BD18333EUV-M (新产品) [ROHM]

BD18333EUV-M is 24CH constant current driver with 8-bit PWM dimming and 8-bit local DC dimming individual channels. Communication with μ-Controller is available via UART.;
BD18333EUV-M (新产品)
型号: BD18333EUV-M (新产品)
厂家: ROHM    ROHM
描述:

BD18333EUV-M is 24CH constant current driver with 8-bit PWM dimming and 8-bit local DC dimming individual channels. Communication with μ-Controller is available via UART.

文件: 总95页 (文件大小:5007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nano CapTM  
Datasheet  
Automotive LED Driver Series  
24CH Linear LED Driver Embedded  
Automotive Lamps LED Driver  
BD18333EUV-M  
General Description  
Key Specification  
BD18333EUV-M is 24CH constant current driver with 8-  
bit PWM dimming and 8-bit local DC dimming individual  
channels. Communication with μ-Controller is available  
via UART.  
Operating Input Voltage Range  
LED Pin Maximum Output Current:  
Operating Temperature Range-40 °C to +125 °C  
4.5 V to 40.0 V  
125 mA  
Features  
Package  
HTSSOP-C48  
W (Typ) x D (Typ) x H (Max)  
12.5 mm x 8.1 mm x 1.0 mm  
Nano CapTM Integrated  
AEC-Q100 Qualified(Note 1)  
ISO 26262 Process Compliant to Support ASIL-B  
Integrated 24CH LED Constant Current Driver  
UART Interface  
Independent 8-bit PWM Dimming Function  
Independent 8-bit Local DC Dimming Function  
Independent 4-bit Delay Function  
LSI Protection Function (UVLO, TSD)  
LED Abnormality Detection Function (Open/Short)  
LED Cathode Short Detection Function  
Integrated Abnormality Output the FAILB Pin  
(Note 1) Grade 1  
Application  
Rear Lamps (+ Animation)  
Position/DRL (+ Animation)  
Turn (+ Animation)  
Typical Application Circuit  
VIN  
1
2
3
4
5
6
7
8
9
VREG3  
GND  
48  
N.C. 47  
CS0 46  
CS1 45  
CS2 44  
EXP_PAD  
VREG5  
EN  
RX  
CAN TRANCSIVER  
CS3  
TX  
43  
PWMIN  
LGND.  
FAILB  
PWMOUT 42  
LGND 41  
TEST 40  
5V  
LDO  
10 LED1  
11 LED2  
12 LED3  
13 LED4  
14 LED5  
15 LED6  
16 N.C.  
LED24 39  
LED23 38  
LED22 37  
LED21 36  
LED20 35  
LED19 34  
N.C. 33  
17 LED7  
18 LED8  
19 LED9  
20 LED10  
21 LED11  
22 LED12  
23 EXTISET  
24 LGND  
LED18 32  
LED17 31  
LED16 30  
LED15 29  
LED14 28  
LED13 27  
EXTISET2 26  
LGND 25  
EXP_PAD  
Figure 1. Application Circuit  
Nano Cap™ is a trademark or a registered trademark of ROHM Co., Ltd.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
1/92  
BD18333EUV-M  
Pin Configuration  
HTSSOP-C48  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
VREG3  
GND  
VIN 48  
N.C. 47  
VREG5  
EN  
CS0 46  
CS1 45  
RX  
CS2 44  
TX  
CS3 43  
PWMIN  
LGND  
FAILB  
PWMOUT 42  
LGND  
41  
TEST 40  
LED24 39  
LED23 38  
LED22 37  
LED21 36  
LED20 35  
LED19 34  
N.C. 33  
10 LED1  
11 LED2  
12 LED3  
13 LED4  
14 LED5  
15 LED6  
16 N.C.  
17 LED7  
18 LED8  
19 LED9  
20 LED10  
21 LED11  
22 LED12  
23 EXTISET1  
24 LGND  
LED18 32  
LED17 31  
LED16 30  
LED15 29  
LED14 28  
LED13 27  
EXTISET2 26  
LGND 25  
EXP_PAD  
Figure 2. Pin Configuration  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
2/92  
BD18333EUV-M  
Pin Description  
Pin  
No.  
Pin Name  
Function  
1
VREG3  
GND  
3.3 V voltage output  
Ground  
2
3
VREG5  
EN  
5.0 V voltage output  
Chip enable  
4
5
RX  
UART signal receiver  
UART signal transmitter  
6
TX  
7
PWMIN  
LGND  
FAILB  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
N.C.  
PWM input frequency for PWM frequency synchronization  
LED driver ground  
8
9
Error flag  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
Non wire connection  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
LED current setting Pin  
LED driver ground  
LED7  
LED8  
LED9  
LED10  
LED11  
LED12  
EXTISET1  
LGND  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
3/92  
BD18333EUV-M  
Pin Description - continued  
Pin  
Pin Name  
No.  
Function  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
-
LGND  
EXTISET2  
LED13  
LED14  
LED15  
LED16  
LED17  
LED18  
N.C.  
LED driver ground  
LED current setting Pin for LIMPHOME mode  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
Non wire connection  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
LED current output  
TEST mode setting Pin  
LED driver ground  
LED19  
LED20  
LED21  
LED22  
LED23  
LED24  
TEST  
LGND  
PWMOUT  
CS3  
PWM output signal for PWM frequency synchronization  
Chip select  
CS2  
Chip select  
CS1  
Chip select  
CS0  
Chip select  
N.C.  
Non wire connection  
Power supply input  
VIN  
Exposed pad. Connect EXP-PAD to the internal PCB ground plane using multiple via, it will  
provide excellent heat dissipation characteristics.  
EXP-PAD  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
4/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Block Diagram  
LED1  
LED2  
VREF33  
Current  
Driver  
TEST  
LGND  
AKSHORT  
ULVO /  
TSD  
VLEDSH  
VIN  
LED OPEN  
VDRV5  
LED23  
LED24  
Bandgap  
VREG5  
VBG  
0.3 V  
VREG5  
VREF33  
LGND1  
LGND2  
LGND3  
LGND4  
VREG3  
FAILB  
EXTISET1  
Short  
VREG3  
Control  
Logic  
FAIL  
I/O  
EXTISET2  
Short  
EN  
RX  
to Current  
Driver  
EXTISET1  
EXTISET2  
External  
Current  
Reference  
TX  
to Current  
Driver  
CS0  
CS1  
CS2  
External  
Current  
Reference  
Limp Home  
CS3  
RingOSC  
PWMOUT  
I/O  
PWMIN  
GND  
Figure 3. Block Diagram  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
5/92  
BD18333EUV-M  
Description of Block  
1. Reference Voltage (VREG5, VREG3)  
This IC generates 5.0 V (Typ) and 3.3 V (Typ) from the voltage input to VIN. These voltages are output on the VREG5 and  
the VREG3 pins. The output voltage of the VREG5 pin (VVREG5) is used as the power supply for the internal circuit, and the  
output voltage of the VREG3 pin (VVREG3) is used as the power supply for the internal digital circuit. To secure the phase  
compensation capacitance, it is necessary to connect 1.0 μF to 10 μF to the VREG5 pin and 0.0 μF (the VREG3 pin is able  
to set for capacitor less application with Nano CapTM technology) to 0.1 μF to the VREG3 pin. If a capacitor is not connected  
to the VREG5 pin, circuit operation such as oscillation of the reference voltage will be very unstable. Do not use these pins  
voltages as a power source other than this LSI.  
UVLO function is built in to the VIN pin, the VREG5 pin and the VREG3 pin. When the conditions of VIN > 4.2 V (Typ),  
VREG5 > 4.2 V (Typ), VREG3 > 2.8 V (Typ) are satisfied, the IC starts operating. If any condition of VIN < 4.0 V (Typ),  
VREG5 < 4.0 V (Typ), VREG3 < 2.7 V (Typ) is satisfied, the IC will stop operating.  
Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the  
range of nF unit. And, this IC achieve capacitor less technology with the Nano CapTM  
.
2. Current Driver  
This IC has a built-in 24CH constant current driver. The maximum output current of the constant current driver is 125 mA/CH  
when the EXTISET1 function is used. Built-in PWM dimming and DC dimming function for each CH. The resolution for each  
dimming mode depends on the register settings. Please refer to the detailed description of Address 0x00h, 0x24h to 0x2Fh,  
0x30h to 0x32h, 0x33h to 0x4Ah for the setting of dimming mode and output current.  
Control Logic  
LEDx  
ILEDx  
DC  
Dimming  
Circuit  
Short Circuit  
Protection  
for EXTISET  
External  
Current  
Refernce  
LGND  
EXTISET1  
REXTISET1  
Figure 4. LED Current Setting  
Local PWM Dimming Control and LED Current Setting  
This IC has a built-in 8-bit PWM dimming function. LED current PWM on duty of each channel can be controlled by  
UART input. To use 8-bit PWM dimming, set the DIMMODE register value to "0". When using PWM dimming, the  
LED current can be set by the built-in 4-bit DC dimming function.  
LED current PWM on duty and LED current ILEDx (X = 1 to 24) can be calculated by the following formula.  
[
]
푃푊푀 푂푁 푑푢푡푦 = 퐷퐼ꢀ푆퐸푇푥 7:0 +1 × ꢁꢂꢂ [%]  
256  
where:  
ꢃꢄ푀ꢅꢆꢇꢈ[ꢉ: ꢂ] is the decimal number of DIMSETx[7:0]. (x = 01 to 24)  
In case of using the EXTISET1 pin  
(
[
]
)
퐷퐶퐷퐼ꢀ푥 3:0 +1  
× ꢊ푅  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
× ꢁꢐꢂꢂꢂꢑ [A]  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
퐿퐸퐷푥  
=
16  
where:  
ꢃꢒꢃꢄ푀ꢈ[ꢓ: ꢂ] is the decimal number of DCDIMx[3:0]. (x = 01 to 24)  
퐸ꢕ푇퐼푆퐸푇1 is the EXTISET1 pin voltage, 600 mV (Typ).  
퐸ꢕ푇퐼푆퐸푇1 is the Resistor for connecting the EXTISET1 pin.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
6/92  
BD18333EUV-M  
2. Current Driver -continued  
(2) Local PWM Delay Control  
This IC can reduce the load fluctuation by controlling the rising timing of LED current for each CH. This setting is  
not required when using Local DC dimming described later.  
Delay width (tDLY_LED) can be calculated by the following formula.  
[
]
퐷퐿푌_퐿퐸퐷 = 4푏푖푡_ꢃꢒ_푃푊푀ꢃꢗꢘꢈ ꢓ: ꢂ × 8 ꢙ ꢐ4 [μs]  
where:  
4푏푖푡_ꢃꢒ_푃푊푀ꢃꢗꢘꢈ[ꢓ: ꢂ] is the decimal number of PWMDLYx[3:0]. (x = 01 to 24)  
tLED_ONn is LED current PWM on time. (n = 1 to 24)  
fPWM is PWM dimming frequency.  
tDLY_LED  
Internal  
Reference  
PWM Signal  
ILEDn  
tLED_ONn  
1 / fPWM  
PWM ON Duty = tLED_ONn × fPWM  
Figure 5. Local PWM Delay Control  
Local DC Dimming Control  
This IC can switch the 8-bit PWM dimming register for Local DC dimming. To use 8-bit DC dimming, set the  
DIMMODE register value to "1". When using 8-bit DC dimming, PWM ON Duty is fixed at 100 %.  
LED current ILEDn (n = 1 to 24) can be calculated by the following formula.  
In case of using the EXTISET1 pin  
(
[
]
)
퐷퐼ꢀ푆퐸푇푥 7:0 +1  
× ꢊ푅  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
× ꢁꢐꢂꢂꢂꢑ [A]  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
퐿퐸퐷푛  
=
256  
where:  
ꢃꢄ푀ꢅꢆꢇꢈ[ꢉ: ꢂ] is the decimal number of DIMSETx[7:0].  
퐸ꢕ푇퐼푆퐸푇1 is the EXTISET1 pin voltage, 600 mV (Typ).  
퐸ꢕ푇퐼푆퐸푇1 is the Resitor for connecting the EXTISET1 pin.  
LED Current Output Enable (PWMOUT, LEDEN)  
This IC can individually turn off the CH regardless of the PWM/DC dimming setting. It can be set by updating the  
register of Address 0x30h (PWMOUTL), 0x31h (PWMOUTM) and 0x32h (PWMOUTH). When this register is set,  
the output is kept on until the next PWM cycle and the output is turn off at the PWM rising timing. The LED current  
ON/OFF control can also be controlled using the Address 0x04h (LEDENL), 0x05h (LEDENM) and 0x06h  
(LEDENH) registers. For these registers, ON/OFF control is reflected immediately when written to the register.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
7/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Blocks - continued  
3. Diagnosis Enable (DEN)  
When VIN < VIN_DEN , the IC cannot detect LED Open Detection (LEDOP).  
VIN_DEN can be defined by setting register. (Address 0x17h)  
4. LED Short Detection and Open Detection  
This IC has LED short detection and open detection. LED short detection can be disabled, and LED short detect voltage  
can be controlled by UART input. (Disable setting : Address 0x09h, 0x0Ah, LED detect voltage setting : Address 0x0Bh to  
0x16h) LED error detection status of each channel can be read by UART input. (LED short : Address 0x4Bh to 0x4Dh, LED  
open : Address 0x4Dh to 0x50h)  
The IC can detect LED short condition when IC meets the following condition:  
퐿퐸퐷푥  
> ꢔ  
푎ꢚ푑 ꢔ > ꢔ  
퐿퐸퐷푆퐻 퐼ꢛ 퐼ꢛ_퐷퐸ꢛ  
Where:  
is the LEDx pin voltage. (x = 1 to 24)  
is the LED short detect voltage  
퐿퐸퐷푥  
퐿퐸퐷푆퐻  
is the Diagnosis Enable VIN voltage  
퐼ꢛ_퐷퐸ꢛ  
The IC can also detect LED open condition when the IC meets the following condition:  
퐿퐸퐷푥  
< ꢔ  
푎ꢚ푑 ꢔ > ꢔ  
퐿퐸퐷ꢜꢝ 퐼ꢛ 퐼ꢛ_퐷퐸ꢛ  
Where:  
is the LEDx pin voltage. (x = 1 to 24)  
is the LED open detecting voltage, 0.3 V (Typ).  
is the Diagnosis Enable VIN voltage.  
퐿퐸퐷푥  
퐿퐸퐷ꢜꢝ  
퐼ꢛ_퐷퐸ꢛ  
If the IC detects LED error (short or open) mode and set AUTOOFF register to “1” (Address 0x07h: SYSSET4), Current  
Driver of detected CH is turn off and the FAILB pin voltage is switched to “Low”. Other current driver CH are continuing to  
output.  
LEDx  
Current  
Driver  
125 mA (Max)  
LGND  
FAILB  
LED short  
Control  
Logic  
FAIL  
VLEDSH  
LED OPEN  
0.3 V  
Figure 6. LED Open Detection  
LED Error Output Mask Time Setting  
The mask time for LED error detection can be controlled by UART input. (Address 0x03h: SYSSET3)  
LED error detection is disabled until the mask time has elapsed.  
LED Error  
Occurs  
LED Error Detect  
(Short / Open)  
tERRMASK  
ON  
Current Driver  
Latch OFF  
FAILB  
Figure 7. LED Error Output Mask Time Setting  
Where:  
tERRMASK is the mask time for LED error detection.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
8/92  
BD18333EUV-M  
Description of Blocks – continued  
5. Protection Feature  
Table 1. Protection Table 1  
Detect  
condition  
Release  
condition  
Current  
Driver  
No.  
1
Protection  
FAILB  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Status register  
UVLOTSDERR  
UVLOTSDERR  
UVLOTSDERR  
UVLOTSDERR  
TSDW  
LIMPHOME(Note 2)  
VIN  
UVLO  
VIN <  
4.0 V (Typ)  
VIN >  
4.2 V (Typ)  
OFF  
OFF  
O
O
O
O
O
O
-
VREG5  
UVLO  
VREG5 <  
4.0 V (Typ)  
VREG5 >  
4.2 V (Typ)  
2
VREG3  
UVLO  
VREG3 <  
2.7 V (Typ)  
VREG3 >  
2.8 V (Typ)  
3
OFF  
Ta >  
175 °C (Typ)  
Ta <  
150 °C (Typ)  
4
TSD  
OFF  
TSD  
warning  
Ta >  
125 °C (Typ)  
Ta <  
110 °C (Typ)  
5
operating  
operating  
VLEDx  
<
VLEDx  
>
6
LED open  
LED Short  
LOPERR  
0.3 V (Typ)  
0.4 V (Typ)  
VLEDx  
>
VLEDx <  
7
register setting register setting operating  
& PWM “High” & PWM “High”  
LSHERR  
LED cathode  
short(Note 1)  
VLEDx < 0.3 V  
8
-
operating  
CATHERR  
-
(Typ)  
Error in data  
setent in  
UART  
Write/Read  
No error in  
data sent in  
UART Write  
9
CRC error  
operating  
Low  
CRCERR  
O
no access  
during 100 ms  
10  
11  
12  
UART WDT  
ISETSH1  
ISETSH2  
-
operating  
operating  
operating  
Low  
Low  
Low  
WDTERR  
ISETSHERR  
ISETSHERR  
-
REXTISET1  
<
REXTISET1  
30 kΩ (Typ)  
>
O
O
30 kΩ (Typ)  
REXTISET2  
<
REXTISET2  
30 kΩ (Typ)  
>
30 kΩ (Typ)  
When it detects “VINUVLO” or “VREG3UVLO” or “VREG5UVLO” or “TSD” or “EN = L”, it invokes system reset. it can’t detect  
other protection. (x = 1 to 24)  
(Note 1) “LED open protection” is not available when set CATHEN register to 1.  
(Note 2) “O” this protection can be detected during LIMPHOME mode. “-” this protection cannot be detected during LIMPHOME mode. If any of “-” protection is  
detect before entering LIMPHOME mode, keep status register until mode returns to normal.  
The FAILB pin is recommended to pull up to VREG5. Recommended value for pull up resistance is 20 kΩ to 100 kΩ. When  
above failure is detected, the FAILB pin voltage becomes Low. If the FAILB pin is not used pin shall be kept open.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
9/92  
BD18333EUV-M  
5. Protection Feature - continued  
Table 2. Protection Table 2  
Status and FAILB  
output latch  
enable  
No.  
Protection  
SSMASK  
ERRMASK  
Protection enable  
AUTOOFF  
VIN  
UVLO  
1
2
-
-
-
-
-
-
O
-
-
VREG5  
UVLO  
O
VREG3  
UVLO  
3
-
-
-
O
O
-
4
TSD  
-
-
-
-
TSD  
warning  
5
-
-
TSDWEN  
LOPEN  
LSHEN  
CATHEN  
-
-
-
6
LED open  
LED short  
O
O
-
O
O
-
LOPLAT  
LSHLAT  
O
O
O
-
7
LED cathode short  
CRC error  
7
8
-
-
CRCERLAT  
O
-
9
UART WDT  
ISETSH1  
-
-
WDTEN  
ISETSEL  
ISETSEL  
-
10  
11  
-
-
ISETLAT  
ISETLAT  
-
ISETSH2  
-
-
-
O: It has this function by default.  
-: It doesn’t have this function.  
6. PWM Synchronization for Each Device  
This feature allows BD18333EUV-M to synchronize internal clock with other BD18333EUV-M and vice versa. SYNCSET  
register can set this IC as Leader or Follower. As Leader Device, it generates 488 Hz (Typ) reference signal (duty = 50 %)  
in PWMOUT that other Follower devices use to adjust internal clock. As Follower Device, it enables PWMIN input to receive  
the reference signal to adjust internal clock and LED output timing.  
DUT#1  
DUT#2  
DUT#3  
PWMOUT PWMIN  
PWMOUT PWMIN  
pwm  
gen  
pwm  
gen  
pwm  
gen  
pwm  
pwm  
pwm  
sample  
sample  
sample  
ring  
ring  
ring  
oscillator  
oscillator  
oscillator  
Figure 8. PWM Synchronization Setting  
In this figure above, DUT#1 is a Leader device, it generates the reference signal via PWMOUT. On the other hand, DUT#2  
receives the reference signal via PWMIN, it processes this signal to adjust the internal ring oscillator. Same process in  
DUT#2 occur in DUT#3 and so on. There is only a single Leader device.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
10/92  
BD18333EUV-M  
Description of Blocks – continued  
7. LIMPHOME Function  
This IC has LIMPHOME function. This function is controlled by LIMPHEN register (Address 0x5Eh, initially enabled). If  
LIMPHEN is “1” and there is no UART access (no CRC OK) for over 1.0 s (Typ), device detects the error and operates LED  
dimming. In each state, LED dimming is according to the latest register value (DIMSET, DCDIM and LHDTY). The registers  
are updated at the timing described in the register description.  
Note: Devices can be connected in parallel, refer to UART Protocol for more details. When a device is connected in parallel  
and is not being accessed while other devices are being accessed, it will not enter LIMPHOME mode.  
System Reset  
(UVLO, TSD)  
Other  
IDLE  
No UART Access > 1.0 s  
UART Access  
Other  
Other  
UART Access  
STANDBY  
LIMPHOME1  
LIMPHEN = 1 & No UART  
Access > 1.0 s  
DIMSTART = 1  
Other  
DIMSTART = 0  
UART Access  
Other  
LIMPHEN = 1 & No UART Access > 1.0 s  
UART Access  
Normal Dimming  
LIMPHOME2  
Figure 9. LIMPHOME Function  
Table 3. LIMPHOME Dimming Settings ( x = 1 to 24 )  
Dimming setting  
State  
Description  
Reset condition,  
Current reference setting  
-
DC current setting  
