which the voltage gain decreases 6dB/octave.  
2.12 Unity gain frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
2.13 Total harmonic distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.14 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
2.15 Channel separation (CS)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
6/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Typical Performance Curves  
BA4580Yxxx-M  
10  
8
1000  
800  
-40℃  
25℃  
BA4580YF-M  
6
600  
BA4580YFVM-M  
4
400  
200  
0
105℃  
2
0
105  
.
0
25  
50  
75  
100  
125  
±0  
±5  
±10  
±15  
±20  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 3.  
Supply Current - Supply Voltage  
Figure 2.  
Derating Curve  
10.0  
30  
25  
20  
15  
10  
5
8.0  
6.0  
4.0  
2.0  
0.0  
±15V  
±2 V  
±7.5 V  
0
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
AMBIENT TEMPERATURE [  
]
LOAD RESISTANCE [k ]  
Ω
Figure 4.  
Figure 5.  
Supply Current - Ambient Temperature  
Maximum Output Voltage Swing  
- Load Resistance  
(VCC/VEE=+15V/-15V,Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
7/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4580Yxxx-M  
20  
15  
10  
5
20  
15  
VOH  
10  
VOH  
5
0
0
-5  
-5  
VOL  
-10  
-15  
-20  
-10  
VOL  
-15  
-20  
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18  
SUPPLY VOLTAGE [V]  
0.1  
1
10  
LOAD RESISTANCE [k ]  
Ω
Figure 6.  
Figure 7.  
Maximum Output Voltage  
- Load Resistance  
Maximum Output Voltage  
- Supply Voltage  
(VCC/VEE=+15V/-15V,Ta=25)  
(RL=2k,Ta=25)  
20  
15  
10  
5
20  
15  
10  
5
VOH  
VOH  
0
0
-5  
-5  
VOL  
VOL  
-10  
-15  
-20  
-10  
-15  
-20  
0
5
10  
15  
20  
25  
-50 -25  
0
25  
50  
75 100 125  
AMBIE NT TE MP ERA TURE [  
]
OUTPUT CURRENT [mA]  
Figure 8.  
Figure 9.  
Maximum Output Voltage  
- Ambient Temperature  
Maximum Output Voltage  
- Output Current  
(VCC/VEE=+15V/-15V, RL=2k)  
(VCC/VEE=+15V/-15V, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
8/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4580Yxxx-M  
6
4
6
4
±2V  
-40℃  
2
2
25℃  
±7.5V  
0
0
±15V  
105℃  
-2  
-4  
-6  
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 11.  
Figure 10.  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=0V)  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=0V)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
±7.5V  
-40℃  
60  
60  
105℃  
25℃  
±15V  
±2V  
40  
40  
20  
20  
0
0
-50 -25  
0
25  
50  
75 100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 13.  
Figure 12.  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=0V)  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
9/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4580Yxxx-M  
30  
20  
30  
20  
10  
±2V  
105℃  
±7.5V  
10  
0
0
25℃  
±15V  
-40℃  
-10  
-20  
-30  
-10  
-20  
-30  
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 15.  
Figure 14.  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=0V)  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=0V)  
150  
125  
100  
75  
5
4
105℃  
3
2
25℃  
-40℃  
1
0
-1  
-2  
-3  
-4  
-5  
50  
25  
0
-4 -3 -2 -1  
0
1
2
3
4
-50 -25  
0
25  
50  
75 100 125  
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUT VOLTAGE[V]  
Figure 17.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Figure 16.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC/VEE=+4V/-4V, OUT=0V)  
(VCC/VEE=+15V/-15V, Vicm=-12V ~ +12V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
10/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4580Yxxx-M  
150  
125  
100  
75  
10  
5
0
50  
5  
-10  
25  
0
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 19.  
Slew Rate - Supply Voltage  
(CL=100pF, RL=2k, Ta=25)  
Figure 18.  
Power Supply Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+2V/-2V ~ +15V/-15V)  
80  
60  
40  
20  
0
1
0.1  
0.01  
20kHz  
1kHz  
0.001  
20Hz  
0.0001  
0.1  
1
10  
1
10  
100  
1000  
10000  
OUTPUT VOLTAGE [Vrms]  
FREQUENCY [Hz]  
Figure 21.  
Figure 20.  
