BD18340FV-M [ROHM]

BD18340FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。;
BD18340FV-M
型号: BD18340FV-M
厂家: ROHM    ROHM
描述:

BD18340FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。

驱动 控制器 晶体管
文件: 总38页 (文件大小:3146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Constant Current LED Drivers for Automotive  
Constant Current Controller  
for Automotive LED Lamps  
BD18340FV-M BD18341FV-M  
General Description  
Key Specifications  
BD18340FV-M/BD18341FV-M are 70V-withstanding  
Constant Current Controller for Automotive LED Lamps.  
It is able to drive at maximum 10 rows of PNP transistors.  
It can also contribute to reduction in the consumption  
power of the set as it has the integrated standby function.,  
The IC also incorporates a highly reliable, in-built  
de-rating function, LED Open Detection, Short Circuit  
Protection and Over Voltage Mute function and LED  
failure input/output function.  
Input Voltage Range:  
FB Terminal Voltage Accuracy:  
4.5V to 19V  
650mV ±3%  
@Ta = 25°C to 125°C  
0µA(Typ)  
Stand-by Current:  
LED Current De-rating Accuracy:  
BD18340FV-M: ±5% @VDCDIM=0.5 to 0.75V  
BD18341FV-M: ±12% @VDCDIM=0.5 to 0.75V  
Operating Temperature Range:  
-40°C to +125°C  
Features  
AEC-Q100 Qualified(Note1)  
Package  
W(Typ) x D(Typ) x H(Max)  
LED Constant-Current Controller  
SSOP-B16  
5.00mm x 6.40mm x 1.35mm  
PWM Dimming Function  
LED Current De-rating Function  
LED Open Detection  
Short Circuit Protection(SCP)  
Over Voltage Mute Function(OVM)  
Disable LED Open Detection Function at  
Reduced-Voltage  
Abnormal Output Detection and Output Functions  
(Note1: Grade1)  
Applications  
SSOP-B16  
Automotive LED Exterior Lamp  
(Rear Lamp, Turn Lamp, DRL/Position Lamp,  
Fog Lamp etc.)  
Automotive LED Interior Lamp  
(Air Conditioner Lamp, Interior Lamp,  
Cluster Light etc.)  
Typical Application Circuit  
RFB1  
RFB2  
VIN  
FB  
PWM_in  
D1  
RLIM  
ZD1  
CVIN1  
CCRT  
CVIN2  
EN  
BASE  
D2  
D3  
CRT  
OP  
DC_in  
RCRT  
SCP  
CLED  
BD18340FV-M  
BD18341FV-M  
DISC  
D
RDCIN  
VREG  
CD  
CVREG  
ROPM  
PWMOUT  
PBUS  
OPM  
RDCDIM  
GND  
DCDIM  
NTC  
Product structure : Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
1/35  
TSZ22111 14 001  
BD18340FV-M BD18341FV-M  
Pin Configuration  
(TOP VIEW)  
FB  
VIN  
1
16  
15  
14  
13  
12  
11  
10  
9
BASE  
EN  
2
N.C.  
DISC  
CRT  
D
3
OP  
4
SCP  
5
GND  
DCDIM  
VREG  
OPM  
6
PBUS  
7
PWMOUT  
8
Pin Description  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
Function  
Function  
The terminal to set  
Disable LED open detection voltage  
1
2
3
4
5
6
7
8
FB  
BASE  
N.C.  