-
PWM duty setting  
-
IDLE  
No lighting  
During initial setting,  
No lighting  
-
-
-
STANDBY  
lighting by EXTISET2  
resistor (UART error  
condition)  
EXTISET2  
100 % (DCDIMx)  
100 % (LHDTYx)  
LIMPHOME1  
Normal dimming condition  
ISETSEL = 0 (Internal ISET)  
ISETSEL = 1 (EXTISET1)  
DIMMODE = 0  
DCDIMx  
DIMMODE = 0  
DIMSETx  
Normal  
Dimming  
DIMMODE = 1  
DIMSETx  
DIMMODE = 0  
DCDIMx  
DIMMODE = 1  
DIMSETx  
DIMMODE = 1  
100 %  
LHDTYx  
lighting by UART  
LIMPHOME setting (UART  
error condition)  
LEXTISET2SEL = 1(Note 1)  
EXTISET1 + EXTISET2  
LIMPHOME2  
LEXTISET2SEL = 0  
ISETSEL = 0 (Internal ISET)  
ISETSEL = 1 (EXTISET1)  
(Note 1) Not Recommended Setting  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
11/92  
BD18333EUV-M  
7. LIMPHOME Function – continued  
At LIMPHOME1,  
In case of the EXTIET2 pin set “OPEN”  
ILEDn = 0 [A]  
In case of the EXTISET2 pin set REXTISET2  
ꢋ푋ꢌꢍꢎꢋꢌꢞ  
× ꢁꢐꢂꢂꢂ [A]  
ꢋ푋ꢌꢍꢎꢋꢌꢞ  
퐿퐸퐷푛  
=
At LIMPHOME2,  
[
]
퐿퐻퐷푇푌푥 3:0 + 1  
푃푊푀 푂푁 푑푢푡푦 =  
× ꢁꢂꢂ [%]  
16  
In case of using the EXTISET2 pin and the EXTISET2 pin set “OPEN”  
ILEDn = 0 [A]  
In case of using the EXTISET2 pin and DIMMODE = 0  
(
[
]
)
퐷퐶퐷퐼ꢀ푥 3:0 + 1  
× ꢊꢋ푋ꢌꢍꢎꢋꢌꢏ ꢋ푋ꢌꢍꢎꢋꢌꢞꢑ × ꢁꢐꢂꢂꢂ [A]  
16  
ꢋ푋ꢌꢍꢎꢋꢌꢏ ꢋ푋ꢌꢍꢎꢋꢌꢞ  
퐿퐸퐷푛  
=
In case of using the EXTISET2 pin and DIMMODE = 1  
(
[
]
)
퐷퐼ꢀ푆퐸푇푥 7:0 + 1  
× ꢊ푅  
ꢋ푋ꢌꢍꢎꢋꢌꢞꢑ × ꢁꢐꢂꢂꢂ [A]  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
퐿퐸퐷푛  
=
256  
ꢋ푋ꢌꢍꢎꢋꢌꢞ  
In case of using the Internal Current Set and DIMMODE = 0  
(
[
]
)
퐷퐶퐷퐼ꢀ푥 3:0 + 1  
× ꢂ.ꢂꢟꢂ [A]  
16  
퐿퐸퐷푛  
=
In case of using the Internal Current Set and DIMMODE = 1  
(
[
]
)
퐷퐼ꢀ푆퐸푇푥 7:0 + 1  
× ꢂ.ꢂꢟꢂ [A]  
256  
퐿퐸퐷푛  
=
In case of using the EXTISET1 pin and DIMMODE = 0  
(
[
]
)
퐷퐶퐷퐼ꢀ푥 3:0 + 1  
× ꢊ푉  
× ꢁꢐꢂꢂꢂꢑ [A]  
× ꢁꢐꢂꢂꢂꢑ [A]  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
퐿퐸퐷푛  
=
16  
In case of using the EXTISET1 pin and DIMMODE = 1  
(
[
]
)
퐷퐼ꢀ푆퐸푇푥 7:0 + 1  
× ꢊ푅  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
256  
ꢋ푋ꢌꢍꢎꢋꢌꢏ  
퐿퐸퐷푛  
=
where: (n = 1 to 24, x = 01 to 24)  
퐿퐸퐷푛 is the each channel current.  
퐸ꢕ푇퐼푆퐸푇2 is the EXTISET2 pin voltage. It is 300 mV (Typ).  
퐸ꢕ푇퐼푆퐸푇2 is the Resistor for connecting the EXTISET2 pin.  
ꢗꢠꢃꢇꢘꢈ[ꢓ: ꢂ] is the decimal number of LHDTYx[3:0].  
ꢃꢒꢃꢄ푀ꢈ[ꢓ: ꢂ] is the decimal number of DCDIMx[3:0].  
ꢃꢄ푀ꢅꢆꢇꢈ[ꢉ: ꢂ] is the decimal number of DIMSETx[7:0].  
퐸ꢕ푇퐼푆퐸푇1 is the EXTISET1 pin voltage, 600 mV (Typ).  
퐸ꢕ푇퐼푆퐸푇1 is the Resistor for connecting the EXTISET1 pin  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
12/92  
BD18333EUV-M  
Absolute Maximum Ratings (Tj = 25 °C)  
Parameter  
Symbol  
VIN  
Rating  
Unit  
V
Power Supply Voltage  
EN Pin Voltage  
-0.2 to +42.0  
VEN  
-0.2 to VIN  
-0.2 to +42.0  
-0.2 to +4.5  
V
V
V
LED1 to LED24 Pin Voltage  
VREG3 Pin Voltage  
VLED1 to VLED24  
VVREG3  
VREG5, FAILB, RX, TX, PWMIN,  
PWMOUT, CS0, CS1, CS2, CS3,  
EXTISET1, EXTISET2 Pin Voltage  
VVREG5, VFAILB, VRX, VTX, VPWMIN, VPWMOUT, VCS0  
VCS1, VCS2, VCS3, VEXTISET1, VEXTISET2  
,
-0.2 to +7.0  
< VVREG5  
V
Storage Temperature Range  
Tstg  
-55 to +150  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HTSSOP-C48  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
71.20  
9.00  
28.30  
7.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air), using a BD18333EUV-M Chip.  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Bottom  
Copper Pattern  
Footprints and Traces  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connect with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
13/92  
BD18333EUV-M  
Recommended Operating Condition  
Parameter  
Symbol  
VIN  
Min  
4.5  
Typ  
Max  
40.0  
Unit  
V
Comment  
Power Supply Voltage(Note 1)  
Operating Temperature  
12.0  
-40  
1.0  
0.0  
56  
25  
4.7  
-
+125  
10.0  
0.1  
°C  
μF  
μF  
kΩ  
kΩ  
kΩ  
Hz  
Topr  
CVREG5  
CVREG3  
REXTISET1  
REXTISET2  
RFAILB  
The Capacitor  
for Connecting the VREG5 Pin  
The Capacitor  
for Connecting the VREG3 Pin(Note 2)  
The Resistor  
-
1200  
720  
220  
600  
for Connecting the EXTISET1 Pin  
The Resistor  
56  
-
for Connecting the EXTISET2 Pin  
The Resistor  
56  
100  
488  
for Connecting the FAILB Pin  
PWMIN Frequency  
fEXTCLK  
400  
Please connect to the  
PWMOUT pin of Leader  
device  
-
50  
-
%
PWMIN Duty  
DEXTCLK  
Note: Above operation range is referring to IC independently. Thorough verification of the coefficient setting in actual application shall be practiced.  
(Note 1) When IC is started, the volrage must be UVLO release voltage or more. Therefore, consider the power supply drop caused by the parasitic resistor.  
VIN (Min) = 4.5V is the minimum value that can operate the IC independently after started. The minimum value of power supply voltage that can be set  
depends on the voltage drop due to the parasitic resistor of power line.  
(Note 2) The VREG3 pin is designed to work with “Capacitor less” application for use Nano CapTM technology. When adding capacitor, it may affect noise.  
So please kindly consider noise reduction such as using a 2s2p PCB board and etc.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
14/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Electrical Characteristic  
(Unless otherwise specified : VIN = 13 V , Tj= -40 °C to +150 °C)  
Parameter  
[Device Overview]  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
VEN = High,  
24CH Current driver OFF  
Circuit Current  
ICC  
-
-
12.5  
7.0  
20.0  
15.0  
mA  
Standby Current  
ISTB  
μA  
VEN = Low  
[VREG5 Block]  
VREG5 Pin Output Voltage  
VVREG5  
ΔVVREG5  
IVREG5OCP  
4.5  
-
5.0  
5.5  
50  
-
V
IVREG5 = 0 mA  
IVREG5 = 5 mA  
VREG5 Pin  
Load Regulation Voltage  
-
-
mV  
mA  
VREG5 Pin Over Current Protection  
[VREG3 Block]  
60  
VREG3 Pin Output Voltage  
VVREG3  
ΔVVREG3  
IVREG3OCP  
3.1  
-
3.3  
3.5  
30  
-
V
IVREG3 = 0 mA  
IVREG3 = 5 mA  
VREG3 Pin  
Load Regulation Voltage  
-
-
mV  
mA  
VREG3 Pin Over Current Protection  
30  
[Constant Current Driver Block]  
RLED1  
RLED2  
-
-
-
-
6.5  
9.5  
Ω
Ω
Tj = 25 °C,  
LED Pin ON Resistance  
Tj = -40 °C to +150 °C,  
Tj = 25 °C,  
REXTISET1 = 120 kΩ,  
ISETSEL = 1,  
DCDIMx[3:0] = 0xFh,  
DIMSETx[7:0] = 0xFFh  
(x = 01 to 24)  
-3.5  
-
+3.5  
%
LED Pin Output Current  
Absolute Error 1  
(IOUT_AVE/IOUT_IDEAL - 1)  
ΔIOUTA1  
Tj = -40 °C to +150 °C,  
REXTISET1 = 120 kΩ,  
ISETSEL = 1,  
DCDIMx[3:0] = 0xFh,  
DIMSETx[7:0] = 0xFFh  
(x = 01 to 24)  
Tj = 25 °C,  
REXTISET1 = 120 kΩ,  
ISETSEL = 1,  
-5.5  
-4  
-
-
+5.5  
+4  
%
%
LED Pin Output Current  
Relative Error 1  
ΔIOUTR1  
(IOUTx/IOUT_AVE - 1)  
DIMSETx[7:0] = 0xFFh  
(x = 01 to 24)  
Tj = 25 °C  
REXTISET1 = 120 kΩ,  
ISETSEL = 0,  
DIMMODE = 0,  
DCDIMx[3:0] = 0x0h to 0xFh  
DIMSETx[7:0] = 0xFFh,  
(x = 01 to 24)  
IINL  
-1.5  
-1.5  
-
-
+1.5  
+1.5  
LSB  
LSB  
LED Pin Output Current  
DC Dimming Function  
Differential Nonlinearity  
(Note 1)  
IDNL  
PWM Frequency  
fPWM  
440  
488  
30  
535  
50  
Hz  
kΩ  
kΩ  
EXTISET1 Pin  
Short Circuit Protection Resistor  
REXTISET1_SCP  
REXTISET2_SCP  
-
-
EXTISET2 Pin  
Short Circuit Protection Resistor  
(Note 1) Guaranteed by design only  
30  
50  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
15/92  
BD18333EUV-M  
Electrical Characteristic - continued  
(Unless otherwise specified: VIN = 13 V , Tj= -40 °C to +150 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
[PROTECT LOGIC Block]  
VVREG5 falling detect  
threshold  
VREG5UVLO Detection Voltage  
VREG5UVLO Hysteresis Voltage  
VREG3UVLO Detection Voltage  
VREG3UVLO Hysteresis Voltage  
VINUVLO Detection Voltage  
VVREG5UVLO  
VVREG5UVHYS  
VVREG3UVLO  
VVREG3UVHYS  
VVINUVLO  
3.8  
-
4.0  
200  
2.7  
4.2  
-
V
mV  
V
VVREG3 falling detect  
threshold  
2.5  
-
2.9  
-
100  
4.0  
mV  
V
3.8  
-
4.2  
-
VVIN falling detect threshold  
VINUVLO Hysteresis Voltage  
[LED Abnormal Detection Block]  
LEDOPEN Detection Voltage  
VVINUVHYS  
200  
mV  
VLEDn falling detect threshold  
(n = 1 to 24)  
VLEDn rising detect threshold  
(n = 1 to 24)  
LEDSHx[7:0] = 0x21h  
(x = 01 to 24)  
VLEDOP  
VLEDSH  
VIN_DEN  
0.2  
1.8  
6.3  
0.3  
2.0  
7.0  
0.4  
2.2  
7.7  
V
V
V
SHORT Detection Voltage  
Diagnosis Enable VIN Voltage  
DENVOLT[3:0] = 0x7h  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
16/92  
BD18333EUV-M  
Electrical Characteristic - continued  
(Unless otherwise specified: VIN = 13 V, Tj = -40 °C to +150 °C)  
Parameter  
[EN Input Pin]  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
EN Pin Input Current  
IEN  
2.5  
5
-
10  
VIN  
μA  
V
VEN = 5.0 V  
0.75 x  
VVREG5  
EN Input Pin High Voltage  
VENH  
VENL  
0.2 x  
VVREG5  
EN Input Pin Low Voltage  
-0.2  
-
V
[LOGIC Input (CS0, CS1, CS2, CS3)]  
CSx Pin Output Current  
(x = 0,1,2,3)  
VCSx = 0.0 V  
ICSx  
-10  
-
-5  
-
-
μA  
2.5  
CSx Pin Setting Voltage  
[LOGIC Input (PWMIN)]  
PWMIN Pin Input Current  
VCSxSET  
V
IPWMIN  
VPWMINH  
VPWMINL  
20  
50  
-
100  
μA  
V
VPWMIN = 5.0 V  
0.75 x  
VVREG5  
VVREG5  
+ 0.2  
PWMIN Input Pin High Voltage  
0.2 x  
VVREG5  
PWMIN Input Pin Low Voltage  
[LOGIC Input (RX)]  
-0.2  
-
V
0.75 x  
VVREG5  
VVREG5  
+ 0.2  
RX Input Pin High Voltage  
VRXH  
VRXL  
-
-
V
V
0.2 x  
VVREG5  
RX Input Pin Low Voltage  
[LOGIC Output Block (PWMOUT)]  
Output High Voltage  
-0.2  
0.75 x  
VVREG5  
VVREG5  
+ 0.2  
VOUTH  
VOUTL  
-
-
V
V
IPWMOUT = -1 mA  
IPWMOUT = +1 mA  
Output Low Voltage  
-
0.2  
[LOGIC Output Block (TX) Block]  
Output High Voltage  
0.75 x  
VVREG5  
VVREG5  
+ 0.2  
VTXH  
VTXL  
-
-
V
V
ITX = -1 mA  
ITX = +1 mA  
0.2 x  
VVREG5  
Output Low Voltage  
-
[FAILB Output Block]  
FAILB Pin ON Resistance  
RFAILB  
0.30  
0.65  
1.00  
kΩ  
μA  
IFAILB = 1 mA  
VFAILB = 5.0 V  
FAILB Pin Leak Current  
ILEAKFAILB  
-
-
10  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
17/92  
BD18333EUV-M  
Typical Performance Curve  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C, CVREG5 = 4.7 µF)  
20.0  
14.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 10. Circuit Current vs Temperature  
Figure 11. Standby Current vs Temperature  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
3.5  
3.4  
3.3  
3.2  
3.1  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temepature [°C]  
Temperature [°C]  
.
Figure 12. VREG5 Pin Output Voltage vs Temperature  
Figure 13. VREG3 Pin Output Voltage vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
18/92  
BD18333EUV-M  
Typical Performance Curve - continued  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C , CVREG5 = 4.7 µF)  
63.50  
9.00  
62.50  
61.50  
60.50  
59.50  
58.50  
57.50  
56.50  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
ILED = 50 mA  
ILED = 100 mA  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 14. LED Pin Ron vs Temperature  
Figure 15. LED Pin Output Current vs Temperature  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
0
-50 -25  
0
25 50 75 100 125 150  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
DCDIM DAC [bit]  
Temperature [°C]  
Figure 16. LED Pin Output Current DC Dimming  
vs DCDIM DAC  
Figure 17. PWM Frequency vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
19/92  
BD18333EUV-M  
Functions of Logic Block  
1. UART Protocol and AC Electrical Characteristics  
This device has a UART Interface (Universal Asynchronous Receiver-Transmitter). This interface uses the RX (Receiver)  
and TX (Transmitter) pins for communication. The initial value of UART communication RX and TX is “High”. The format of  
a frame consists of 10-bit: start bit, 8-bit data and stop bit. Data is sent from LSB first to MSB last.  
For read command, MCU must synchronize each frame of UART start bit and strobe data at 50 % to provide enough margin  
to ensure successful communication.  
start bit  
"0"  
stop bit  
"1"  
data0  
data1 data2  
data3  
data4  
data5  
data6  
data7  
Figure 18. Data Format of a Frame  
start bit  
"0"  
stop bit  
"1"  
1
0
1
0
1
0
1
0
initialized format  
Figure 19. Clock Synchronization (SYNC)  
SYNC  
Dev,B,RW  
NumOfData  
Address  
Data1  
Datan  
CRCL  
CRCH  
RX  
TX  
Hi-z  
Figure 20. UART Protocol (WRITE)  
ND ND ND ND ND ND ND ND  
[0] [1] [2] [3] [4] [5] [6] [7]  
DA DA DA DA  
[0] [1] [2] [3]  
RW  
B
1
0
1
0
1
0
1
0
0
0
RX  
TX  
S
P
S
P
S
P
S:  
P:  
RW:  
B:  
start condition  
stop condition  
0: Write / 1: Read  
Broadcast  
Device Address[5:0]  
RW,DevAdd[2:0]  
clock synchronization  
(0x55)  
NumofData[7:0]  
DA[3:0]: Device Address  
ND[7:0]: Number Of Data  
AD[7:0]: Register Address  
DT[7:0]: Data  
Hi-z  
CR[15:0]: CRC16  
AD AD AD AD AD AD AD AD  
[0] [1] [2] [3] [4] [5] [6] [7]  
DT DT DT DT DT DT DT DT  
[0] [1] [2] [3] [4] [5] [6] [7]  
CR CR CR CR CR CR CR CR  
[0] [1] [2] [3] [4] [5] [6] [7]  
CR CR CR CR CR CR CR CR  
P
[8] [9] [10] [11] [12] [13] [14] [15]  
RX S  
TX  
P
S
P
S
P
S
Hi-z  
Figure 21. Detail of UART Protocol (WRITE)  
0.5 bit to 1.5 bit  
stop  
SYNC  
Dev,B,RW  
NumOfData  
Address  
CRCL  
CRCH  
RX  
TX  
start  
Hi-z  
Data1  
Datan  
CRCL  
CRCH  
Figure 22. UART Protocol (READ)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
20/92  
BD18333EUV-M  
Functions of Logic Block – continued  
2. UART AC Timing  
RX  
TX  
high Vth  
low Vth  
trx  
trxslew1  
trxslew2  
ttxwait  
ttxslew1  
ttxslew2  
ttx  
Figure 23. UART AC Timing  
tresetwait  
trxwait1  
trxwait2  
SWRST  
RX  
TX  
Write command (SWRST)  
to next write command  
Write command to  
next write command  
Read command to  
next write command  
Figure 24. UART Inter-command Timing  
Table 4. UART AC Characteristics  
Recommended Operation Condition (Unless otherwise specified, VIN =13 V ,Tj = -40 °C to +150 °C)  
Rating  
Parameter  
Symbol  
Unit  
Comments  
Min  
1.0  
1.0  
0.5  
-
Typ  
Max  
10.0  
RX transfer time  
trx  
-
μs  
μs  
bit  
μs  
μs  
μs  
μs  
TX transfer time  
ttx  
-
10.0  
TX output delay time  
ttxwait  
trxslew1  
trxslew2  
ttxslew1  
ttxslew2  
1.0  
1.5  
RX slew rate High to Low  
RX slew rate Low to High  
TX slew rate High to Low  
TX slew rate Low to High  
-
-
-
-
trx x 10 %  
trx x 10 %  
ttx x 10 %  
ttx x 10 %  
-
-
-
The time interval between  
continuous write commands.  
The time interval between read  
and write commands.  
The time required after the  
software reset write.  
RX to RX wait time  
trxwait1  
trxwait2  
2.0  
2.0  
100  
-
-
-
-
-
-
μs  
μs  
μs  
TX to RX wait time  
RX to RX wait after SWRST  
tresetwait  
(Output load capacitance15 pF)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
21/92  
BD18333EUV-M  
Functions of Logic Block – continued  
3
UART Protocol  
3.1 Initialize Format  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
0
1
0
1
0
1
0
1
This interface receives SYNC frame 0x55h (0b01010101) to calculate the baudrate of the incoming UART command.  
It generates internal sampling time based on the computed baudrate (1-bit period / 2). After receiving the SYNC frame,  
this interface expects succeeding frames have the same baudrate as that of the SYNC frame. If incorrect input timing  
occurred, it may trigger communication error.  
3.2  
Device Address, Broadcast, Read/Write  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
RW  
B
DA[5:0]  
bit  
Parameter  
Function  
We can set from “0b000000” to “0b001111”.  
DA[0] = CS0 setting  
DA[1] = CS1 setting  
DA[2] = CS2 setting  
DA[3] = CS3 setting  
DA[4] = 0  
DA[5:0]  
Device Address  
DA[5] = 0  
Note:  
1. When the CSx (x = 0 to 3) pin are OPEN, DA[5:0] = 0b000000.  
2. When the CSx pin short to GND, DA[n] is “High”, inverted operation. (n = 0 to 5)  
3. When the CSx pin set to over 4.5 V (Typ), DA[n] is “Low”, inverted operation.  
bit  
B
Parameter  
Broadcast  
Function  
0: Access the device that matched the device address  
1: Access all devices connected to the UART line.  
Note:  
1. Broadcast is not possible for Read access  
2. If B = 1, device address setting is ignored.  
bit  
Parameter  
Read/Write  
Function  
0: Write access  
1: Read access  
RW  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
22/92  
BD18333EUV-M  
3
UART Protocol – continued  
3.3  
Number of Data  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
NumOfData[7:0]  
bit  
Parameter  
Function  
NumOfData [7:0]  
Number of Data transferred  
Available to use from 1 to 27.  
Note:  
1. Available data buffer for multiple write access is 27 data.  
2. NumOfData = 0 is not valid.  
3. NumOfData > 27 is not valid.  
3.4  
Register Address  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
RegAddr [7:0]  
bit  
Parameter  
Function  
RegAddr [7:0]  
Register Address  
It is available to access from 0x00h to 0x5Eh.  
3.5  
Data  
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
Data [7:0]  
bit  
Parameter  
value  
Data [7:0]  
Data  
0x00h to 0xFFh.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
23/92  
BD18333EUV-M  
3
UART Protocol – continued  
3.6  
CRC  
16bit LSB First:  
Cyclic Redundancy Check (CRC)  
The CRC-16 is used to detect errors in the UART I/F Communication data.  
The data included for CRC computation are the following: Device address, Number of Data, Address Data, Write or  
Read Data.  
During write communication (both write and read command has write communication),  
The last 2 frames received in a write communication is a 16-bit CRC data that will be compared to the computed CRC.  
If CRC data is the same with the computed CRC, Register Map will be updated with all the written data.  
Else, All written data will be disregarded, CRC Status Register becomes High and FAILB output becomes “Low”.  
"