Total Harmonic Distortion - Output Voltage  
(VCC/VEE=+15V/-15V, Av=20dB,  
RL=2k, 80kHz-LPF, Ta=25)  
Equivalent Input Noise Voltage - Frequency  
(VCC/VEE=+15V/-15V, RS=100, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
11/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4580Yxxx-M  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
PHASE  
-30  
-60  
-90  
-120  
-150  
-180  
GAIN  
0
100  
101  
102  
103  
45
2
3
6
7
10 10 10 10 10 10  
FREQUENCY [kHz]  
Figure 22.  
Maximum Output Voltage Swing – Frequency  
(VCC/VEE=+15V/-15V, RL=2k, Ta=25)  
FREQUENCY [Hz]  
Figure 23.  
Voltage Gain, Phase - Frequency  
(VCC/VEE=+15V/-15V, Av=40dB, RL=2k, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
12/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
20  
15  
10  
5
1600  
1400  
1200  
-40℃  
BA4584YFV-M  
25℃  
1000  
800  
600  
400  
200  
0
105℃  
0
105  
0
5
10  
15  
20  
25  
30  
35  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [  
]
.
SUPPLY VOLTAGE[V]  
Figure 25.  
Supply Current - Supply Voltage  
Figure 24.  
Derating Curve  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
±15V  
±2 V  
±7.5 V  
0
0
-50 -25  
0
25  
50  
75  
100 125  
0.1  
1
LOAD RESISTANCE [k  
10  
AMBIENT TEMPERATURE [  
]
]
Ω
Figure 26.  
Figure 27.  
Supply Current - Ambient Temperature  
Maximum Output Voltage Swing  
- Load Resistance  
(VCC/VEE=+15V/-15V, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
13/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
20  
15  
10  
5
20  
15  
VOH  
10  
VOH  
5
0
0
-5  
-5  
VOL  
-10  
-15  
-20  
-10  
VOL  
-15  
-20  
±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18  
SUPPLY VOLTAGE [V]  
0.1  
1
10  
LOAD RESISTANCE [k ]  
Ω
Figure 28.  
Figure 29.  
Maximum Output Voltage  
- Load Resistance  
Maximum Output Voltage  
- Supply Voltage  
(VCC/VEE=+15V/-15V, Ta=25)  
(RL=2k, Ta=25)  
20  
15  
10  
5
20  
15  
10  
5
VOH  
VOH  
0
0
-5  
-5  
VOL  
VOL  
-10  
-15  
-20  
-10  
-15  
-20  
0
5
10  
15  
20  
25  
-50 -25  
0
25  
50  
75 100 125  
AMBIE NT TE MP ERA TURE [  
]
OUTPUT CURRENT [mA]  
Figure 30.  
Figure 31.  
Maximum Output Voltage  
- Ambient Temperature  
Maximum Output Voltage  
- Output Current  
(VCC/VEE=+15V/-15V, RL=2k)  
(VCC/VEE=+15V/-15V, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
14/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
6
4
6
4
±2V  
-40℃  
2
2
25℃  
±7.5V  
0
0
105℃  
±15V  
-2  
-4  
-6  
-2  
-4  
-6  
-50 -25  
0
25  
50  
75 100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 32.  
Figure 33.  
Input Offset Voltage - Supply Voltage  
(Vicm=0V, OUT=0V)  
Input Offset Voltage - Ambient Temperature  
(Vicm=0V, OUT=0V)  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
±7.5V  
-40℃  
60  
60  
105℃  
25℃  
±15V  
±2V  
40  
40  
20  
20  
0
0
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
-50 -25  
0
25  
50  
75 100 125  
AMBIENT TEMPERATURE [  
]
Figure 34.  
Figure 35.  
Input Bias Current - Supply Voltage  
(Vicm=0V, OUT=0V)  
Input Bias Current - Ambient Temperature  
(Vicm=0V, OUT=0V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
15/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
30  
20  
30  
20  
10  
±2V  
±7.5V  
105℃  
10  
0
0
25℃  
±15V  
-40℃  
-10  
-20  
-30  
-10  
-20  
-30  
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 37.  
Figure 36.  
Input Offset Current - Supply Voltage  
(Vicm=0V, OUT=0V)  
Input Offset Current - Ambient Temperature  
(Vicm=0V, OUT=0V)  
5
150  
125  
100  
75  
4
3
105℃  
25℃  
2
-40℃  
1
0
-1  
-2  
-3  
-4  
-5  
50  
25  
0
-4 -3 -2 -1  
0
1
2
3
4
-50 -25  
0
25  
50  
75 100 125  
AMBIENT TEMPERATURE [°C]  
COMMON MODE INPUTVOLTAGE[V]  
Figure 39.  
Common Mode Rejection Ratio  
- Ambient Temperature  
Figure 38.  
Input Offset Voltage  
- Common Mode Input Voltage  
(VCC/VEE=+4V/-4V, OUT=0V)  
(VCC/VEE=+15V/-15V, Vicm=-12V ~ +12V)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