OP  
Input terminal for feedback voltage  
9
OPM  
The terminal for connecting  
PNP Tr. BASE  
10  
11  
12  
13  
14  
15  
16  
VREG  
Internal reference voltage  
The terminal to set  
DC dimming  
Pin not connected internally. (Note 1)  
DCDIM  
D
The terminal  
for LED open detection  
The terminal to set  
Disable LED open detection time  
The terminal  
for short circuit protection  
The terminal to set  
CR timer  
SCP  
GND  
PBUS  
CRT  
DISC  
EN  
Discharge terminal for  
CR timer  
GND  
The terminal  
Abnormal Output Detection and Output  
Enable input  
PWMOUT CR timer signal output  
VIN  
Power supply input  
(Note 1) Please be sure to floating at N.C. pin  
Block Diagram  
VREG  
VIN  
FB  
EN  
VREG  
PBUS  
BASE  
Over  
Voltage  
Mute  
VREF  
PBUS  
OPENLOAD  
OP  
VREG  
VIN  
OPM  
D
1.2V  
Control  
Logic  
OPEN  
MASK  
VREG  
SCP  
SCP  
DELAY  
20µs  
D COMP  
1.2V1.25V  
DC Dimming  
DELAY  
Rise 1µs  
1.0V  
VREG  
DCDIM  
1.0V  
CRT  
CR  
TIMER  
DISC  
PWMOUT  
GND  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
2/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VIN  
Rating  
-0.3 to +70  
-0.3 to +70  
-0.3 to VIN+0.3V  
-0.3 to +5.0  
-0.3 to +7.0  
-0.3 to VREG+0.3  
-40 to 125  
Unit  
V
Supply Voltage  
EN,CRT, DISC Terminal Voltage  
FB,BASE,OP,SCP Terminal Voltage  
VEN, VCRT, VDISC  
VFB, VBASE, VOP,VSCP  
VIN-VFB,VIN-VBASE  
VPBUS, VREG, VDCDIM  
VPWMOUT, VOPM, VD  
Topr  
V
V
VIN-FB, VIN-BASE  
Voltage across Terminals  
V
PBUS,VREG  
DCDIM Terminal Voltage  
V
PWMOUT, OPM, D Terminal Voltage  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
V
°C  
°C  
°C  
Tstg  
-55 to 150  
Tjmax  
150  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
Thermal Resistance(Note2)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note4)  
2s2p(Note5)  
SSOP-B16  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 3)  
θJA  
140.9  
6
77.2  
5
°C/W  
°C/W  
ΨJT  
(Note2) Based on JESD51-2A (Still-Air),  
(Note3) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of  
the outside surface of the component package.  
(Note4) Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x  
1.57mmt  
Single  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note5) Using a PCB board based on JESD51-7  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
4 Layers  
FR-4  
Top  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
35μm  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
3/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Recommended Operating Conditions (Ta=-40°C to +125°C)  
Parameter  
Symbol  
Min  
4.5  
100  
10  
Typ  
13  
-
Max  
19  
Unit  
V
Supply Voltage(Note1) (Note2)  
CRTIMER Frequency Range  
VIN  
fPWM  
tMIN  
5000  
-
Hz  
µs  
PWM Minimum Pulse Width(Note3)  
-
(Note1) ASO should not be exceeded  
(Note2) At start-up time, please apply a voltage above 5V once. The value is the voltage range after the temporary rise to 5V.  
(Note3) At connecting the External PNP Tr.(2SAR573D3FRA(ROHM) ,1pcs), That is the same when the Pulse input to CRT terminal.  