CRC Error is released after sending UART Write command with correct data (Matched CRC Calculation). UART Read  
command will not release CRC Error.  
CRC Polynomial:  
CRC Polynomial is expressed as  
CRC16-IBM  
x16+x15+x2+1  
Bit Order LSB First:  
The CRC calculation starts with LSB and proceeds from bit[0] to bit[7] of each byte.  
Figure 25. CRC Polynomial  
CRC Initial Setting:  
The initial value is “0x0000h”.  
The CRC calculate registers are reset to the initial value of “0x0000h” prior to each CRC bytes calculation.  
Example for  
RW,B,DA[5:0] NumofData[7:0]  
Address[7:0]  
Data[7:0]  
CRC Data[7:0] CRC Data[15:8]  
Figure 26. CRC Data Format  
RW,B,DA[5:0]:  
NumOfData[7:0]:  
Address[7:0]:  
Data[7:0]:  
CRC Data[7:0]:  
CRC Data[15:8]:  
DA[7:0] = 0x1Ah to  
ND[7:0] = 0x02h to  
AD[7:0] = 0xA5h to  
DT[7:0] = 0x5Ah to  
CR[7:0] = 0xBAh to  
CR[15:8] = 0xCDh to  
DA[0:7] = 0x58h  
ND[0:7] = 0x40h  
AD[0:7] = 0xA5h  
DT[0:7] = 0x5Ah  
CR[0:7] = 0xB3h  
CR[8:15] = 0x5Dh  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
24/92  
BD18333EUV-M  
3.6  
CRC - continued  
16 ꢙ ꢡ15 ꢙ ꢡ2 ꢙ ꢁ  
Initial Value: 0x0000  
LSB First  
Data  
0
0
0
1
1
0
1
1
1
1
1
0
0
0
1
1
0
1
1
1
2
0
0
1
1
1
0
1
0
0
3
0
0
0
1
1
1
0
1
0
4
0
0
0
0
1
1
1
0
1
5
0
0
0
0
0
1
1
1
0
6
0
0
0
0
0
0
1
1
1
7
0
0
0
0
0
0
0
1
1
8
0
0
0
0
0
0
0
0
1
9
0
0
0
0
0
0
0
0
0
10 11 12 13 14 15  
MSB first LSB first  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1A  
02  
A5  
5A  
58  
40  
A5  
5A  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
1
0
1
1
0
0
0
3
D
8
3
C
1
1
7
A
8
5
0
B
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
1
0
1
0
0
0
1
1
1
1
0
1
0
0
0
1
1
1
1
0
1
0
0
0
0
1
1
1
0
1
0
0
0
0
1
1
1
0
1
0
0
0
0
1
1
1
0
1
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
0
5
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
1
0
1
0
0
1
0
1
1
0
1
0
0
1
1
1
1
1
0
1
0
0
1
1
1
1
0
0
1
1
1
0
1
1
1
0
0
1
1
1
0
1
1
1
0
0
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
1
0
0
B
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
1
1
0
0
1
1
0
1
0
1
1
0
0
1
1
0
1
0
1
1
0
1
1
1
0
1
0
1
1
0
1
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
0
0
1
1
1
0
1
1
1
0
0
1
1
1
0
1
1
1
0
0
1
1
1
0
1
1
1
0
0
1
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
0
1
1
0
0
1
1
1
CRC:  
BACD  
D
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
25/92  
BD18333EUV-M  
3. UART Protocol - continued  
3.7  
Example of UART Protocol  
Single device, 1 byte Write (Write to Device #1)  
(CS3,CS2,CS1,CS0) =  
B =  
DevAddr[5:0] =  
NumOfData[7:0] =  
RW =  
“0101”  
0:  
0x05h:  
1:  
Target Device receives the data  
Target Device Address  
1 byte Write mode  
Write  
0:  
RegAddr[7:0] =  
Data[7:0] =  
0x02h:  
0xAAh: Data  
Address  
RX  
S
initialize (0x55)  
P
S
Device address  
(0x5)  
B
RW P  
S
NumOfData (0x1)  
P
S
Address (0x2)  
P
S
Data(0xAA)  
P
Figure 27. UART Protocol of the 1 byte Write to Device #1  
4. Communication Reset  
UART IF has a communication reset function. This function can be used to interrupt UART communication and return to idle  
condition. This function is triggered by setting RX to “High” for atleast 2.75 ms (Typ). This feature can be used to recover  
from communication. If Communication Reset is executed, it will not affect LED Dimming. When UART is in IDLE condition  
it does not detect Communication Reset.  
Communication Comm Reset  
Error  
UART recovered  
Can Write/Read  
RX  
TX  
UART State  
machine  
CRC Error  
Status  
FAILB  
output  
Succeeding UART commands malfunction  
due to Communication error  
Figure 28. Communication Reset  
5. Watchdog Timer (WDT)  
UART IF has a watchdog timer function. This function monitors the RX line for no UART access for 100 ms (Typ) and notifies  
via status register and FAILB output. This no UART access means no successful UART command (no CRC OK). This  
function is enabled by WDTEN (initial is “Low”) and the status can be checked in WDTERR Status register and can be  
observed in the FAILB pin output. When detected, it returns the UART state to idle condition and does not affect LED Dimming.  
Details of the operation is further discussed in Error Control and Error Sequence.  
When a device is connected in parallel and is not being accessed, it will not detect WDT  
UART commands  
stopped  
Watchdog timer  
100 ms  
UART  
(RX/TX)  
CRC OK  
WDTERR  
Error Status  
FAILB  
output  
Figure 29. Watchdog Timer  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
26/92  
BD18333EUV-M  
Functions of Logic Block – continued  
6. Register Map  
Each registers is updated at the 2 timings.  
Reset Condition: “UVLO” condition = VREG3UVLO, VREG5UVLO, VINUVLO, TSD or EN is detected.  
Register Update timing for control data:  
A. Updated to the newest data immediately when the data is written.  
B. Updated to the newest data when the next PWM (PWM is internal signal) timing after the data is written.  
MCU  
Analog Circuit  
Type A/Type B  
(DIMMODE = 1)  
UART  
Write  
Immediate  
(UARTwrite  
after CRC OK)  
Buffer 1  
Control Data  
UART  
Read  
Type B  
(DIMMODE = 0)  
(Base PWM  
timing)  
(PWM Gen  
Timing)  
UART  
PWMIN  
update  
Register Map  
(Update Timing A)  
update  
Buffer 1  
update  
Control Signal  
(Update Timing B)  
ILEDx (x = 1 to 24)  
(PWM output)  
Figure 30. UART Data Flow  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
27/92  
BD18333EUV-M  
6. Register Map – continued  
*Attention:  
Please don’t access (Write/Read) register except for following registers (0x00h to 0x5Eh) and write “0” in “-“.  
“RESERVED” Registers can be written/read. Do not update.  
Address 0x00h to 0x23h (1/3)  
Register  
Access  
Reset  
Condition  
update  
timing  
Register Name  
Address  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
initial  
comments  
UVLO or  
SWRST  
UVLO or  
SWRST  
2)  
1)  
2)  
1)  
PWMTIM(Note  
FAILBEN  
PWMPSYNC(Note  
PWMFSYNC(Note  
SWRST(Note  
SYNC  
0x00  
0x01  
PWMFSYNCSET  
FAILBCNT  
ISETSEL  
SLOPEEN  
DIMMODE  
DIMSTART  
R/W  
R/W  
0x00  
0x00  
Type A PWM phase syncronization and output  
PWM frequency synchronous setting and SSCG  
enable, FAILB control setting  
RESERVED  
SYNCSET[1:0]  
SYSSET1  
SYSSET2  
Type A  
UVLO or  
SWRST  
RESERVED  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x20  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Type A Reserved  
UVLO or  
SWRST  
Error mask for LED open/short, Error mask setting  
during softstart  
ERRMASK[3:0]  
RESERVED  
SYSSET3  
Type A  
UVLO or  
SWRST  
LEDEN[7:0]  
LEDENL  
Type A Channel enable for LED1 to LED8  
Type A Channel enable for LED9 to LED16  
Type A Channel enable for LED17 to LED24  
Type A Error status and flag latch setting  
UVLO or  
SWRST  
LEDEN[15:8]  
LEDENM  
UVLO or  
SWRST  
LEDEN[23:16]  
LEDENH  
UVLO or  
SWRST  
1)  
ERRCLR(Note  
SYSSET4  
-
-
ISETLAT  
AUTOOFF  
RESERVED  
CRCERLAT  
TSDWEN  
LSHLAT  
WDTEN  
LOPLAT  
LOPEN  
UVLO or  
SWRST  
error enable  
Type A  
CATHEN(Note  
1)  
SYSSET5  
-
RESERVED  
RESERVED  
LSHEN[7:0]  
CATHEN returns ‘0’ automatically  
UVLO or  
SWRST  
LEDSHENL  
Type A LED short enable  
UVLO or  
SWRST  
ISETSHCNT[1:0]  
LSHEN[11:8]  
LEDSHENH  
LEDSHTH0102  
LEDSHTH0304  
LEDSHTH0506  
LEDSHTH0708  
LEDSHTH0910  
LEDSHTH1112  
LEDSHTH1314  
LEDSHTH1516  
LEDSHTH1718  
LEDSHTH1920  
LEDSHTH2122  
-
-
Type A LED short enable, OCP current setting  
UVLO or  
SWRST  
LEDSHTH0102[7:0]  
LEDSHTH0304[7:0]  
LEDSHTH0506[7:0]  
LEDSHTH0708[7:0]  
LEDSHTH0910[7:0]  
LEDSHTH1112[7:0]  
LEDSHTH1314[7:0]  
LEDSHTH1516[7:0]  
LEDSHTH1718[7:0]  
LEDSHTH1920[7:0]  
LEDSHTH2122[7:0]  
LEDSHTH2324[7:0]  
Type A LED short detection voltage for LED1 and LED2  
Type A LED short detection voltage for LED3 and LED4  
Type A LED short detection voltage for LED5 and LED6  
Type A LED short detection voltage for LED7 and LED8  
Type A LED short detection voltage for LED9 and LED10  
Type A LED short detection voltage for LED11 and LED12  
Type A LED short detection voltage for LED13 and LED14  
Type A LED short detection voltage for LED15 and LED16  
Type A LED short detection voltage for LED17 and LED18  
Type A LED short detection voltage for LED19 and LED20  
Type A LED short detection voltage for LED21 and LED22  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
LEDSHTH2324  
DENVOLT  
0x16  
0x17  
0x18  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
Type A LED short detection voltage for LED23 and LED24  
Type A DEN threshold voltage  
UVLO or  
SWRST  
RESERVED  
PWMFREQ[1:0]  
DENVOLT[3:0]  
UVLO or  
SWRST  
PWMDLY0102  
PWMDLY02[3:0]  
PWMDLY04[3:0]  
PWMDLY06[3:0]  
PWMDLY08[3:0]  
PWMDLY10[3:0]  
PWMDLY12[3:0]  
PWMDLY14[3:0]  
PWMDLY16[3:0]  
PWMDLY18[3:0]  
PWMDLY20[3:0]  
PWMDLY22[3:0]  
PWMDLY24[3:0]  
PWMDLY01[3:0]  
Type A PWM delay setting for LED1 and LED2  
UVLO or  
SWRST  
PWMDLY0304  
PWMDLY0506  
PWMDLY0708  
PWMDLY0910  
PWMDLY1112  
PWMDLY1314  
PWMDLY1516  
PWMDLY1718  
PWMDLY1920  
PWMDLY2122  
PWMDLY2324  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
PWMDLY03[3:0]  
PWMDLY05[3:0]  
PWMDLY07[3:0]  
PWMDLY09[3:0]  
PWMDLY11[3:0]  
PWMDLY13[3:0]  
PWMDLY15[3:0]  
PWMDLY17[3:0]  
PWMDLY19[3:0]  
PWMDLY21[3:0]  
PWMDLY23[3:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Type A PWM delay setting for LED3 and LED4  
Type A PWM delay setting for LED5 and LED6  
Type A PWM delay setting for LED7 and LED8  
Type A PWM delay setting for LED9 and LED10  
Type A PWM delay setting for LED11 and LED12  
Type A PWM delay setting for LED13 and LED14  
Type A PWM delay setting for LED15 and LED16  
Type A PWM delay setting for LED17 and LED18  
Type A PWM delay setting for LED19 and LED20  
Type A PWM delay setting for LED21 and LED22  
Type A PWM delay setting for LED23 and LED24  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
UVLO or  
SWRST  
WO: Write Only, RO: Read Only, R/W: Read and Write  
(Note 1) PWMPSYNC,CATHEN, SWRST and ERRCLR are “write only”, and reset condition of SWRST is only “UVLO/TSD”  
(Note 2) PWMTIM and PWMFSYNC are read-only Registers  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
28/92  
BD18333EUV-M  
6. Register Map – continued  
Address 0x24h to 0x51h (2/3)  
Register  
Access  
Reset  
Condition  
update  
timing  
Register Name  
Address  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
initial  
comments  
UVLO or  
SWRST  
DC Dimming setting for LED1 and LED2 in PWM  
mode  
DCDIM0102  
DCDIM0304  
DCDIM0506  
DCDIM0708  
DCDIM0910  
DCDIM1112  
DCDIM1314  
DCDIM1516  
DCDIM1718  
DCDIM1920  
DCDIM2122  
DCDIM2324  
PWMOUTL  
PWMOUTM  
PWMOUTH  
DIMSET01  
DIMSET02  
DIMSET03  
DIMSET04  
DIMSET05  
DIMSET06  
DIMSET07  
DIMSET08  
DIMSET09  
DIMSET10  
DIMSET11  
DIMSET12  
DIMSET13  
DIMSET14  
DIMSET15  
DIMSET16  
DIMSET17  
DIMSET18  
DIMSET19  
DIMSET20  
DIMSET21  
DIMSET22  
DIMSET23  
DIMSET24  
LSHERRL  
LSHERRM  
LSHERRH  
LOPERRL  
LOPERRM  
LOPERRH  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
DCDIM02[3:0]  
DCDIM04[3:0]  
DCDIM06[3:0]  
DCDIM08[3:0]  
DCDIM10[3:0]  
DCDIM12[3:0]  
DCDIM14[3:0]  
DCDIM16[3:0]  
DCDIM18[3:0]  
DCDIM20[3:0]  
DCDIM22[3:0]  
DCDIM24[3:0]  
DCDIM01[3:0]  
DCDIM03[3:0]  
DCDIM05[3:0]  
DCDIM07[3:0]  
DCDIM09[3:0]  
DCDIM11[3:0]  
DCDIM13[3:0]  
DCDIM15[3:0]  
DCDIM17[3:0]  
DCDIM19[3:0]  
DCDIM21[3:0]  
DCDIM23[3:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
UVLO or  
SWRST  
DC Dimming setting for LED3 and LED4 in PWM  
mode  
UVLO or  
SWRST  
DC Dimming setting for LED5 and LED6 in PWM  
mode  
UVLO or  
SWRST  
DC Dimming setting for LED7 and LED8 in PWM  
mode  
UVLO or  
SWRST  
DC Dimming setting for LED9 and LED10 in PWM  
mode  
UVLO or  
SWRST  
DC Dimming setting for LED11 and LED12 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED13 and LED14 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED15 and LED16 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED17 and LED18 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED19 and LED20 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED21 and LED22 in  
PWM mode  
UVLO or  
SWRST  
DC Dimming setting for LED23 and LED24 in  
PWM mode  
UVLO or  
SWRST  
PWM output enable for LED1 to LED8 in PWM  
mode  
PWMOUTEN[7:0]  
UVLO or  
SWRST  
PWM output enable for LED9 to LED16 in PWM  
mode  
PWMOUTEN[15:8]  
PWMOUTEN[23:16]  
DIMSET01[7:0]  
DIMSET02[7:0]  
DIMSET03[7:0]  
DIMSET04[7:0]  
DIMSET05[7:0]  
DIMSET06[7:0]  
DIMSET07[7:0]  
DIMSET08[7:0]  
DIMSET09[7:0]  
DIMSET10[7:0]  
DIMSET11[7:0]  
DIMSET12[7:0]  
DIMSET13[7:0]  
DIMSET14[7:0]  
DIMSET15[7:0]  
DIMSET16[7:0]  
DIMSET17[7:0]  
DIMSET18[7:0]  
DIMSET19[7:0]  
DIMSET20[7:0]  
DIMSET21[7:0]  
DIMSET22[7:0]  
DIMSET23[7:0]  
DIMSET24[7:0]  
LSHERR[7:0]  
LSHERR[15:8]  
LSHERR[23:16]  
LOPERR[7:0]  
UVLO or  
SWRST  
PWM output enable for LED17 to LED24 in PWM  
mode  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED1  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED2  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED3  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED4  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED5  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED6  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED7  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED8  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED9  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED10  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED11  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED12  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED13  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED14  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED15  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED16  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED17  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED18  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED19  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED20  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED21  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED22  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED23  
UVLO or  
SWRST  
PWM On Duty in PWM mode or DC Dimming  
setting in DC mode for LED24  
UVLO or  
SWRST  
Type A status of "LED short error" for LED1 to LED8  
Type A status of "LED short error" for LED9 to LED16  
Type A status of "LED short error" for LED17 to LED24  
Type A status of "LED open error" for LED1 to LED8  
Type A status of "LED open error" for LED9 to LED16  
Type A status of "LED open error" for LED17 to LED24  
UVLO or  
SWRST  
RO  
UVLO or  
SWRST  
RO  
UVLO or  
SWRST  
RO  
UVLO or  
SWRST  
LOPERR[15:8]  
LOPERR[23:16]  
RO  
UVLO or  
SWRST  
RO  
UVLO or  
SWRST  
UVLO or TSD Error, CRC Error, WDT Error.  
Type A  
UVLOERR  
0x51  
ISETSHERR  
RESERVED  
RESERVED  
CATHERR  
TSDWERR  
WDTERR  
CRCERR  
UVLOTSDERR  
RO  
0x01  
Cathode short error, OCP Error status  
WO: Write Only, RO: Read Only, R/W: Read and Write  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
29/92  
BD18333EUV-M  
6. Register Map – continued  
Address 0x52h to 0x5Eh (3/3)  
Register  
Access  
Reset  
Condition  
update  
timing  
Register Name  
Address  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
initial  
comments  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED01 and LED02  
LHDTY0102  
LHDTY0304  
LHDTY0506  
LHDTY0708  
LHDTY0910  
LHDTY1112  
LHDTY1314  
LHDTY1516  
LHDTY1718  
LHDTY1920  
LHDTY2122  
LHDTY2324  
LIMPHOME  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
LHDTY02  
LHDTY04  
LHDTY06  
LHDTY08  
LHDTY10  
LHDTY12  
LHDTY14  
LHDTY16  
LHDTY18  
LHDTY20  
LHDTY22  
LHDTY24  
LHDTY01  
LHDTY03  
LHDTY05  
LHDTY07  
LHDTY09  
LHDTY11  
LHDTY13  
LHDTY15  
LHDTY17  
LHDTY19  
LHDTY21  
LHDTY23  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x03  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
Type A  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED03 and LED04  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED05 and LED06  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED07 and LED08  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED09 and LED10  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED11 and LED12  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED13 and LED14  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED15 and LED16  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED17 and LED18  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED19 and LED20  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED21 and LED22  
UVLO or  
SWRST  
Duty Setting of PWM for Stand Alone Mode for  
LED23 and LED24  
UVLO or  
SWRST  
LEXTISET2SEL  
LIMPHEN  
Type A LIMPHOME setting  
-
-
-
-
-
-
WO: Write Only, RO: Read Only, R/W: Read and Write  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
30/92  
BD18333EUV-M  
Description of Registers  
Address 0x00h : SYNC  
Setting of PWM phase synchronized for all device[Write]  
initial value 0x00h  
bit No  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
Name PWMFSYNCSET  
PWMTIM ISETSEL SLOPEEN  
DIMMODE  
PWMPSYNC  
DIMSTART  
SWRST  
Initial  
value  
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
These registers return to “0” automatically (PWMPSYNC and SWRST).  
bit[7]  
PWMFSYNCSET  
This register is controls the PWM Synchronization rate.  
Please set this register in initial setting.  
Table 5. PWMFSYNCSET Setting  
PWMFSYNCSET  
PWM Synchronization  
0
1
Fast Synchronization of internal clock  
Slow Synchronization of internal clock  
Legend:  
10 ms (Max)  
20 ms (Max)  