16/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
150  
125  
100  
75  
10  
5
0
50  
5  
-10  
25  
0
-50 -25  
0
25  
50  
75  
100 125  
±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 41.  
Slew Rate - Supply Voltage  
(CL=100pF, RL=2k, Ta=25)  
Figure 40.  
Power Supply Rejection Ratio  
- Ambient Temperature  
(VCC/VEE=+2V/-2V ~ +15V/-15V)  
80  
60  
40  
20  
0
1
0.1  
0.01  
20kHz  
1kHz  
0.001  
20Hz  
0.0001  
0.1  
1
10  
1
100  
10000  
OUTPUT VOLTAGE [Vrms]  
FREQUENCY [Hz]  
Figure 43.  
Figure 42.  
Total Harmonic Distortion - Output Voltage  
(VCC/VEE=+15V/-15V, Av=20dB,  
RL=2k, 80kHz-LPF, Ta=25)  
Equivalent Input Noise Voltage - Frequency  
(VCC/VEE=+15V/-15V, RS=100, Ta=25)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
17/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
BA4584YFV-M  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
0
PHASE  
-30  
-60  
-90  
-120  
-150  
-180  
GAIN  
0
100  
101  
102  
103  
2
-1  
3
4
10 10 10 10 10  
1
FREQUENCY [kHz]  
Figure 45.  
Voltage Gain, Phase - Frequency  
(VCC/VEE=+15V/-15V, Av=40dB, RL=2k, Ta=25)  
FREQUENCY [kHz]  
Figure 44.  
Maximum Output Voltage Swing – Frequency  
(VCC/VEE=+15V/-15V, RL=2k, Ta=25  
)  
(*) The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
©2013 ROHM Co., Ltd. All rights reserved.  
18/27  
TSZ2211115001  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at Ta=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θja°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 46. (a) shows the model of the thermal resistance of the package. The equation below shows how to compute for the  
Thermal resistance (θja), given the ambient temperature (Ta), maximum junction temperature (Tjmax), and power  
dissipation (Pd).  
θja = (Tjmax - Ta) / Pd  
/W  
・・・・・ ()  
The Derating curve in Figure 46. (b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θja), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 47. (c),(d) shows an example of the derating curve for  
BA4580Yxxx-M, BA4584YFV-M.  
[W]  
n of LSI  
Power dissipa  
tio  
Pd (max)  
Ta) / Pd  
/W  
P2  
θja = ( Tjmax  
θja2 < θja1  
θ' ja2  
-
[]  
Ta  
Ambient temperature  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Tj  
[]  
Chip surface temperature  
0
25  
50  
75  
ture  
100  
Ta [  
125  
150  
]
Ambient tempe  
ra  
Power dissipation Pd[W]  
(b) Derating curve  
(a) Thermal resistance  
Figure 46. Thermal resistance and derating  
1000  
800  
600  
400  
200  
0
1600  
1400  
BA4584YFV-M(*13)  
1200  
1000  
800  
600  
400  
200  
0
BA4580YF-M(*11)  
BA4580YFVM-M(*12)  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
.
125  
]
]
AMBIENT TEMPERATURE [  
.
AMBIENT TEMPERATURE [  
(c) BA4580Yxxx-M  
(d) BA4584YFV-M  
( *11 )  
6.2  
( *12 )  
4.8  
(*13)  
10.8  
Unit  
mW/℃  
When using the unit above Ta=25, subtract the value above per Celsius degree .  
Mounted on a FR4 glass epoxy board 70mm×70mm×1.6mm(cooper foil area below 3%)  
Figure 47.  
Derating curve  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
19/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Application Information  
NULL method condition for Test circuit1  
VCC, VEE, EK Unit: V  
BA4580Y  
BA4584Y  
Parameter  
VF  
S1  
S2  
S3  
calculation  
VCC VEE EK VCC VEE EK  
Input Offset Voltage  
VF1 ON  
ON OFF  
15  
15  
15  
-15  
-15  
-15  
0
0
0
15  
15  
15  
-15  
-15  
-15  
0
0
0
1
2
3
4
5
6
Input Offset Current  
Input Bias Current  
VF2 OFF OFF OFF  
VF3 OFF ON  
OFF  
VF4 ON OFF  
VF5  
15  
15  
3
-15  
-15  
-27  
-3  
-10  
10  
12  
-12  
0
15  
15  
3
-15  
-15  
-27  
-3  
-10  
10  
12  
-12  
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
VF6  
VF7  
VF8  
VF9  
VF10  
Common-mode Rejection Ratio  
(Input common-mode Voltage Range)  
ON OFF  
ON OFF  
27  
4
27  
2
-2  
-2  
Power Supply  
Rejection Ratio  
15  
-15  
0
15  
-15  
0
- Calculation -  
1. Input Offset Voltage (Vio)  
VF1  
Vio  
[V]  
1+RF / RS  
2. Input Offset Current (Iio)  
VF2- VF1  