Operating Conditions  
Parameter  
Symbol  
CVIN1  
Min  
1.0  
Max  
-
Unit  
μF  
μF  
μF  
μF  
μF  
kΩ  
Ω
The Capacitor  
connecting VIN Terminal1  
The Capacitor  
connecting VIN Terminal2  
(Note4)  
CVIN2  
0.047  
1.0  
-
The Capacitor  
connecting VREG Terminal  
(Note5)  
CVREG  
4.7  
0.68  
0.22  
50  
The Capacitor  
connecting LED Anode  
CLED  
CCRT  
RCRT  
0.1  
The Capacitor  
connecting CRT Terminal  
0.01  
0.1  
The Resistor  
connecting CRT Terminal  
The Resistor  
for setting LED Current LED  
(Note6)  
RFB1, RFB2  
0.8  
6.5  
The Resistor  
for setting Disable LED Open  
Detection Voltage  
ROPM  
25  
55  
kΩ  
The Resistor  
for setting DC Dimming  
RDCDIM  
RDCIN  
4.7  
-
50  
10  
kΩ  
kΩ  
The Resistor  
for DCIN pull-down  
The Capacitor  
for setting Disable LED Open  
Detection Time  
The Resistor for limiting  
Base Terminal Current  
(Note5)  
CD  
RLIM  
Q1  
0.001  
0.1  
μF  
See Features  
Description 5  
Ω
The External PNP Transistor  
(Note7)  
-
(Note4) ROHM Recommended Value (0.1μF GCM155R71H104KE37 murata)  
(Note5) Ceramic capacitor recommended. Please setting the Disable LED Open Detection Time less than PWM minimum pulse width.  
(Note6) At connecting the External PNP Tr. (2SAR573D3FRA (ROHM), 1pcs)  
(Note7) For external PNP transistor, please use the recommended device 2SAR573D3FRA for this IC.  
While using non-recommended part device, validate the design on actual board.  
Please check hfe of the part to design base current limit resistor. (See Features Description, section 5).  
As for parasitic capacitance, please evaluate over shoot of ILED on actual board. (See Features Description, Section 8 -Evaluation example, ILED pulse  
width at PWM Dimming operation).  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
4/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Electrical Characteristics1  
(Unless otherwise specified Ta = -40 to +125°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[ Circuit Current IVIN  
]
Circuit Current  
at Stand-by Mode  
VEN = 0V  
VFB=VIN  
IVIN1  
IVIN2  
IVIN3  
IVIN4  
-
-
-
-
0
10  
5.0  
5.0  
5.0  
μA  
mA  
mA  
mA  
Circuit Current  
at Normal Mode  
VEN = VIN, VFB=VIN-1.0V  
Base current subtracted  
2.0  
2.0  
2.0  
Circuit Current  
at LED Open Detection  
VEN = VIN, VFB=VIN-1.0V  
at LED Open Detection  
Circuit Current  
at PBUS=Low  
VEN = VIN, VFB=VIN-1.0V  
VPBUS = 0V  
[ VREG Voltage ]  
VREG Terminal Voltage  
VREG  
IVREG  
4.85  
-1.0  
5.00  
-
5.15  
-
V
IVREG = -100μA  
VREG Terminal  
Current Capability  
mA  
[ DRV ]  
VFBREG = VIN - VFB  
RFB1 = RFB2 = 1.8Ω,  
Ta = 25 to 125°C  
VFBREG = VIN - VFB  
RFB1 = RFB2 = 1.8Ω,  
Ta = -40 to 125°C  
630  
617  
650  
650  
670  
683  
mV  
mV  
FB Terminal Voltage  
VFBREG  
FB Terminal  
Input Current  
IFB  
7.5  
10  
15  
-
30  
-
μA  
mA  
kΩ  
VFB = VIN  
BASE Terminal Sink  
Current Capability  
VFB = VIN, VBASE = VIN - 1.5V  
Ta = 25°C  
IBASE  
RBASE  