Target Frequency  
Slave frequency(PWMFSYNCSET = H "Slow")  
Slave frequency(PWMFSYNCSET = L "Fast")  
Time  
Figure 31. PWM Synchronization Time Image  
PWMFSYNCSET register setting is operated only when the IC is Follower mode (SYNCSET = 10b or 11b). In worst condition for  
Leader (min frequency) to Follower (max frequency) or vice versa, the IC can synchronize after 10 ms (Max) for PWMFSYNCSET  
= L and 20 ms (Max) for PWMFSYNCSET = H. This wait time is valid when there is no UART communication while synchronizing,  
because UART commands pause clock synchronization for successful writing.  
bit[6]  
PWMTIM  
This register is controlled as following figure. This register is read-only.  
488 Hz (2.049 ms)  
PWM signal  
25 % duty  
(around 500 μs)  
PWMTIM  
Figure 32. PWMTIM Image  
This function can be used for synchronizing MCU (sending UART) and Device (LED Dimming).  
MCU executes register polling to PWMTIM register continuously until PWMTIM is High is detected and then it will send succeeding  
UART commands for LED Dimming for maximum of 16 devices. The number of devices that can be updated per successful  
register poll is dependent on PWMFREQ register setting.  
Consider the example in Figure 33 and Figure 34.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
31/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Registers - continued  
CASE1: PWMFREQ = 0h (488 Hz), Around 2000 μs period, UART Baudrate = 1 Mbps, Max data per UART transaction is 27.  
MCU wants to send data during 1 PWM cycle.  
Total duration is 300 μs per UART transaction  
(2000 μs to 500 μs (polling time)) / 300 μs = 4 to 5 devices (considering tolerance)  
For High Sampling,  
Internal PWM  
PWMFREQ "00" (488 Hz)  
Register  
DIMSTART "High"  
Register  
PWMTIM  
UART  
R
R
R
R
R
WtoD1 WtoD2 WtoD3 WtoD4  
R
R
WtoD1 WtoD2 WtoD3 WtoD4  
Figure 33. High Sampling UART Access Using PWMTIM Register  
For Low Sampling,  
Internal PWM  
PWMTIM  
UART  
R
R
R
WtoD1 WtoD2 WtoD3 WtoD4  
Figure 34. Low Sampling UART Access Using PWMTIM Register  
Where:  
R – Read Command for PWMTIM  
WtoDn – Write to Device (n = device number)  
For the number of devices that can be written based on the PWMFREQ setting, please refer to the table below.  
This is considered at typical operating frequency 18 MHz (Typ) and 1 Mbps baudrate for UART.  
Table 6. PWM Frequency Setting  
Number of devices can  
PWMFREQ  
PWM frequency (Hz)  
be accessed  
0
1
2
3
488  
976  
1952  
3904  
4 to 5  
2 to 3  
1
Cannot be used  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
32/92  
BD18333EUV-M  
Description of Registers - continued  
bit[5]  
ISETSEL  
Please set this register in initial setting.  
Table 7. LED Current Setting  
ISETSEL  
0
LED Current setting  
LED current is controlled by internal circuit.  
ISET Short (ISETSHERR) protection detection is  
disabled.  
LED current is controlled by a resistor in the EXTISET1  
pin. EXTISET1 Short (ISETSHERR) protection  
detection is enabled. This register setting does not  
release the protection status when it is already  
detected.  
1
bit[4]  
SLOPEEN  
Slope enable setting for DC Dimming Mode.  
Please set this register in initial setting.  
Table 8. SLOPE Setting for DC Dimming  
SLOPEEN  
Slope setting  
Disabled  
Enabled  
0
1
SLOPEEN function is available only in DC Dimming mode (DIMMODE = 1).  
For SLOPEEN = 0,  
UART  
DIMSET01  
ILED01  
n
m
ILED_Max * (n + 1) / 256  
ILED_Max * (m + 1) / 256  
Figure 35. DC Dimming When SLOPEEN “Disabled”  
For SLOPEEN = 1,  
UART  
DIMSET01  
n
m
ILED_Max * (n + 1) / 256  
ILED_Max * (m + 1) / 256  
PWM Freq = 488 Hz  
ILED_Max = 60 mA  
Slope (Typ) :  
± 5 mA / 8 μs  
ILED01  
4.92 mA (Typ)  
= (60 mA / 256) * 21  
8 μs (Typ)  
UART  
DIMSET01  
n
m
ILED_Max * (n + 1) / 256  
ILED_Max * (m + 1) / 256  
PWM Freq = 1952 Hz  
ILED_Max = 60 mA  
Slope (Typ) :  
± 20 mA / 8 μs  
ILED01  
4.92 mA (Typ)  
= (60 mA / 256) * 21  
2 μs (Typ)  
Figure 36. DC Dimming When SLOPEEN “Enabled”  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
33/92  
BD18333EUV-M  
Description of Registers - continued  
bit[3]  
DIMMODE  
Dimming mode select setting  
Table 9. DIMMODE Select Setting  
Normal Dimming  
LIMPHOME Mode  
DIMMODE  
Dimming mode  
PWM duty for  
each channel  
DC current for  
each channel  
PWM duty for  
each channel  
DC current for  
each channel  
0
1
PWM dimming mode DIMSETx register  
DC dimming mode 100 % fixed  
DCDIMx register  
DIMSETx register  
LHDTYx register  
DCDIMx register  
LHDTYx register  
Please refer to DCDIMx, DIMSETx and LHDTYx for description of register. (x = 01 to 24)  
bit[2]  
PWMPSYNC  
PWM phase synchronous setting  
Table 10. PWMPSYNC Setting  
PWMPSYNC  
Counter for PWM Generator  
Not synchronize  
0
Synchronize phase of PWM  
counter by this register setting  
1
This function synchronizes the phase of the PWM output between multiple devices. When this function is used in a single device,  
it will initialize the phase of the PWM output based on the UART access time. Please send PWMPSYNC when clock is already  
synchronized (PWMFSYNC = 0).  
PWMPSYNC = 1  
UART  
Device 1  
LED1  
Device 2  
LED1  
Enlarged  
SYNC  
Device 1  
counter  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
LED1  
Device 2  
counter  
0xBC  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
LED1  
Figure 37. SYNC Register Setting Function  
Dimming start setting  
bit[1]  
DIMSTART  
Table 11. DIMSTART Setting  
DIMSTART  
0
PWM Generator for LED dimming  
OFF  
Start the operation of DC/DC and  
Current Driver.  
1
bit[0]  
SWRST  
Software reset setting  
Please set this register when you want to reset digital circuit.  
Table 12. SWRST Description  
SWRST  
0
Reset  
Normal  
Synchronous reset for digital circuit  
(Automatically returns to “0” )  
1
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
34/92  
BD18333EUV-M  
Description of Registers - continued  
Address 0x01h: SYSSET1  
system setting1  
[Read/Write]  
initial value 0x00h  
bit[1] bit[0]  
SYNCSET[1:0]  
bit No  
Name  
bit[7]  
FAILBCNT  
0
bit[6]  
FAILBEN  
0
bit[5]  
bit[4]  
RESERVED  
0
bit[3]  
0
bit[2]  
PWMFSYNC  
0
Initial value  
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit[7]  
bit[6]  
FAILBCNT  
FAILBEN  
Please set this register in initial setting.  
Table 13. FAILBEN and FAILBCNT Description  
FAILBEN  
Operation  
0
1
FAILB output is controlled by error status.  
FAILB output is controlled by FAILBCNT.  
FAILB  
All error signal  
FAILBCNT register  
FAILBEN register  
0
1
Figure 38. FAILB Controlled Circuit Image  
bit[5:3]  
RESERVED  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
35/92  
BD18333EUV-M  
Description of Registers - continued  
bit[2]  
PWMFSYNC  
This is a read-only register. When device is set as Follower (SYNCSET = 10b or 11b) it monitors if the internal  
clock of the Follower device is synchronized to the Leader device. It synchronizes internal clock using the  
PWMIN input from Leader device. When PWMIN input clock is stable and no UART communication during  
synchronization, Follower device can synchronize around 10 ms (Max) for PWMFSYNC = “Low” and 20 ms  
(Max) for PWMFSYNC = “High”. In the event that PWMIN frequency changes, PWMFSYNC becomes High  
until stable condition is achieved.  
When device is set as Leader, this register is fixed to “0”. When device is set as Follower and there is no  
PWMIN input, this register is “High” until PWMIN input is present and clock is synchronized.  
Table 14. PWMFSYNC Description  
PWMFSYNC  
Operation  
Internal clock is stable  
Internal clock is not stable  
0
1
#DUT1  
BD18333  
24ch  
Linear  
Driver  
PWMIN PWMOUT  
RingOSC  
SYNCSET="00"  
Figure 39. SYNCSET setting for Stand Alone  
#DUT1  
#DUT2  
#DUT3  
#DUT4  
BD18333  
BD18333  
BD18333  
BD18333  
24ch  
Linear  
Driver  
24ch  
Linear  
Driver  
24ch  
Linear  
Driver  
24ch  
Linear  
Driver  
PWMIN PWMOUT  
PWMIN  
PWMIN PWMOUT  
PWMIN PWMOUT  
PWMOUT  
RingOSC  
RingOSC  
RingOSC  
RingOSC  
SYNCSET="01"  
SYNCSET="11"  
SYNCSET="11"  
SYNCSET="10"  
Figure 40. SYNCSET setting for multiple connection  
bit[1:0]  
SYNCSET  
Use this register to select if device is Stand Alone, Leader or Follower.  
Please set this register in initial setting.  
Table 15. PWMIN/PWMOUT Setting  
PWM  
SYNCSET[1:0] PWMIN Port  
PWMOUT Port  
Comment  
adjusting  
00  
01  
10  
11  
Disable  
Disable  
Enable  
Enable  
Disable  
Disable  
Stand Alone  
Leader device  
(Output PWM frequency from the  
PWMOUT pin)  
Enable  
(PWM output)  
Disable  
Enable  
Enable  
Disable  
Follower device  
Follower device  
(Output PWM frequency from the  
PWMOUT pin)  
Enable  
(PWM output)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
36/92  
BD18333EUV-M  
Description of Registers - continued  
Address 0x03h: SYSSET3  
system setting3  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
ERRMASK[3:0]  
0
bit[5]  
bit[4]  
0
bit[3]  
0
bit[2]  
bit[1]  
bit[0]  
RESERVED  
0
0
0
0
0
Update: Immediately  
bit [7:4] ERRMASK  
Configurable mask time for “LED open protection”. If the protection detection time is more than this value,  
the corresponding protection is detected. Protection is detected in status register and FAILB output after 1  
or 2 clock (1.125 MHz) cycles. Please set this register in initial setting.  
Table 16. ERRMASK Setting  
ERRMASK[3:0]  
0x0h to 0x1h  
0x2h  
Mask time [μs]  
1.8  
3.6  
0x3h  
5.3  
0x4h  
7.1  
0x5h  
8.9  
0x6h  
0x7h  
0x8h  
0x9h  
0xAh  
0xBh  
0xCh  
0xDh  
10.7  
12.4  
14.2  
16.0  
17.8  
19.6  
21.3  
23.1  
24.9  
26.7  
0xEh  
0xFh  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
37/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x04h: LEDENL  
LED channel enable1  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
0
bit[2]  
bit[1]  
bit[0]  
LEDEN[7:0]  
0
0
0
0
0
0
0
Update: immediately  
Address 0x05h: LEDENM  
LED channel enable2  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
0
bit[3]  
LEDEN[15:8]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
0
Update: immediately  
Address 0x06h: LEDENH  
LED channel enable3  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
LEDEN[23:16]  
0
bit[3]  
0
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
Update: immediately  
These data in register is updated to the newest data immediately when the new data is written.  
This registers control enable/disable each LED channel. For enable control, the LED Channel outputs according to the setting of  
PWM Duty Setting. For disable control, LED Channel output is OFF regardless of the PWM Duty Setting, protection and DC/DC  
feedback is disabled for the controlled channel.  
Table 17. LED Channel Enable Setting (x = 0 to 23)  
LEDEN[x]  
Operation  
0
1
“LEDx+1” is disabled.  
“LEDx+1” is enabled.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
38/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x07h: SYSSET4  
system setting4  
[Read/Write]  
bit[2]  
CRCERLAT  
0
initial value 0x00h  
bit No  
Name  
bit[7]  
-
bit[6]  
ISETLAT  
0
bit[5]  
bit[4]  
bit[3]  
RESERVED  
0
bit[1]  
bit[0]  
LOPLAT  
0
AUTOOFF ERRCLR  
LSHLAT  
0
Initial value  
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit[6]  
ISETLAT  
Please set this register in initial setting.  
Table 18. ISETLAT Setting  
Operation  
Normal (Auto-release)  
ISETLAT  
0
Enable latch condition for the EXTISET1 pin  
and the EXTISET2 pin short detection.  
Outputs based on ISETSHCNT[1:0] setting are  
latched until writing ERRCLR = 1. Please refer  
detailed information on ISETCNT register  
description.  
1
bit[5]  
AUTOOFF  
Please set this register in initial setting.  
Table 19. AUTOOFF Setting  
operation  
Normal  
AUTOOFF  
0
Target channel is disabled automatically when  
“LED open error” is detected.  
1
bit[4]  
ERRCLR  
Table 20. ERRCLR Setting  
operation  
ERRCLR  
0
Normal  
This register clears error status registers the  
EXTISET1 pin and the EXTISET2 pin short detection  
(ISETSHERR when ISETLAT = H), LED open  
protection (LOPERR when LOPLAT = H), UART CRC  
error (CRCERR when CRCERLAT = H), UVLO  
protection (UVLOTSDERR), Cathode short protection  
(CATHERR) and UART WDT protection (WDTERR).  
This register returns to “0” automatically.  
1
bit[3]  
bit[2]  
RESERVED  
CRCERLAT  
Please set this register in initial setting.  
Table 21. CRCERLAT Setting  
operation  
Normal (Auto-release)  
CRCERLAT  
0
Enable latch condition for UART CRC  
detection. This setting latches detection in the  
FAILB pin output “Low” and “CRC error”  
status register (CRCERR) until writing “1” in  
ERRCLR register.  
1
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
39/92  
BD18333EUV-M  
Description of Registers – continued  
bit[1]  
LSHLAT  
Please set this register in initial setting.  
Table 22. LSHLAT Setting  
AUTOOFF  
0
LSHLAT  
0
LED Channel Control  
Operation  
FAILB output (Low) and “LED short  
error” status register (LSHERR[x])  
returns to normal condition after  
error isreleased.  
Must set register LEDEN[x] = 0 via  
UART to disable target channel  
0
1
1
*
FAILB output (Low) and “LED short  
error” status register (LSHERR[x])  
are latched until writing ‘1’ in  
ERRCLR register.  
LEDEN[x] = 0 automatically after  
detection  
x: error channel number -1  
bit[0]  
LOPLAT  
Please set this register in initial setting.  
Table 23. LOPLAT Setting  
AUTOOFF  
0
LOPLAT  
0
LED Channel Control  
Operation  
Normal (auto-release)  
Enable latch condition for LED  
Open detection. This setting latches  
the detection in the FAILB pin  
output “Low” and “LED open error”  
status register (LOPERR[x]) are  
latched until writing “1” in ERRCLR  
register.  
The FAILB pin output and LOPERR  
status register is released  
automatically with LED Channel  
disable.  
Must set register LEDEN[x] = 0 via  
UART to disable target channel  
0
1
1
*
LEDEN[x] = 0 automatically after  
detection  
x: error channel number -1  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
40/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x08h: SYSSET5  
ERROR output mask setting register  
[Read/Write]  
bit[2]  
initial value 0x00h  
bit No  
Name  
Initial  
value  
bit[7]  
-
bit[6]  
-
bit[5]  
bit[4]  
bit[3]  
CATHEN  
bit[1]  
bit[0]  
RESERVED RESERVED  
TSDWEN  
WDTEN  
LOPEN  
0
0
0
0
0
0
0
0
Update: immediately  
These data in register is updated to the newest data immediately when the new data is written.  
CATHEN returns “0” automatically.  
Bit[5:4]  
Bit[3]  
RESERVED  
CATHEN  
Please set this register in initial setting.  
Table 24. CATHEN Register  
CATHEN  
0
Operation  
Cathode short protection is disabled.  
Cathode short protection is enabled. Enable  
this function at initialization and the device  
monitors “Cathode short error” after 10 ms. If it  
detects the error, it sets CATHERR status  
register and the FAILB pin output “Low”. This  
register automatically returns “0” after  
monitoring. CATHERR status register is  
latched automatically. When CATHEN = 1,  
“LED open protection” is disabled.  
1
Bit[2]  
TSDWEN  
Please set this register in initial setting.  
Table 25. TSDWEN Register  
TSDWEN  
0
Operation  
TSD Warning protection is disabled.  
TSD Warning protection is enabled. If it  
detects error, It sets TSDW status register and  
the FAILB pin output “Low”. This register  
setting does not release the protection status  
when it is already detected.  
1
bit[1]  
WDTEN  
Please set this register in initial setting.  
Table 26. WDTEN Register  
WDTEN  
0
operation  
Watch Dog Timer for UART is disabled.  
Watch Dog Timer for UART is enabled. If it  
detects disconnection over 100 ms (Typ), It  
sets WDTERR status register and the FAILB  
pin output “Low”. This register setting does not  
release the protection status when it is already  
detected.  
1
bit[0]  
LOPEN  
Please set this register in initial setting.  
Table 27. LOPEN Register  
LOPEN  
0
operation  
LED open protection is disabled.  
LED open protection is enabled. If it detects  
error, It sets LOPERR status register and the  
FAILB pin output “Low”. This register setting  
does not release the protection status when it  
is already detected.  
1
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
41/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x09h: LEDSHENL ERROR output mask time setting register  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
LSHEN[7:0]  
Initial value  
0
0
0
0
0
0
0
0
Update: immediately  
Address 0x0Ah: LEDSHENH ERROR output mask time setting register  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
bit[7]  
-
bit[6]  
-
bit[5]  
ISETSHCNT[1:0]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
LSHEN[11:8]  
Initial value  
0
0
0
0
0
0
0
0
Update: immediately  
These registers are updated to the newest data immediately when the new data is written.  
Addr 0x09h bit[7:0], Addr 0x0Ah bit[3:0] LSHEN[11:0]  
This register control “LED short error” protection. This register is assigned each 2 channel.  
This only affect protection detection and will not release the protection when already detected. This is for  
latch conditions.  
Table 28. LSHEN Enable Setting  
LSHEN[n]  
n=0  
Operation  
LED1 and LED2 channel short protection enable  
LED3 and LED4 channel short protection enable  
LED5 and LED6 channel short protection enable  
LED7 and LED8 channel short protection enable  
LED9 and LED10 channel short protection enable  
LED11 and LED12 channel short protection enable  
LED13 and LED14 channel short protection enable  
LED15 and LED16 channel short protection enable  
LED17 and LED18 channel short protection enable  