Iio   
[A]  
0.1µF  
Ri×(1+RF / RS)  
3. Input Bias Current (Ib)  
VF4- VF3  
Ib   
RF=50kΩ  
[A]  
0.1µF  
15V  
500kΩ  
2×Ri×(1+RF / RS)  
SW1  
VCC  
EK  
4. Large Signal Voltage Gain (Av)  
Vo  
RS=50Ω  
Ri=10kΩ  
ΔEK ×(1+RF/RS)  
Av 20×Log  
500kΩ  
[dB]  
VF5 - VF6  
DUT  
NULL  
-15V  
SW3  
5. Common-mode Rejection Ration (CMRR)  
1000pF  
Ri=10kΩ  
RS=50Ω  
50kΩ  
RL  
VF  
Vicm  
ΔVicm×(1+RF/RS)  
SW2  
CMRR 20×Log  
[dB]  
VEE  
VF8- VF7  
6. Power supply rejection ratio (PSRR)  
Figure 48. Test circuit1 (one channel only)  
ΔVcc×(1+RF/RS)  
PSRR 20×Log  
[dB]  
VF10- VF9  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
20/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Switch Condition for Test Circuit 2  
SW No.  
Supply Current  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
Maximum Output Voltage (high)  
Maximum Output Voltage (Low)  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Band Width  
Input Referred Noise Voltage  
Input voltage  
VH  
VL  
t
Input wave  
Output voltage  
SRΔV/Δt  
90%  
VH  
C
ΔV  
10%  
VL  
t
Δ
t
Output wave  
Figure 49. Test Circuit 2 (each Op-Amp)  
Figure 50. Slew Rate Input Waveform  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
R2  
R1  
R2  
OUT1  
=0.5Vrms  
V
V
OUT2  
VIN  
40dB amplifier  
100OUT1  
OUT2  
CS 20log  
(R1=1k, R2=100k)  
Figure 51. Test Circuit 3(Channel Separation)  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
21/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Examples of circuit  
Voltage follower  
Voltage gain is 0dB.  
Using this circuit, the output voltage (OUT) is  
configured to be equal to the input voltage (IN). This  
circuit also stabilizes the output voltage (OUT) due to  
high input impedance and low output impedance.  
Computation for output voltage (OUT) is shown below.  
OUT=IN  
VCC  
OUT  
IN  
VEE  
Figure 52. Voltage follower circuit  
Inverting amplifier  
R2  
For inverting amplifier, input voltage (IN) is amplified by a  
voltage gain and depends on the ratio of R1 and R2. The  
out-of-phase output voltage is shown in the next  
expression  
VCC  
R1  
IN  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
OUT  
R1//R2  
VEE  
Figure 53. Inverting amplifier circuit  
Non-inverting amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is amplified by  
a voltage gain, which depends on the ratio of R1 and R2.  
The output voltage (OUT) is in-phase with the input voltage  
(IN) and is shown in the next expression.  
VCC  
OUT=(1 + R2/R1)IN  
Effectively, this circuit has high input impedance since its  
input side is the same as that of the operational amplifier.  
OUT  
IN  
VEE  
Figure 54. Non-inverting amplifier circuit  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
22/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
VCC  
Operational Notes  
1) Processing of unused circuit  
+
-
It is recommended to apply connection (see the Figure 55.) and set the non  
inverting input terminal at the potential within input common-mode voltage range  
(Vicm), for any unused circuit.  
Connect  
to Vicm  
Vicm  
2) Input voltage  
VEE  
Applying (VEE - 0.3) to (VEE + 36)V  
(BA4558R) to the input terminal is possible without causing deterioration of the  
electrical characteristics or destruction, irrespective of the supply voltage.  
However, this does not ensure normal circuit operation. Please note that the  
circuit operates normally only when the input voltage is within the common mode  
input voltage range of the electric characteristics.  
Figure 55. The example of  
application circuit for unused op-amp  
VCC  
protection  
3) Maximum output voltage  
resistor  
+
Because the output voltage range becomes narrow as the output current  
Increases, design the application with margin by considering changes in  
electrical characteristics and temperature characteristics.  
-
4) Short-circuit of output terminal  
VEE  
When output terminal and VCC or VEE terminal are shorted, excessive Output  