LED19 and LED20 channel short protection enable  
LED21 and LED22 channel short protection enable  
LED23 and LED24 channel short protection enable  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10  
n=11  
Table 29. LSHEN Register (n = 0 to 11)  
Operation  
LSHEN[n]  
0
1
LED Short protection is disabled for LEDn  
LED Short protection is enabled for LEDn  
Addr 0x0Ah bit[5:4] ISETSHCNT[1:0]  
This register is the output control setting for ISETSH1 and ISETSH2 detection. Please set this register in  
initial setting.  
Table 30. ISETSHCNT Register Setting  
ISETSEL  
Register  
ISETSHCNT  
Register  
Status  
register  
EXTISET1 Selector  
(ISETSEL)  
Internal ISET  
EXTISET2 Selector  
(LEXTISET2SEL)  
FAILB  
LEDEN  
0
1
1
1
1
-
-
-
0
1
2
3
H
H
H
L
L
L
-
L
-
-
-
L(Note 2)  
L(Note 1)  
Not used  
This table shows the state of the outputs when EXTISET1 and EXTISET 2 short is detected. "-" not affected  
(Note 1) When detected, output state is latched until ERRCLR is sent. This function is not dependent on ISETLAT setting.  
For Latch function via ISETLAT setting, output conditions corresponding to ISETSHCNT setting are latched when protection is detected. Latched condition  
is cleared by system reset or sending ERRCLR.  
(Note 2) When IC is at LIMPHOME mode and ISET Short is detected, change ISET selector from external (EXTISET1/EXTISET2) to internal. This function is not  
dependent on ISETLAT setting. Latched condition is cleared by system reset or sending ERRCLR.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
42/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Registers – continued  
Address 0x0B: LEDSHTH0102  
LED Short Detection Voltage for LED1 and LED2 [Read / Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
0
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
LEDSHTH0102[7:0]  
0
0
0
0
0
0
0
Update:immediately  
These register data in updated to the newest data immediately when the new data is written.  
Please set this register in initial setting.  
Table 31. LED Short Detection Voltage  
LEDSHTH0102  
Detection voltage (VLEDSH) [V]  
0 to 15  
16  
0.93  
1.00  
17  
1.05  
-
-
n
(15 / 256) x (n + 1)  
-
-
251  
252  
253  
254  
255  
14.77  
14.82  
14.88  
14.94  
15.00  
LEDx  
Current  
Driver  
125 mA (Max)  
LGND  
FAILB  
LED Short  
Control  
Logic  
FAIL  
VLEDSH  
LED OPEN  
0.3 V  
Figure 41. LED Pin Protection Circuit Image  
Address 0x0C to 0x16: LEDSHTHx (x = 0304 to 2324)  
This register is used to make LED Short detection voltage setting for LED3 to LED24. The setting procedure is the same as  
that for LED1 with Address set to 0x0B.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
43/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x17h: DENVOLT  
DEN Threshold voltage setting register  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
PWMFREQ[1:0]  
0
bit[4]  
bit[3]  
0
bit[2]  
DENVOLT[3:0]  
0
bit[1]  
bit[0]  
RESERVED  
0
0
0
0
0
Update: immediately  
These data in register is updated to the newest data immediately when the new data is written.  
bit[7:0]  
bit[5:4]  
RESERVED  
PWMFREQ[1:0]  
This register setting determines the LED output frequency.  
This setting is also applicable to PWMTIM.  
Table 32. PWM Frequency Setting  
PWMFREQ[1:0]  
0x0h  
LED PWM Dimming Frequency(Note 1)  
488 Hz (Typ)  
976 Hz (Typ)  
1952 Hz (Typ)  
3904 Hz (Typ)  
0x1h  
0x2h  
0x3h  
(Note 1) The frequency indicated above is based on 18 MHz (Typ) system clock. It may vary depending on internal clock frequency.  
bit[3:0]  
DENVOLT[3:0]  
When VIN < VIN_DEN , IC cannot detect LED open detection (LEDOP).  
VIN_DEN can be defined by setting register and set by the following table.  
Table 33. DENVOLT Register  
VIN_DEN detection  
DENVOLT[3:0]  
voltage [V]  
0x0h  
0x1h  
0x2h  
0x3h  
0x4h  
0x5h  
0x6h  
0x7h  
0x8h  
0x9h  
0xAh  
0xBh  
0xCh  
0xDh  
0xEh  
0xFh  
4.5  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
44/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x18h: PWMDLY0102  
PWM delay setting  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
0
bit[4]  
bit[3]  
0
bit[2]  
bit[1]  
bit[0]  
PWMDLY02  
PWMDLY01  
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
Please set this register in initial setting.  
This register is used to set phase shift/delay width for PWM light modulation in a total of 4-bit.  
Table 34. PWMDLY Register  
PWMDLY01[3:0]  
LED Delay Width [µs]  
PWMDLY02[3:0]  
0x0h  
0x1h  
0x2h  
0x3h  
0x4h  
0x5h  
0x6h  
0x7h  
0x8h  
0x9h  
0xAh  
0xBh  
0xCh  
0xDh  
0xEh  
0xFh  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104  
112  
120  
128  
136  
144  
Address 0x19h to 0x23h: PWMDLYx (x = 0304 to 2324)  
This register is used make setting for PWM delay width setting for LED3 to LED24. The setting procedure is the same as that for  
LED1 with Address set to 0x18h.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
45/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Registers – continued  
Address 0x24h: DCDIM0102  
DC Current Setting for CH1,2  
[Read/Write]  
initial value 0xFFh  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
DCDIM02[3:0]  
1
bit[5]  
bit[4]  
bit[3]  
1
bit[2]  
DCDIM01[3:0]  
1
bit[1]  
bit[0]  
1
1
1
1
1
Update: immediately  
The data in register is updated to the newest data immediately when the new data is written.  
Please set this register in initial setting.  
Table 35. DCDIM Register  
DCDIM01[3:0]  
DCDIM02[3:0]  
LED current setting [mA]  
0x0h  
0x1h  
0x2h  
0x3h  
0x4h  
0x5h  
0x6h  
0x7h  
0x8h  
0x9h  
0xAh  
0xBh  
0xCh  
0xDh  
0xEh  
0xFh  
3.75  
7.50  
11.25  
15.00  
18.75  
22.50  
26.25  
30.00  
33.75  
37.50  
41.25  
45.00  
48.75  
52.50  
56.25  
60.00  
Address 0x25h to 0x2Fh: DCDIMx (x = 0304 to 2324)  
This register is used to make DC current setting for LED3 to LED24. The setting procedure is the same as that for LED1 with  
Address set to 0x24h.  
The data in register is updated to the newest data immediately when the new data is written.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
46/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Registers – continued  
Address 0x30h: PWMOUTL  
PWM output enable setting 1  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
PWMOUTEN[7:0]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
Initial value  
0
0
0
0
0
0
0
0
Update: PWM  
Address 0x31h: PWMOUTM  
PWM output enable setting 2  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
0
bit[5]  
bit[4]  
PWMOUTEN[15:8]  
0
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
Update: PWM  
Address 0x32h: PWMOUTH  
PWM output enable setting 3  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
0
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
PWMOUTEN[23:16]  
0
0
0
0
0
0
0
Update: PWM  
Address 0x33h: DIMSET01  
PWM duty or DC dimming setting for LED1  
[Read/Write]  
initial value 0x00h  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
DIMSET01[7:0]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
Initial value  
0
0
0
0
0
0
0
0
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
This register is used to make setting of pulse duty for PWM light modulation in a total of 8-bits in PWM dimming mode.  
Table 36. DIMSET Register  
DIMMODE  
PWMOUTEN[0]  
0
DIMSET01[7:0]  
0x00h to 0xFFh  
0x00h  
PWM Duty  
0.0 %  
0.4 %  
DC current  
0x01h  
0.8 %  
0x02h  
0x03h  
-
xx  
-
1.2 %  
1.6 %  
-
DCDIM01[3:0] register  
setting  
0
1
(xx + 1) / 256  
-
0xFEh  
99.6 %  
Normally set to  
High (Duty 100 %)  
0 %  
0xFFh  
0
1
0x00h to 0xFFh  
0.23 mA  
0.23 mA  
0.47 mA  
0.70 mA  
0.94 mA  
-
0x00h  
0x01h  
0x02h  
0x03h  
-
1
100 %  
xx  
-
(xx + 1) / 256 x 60 mA  
-
0xFEh  
0xFFh  
59.77 mA  
60.00 mA  
Address 0x34h to 0x4Ah: DIMSETx (x = 02 to 24)  
This register is used to make setting of PWM pulse width for LED2 to LED24. The setting procedure is the same as that for LED1  
with Address set to 0x33h.  
www.rohm.com  
TSZ02201-0T1T0B300440-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
47/92  
TSZ22111 • 15 • 001  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Description of Registers – continued  
Address 0x4B: LSHERRL  
LED1 to LED8 pin short error status  
[Read]  
bit[2]  
initial value 0x00h  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
0
bit[1]  
bit[0]  
0
LSHERR[7:0]  
Initial value  
0
0
0
0
0
0
Update:  
-
Address 0x4C: LSHERRM  
LED9 to LED16 pin short errors status  
[Read]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
LSHERR[15:8]  
0
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
0
Update:  
-
Address 0x4D: LSHERRH  
LED17 to LED24 pin short error status  
[Read]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
LSHERR[23:16]  
0
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
0
Update:  
-
The register data is updated to the newest data immediately when the data (“LED short error”) is detected.  
Table 37. LED Short Error Status (n = 1 to 24)  
LSHERR[n-1]  
status  
0
1
Normal  
Detect error(Note 1)  
(Note 1) How to return “0” for status register.  
AUTOOFF = 0, LSHLAT = 0 : (n = 1 to 24)  
Please set LEDEN[n-1] = 0 or PWMOUTEN[n-1] = 0 to release error channel and status register.  
AUTOOFF = 0, LSHLAT = 1 : (n = 1 to 24)  
Please set LEDEN[n-1] = 0 or PWMOUTEN[n-1] = 0 to release error channel.  
Please set ERRCLR = 1 to clear status register  
AUTOOFF = 1, LSHLAT = 0/1 : (n = 1 to 24)  
Please set ERRCLR = 1 to clear status register  
(Operates LEDEN[n-1] = 0 automatically)  
Please refer timing chart of error control.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
48/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x4Eh: LOPERRL  
LED1 to LED8 open error status  
[Read]  
bit[2]  
initial value 0x00h  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
bit[1]  
bit[0]  
LOPERR[7:0]  
Initial value  
0
0
0
0
0
0
0
0
Update:  
-
-
-
Address 0x4Fh: LOPERRM  
LED9 to LED16 open error status  
[Read]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
0
bit[5]  
bit[4]  
LOPERR[15:8]  
0
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
Update:  
Address 0x50h: LOPERRH  
LED17 to LED24 open error status  
[Read]  
initial value 0x00h  
bit No  
Name  
Initial value  
bit[7]  
bit[6]  
0
bit[5]  
bit[4]  
LOPERR[23:16]  
0
bit[3]  
bit[2]  
bit[1]  
bit[0]  
0
0
0
0
0
0
Update:  
The register data is updated to the newest data immediately when the data (“LED open error”) is detected.  
Table 38. LOPERR Register (n = 1 to 24)  
LOPERR[n-1]  
status  
0
1
Normal  
Detect error(Note 1)  
(Note 1) How to return “0” for status register.  
AUTOOFF = 0, LOPLAT = 0: (n = 1 to 24)  
Set LEDEN[n-1] = 0 or PWMOUTEN[n-1] = 0 to release error channel and status register.  
AUTOOFF = 0, LOPLAT = 1: (n = 1 to 24)  
Set LEDEN[n-1] = 0 or PWMOUTEN[n-1] = 0 to release error channel.  
Set ERRCLR = 1 to clear status register.  
AUTOOFF = 1, LOPLAT = 0/1: (n = 1 to 24)  
Set ERRCLR = 1 to clear status register.  
(Operates LEDEN[n-1] = 0 automatically.)  
Please refer timing chart of error control.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
49/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x51h: UVLOERR  
CRC and UVLO,TSD error status  
[Read]  
bit[2]  
WDTERR  
initial value 0x01h  
bit[0]  
bit No  
Name  
Initial  
value  
bit[7]  
ISETSHERR  
bit[6]  
RESERVED  
bit[5]  
bit[4]  
bit[3]  
bit[1]  
CATHERR TSDWERR  
CRCERR  
UVLOTSDERR  
0
0
0
0
0
0
0
1
Update:  
-
bit[7]  
ISETSHERR  
The register data is updated to the newest data immediately when the data (“ISET short Error”) is detected.  
Table 39. ISETSHERR Register Setting  
ISETSHERR  
0
Status  
Normal (or ISETSEL = 0)  
Detect ISET Short Error (under 4.7 kΩ)  
when ISETSEL = 1  
1
Table 40. EXTISET Pin Short Detection Setting  
ISETSEL  
0
ISETLAT  
Release condition  
*
Internal ISET setting. This protection is not available.  
ISETSHERR error condition is released when protection is released.  
When “ISETSHCNT = 2”, status register is latched and can be  
released when “ERRCLR = 1” is set.  
1
1
0
1
Status condition is released when “ERRCLR = 1” is set  
bit[6:5]  
bit[4]  
RESERVED  
CATHERR  
The register data is updated to the newest data immediately when the data (“Cathode Short Error ”) is detected.  
Table 41. CATHERR Register  
CATHERR  
Status  
0
1
Normal  
Detect Cathode Short Error(Note 1)  
(Note 1) Release “CATHERR” protection by ERRCLR = 1.  
CATHEN automatically return “0” after monitoring “cathode short error”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
50/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x51h: UVLOERR – continued  
bit[3]  
TSDW  
The register data is updated to the newest data immediately when the data (“TSD warning”) is detected.  
Table 42. TSDW Register  
TSDW  
Status  
0
1
Normal  
Detect TSD warning  
Table 43. TSD Warning Release Condition  
Status  
TSDWEN  
It is not available to control status and FAILB  
output.  
TSD warning protection is enabled.  
0
1
bit[2]  
WDTERR  
The register data is updated to the newest data immediately when the data (“UART WDT Error”) is detected.  
Table 44. WDTERR Register  
WDTERR  
Status  
0
1
Normal  
Detect UART WDT(Note 1)  
(Note 1) Release “WDTERR” protection by ERRCLR = 1.  
bit[1]  
CRCERR  
The register data is updated to the newest data immediately when the data (“CRC error”) is detected.  
Table 45. CRCERR Register  
CRCERR  
Status  
0
1
Normal  
Detect CRC Error until CRC OK.  
Table 46. CRC Error Release Condition  
Release condition  
CRCERLAT  
0
CRC OK condition (for Write command)  
releases the status register and FAIL output.  
Status Register is released when “ERRCLR = 1”  
is set.  
1
bit[0]  
UVLOTSDERR  
The register data is updated to the newest data immediately when the data (“UVLO or TSD error”) is detected.  
Table 47. UVLOTSDERR Register  
UVLOTSDERR  
Status  
0
1
Normal  
Detect UVLO or TSD(Note 2)  
(Note 2) When EN = L, this register is initialized to H. SWRST does not initialize this status register.  
UVLOTSDERR is released if “ERRCLR = 1” is set.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
51/92  
BD18333EUV-M  
Description of Registers – continued  
Address 0x52h: LHDTY0102 LIMPHOME2 PWM duty setting for LED1 and LED2  
[Read/Write]  
bit[2]  
LHDTY01  
1 1  
initial value 0xFFh  
bit No  
Name  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
bit[3]  
bit[1]  
bit[0]  
LHDTY02  
Initial value  
1
1
1
1
1
1
Update: PWM  
The register data is updated to the newest data when the next PWM signal rises up after the data is written.  
This register is used to make setting of pulse duty for PWM light modulation in a total of 4-bits in PWM dimming mode.  
Table 48. PWM Duty Setting at LIMPHOME2 (x = 01 to 02)  
LHDTYx  
PWM Duty Setting for each CH  
DC Dimming Setting for each CH  
0x0h  
0x1h  
0x2h  
0x3h  
0x4h  
0x5h  
0x6h  
0x7h  
0x8h  
0x9h  
0xAh  
0xBh  
0xCh  
0xDh  
0xEh  
0xFh  
OFF  
5 %  
10 %  
15 %  
20 %  
25 %  
30 %  
40 %  
45 %  
50 %  
55 %  
60 %  
70 %  
80 %  
90 %  
100 %  
DC Dimming is based on DCDIMx[3:0]  
register (DIMMODE = 0) or DIMSETx[7:0]  
register (DIMMODE = 1)  
Address 0x53h to 0x5Dh: LHDTYx (x = 0304 to 2324)  
This register is used for PWM duty setting for LED3 to LED24 during LIMPHOME mode. The setting procedure is the same as  
LED1 and LED2 with address set to 0x52h.  
Address 0x5Eh: LIMPHOME  
[Read/Write]  
bit[3] bit[2]  
initial value 0x03h  
bit No  
Name  
bit[7]  
-
bit[6]  
-
0
bit[5]  
-
0
bit[4]  
-
0
bit[1]  
bit[0]  
-
-
LEXTISET2SEL  
1
LIMPHEN  
1
Initial value  
0
0
0
Update: Immediate  
bit[1]  
LEXTISET2SEL  
This register is used to select the source for LED current setting operation during LIMPHOME.  
Table 49. LED Current Setting Operation at LIMPHOME2  
LEXTISET2SEL  
0
Operation  
LED current setting operation is based on ISETSEL  
register. It selects either internal current setting or  
using the EXTISET1 pin.  
LED current setting operated using the EXTISET2 pin.  
This is operational only during LIMPHOME mode.  
1
bit[0]  
LIMPHEN  
This register is used to enable LIMPHOME Mode detection.  
Table 50. LIMPHOME2 Enable Setting  
LIMPHEN  
0
Operation  
LIMP HOME Detection is disabled  
Enter LIMPHOME mode after 1.0 s of no UART  
access. Refer to LIMPHOME sequence.  
1
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
52/92  
BD18333EUV-M  
Timing Chart  
Dimming  
1.1 PWM Delay Setting  
Example of PWM behavior for LED1 is shown as follows.  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting (n = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
(
)
PWMDLYn[3:0]: refer to 푃푀푊 ꢃ푒푙푎푦 ꢇ푖푚푒= ꢐ4 휇푠 ꢙ 푃푊푀ꢃꢗꢘꢈ[ꢓ: ꢂ] × ꢁ8 푀ꢠ푧 ꢁ44 (x = 01 to 24)  
Figure 43.  
DIMSETn[7:0] = 0x7Fh (50 % Duty)  
Other: normal dimming setting  
Internal signal  
CLKDIV144: internal clock (18 MHz / 144)  
PWM base timing: base timing of PWM dimming  
1.1.1  
PWM Delay Setting  
Enlarged view  
ILED1  
(PWMDLY01[3:0] = 0x0h)  
Pin  
ILED2  
(PWMDLY02[3:0] = 0x1h)  
ILED3  
(PWMDLY03[3:0] = 0x2h)  
ILED23  
(PWMDLY23[3:0] = 0xEh)  
ILED24  
(PWMDLY24[3:0] = 0xFh)  
Internal  
Signal  
PWM base timing  
Figure 422. PWM Delay Setting  
1.1.2  
PWM Delay Setting (Enlarged View)  
24 μs (Typ)  
ILED1  
(PWMDLY01[3:0] = 0x0h)  
32 μs (Typ)  
ILED2  
(PWMDLY02[3:0] = 0x1h)  
Pin  
ILED3  
40 μs (Typ)  
(PWMDLY03[3:0] = 0x2h)  
ILED23  
136 μs (Typ)  
144 μs (Typ)  
(PWMDLY23[3:0] = 0xEh)  
ILED24  
(PWMDLY24[3:0] = 0xFh)  
CLKDIV144  
Internal  
Signal  
PWM base timing  
(
)
푃푀푊 ꢃ푒푙푎푦 ꢇ푖푚푒 = ꢐ4 휇푠 ꢙ 푃푊푀ꢃꢗꢘꢈ[ꢓ: ꢂ] × ꢁ8 푀ꢠ푧 ꢁ44  
(x = 01 to 24)  
Figure 433. PWM Delay Setting (Enlarged View)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
53/92  
 
BD18333EUV-M  
1. Dimming – continued  
1.2 PWM Diming  
Example:  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting (n = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
SYNCSET = 1  
PWMDLYn[3:0] = 0x0Fh  
PWMOUTEN[23:0] = 0x000000h  
DIMSETn[7:0] = 0x7Fh (50 % Duty)  
Other: normal dimming setting  
Internal signal  
pwmouten_buf:  
dimset01_buf:  
pwmouten_cnt[0]:  
PWM output enable setting. This signal is updated at PWM base timing.  
PWM duty setting. This signal is updated at PWM base timing.  
PWM output enable setting. This signal is updated with a delay of the PWMDLY01  
setting from PWM base timing.  
dimset01_cont:  
PWM duty setting. This signal is updated with a delay of the PWMDLY01 setting from  
PWM base timing.  
4
write PWMOUTEN[0] = 1,  
DIMSET01[7:0] = 0x7Fh  
write PWMOUTEN[1] = 1,  
DIMSET02[7:0] = 0x7Fh  
write PWMOUTEN[2] = 1,  
DIMSET03[7:0] = 0x7Fh  
PWMIN  
Pin  
1
ILED1  
ILED2  
ILED3  
PWM base timing  
PWMOUTEN[0]  
1
DIMSET01[7:0]  
0x7Fh  
2
Internal  
Signal  
pwmounten_buf[0]  
dimset01_buf  
1
0x7Fh  
3
1
pwmouten_cont[0]  
0x7Fh  
Figure 44. Dimming Setting in DIMMODE = 0  
This example shows PWM Dimming control, DIMMODE = 0 (PWM Dimming).  
Send PWM settings (PWMOUTEN[0], DIMSET01[7:0], via UART) and other Settings like DIMMODE, PWMDLY01[3:0]  
and DCDIM01[3:0] are updated during initialization.  
At internal base PWM rising edge timing (for Leader) or PWMIN rising edge timing (for Follower), transfer data  
(PWMOUTEN, DIMSET) to buffer to prevent data from changing every base PWM cycles.  
After PWMDLY01[3:0] setting, transfer data (PWMOUTEN[0], DIMSET01[7:0]) to start PWM output control. Control  
PWM duty based on DIMSET01[7:0] register value and DC dimming based on DCDIM01[3:0] register value.  
Set LED2 = ON (PWMOUTEN[1], DIMSET02[7:0], via UART) and LED3 = ON (PWMOUTEN[2], DIMSET03[7:0], via  
UART) output at next PWMIN, after writing the corresponding settings.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
54/92  
BD18333EUV-M  
1. Dimming – continued  
1.3 PWM Dimming (Duty = 100 %)  
Examples below show PWM Dimming control, DIMMODE = 0 (PWM Dimming) and duty setting is 100 % (DIMSET = 0xFFh)  
while having different Leader vs Follower frequency. The timing of the LED output generation is dependent on the timing of  
the rising edge of PWMIN input. The internal frequency of an Follower device is dependent on PWMIN input as reference  
signal. PWMIN input in this example is from a Leader device. Faster frequency of Leader device produces faster PWMIN input  
to Follower device and vice versa.  
During PWM synchronization, the Follower device adjust internal clock to be the same as Leader device. In the example below,  
Leader device has equal frequency vs Follower Device.  
Example:  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting: (n = 01 to 24)  
SYNCSET = 1 (Leader), SYNCSET = 2 (Follower)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETn[7:0] = 0xFFh (100 % Duty)  
Internal signal  
PWM counter: this counter generates the PWM control for ILED current.  
1
2
WR to LED1  
WR to LED1  
UART(RX)  
Pin  
Leader Device  
PWMOUT  
Follower Device  
PWMIN  
ILED1  
Typical on time of LED out with 100 % duty  
Internal  
Signals  
pwm counter  
Figure 45. Dimming at 100 % Duty Setting and Leader device and Follower device has typical frequency  
In the example below, Leader device has faster frequency vs Follower Device that resulted to faster PWMIN input. In the  
Follower device, the timing of LED output is dependent on a faster PWMIN input, the internal counter is restarted in each rising  
edge of PWMIN signal resulting to the total length of LED output that is shorter than typical.  
Example:  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting: (n = 01 to 24)  
SYNCSET = 1 (Leader), SYNCSET = 2 (Follower)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETn[7:0] = 0xFFh (100 % Duty)  
Internal signals:  
PWM counter: this counter generates the PWM control for ILED current.  
1
2
WR to LED1  
WR to LED1  
UART(RX)  
Leader Device  
PWMOUT  
Pin  
Follower Device  
PWMIN  
ILED1  
Short on time of LED out with 100 % duty  
Internal  
Signals  
pwm counter  
Figure 46. Dimming at 100 % Duty Setting and Leader Device has Higher Frequency vs Follower Device  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
55/92  
BD18333EUV-M  
1.3 PWM Dimming (Duty = 100 %) – continued  
In the example below, Leader device has slower frequency vs Follower Device that resulted to slower PWMIN input. In the  
Follower device, the timing of LED output is dependent on a slower PWMIN input, internal counter for the 100 % duty finishes  
earlier then wait for PWMIN rising edge before restarting resulting to LED output turning off then the LED output continues  
after receiving PWMIN input.  
Example:  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting: (n = 01 to 24)  
SYNCSET = 1 (Leader), SYNCSET = 2 (Follower)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETn[7:0] = 0xFFh (100 % Duty)  
Internal signals:  
PWM counter: this counter generates the PWM control for ILED current.  
1
2
WR to LED1  
WR to LED1  
UART (RX)  
Pin  
Leader Device  
PWMOUT  
Follower Device  
PWMIN  
ILED1  
On time of LED out with 100 % duty with faster internal clock  
Intenal  
pwm counter  
Signals  
Figure 47. Dimming at 100 % Duty Setting and Leader Device has Lower Frequency vs Follower Device  
All UART commands in the figures above are sent with the same timing to observe the length of the LED output. The sequence  
is as follows,  
Send DIMSETn[7:0] = 0xFFh (100 % Duty ) via UART. At PWMIN rising edge timing for Follower device, Start LED output  
control based on DIMSETn[7:0] setting.  
Send DIMSETn[7:0] = 0x00h (0 % Duty ) via UART. At PWMIN rising edge timing for Follower device, Start LED output  
control based on DIMSETn[7:0] setting.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
56/92  
BD18333EUV-M  
1. Diming – continued  
1.4  
PWMFREQ Setting  
Example : (n = 01 to 24)  
Register setting  
DIMMODE = 0  
PWMOUTEN[23:0] = 0xFFFFFFh  
DIMSETn[7:0] = 0x7Fh (50 % Duty)  
Other: normal diming setting  
ILEDx: LEDx pin current (x = 1 to 24)  
DIMSTART = H  
UART (RX)  
Pin  
ILED1  
DIMSTART register  
Internal  
Signals  
Internal PWM  
PWMTIM register  
PWM Dimming  
PWM Dimming  
PWM Dimming  
PWM Dimming  
Figure 48. PWMFREQ = 0  
Figure 49. PWMFREQ = 1  
Figure 50. PWMFREQ = 2  
Figure 51. PWMFREQ = 3  
DIMSTART = H  
DIMSTART = H  
DIMSTART = H  
UART (RX)  
Pin  
ILED1  
DIMSTART register  
Internal  
Signals  
Internal PWM  
PWMTIM register  
UART (RX)  
Pin  
ILED1  
DIMSTART register  
Internal  
Signals  
Internal PWM  
PWMTIM register  
UART (RX)  
Pin  
ILED1  
DIMSTART register  
Internal  
Signals  
Internal PWM  
PWMTIM register  
This example shows PWM Dimming control using different PWMFREQ setting.  
In the timing diagram above, PWMFREQ setting must be configured before DIMSTART = H.  
After DIMSTART “L to H” will be soft start and dimming starts at succeeding internal PWM cycles.  
(1)  
(2)  
(3)  
(4)  
PWMFREQ = 0, PWM Dimming frequency is 488 Hz (Typ).  
PWMFREQ = 1, PWM Dimming frequency is 976 Hz (488 Hz x 2).  
PWMFREQ = 2, PWM Dimming frequency is 1952 Hz (488 Hz x 4).  
PWMFREQ = 3, PWM Dimming frequency is 3904 Hz (488 Hz x 8).  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
57/92  
BD18333EUV-M  
Timing Chart – continued  
2. ERROR Control  
There are the following internal signals on timing charts: (n = 1 to 24)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
(10)  
“PWM_OH[n-1]”  
“CLKDIV16”  
“CLKDIV144”  
“TSD_IL”  
PWM signal for LEDn (High: LED ON, Low: LED OFF).  
internal clock (divided by 16).  
internal clock (divided by 144).  
TSD signal (Low: error)  
Soft start mask signal (Low: mask).  
TSD warning signal (Low: error).  
LED open error signal (Low: error).  
retiming signal.  
“SSEND”  
“WARTSD_IL”  
“LOPDET_IL[n-1]”  
r_lopdet, r_lshdet, r_wartsd  
err_mskcnt  
error mask counter.  
ERRCLR register.  
ERRCLR  
Timing chart of each ERROR detection is as follows.  
2.1  
VINUVLO/VREG5UVLO/VREG3UVLO/TSD  
If the device detects TSD, internal digital circuit is reset as shown in the figure. Other error (UVLO) is almost same  
as this. ERRMASK and SSMASK don’t have effect in this protection. During detection, other protection are masked.  
UVLOTSDERR register is reset to initial value “1”. ERRCLR is necessary to release UVLOTSDERR and the FAILB  
pin.  
Enlarged view A  
Enlarged view B  
UART(RX)  
FAILB  
Pin  
TSD_IL signal  
Internal  
Signals  
ERRCLR register  
UVLOTSDERR register  
Figure 52. TSD Detection Function  
Pin  
UART(RX)  
FAILB  
no access  
CLKDIV16  
Internal  
Signals  
asynchronous reset  
TSD_IL signal  
ERRCLR register  
High  
'0'  
UVLOTSDERR register  
Figure 53. TSD Detected Function (Enlarged View A)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
58/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.1. VINUVLO/VREG5UVLO/VREG3UVLO/TSD – continued  
Pin  
UART(RX)  
FAILB  
CLKDIV16  
Internal  
Signals  
TSD_IL  
signal  
reset released  
ERRCLR  
UVLOTSDERR  
Figure 54. TSD Released Function (Enlarged View B)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
59/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.2  
TSD Warning  
If temperature is over 125 °C, It can detect “WARTSD” (WARTSD_IL = Low). During detection, It update FAILB =  
Low. At release, it update FAILB = High after released. ERRMASK and SSMASK does not have effect in this  
protection.  
Enlarged view A  
Enlarged view B  
Pin  
FAILB  
Internal WARTSD_IL  
Signals signal  
TSDW register  
Figure 55. TSD Warning Function  
Pin  
FAILB  
CLKDIV16  
Internal  
Signals  
synchronized  
WARTSD_IL  
signal  
High  
TSDW register  
Figure 56. TSD Warning Detected Function (Enlarged View A)  
Pin  
FAILB  
Internal  
Signals  
CLKDIV16  
WARTSD_IL  
signal  
synchronized  
TSDW register  
Figure 57. TSD Warning Released Function (Enlarged View B)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
60/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.3. LED Short Protection  
When VLEDx > VLEDSH, LED Short Protection is detected and when VLEDx < VLEDSH, LED Short Protection is released.  
The detection and release of this protection is shown in  
Example :  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting (n = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
ERRMASK = 0x2h  
LSHLAT = 0  
DIMSETn[7:0] = 0x7Fh  
Other: normal diming setting internal signal  
CLKDIV16: internal clock (18 MHz / 16)  
PWM_OH[1]: Current Driver control signal (High: lighting) for LED2  
LSPDET_IL[1]: LED open error signal (low: error) for LED2  
err_mskcnt: error mask filter of detection and released for LED short protection  
Enlarged view A  
Enlarged view B  
PWMIN  
CLKDIV16  
PWM_OH[1]  
LSPDET_IL[1]  
r_lspdet[1]  
SSEND  
err_mskcnt[4:0]  
LSHLAT register  
LSHERR register  
FAILB  
0x0  
0x0  
0x2  
All '0'  
LED2: 1, other: 0  
Figure 58. LED Short Protection Function  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
61/92  
BD18333EUV-M  
2.3. LED Short Protection – continued  
PWMIN  
CLKDIV16  
PWM_OH[1]  
LSPDET_IL[1]  
2 clock delay  
(synchronized by 18 MHz)  
r_lspdet[1]  
mask time  
SSEND  
"High"  
0x0  
err_mskcnt[4:0]  
ERRMASK register  
LSHERR register  
FAILB  
0x1  
0x2  
0x3  
0x4  
0x0  
0x02  
All '0'  
LED2: '1', other: '0'  
Figure 59. LED Short Protection Function (Enlarged View A)  
PWMIN  
CLKDIV16  
PWM_OH[1]  
LSPDET_IL[1]  
r_lspdet[1]  
"High"  
"High"  
mask time  
SSEND  
"High"  
err_mskcnt[4:0]  
ERRMASK register  
LSHERR register  
FAILB  
0x0  
0x1  
0x2  
0x3 0x4  
0x0  
0x02  
LED2: '1', other: '0'  
All '0'  
Figure 60. LED Short Protection (Enlarged View B)  
Operation:  
When SSEND= ‘High’ (Soft Start end), PWM_OH[1] = ‘High’ and LSPDET_IL[1] = ‘Low’ (LED short protection) is  
detected, ERRMASK starts counting with CLKDIV16 (err_mskcnt_r) from the rise-edge of PWM_OH[1]. When the set  
value (0x03h) is reached, FAIL is set to ‘Low’, i.e. ERROR is detected.  
When ERROR is detected and PWM_OH[1] = ‘High’ and LSPDET_ID[1] = ’High’, ERRMASK starts counting with  
CLKDIV16 (err_mskcnt_r) from the rise-edge of PWM_OH[1]. When the set value (0x03h) is reached, FAILB is set to  
‘High’, i.e. It release the ERROR condition.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
62/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.4  
LED Open Protection  
When VLEDx < 0.3 V (Typ), LED Open protection is detected and when VLEDx > 0.3 V (Typ), LED Open protection is  
released. The detection and release of this protection is shown in Figure 61.  
Example :  
ILEDx: LEDx pin current (x = 1 to 24)  
Register setting (n = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
ERRMASK = 0x2h  
LOPLAT = 0  
DIMSETn[7:0] = 0x7Fh  
Other: normal diming setting internal signal  
CLKDIV16: internal clock (18 MHz / 16)  
PWM_OH[1]: Current Driver control signal (High: lighting) for LED2  
LOPDET_IL[1]: LED open error signal (low: error) for LED2  
err_mskcnt: error mask filter of detection and released for LED open detection  
Enlarged view A  
Enlarged view B  
PWMIN  
Pin  
FAILB  
CLKDIV16  
Internal  
Signals  
PWM_OH[1]  
LOPDET_IL[1]  
r_lopdet[1]  
err_mskcnt[4:0]  
LOPERR register  
0x0  
0x0  
All "0"  
LED2: "1", other: "0"  
Figure 61. LED Open Protection Function  
Enlarged View A  
Enlarged View B  
PWMIN  
FAILB  
Pin  
1st  
2nd 3rd  
4th  
5th  
1st  
2nd 3rd  
4th  
5th  
CLKDIV16  
Internal  
Signals  
PWM_OH[1]  
LOPDET_IL[1]  
r_lopdet[1]  
2clock delay  
(synchronized by 18MHz)  
mask time  
0x1 0x2  
mask time  
0x2 0x3  
err_mskcnt[4:0]  
LOPERR register  
0x0  
0x3  
0x4  
0x0  
0x1  
0x4  
0x0  
All "0"  
LED2: "1", other: "0" LED2: "1", other: "0"  
All "0"  
Figure 62. LED Open Protection Function (Enlarged View A)  
Operation :  
When SSEND = “High” (Soft Start end), PWM_OH[1] = “High” and LOPDET_IL[1] = “Low” (LED open protection) is  
detected, ERRMASK starts counting with CLKDIV16 (err_mskcnt) from the rise-edge of PWM_OH[1]. When the set  
value (0x03h) is reached, FAIL is set to “Low”, i.e. ERROR is detected.  
When ERROR is detected and PWM_OH[1] = “High” and LOPDET_ID[1] = “High”, ERRMASK starts counting with  
CLKDIV16 (err_mskcnt) from the rise-edge of PWM_OH[1]. When the set value (0x03h) is reached, FAILB is set to  
“High”, i.e. It release the ERROR condition.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
63/92  
 