current may flow under some conditions, and heating may destroy IC. It is  
necessary to connect a resistor as shown in Figure 56., thereby protecting  
against load shorting.  
5) Power supply (split supply / single supply) in used  
Figure 56. The example of  
output short protection  
Op-amp operates when specified voltage is applied between VCC and VEE.  
Therefore, the single supply Op-Amp can be used for double supply Op-Amp as well.  
6) Power dissipation (Pd)  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating  
conditions.  
7) Short-circuit between pins and wrong mounting  
Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other  
components on the circuits, can damage the IC.  
8) Use in strong electromagnetic field  
Using the ICs in strong electromagnetic field can cause operation malfunction.  
9) Radiation  
This IC is not designed to be radiation-resistant.  
10) IC Handling  
When stress is applied to IC because of deflection or bend of board, the characteristics may fluctuate due to piezo  
resistance effects.  
11) Inspection on set board  
During testing, turn on or off the power before mounting or dismounting the board from the test Jig. Do not power up the  
board without waiting for the output capacitors to discharge. The capacitors in the low output impedance terminal can  
stress the device. Pay attention to the electro static voltages during IC handling, transportation, and storage.  
12) Output capacitor  
When VCC terminal is shorted to VEE (GND) potential and an electric charge has accumulated on the external capacitor,  
connected to output terminal, accumulated charge may be discharged VCC terminal via the parasitic element within the  
circuit or terminal protection element. The element in the circuit may be damaged (thermal destruction). When using this IC  
for an application circuit where there is oscillation, output capacitor load does not occur, as when using this IC as a  
voltage comparator. Set the capacitor connected to output terminal below 0.1μF in order to prevent damage to IC.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
23/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
24/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
25/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
26/27  
Datasheet  
BA4580Yxxx-M, BA4584YFV-M  
Marking Diagram  
SOP8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B14(TOP VIEW)  
Part Number Marking  
Product Name  
F-M  
Package Type  
SOP8  
Marking  
80YM  
LOT Number  
BA4580Y  
FVM-M  
FV-M  
MSOP8  
80YM  
BA4584Y  
SSOP-B14  
4584Y  
1PIN MARK  
Land pattern data  
SOP8, SSOP-B8, MSOP8  
MIE  
ℓ2  
All dimensions in mm  
Land length  
Land pitch  
Land space  
MIE  
Land width  
b2  
PKG  
SOP8  
e
≧ℓ 2  
1.27  
4.60  
2.62  
4.60  
1.10  
0.76  
0.35  
0.35  
MSOP8  
0.65  
0.65  
0.99  
1.20  
SSOP-B14  
Revision History  
Date  
Revision  
Changes  
2012. 7. 6  
001  
002  
New Release  
Added BA4580Y  
2013. 3. 25  
www.rohm.com  
©2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200500-1-2  
25.Mar.2013 Rev.002  
27/27  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA4580YFVM-MTR

Automotive Low Noise Operational Amplifiers
ROHM

BA4580YFVME2

Automotive Low Noise Operational Amplifiers
ROHM

BA4580YFVMM

Automotive Low Noise Operational Amplifiers
ROHM

BA4580YFVMTR

Automotive Low Noise Operational Amplifiers
ROHM

BA4580YFVTR

Automotive Low Noise Operational Amplifiers
ROHM

BA4584FV

Low Noise Operational Amplifiers
ROHM

BA4584FV-E2

Operational Amplifier, 4 Func, 3000uV Offset-Max, BIPolar, PDSO14, ROHS COMPLIANT, SSOP-14
ROHM

BA4584RF

Low Noise Operational Amplifiers
ROHM

BA4584RF-E2

Operational Amplifier, 4 Func, 3000uV Offset-Max, BIPolar, PDSO14, ROHS COMPLIANT, SOP-14
ROHM

BA4584RFV

Low Noise Operational Amplifiers
ROHM

BA4584RFV-E2

Operational Amplifier, 4 Func, 3000uV Offset-Max, BIPolar, PDSO14, ROHS COMPLIANT, SSOP-14
ROHM

BA4584YFE2

Ground Sense Operational Amplifiers
ROHM