BD18333EUV-M  
2.4. LED Open Protection – continued  
Example : Low width error case, Register setting: ERRMASK[3:0] = 0x02h, LOPLAT = 0  
Enlarged view A  
Enlarged view B  
PWMIN  
Pin  
FAILB  
CLKDIV16  
Internal  
Signals  
PWM_OH[1]  
LOPDET_IL[1]  
r_lopdet[1]  
0x0h  
0x0h  
err_mskcnt[4:0]  
LOPERR register  
Figure 63. LED Open Protection Mask Function  
PWMIN  
FAILB  
"high"  
"high"  
Pin  
1st  
2nd 3rd  
CLKDIV16  
Internal  
Signals  
PWM_OH[1]  
"high"  
LOPDET_IL[1]  
r_lopdet[1]  
2clock delay  
(synchronize)  
mask(3 to 4 clock)  
err_mskcnt[4:0]  
LOPERR register  
0x0h  
0x0h  
0x1h 0x2h 0x3h 0x0h  
All "0"  
Figure 64. LED Open Protection Masked (Enlarged View A)  
PWMIN  
FAILB  
Pin  
1st  
2nd 3rd  
4th  
1st  
2nd 3rd  
4th  
CLKDIV16  
Internal  
Signals  
PWM_OH[1]  
"high"  
"high"  
"high"  
0x0h  
LOPDET_IL[1]  
r_lopdet[1]  
mask time  
mask time  
0x1h 0x2h 0x3h 0x4h  
0x0h  
0x1h 0x2h 0x3h 0x4h  
err_mskcnt[3:0]  
LOPERR register  
0x0h  
All "0"  
LED2:"1", other: "0"  
All "0"  
Figure 65. LED Open Protection (Enlarged View B)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
64/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.5  
LED Cathode Short Protection  
Write CATHEN = 1 via UART to use cathode short protection.  
It will monitor the LED pin voltage after 10 ms. If this voltage less than 0.3 V (Typ), it detects “cathode short error”. This  
condition is the same as LED Open detection, during the 10 ms counting, LED Open protection cannot be detected.  
UART(RX)  
Pin  
FAILB  
CATHEN  
Internal  
10 ms  
Signals  
release  
error  
LOPDET_IL[1]  
ERRCLR  
CATHERR  
Figure 66. LED Cathode Short Protection (Error)  
UART(RX)  
Pin  
FAILB  
"High"  
CATHEN  
10 ms  
Internal  
Signals  
LOPDET_IL[1]  
CATHERR  
"Low"  
no error  
Figure 67. LED Cathode Short Protection (No Error)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
65/92  
BD18333EUV-M  
2. ERROR Control – continued  
2.6  
UART WDT  
This device has watch-dog timer (WDT) for UART communication when WDTEN register is set to "High".  
It detects WDT Error when there is no activity for 100 ms in UART interface (RX line). When detected, this protection  
will set WDTERR Status register to "High" and FAILB output is latched to "Low". This condition is latched until  
"ERRCLR" is sent via UART to release this condition.  
Example1 : WDT protection detection  
1
2
3
4
5
UART (RX)  
Pins  
FAILB  
WDTEN Register  
WDT Counter  
ERRCLR register  
WDTERR register  
Internal  
Signals  
100 ms  
Figure 68. WDT Protection  
Set WDTEN = H, this setting enables WDT error detection.  
Any UART command with CRC OK resets the watch dog counter.  
No CRC OK is received within 100 ms, WDT Error is detected. It sets WDTERR status register to “High” and the  
FAILB pin output to “Low”.  
Send UART Read to Status registers.  
WDTERR status register and FAILB are cleared when ERRCLR is received.  
Register Settings:  
WDTEN register = 1  
1
2
4
5
UART(RX)  
Pins  
3
FAILB  
100 ms  
WDT Counter  
ERRCLR  
CRCERR  
WDTERR  
Internal  
Signals  
Figure 69. WDT Protection with CRC Error  
UART command received with CRC OK resets the watch dog counter.  
UART command with CRC error is detected, CRCERR status register is set to “High” and FAILB to “Low”.  
No CRC OK is received within 100 ms, WDT Error is detected. It sets WDTERR status register to “High” and  
FAILB is already “low” since CRC Error is detected.  
Send UART Read to Status registers.  
WDTERR status register, CRC Error Register and the FAILB pin output are cleared when ERRCLR is received.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
66/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
2. ERROR Control – continued  
2.7  
ISET Short Protection  
When ISETSEL is High, user can use external resistor to set the ISET current. ISET Short protection is detected when  
REXTISET1 < 20 kΩ (Typ). When protection is detected continuously for 56 μs (Typ), it sets ISETSHERR status register  
to High and FAILB output to Low. After released continuously for 56 μs (Typ), it clears status register (ISETSHERR =  
Low) and FAILB = High.  
Depending on ISETSHCNT register setting, output LED or ISETSEL (internal/external selector) can be controlled when  
ISETSH Error is detected. When ISETSEL is “Low”, this function is not active.  
This protection is not affected by ERRMASK and SSMASK.  
Register Settings: (x = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
ISETSEL register = 1  
ISETSHCNT register = 0x0h or 0x3h  
ISETLAT register = 0  
Pin  
FAILB  
ISETSH Error  
2FFh Sync  
Internal  
Signals  
ISET Filter = 56 μs (Typ)  
ISETSHERR register  
LED Channel  
(LEDEN[0])  
"ON"  
"External Source EXTISET"  
ISETSEL Setting  
Figure 70. Operation when ISETLAT = 0 and ISETSHCNT = 0  
The operation in the diagram above shows the default operation of ISETSH error detection with ISETSHCNT register  
= 0 and ISETLAT register = 0. Status register and the FAILB pin output can be monitored in this operation. When the  
protection is released, status register and the FAILB pin output are released.  
Register Settings: (x = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
ISETSEL register = 1  
ISETSHCNT register = 0x1h  
ISETLAT register = 1  
Pin  
FAILB  
2FFh Sync  
ISETSH Error  
Internal  
Signals  
ISET Filter = 56 μs (Typ)  
ISETSHERR register  
LED Channel  
(LEDEN[0])  
"ON"  
ISETSEL Setting  
"External Source EXTISET"  
Figure 71. Operation when ISETLAT = 0 and ISETSHCNT = 1  
The operation in the diagram above shows the default operation of ISETSH error detection with ISETSHCNT register  
= 1 and ISETLAT register = 0. Status register and the FAILB pin output can be monitored in this operation. When  
ISETSH error is detected, LED output turns off. When the protection is released, LED output turns on, status register  
and FAILB output is released.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
67/92  
BD18333EUV-M  
2.7  
ISET Short Protection – continued  
Register Settings: (x = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
ISETSEL register = 1  
ISETSHCNT register = 0x2h  
ISETLAT register = 0 or 1  
UART(RX)  
Pin  
FAILB  
2FFh Sync  
ISETSH  
Internal  
ISET Filter = 56 μs  
ERRCLR  
ISETSHERR register  
LED Channel  
(LEDEN[0])  
"ON"  
ISETSEL Setting  
"External Source EXTISET"  
"Internal ISET"  
Figure 72. Operation when ISETLAT = 0 or 1 and ISETSHCNT = 2  
The operation in the diagram above shows the default operation of ISETSH error detection with ISETSHCNT register  
= 2 and ISETLAT register = 0. Status register and the FAILB pin output can be monitored in this operation. When  
ISETSH error is detected, it changes the input selector for LED current setting (ISETSEL) from external to internal  
source. ERRCLR is necessary to clear this condition. Release condition for 56 μs (Typ) will not release the protection.  
Upon executing clear condition, input selector for ISET (ISETSEL) returns from internal to external.  
Register Settings: (x = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
ISETSEL register = 1  
ISETSHCNT register = 0x0h o 0x3h  
ISETLAT register = 1  
UART(RX)  
Pin  
FAILB  
2FFh Sync  
ISETSH Error  
Internal  
ISET Filter = 56μs (Typ)  
ERRCLR Register  
ISETSHERR  
Status Register  
LED Channel  
(LEDEN[0])  
"ON"  
ISETSEL Setting  
"External Source EXTISET"  
Figure 73. Operation when ISETLAT = 1 and ISETSHCNT = 0  
The operation in the diagram above shows the operation of ISETSH error detection with ISETSHCNT register = 0 and  
ISETLAT register = 1. Status register and the FAILB pin output can be monitored in this operation. Sending ERRCLR  
is necessary to clear the status register and the FAILB pin output.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
68/92  
BD18333EUV-M  
2.7  
ISET Short Protection – continued  
Register Settings: (x = 01 to 24)  
DIMSTART = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
ISETSEL register = 1  
ISETSHCNT register = 0x1h  
ISETLAT register = 1  
UART(RX)  
Pin  
FAILB  
2FFh Sync  
ISETSH  
Internal  
ERRCLR register  
ISET Filter = 56 μs (Typ)  
ISETSHERR  
register  
LED Channel  
(LEDEN[0])  
"ON"  
External Source EXTISET  
ISETSELSetting  
Figure 74. Operation when ISETLAT = 1 and ISETSHCNT = 1  
The operation in the diagram above shows the default operation of ISETSH error detection with ISETSHCNT register  
= 1 and ISETLAT register = 1. Status register and the FAILB pin output can be monitored in this operation. When  
ISETSH error is detected, LED turns off. Sending ERRCLR is necessary to clear the LED output, status register and  
the FAILB pin output.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
69/92  
BD18333EUV-M  
Sequence  
1. Start-up Sequence  
VIN  
Pin  
EN  
VREG5 UVLO  
VREG3 UVLO  
VREG5  
VREG3  
UART(RX)  
PWM generating  
time  
wait 1 ms (Min)  
PWM clock  
synchronous time  
for DUT1  
for DUT2  
for DUT1,2  
Cathode short protection time  
LED1 to LED24 (DUT1)  
LED1 to LED24 (DUT2)  
FAILB (DUT1)  
FAILB (DUT2)  
Figure 75. Starting Sequence for Normal Operation  
When you light the LED by general UART control, please follow the below sequence.  
Input power supply in the VIN pin.  
Launch the EN pin from “Low” to “High”, the VREG5 and VREG3 pins are generated.  
Write initial setting from address 0x01h to 0x17h.  
Write ERRCLR, to release FAILB. If you write CATHEN, it start to operate cathode short error.  
Write initial setting from address 0x18h to 0x2Fh.  
Write initial setting from address 0x30h to 0x4Ah.  
Write SYNCSET register to 10b.  
All device starts dimming at same timing.  
Operate dimming control for each channel.  
Dimming is stopped.  
Stop input power supply in the VIN pin.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
70/92  
BD18333EUV-M  
Sequence – continued  
2. PWM Synchronization Sequence  
Sequence (x = 01 to 24)  
DUT1 (Leader):  
SYNCSET register = 0x1h (Leader)  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
DUT2 (Follower):  
SYNCSET register = 0x2h (Follower)  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
for DUT1  
for DUT2  
for DUT1,2  
DUT1 Master  
UART (RX)  
PWMOUT  
pin  
LED1  
SYNCSET register  
PWMFSYNC register  
PWMPSYNC register  
DIMSTART register  
1d  
internal  
signals  
DUT2 Slave  
UART (RX)  
PWMIN  
pin  
LED02  
Internal PWM  
SYNCSET Register  
PWMFSYNC Register  
PWMPSYNC Register  
DIMSTART Register  
2d  
internal  
signals  
Figure 76. PWM Synchronization Operation  
When it synchronize PWM phase with other device, please follow the sequence below.  
Write SYNCSET register for Leader device. Leader starts to output reference signal from PWMOUT.  
Write SYNCSET register for Follower device. Follower devices start to monitor PWMIN to adjust internal oscillator.  
When it detects unstable clock condition in Follower devices, PWMFSYNC register = 1. Meaning, internal clock of the  
Follower device is not yet synchronized to Leader clock. During this time, it is possible to send UART command to read  
the status of PWMFSYNC, however, internal frequency adjusting stops during UART communication.  
Write PWMPSYNC and DIMSTART register after clock is already stable. PWMPSYNC command triggers all device to  
lock the phase of the PWM generation. DIMSTART command triggers all device to start LED output.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
71/92  
BD18333EUV-M  
Sequence – continued  
3. Error Sequence  
3.1  
Protection Sequence for “LED Open Error” without LOPLAT  
Example : Register Settings (x = 01 to 24)  
AUTOOFF register = 0  
LOPLAT register = 0  
LOPEN register = 1  
DIMMODE= 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
Detected “LED open error” in LED1: (n = 1 to 24)  
PWMIN  
Pin  
1
Error  
condition  
LED open condition  
ERRMASK time  
3
LED1  
4
UART (RX)  
FAILB  
2
ERRCLR register  
LOPERR  
"Low"  
Internal  
Signals  
5
0x000000h  
0x000001h  
0x000000h  
register  
LSHERR  
register  
0x000000h  
LEDEN[0] register  
PWMn  
*internal signal for PWM OFF  
6
Enlarged view:  
Enlarged view:  
UART  
UART  
register Read:  
register Write:  
LEDEN  
0x4Bh to 0x51h  
(error status register)  
Figure 77. Error Sequence for “LED Open Error” without LOPLAT  
“LED Open Error” is detected after ERRASK time.  
If Error condition is released before ERRMASK time setting is reached, Error condition is not detected in  
FAILB and status register.  
In error detection, corresponding status register (LOPERR) is updated and FAILB = Low.  
MCU received FAILB = Low condition and issues a read command to status registers (0x4Bh to 0x51h).  
After confirming status, MCU issues write command to set ”LEDEN[0] = 0” to affected “Error Channel” for  
protection.  
“Error register” and FAILB return to normal condition.  
Corresponding channel output PWMn = Low.  
Note: MCU cannot detect Error condition if “error condition” is cleared before reading “error register”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
72/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
3
Error Sequence - continued  
3.2  
Protection Sequence for “LED Open Error” with LOPLAT  
Example : Register Settings (x = 01 to 24)  
AUTOOFF register = 0  
LOPLAT register = 1  
LOPEN register = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
Detected “LED open error” in LED1: (n = 1 to 24)  
PWMIN  
Pin  
1
LED open condition  
ERRMASK time  
4
Error  
condition  
LED1  
3
6
UART(RX)  
FAILB  
ERRCLR register  
LOPERR register  
"Low"  
7
Internal  
Signals  
2
0x000000h  
0x000001h  
0x000000h  
LSHERR register  
LEDEN[0] (LED1)  
0x000000h  
5
*internal signal for PWM OFF  
PWMn  
Enlarged view:  
UART  
Enlarged view:  
UART  
register Read:  
0x4Bh to 0x51h  
(error status  
register)  
register Write:  
LEDEN  
ERRCLR  
Figure 78. Error Sequence for “LED Open Protection” with LOPLAT  
“LED Open Error” is detected after ERRASK time.  
If Error condition is released before ERRMASK time setting is reached, Error condition is not detected in  
FAILB and status register.  
In error detection, corresponding status register (LOPERR) is updated and FAILB = Low.  
MCU received FAILB = Low condition and issues a read command to status registers (0x4Bh to 0x51h).  
After confirming status, MCU issues write command to set ”LEDEN[0] = 0” to affected “Error Channel” for  
protection.  
Corresponding channel outputs PWMn = Low.  
MCU issues a write command to set ”ERRCLR = 1” to release “latch condition”.  
“Error register” and the FAILB pin output return to normal condition after setting “ERRCLR = 1”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
73/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
3
Error Sequence - continued  
3.3  
Protection Sequence for “LED Open Error” with AUTOOFF  
Example : Register Settings (x = 01 to 24)  
AUTOOFF register = 1  
LOPLAT register = 0  
LOPEN register = 1  
DIMMODE = 0  
DIMSETx[7:0] = 0x7Fh (50 % Duty)  
Detected “LED open error” in LED1: (n = 1 to 24)  
PWMIN  
Pin  
1
LED open condition  
Error  
condition  
ERRMASK time  
LED1  
5
6
UART (RX)  
FAILB  
2
ERRCLR register  
LOPERR register  
"Low"  
Internal  
signals  
7
0x000000h  
0x000001h  
0x000000h  
LSHERR register  
LEDEN[0] (LED1)  
0x000000h  
3
8
4
PWMn  
*internal signal for PWM OFF  
Enlarged view:  
Enlarged view:  
UART  
UART  
register Read:  
register Write:  
0x49h to 0x4Fh  
ERRCLR  
(error status  
register)  
Figure 79. Error Sequence for “LED Open Protection” with AUTOOFF  
“LED Open Error” is detected after ERRMASK time. If Error condition is released before ERRMASK time  
setting is reached, Error condition is not detected in FAILB and status register.  
In error detection, corresponding status register (LOPERR) is updated and FAILB = Low.  
Corresponding “LEDEN[0] = 0” of “Error channel” is released automatically due to AUTOOFF Setting.  
Corresponding channel outputs PWMn = Low.  
MCU reads “Error register” after MCU receives FAILB = Low condition.  
MCU issues a write command to set “ERRCLR = 1” to release “Latch condition” and another write command  
to set “LEDEN[0] = 1”.  
“Error register” and the FAILB pin output return to normal condition after “ERRCLR = 1”.  
“LEDEN[0] = 1” and PWM output recovered after “ERRCLR = 1”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
74/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
3
Error Sequence - continued  
3.4  
Protection Sequence for “LED Short Error” without LSHLAT  
Example : It detects “LED short error” in LED1.  
PWMIN  
Error  
LED1: LED short error  
condition  
ERRMASK time  
LED1  
UART  
AUTOOFF  
(register)  
"Low"  
"Low"  
"Low"  
"High"  
LSHLAT  
(register)  
ERRCLR  
(register)  
LSHEN  
(register)  
LOPERR  
(register)  
0x000000  
LSHERR  
(register)  
0x000000  
0x000001  
0x000000  
LEDEN[0] (LED1)  
PWMn  
*internal signal for PWM OFF  
FAILB  
Enlarged view  
Enlarged view  
UART  
UART  
register  
register Write:  
LEDEN  
Read:  
0x49h to 0x4Fh  
(error status register)  
Figure 80. Error Sequence for “LED Short Protection” without LSHLAT  
It detecs “LED short error” after ERRMASK time.  
If Error condition is released in this timing, it outputs High from FAILB after ERRMASK.  
it outputs Low from FAILB and update “error register”.  
MCU reads “Error register” after MCU receives FAILB = Low condition.  
MCU writes “LEDEN[0] = 0” to “Error Channel” for protection.  
It doesn’t output PWM.  
It releases “Error register” and FAILB.  
MCU can’t detect Error condition if “error condition” is cleared before reading “error register”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
75/92  
BD18333EUV-M  
3
Error Sequence - continued  
3.5  
Protection Sequence for “LED Short Error” without AUTOOFF  
Example : It detects “LED short Error” in LED1.  
PWMIN  
LED short condition  
ERRMASK time  
Error  
condition  
LED1  
UART  
AUTOOFF  
(register)  
"High"  
"Low"  
"Low"  
"High"  
LSHLAT  
(register)  
ERRCLR  
(register)  
LSHEN  
(register)  
LOPERR  
(register)  
0x000000  
0x000000  
p
LSHERR  
(register)  
0x000001  
0x000000  
q
LEDEN[0] (LED1)  
PWMm  
FAILB  
*internal signal for PWM OFF  
Enlarged view  
Enlarged view  
UART  
UART  
register Read:  
0x49h to 0x4Fh  
register Write:  
ERRCLR  
(error status  
register)  
Figure 81. Error Sequence for “LED Short Protection” without ERRLAT  
It detects LED short error” after ERRMASK time.  
If Error condition is released in this timing, it keeps Low in FAILB and “Error register”.  
It outputs Low from FAILB and update “error register”.  
“LEDEN[0] = 0” of “Error Channel” for protection condition released automatically.  
It ouputs PWM = Low.  
MCU reads “Error register” after MCU receives FAILB = Low condition.  
MCU writes “ERRCLR = 1” for releasing “Latch condition”.  
“Error register” and FAILB return normal condition after “ERRCLR = 1”.  
“LEDEN[0] = 1” and PWM output recovered after “ERRCLR = 1”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
76/92  
BD18333EUV-M  
3
Error Sequence - continued  
3.6  
Protection Sequence for “CRC Error” without CRCERLAT  
Example :  
Register Setting  
CRCERLAT register = 0  
Detected “CRC Error”.  
3
4
1
CRC NG  
CRC OK  
UART(RX)  
Pins  
UART(TX)  
FAILB  
ERRCLR register  
CRCERR register  
"Low"  
Internal  
Signals  
2
Enlarged view:  
Enlarged view:  
UART  
UART  
register Read:  
register Write:  
other  
0x49h to 0x4Fh  
(error status  
register)  
Figure 82. CRC Error Sequence for UART without CRCERLAT  
“CRC Error” is detected due to a communication error in the UART command.  
In error detection, status register (CRCERR) is updated and FAILB = Low.  
MUC issues read “Error register” after MCU receiving FAILB = Low condition.  
Read Command does not clear CRC Error status.  
If MCU write data of “CRC OK”, it outputs FAILB = High and update error register.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
77/92  
BD18333EUV-M  
3
Error Sequence - continued  
3.7  
Protection Sequence for “CRC Error” with CRCERLAT  
Example :  
Register Setting  
CRCERLAT register = 1  
“CRC Error” is detected.  
1
3
4
5
CRC NG  
CRC OK  
UART(RX)  
Pin  
UART(TX)  
FAILB  
ERRCLR register  
CRCERR register  
"Low"  
Internal  
Signals  
2
Enlarged view:  
UART  
Enlarged view:  
UART  
register Read:  
0x49h to 0x4Fh  
register ERRCLR  
(error status  
register)  
Figure 83. CRC Error Sequence with CRCERLAT  
“CRC Error” is detected due to a communication error in the UART command.  
In error detection, status register (CRCERR) is update and FAILB = Low.  
MCU reads “Error register” after MCU receives FAILB = Low condition.  
Read Command does not clear CRC Error status.  
MCU writes “ERRCLR = 1” to release “Latch condition”.  
“Error register” and the FAILB pin return normal condition after “ERRCLR = 1”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
78/92  
BD18333EUV-M  
3
Error Sequence - continued  
3.8  
Protection Sequence for “UART WDT Error”  
Example :  
Register Setting  
WDTEN register = 1  
It detects “UART WDT Error”.  
1
3
4
UART(RX)  
100 ms  
Pin  
UART(TX)  
FAILB  
ERRCLR register  
WDTERR register  
"Low"  
Internal  
Signals  
2
5
Enlarged view:  
Enlarged view:  
UART  
UART  
register Read:  
register ERRCLR  
0x49h to 0x4Fh  
(error status  
register)  
Figure 84. Error Sequence for WDT  
“UART WDT Error” is detected over 100 ms after last UART access.  
In error detection, Error register (WDTERR) and FAILB = Low.  
MCU read “Error register” after MCU receiving FAILB = Low condition and is automatically latched.  
MCU writes “ERRCLR = 1” to release “Latch condition”.  
“Error register” and the FAILB pin return normal condition after “ERRCLR = 1”.  
Note: MCU cannot detect Error condition if “error condition” is cleared before reading “error register”.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
79/92  
BD18333EUV-M  
3
Error Sequence - continued  
3.9  
Protection Sequence for “Cathode Short Error”  
Example : “Cathode short error” is detected during turn on.  
4
EN  
Pin  
Error  
condition  
LED1  
1
3
UART(RX)  
FAILB  
2
10 ms  
CATHEN register  
CATHERR register  
Internal  
Signals  
Enlarged view:  
Enlarged view:  
UART  
UART  
register Read:  
0x49h to 0x4Fh  
register ERRCLR  
(error status  
register)  
Figure 85. Error Sequence for “Cathode Short Error” without ERRLAT  
MCU writes to CATHEN register to start checking for “Cathode Short Error”.  
“Cathode Short Error” is detected after 10 ms.  
Status register (CATHERR) is updated and FAILB = Low.  
MCU read “Error register” after MCU receiving FAILB = Low condition.  
Status register (CATHERR) and the FAILB pin return to normal after EN = Low.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
80/92  
BD18333EUV-M  
Sequence – continued  
4. FAILB Control Sequence  
This IC can control FAILB output by register setting.  
1
2
3
Pin  
UART  
FAILB  
Internal  
Signals  
FAILBEN register  
FAILBCNT register  
Enlarged view:  
UART  
Enlarged view:  
Enlarged view:  
UART  
UART  
register  
register  
write  
FAILBEN  
register  
Write:  
FAILBCNT  
Write:  
FAILBCNT  
Figure 86. FAILB Control Sequence  
It is available to control FAILB output by FAILBEN = 1.  
FAILBCNT = High, so it outputs High from the FAILB pin.  
FAILBCNT = Low, so it outputs Low from the FAILB pin.  
5. Unused Pin Setting  
Please kindly set unused pin following the table below.  
Table 51. Unused Pin Setting  
Pin Name  
FAILB  
EXTISET1  
EXTISET2  
PWMIN  
PWMOUT  
LEDx (x = 1 to 24)  
TEST  
Setting  
Unused Condition  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Unused the FAIL Flag.  
Unused the ISETSEL Function.  
Unused the LIMPHOME1 Function.  
Unused the External PWM Frequency Synchronization Function.  
Unused the Output PWM Frequency to next Follower device.  
Unused the LED pin in application.  
-
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
81/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
LIMPHOME Sequence  
This IC can operate lighting in LIMPHOME.  
1. CASE1: No Lighting in LIMPHOME  
LIMPHOME1:  
Normal dimming:  
LIMPHOME2:  
OFF (EXTISET2 = OPEN)  
120 mA (REXTISET1 = 60 kΩ)  
OFF (EXTISET2 = OPEN)  
Example : Register Settings (x = 01 to 24)  
LIMPEN register = 1  
LEXTISET2SEL register = 1  
ISETSEL register = 1  
DIMMODE register = 0 or 1  
LHDTYx[3:0] = 0xFh (100 % Duty)  
2
3
4
5
Pin  
UART  
LED current  
6
FAILB  
Internal  
Signals  
reset  
1
7
state  
IDLE  
1.0 s  
LIMPHOME1  
STANDBY  
Normal Dimming  
LIMPHOME2  
1.0 s  
ISETSEL  
LEXISET2SEL  
LED current  
reference setting  
internal  
EXTISET2  
internal  
EXTISET1  
EXTISET2  
Enlarged view:  
UART  
Enlarged view:  
Enlarged view:  
Enlarged view:  
UART  
UART  
UART  
register  
register write register  
register ERRCLR  
register Write:  
Write:  
All initial setting  
ISETSEL  
DIMSETx  
All register  
are targeted  
Figure 87. LIMPHOME Function Sequence (Case1)  
If UART are not accessed over 1.0 s from reset released, this IC operates “LIMPHOME1” with  
EXTISET2 resistor setting (REXTISET2). But, IC starts “No Lighting” in case of the EXTISET2 pin set to  
“OPEN”.  
If register is written and CRC OK, it operates change from “LIMPHOME1” to “STANDBY” state.  
If ERRCLR is written, the FAILB pin returns to "High”.  
All register are updated for dimming, It starts lighting in DIMSETx[7:0] or DCDIMx[3:0] register setting  
after DIMSTART = 1. (x = 01 to 24)  
Dimming data are updated.  
If UART are not accessed over 100 ms (WDTEN = 1), it outputs FAILB = Low.  
If UART are not accessed over 1.0 s from last signal, this IC operates “LIMPHOME2” with EXTISET2  
resistor setting (REXTISET2). But, IC starts “No Lighting” in case of the EXTISET2 pin set to “OPEN” when  
Address 0x5Eh (LIMPHOME) set to initial.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
82/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
LIMPHOME Sequence – continued  
2. CASE2: 30 mA in LIMPHOME1 and LIMPHOME2  
LIMPHOME1:  
30 mA (REXTISET2 = 120 kΩ )  
Normal Dimming: 120 mA (REXTISET1 = 60 kΩ)  
LIMPHOME2:  
150 mA (REXTISET1 = 60 kΩ + REXTISET2 = 120 kΩ)  
Example : Register Settings (x = 01 to 24)  
LIMPEN register = 1  
LEXTISET2SEL register = 1  
ISETSEL register = 1  
DIMMODE register = 0 or 1  
LHDTYx[3:0] = 0xFh (100 % Duty)  
2
3
4
5
UART  
Pin  
LED current  
6
FAILB  
reset  
Internal  
Signals  
1
7
state  
IDLE  
LIMPHOME1  
STANDBY  
Normal Dimming  
LIMPHOME2  
1.0 s  
1.0 s  
ISETSEL  
LEXISET2SEL  
LED current  
reference setting  
internal  
EXTISET2  
internal  
EXTISET1  
EXTISET1+EXTISET2  
Enlarged view:  
UART  
Enlarged view:  
Enlarged view:  
Enlarged view:  
UART  
UART  
UART  
register  
register write register  
register ERRCLR  
register Write:  
Write:  
All initial setting  
ISETSEL  
DIMSETx  
All register  
are targeted  
Figure 88. LIMPHOME Function Sequence (Case2)  
If UART are not accessed over 1.0 s from reset released, this IC operates “LIMPHOME1” with  
EXTISET2 resistor setting (REXTISET2).  
If register is written and CRC OK, it operates change from “LIMPHOME1” to “STANDBY” state.  
If ERRCLR is written, the FAILB pin turns to “High”.  
All register are updated for dimming, It starts lighting in DIMSETx[7:0] or DCDIMx[3:0] register setting  
after DIMSTART = 1. (x = 01 to 24)  
Dimming data are updated.  
If UART are not accessed over 100 ms (WDTEN = 1), it outputs FAILB = Low.  
If UART are not accessed over 1.0 s from last signal, this IC operates “LIMPHOME2” with EXTISET2  
resistor setting (REXTISET2) when Address 0x5Eh (LIMPHOME) set to initial.  
DC Dimming is changed from DIMSETx[7:0] (DIMMODE = 1) or DCDIMx[3:0] (DIMMODE = 0) at  
“LIMPHOME2” status. And, PWM Dimming is changed from LHDTYx[3:0] regiser setting.  
(x = 01 to 24)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
83/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
LIMPHOME Sequence – continued  
3. CASE3: Mix Setting in LIMPHOME1 and LIMPHOME2  
LIMPHOME1:  
Normal Dimming: 120 mA (REXTISET1 = 60 kΩ)  
LIMPHOME2: 120 mA (REXTISET1 = 60 kΩ)  
0 mA (EXTISET2 = OPEN)  
Example : Register Settings (x = 01 to 24)  
LIMPEN register = 1  
LEXTISET2SEL register = 0  
ISETSEL register = 1  
DIMMODE register = 0 or 1  
LHDTYx[3:0] = 0xFh (100 % Duty)  
2
3
4
5
UART  
Pin  
LED current  
6
FAILB  
reset  
Internal  
Signals  
7
1
state  
IDLE  
LIMPHOME1  
STANDBY  
Normal Dimming  
LIMPHOME2  
1.0 s  
1.0 s  
ISETSEL  
LEXISET2SEL  
LED current  
reference setting  
EXTISET2  
internal  
EXTISET1  
EXTISET1  
Enlarged view:  
Enlarged view:  
Enlarged view:  
Enlarged view:  
UART  
UART  
UART  
UART  
register write register  
register ERRCLR  
register Write:  
register  
Write:  
DIMSETx  
All initial setting  
All register  
are targeted  
(include LIMPHOME  
setting 0x52h to 0x5Eh  
Figure 89. LIMPHOME Function Sequence (Case3)  
If UART are not accessed over 1.0 s from reset released, this IC operates “LIMPHOME1” with  
EXTISET2 resistor setting (REXTISET2). But, IC starts “No Lighting” in case of the EXTISET2 pin set to  
1.0 V or “OPEN”.  
If register is written and CRC OK, it operates change from “LIMPHOME1” to “STANDBY” state.  
If ERRCLR is written, the FAILB pin turns to "High”.  
All register are updated for dimming. we should use continuous writing when we write LIMPHOME  
register. LIMPHOME register don’t split “updated” and “not updated”. It starts lighting in DIMSETx[7:0]  
or DCDIMx[3:0] register setting after DIMSTART = 1. (x = 01 to 24)  
Dimming data are updated.  
If UART are not accessed over 100 ms (WDTEN = 1), it outputs FAILB = Low.  
If UART are not accessed over 1.0 s from last signal, this IC operates “LIMPHOME2” with internal  
ISET setting (60 mA) when Address 0x5Eh (LIMPHOME) set to 0x01h (LEXTISETSEL = 0) and  
ISETSEL = 0.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
84/92  
09.Sep.2022 Rev.001  
BD18333EUV-M  
Application Examples  
External  
BUCK Driver  
+B  
EN  
BD18333EUV-M (DUT1 : Leader)  
VREG3  
BD18333EUV-M (DUT2 : Follower)  
VIN  
VIN  
1
2
3
4
5
6
7
8
9
48  
1
2
3
4
5
6
7
8
9
VREG3  
GND  
48  
N.C. 47  
CS0 46  
CS1 45  
CS2 44  
10 μF  
10 μF  
GND  
N.C. 47  
CS0 46  
CS1 45  
CS2 44  
4.7 μF  
4.7 μF  
VREG5  
EN  
VREG5  
EN  
5V  
RX  
TX  
RX  
TX  
RX  
RX  
CAN  
TRANCSIVER  
Device : 0000  
Device : 0001  
CS3  
CS3  
TX  
43  
TX  
43  
PWMIN  
LGND  
FAILB  
PWMOUT 42  
LGND 41  
TEST 40  
PWMIN  
LGND  
FAILB  
PWMOUT 42  
LGND 41  
TEST 40  
100 kΩ  
100 kΩ  
10 LED1  
11 LED2  
12 LED3  
13 LED4  
14 LED5  
15 LED6  
16 N.C.  
LED24 39  
LED23 38  
LED22 37  
LED21 36  
LED20 35  
LED19 34  
N.C. 33  
10 LED1  
11 LED2  
12 LED3  
13 LED4  
14 LED5  
15 LED6  
16 N.C.  
LED24 39  
LED23 38  
LED22 37  
LED21 36  
LED20 35  
LED19 34  
N.C. 33  
17 LED7  
18 LED8  
19 LED9  
20 LED10  
21 LED11  
22 LED12  
23 EXTISET  
24 LGND  
LED18 32  
LED17 31  
LED16 30  
LED15 29  
LED14 28  
LED13 27  
EXTISET2 26  
LGND 25  
17 LED7  
18 LED8  
19 LED9  
20 LED10  
21 LED11  
22 LED12  
23 EXTISET  
24 LGND  
LED18 32  
LED17 31  
LED16 30  
LED15 29  
LED14 28  
LED13 27  
EXTISET2 26  
LGND 25  
EXP_PAD  
EXP_PAD  
240 kΩ  
240 kΩ  
120 kΩ  
120 kΩ  
Figure 90. Leader and Follower Connection Application Example  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
85/92  
BD18333EUV-M  
I/O Equivalence Circuit  
1. VREG3  
3. VREG5  
4. EN  
VIN  
VIN  
500 k  
VREG3  
VREG5  
EN  
2.34 M  
1.95 M  
4.67 M  
1 M  
2.0 M  
5. RX  
6. TX  
7. PWMIN  
VREG5  
VREG5  
VREG5  
PWMIN  
20 k  
1 k  
20 k  
RX  
TX  
100 k  
10 to 15,17 to 22. LEDx (x = 1 to 12)  
9. FAILB  
23,26. EXTISET1, EXTISET2  
VREG5  
EXTISET1  
EXTISET2  
50 k  
1 k  
0.5 k  
20 k  
FAILB  
LEDx  
27 to 32,34 to 39. LEDx (x = 13 to 24)  
40. TEST  
42. PWMOUT  
VREG5  
VREG5  
VREG5  
50 k  
TEST  
10 k  
PWMOUT  
10 k  
LEDx  
100 k  
43 to 46. CSx (x = 0 to 3)  
VREG5  
1 M  
CSx  
10 k  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
86/92  
BD18333EUV-M  
Ordering Information  
B D 1  
8
3
3
3
E U V  
-
M E2  
Part Number  
Package  
EUV: HTSSOP-C48  
Packing and Forming Specification  
M: For Automotive  
E2: Embossed Tape and Reel  
Marking Diagram  
HTSSOP-C48 (TOP VIEW)  
Part Number Marking  
LOT Number  
BD18333EUV  
Pin 1 Mark  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
87/92  
BD18333EUV-M  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-C48  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
88/92  
BD18333EUV-M  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
89/92  
BD18333EUV-M  
Operational Notes – continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10.  
Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 91. Example of Monolithic IC Structure  
11.  
Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
90/92  
BD18333EUV-M  
Operational Notes – continued  
12.  
Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13.  
14.  
Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
91/92  
BD18333EUV-M  
Revision History  
Date  
09.Sep.2022  
Revision  
001  
Changes  
1st released  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300440-1-2  
09.Sep.2022 Rev.001  
92/92  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18336NUF-M

BD18336NUF-M是面向车载LED灯的40V高耐压恒电流驱动器IC。由于使用的是小型封装,适合用作插座型LED灯的驱动用IC。BD18336NUF-M内置温度降额功能、LED开路检测、输出接地故障保护、SET引脚接地故障保护、过电压保护功能、欠压时分流功能、异常状态FLAG输出功能、输出电流OFF控制输入功能,可实现高可靠性。
ROHM

BD18337EFV-M

BD18337EFV-M是4通道线性LED驱动器,可通过1个引脚控制多个输出的热分散。不仅可显著减少部件数量和安装面积,还非常有助于平台化扩展机型的汽车LED灯驱动模块电路板的通用化设计。可用于车后灯(刹车灯、尾灯)、雾灯、转向灯、牌照灯、日间行车灯(Daylight Running Lamps)等汽车和摩托车领域的众多LED灯驱动。产品内置LED开路检测功能、OUTx(x=1~4)引脚输出接地故障保护功能、过电压静音功能及热关断功能,可实现高可靠性。连接于输出引脚的LED如果是2段的,请使用BD18347EFV-M;如果是3段的,请使用本BD18337EFV-M。
ROHM

BD18337EFV-ME2

LED Driver,
ROHM

BD18340FV-M

BD18340FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18340FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18341FV-M

BD18341FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18341FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18342FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-ME2

LED Driver,
ROHM

BD18345EFV-M

BD18345EFV-M是耐压高达70V的车载LED灯用恒流控制器。仅1枚本IC即可驱动多达10个外置PNP晶体管。另外,内置待机功能,有助于降低配套应用的功耗。内置两种LED电流降额功能、LED开路检测功能、输出接地故障保护功能、过电压静音功能及LED异常状态输入输出功能,可靠性更高。
ROHM

BD18347AEFV-M

BD18347AEFV-M是一款40V耐压的车载用LED恒流驱动器。是内置Energy Sharing控制功能、有助于缩减电路板尺寸的4通道LED驱动器。还内置有LED开路检测、OUTx(以后全部x=1~4)引脚输出接地故障保护、过电压静音功能和热关断功能,可实现更高可靠性。
ROHM