BASE Terminal  
Pull-up Resistor  
VCRT = 0V  
VFB = VIN, VBASE = VIN - 1.0V  
0.5  
1.0  
1.5  
[ LED Current De-rating Function (DC Dimming Function) ]  
mV / ΔVFBREG / ΔVDCDIM  
DC Dimming Gain  
DDG  
688  
725  
762  
V
VDCDIM: 0.75V -> 0.35V  
BD18340FV-M  
FB Terminal Voltage  
VDCDIM = 0.75V  
VFB_DC1  
VFB_DC2  
VFB_DC3  
443  
270  
161  
466  
284  
175  
489  
298  
189  
mV  
mV  
mV  
FB Terminal Voltage  
VDCDIM = 0.50V  
FB Terminal Voltage  
VDCDIM = 0.35V  
BD18341FV-M  
FB Terminal Voltage  
VDCDIM = 0.75V  
VFB_DC1  
VFB_DC2  
VFB_DC3  
413  
250  
155  
466  
284  
175  
522  
318  
196  
mV  
mV  
mV  
FB Terminal Voltage  
VDCDIM = 0.50V  
FB Terminal Voltage  
VDCDIM = 0.35V  
[ Over Voltage Mute Function(OVM) ]  
ΔVFB = 10.0mV  
ΔVFB = VFB(@VIN = 13V) –  
Over Voltage Mute  
Start Voltage  
VOVMS  
20.0  
-
22.0  
-25  
24.0  
-
V
VFB(@VIN = VOVM  
)
Over Voltage Mute  
Gain  
mV /  
V
VOVMG  
ΔVFB / ΔVIN  
www.rohm.co.jp  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
5/35  
BD18340FV-M BD18341FV-M  
Electrical Characteristics2  
(Unless otherwise specified Ta = -40 to +125°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
Limit  
Parameter  
[ CRTIMER ]  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
CRT Terminal Charge Current  
CRT Terminal Charge Voltage  
ICRT  
36  
0.72  
1.80  
2.10  
28.5  
0.38  
20  
40  
0.80  
2.00  
2.40  
30.0  
0.40  
50  
5.0  
-
44  
0.88  
2.20  
3.00  
31.5  
0.42  
100  
10  
μA  
V
VCRT_CHA  
VCRT_DIS1  
VCRT_DIS2  
RCHA  
CRT Terminal  
Discharge Voltage 1  
V
CRT Terminal  
Discharge Voltage 2  
When VCRT > VCRT_DIS2  
RD1 -> RD2  
,
V
RCHA  
=
CRT Terminal Charge Resistor  
CR Timer Discharge Constant  
DISC Terminal ON Resistor 1  
DISC Terminal ON Resistor 2  
kΩ  
V / V  
Ω
(VCRT_DIS1- VCRT_CHA)/ ICRT  
VCRT_CHA  
VCRT_DIS1  
/
RDISC1  
RDISC2  
VPWMOUTH  
VPWMOUTL  
IDISC = 10mA  
2.5  
4.0  
-
kΩ  
V
IDISC = 100μA  
PWMOUT Terminal  
Output High Voltage  
5.5  
0.5  
0.5  
-
IPWMOUT = -100μA  
IPWMOUT = 100μA  
PWMOUT Terminal  
Output Low Voltage  
-
V
PWMOUT Terminal  
Sink Current Capability  
IPWMOUT  
_SINK  
-
-
mA  
mA  
μA  
PWMOUT Terminal  
Source Current Capability  
IPWMOUT  
_SOURCE  
-0.5  
-
-
CRT Terminal Leakage Current  
[ LED Open Detection ]  
ICRT_LEAK  
-
10  
VCRT = 70V  
LED Open Detection Voltage  
VOPD  
IOP  
1.1  
19  
1.2  
21  
1.3  
23  
V
VOPD = VIN - VOP  
VOP = VIN - 0.5V  
OP Terminal  
Input Current  
μA  
[ Disable LED Open Detection Function at Reduced-Voltage]  
OPM Terminal Source Current  
IOPM  
38  
40  
42  
μA  
V
VIN Terminal Disable LED Open  
Detection Voltage  
at Reduced-Voltage  
VOPM  
× 5.9  
VOPM  
× 6.0  
VOPM  
× 6.1  
VIN_OPM  
VOPM_R  
VIN terminal Voltage  
OPM Terminal  
Input Voltage Range  
1.0  
-
2.2  
V
[ Disable LED Open Detection Time Setting ]  
Input Threshold Voltage  
D Terminal Source Current  
D Terminal ON Resistor  
VDH  
IDSOURCE  
RD  
0.9  
100  
-
1.0  
230  
-
1.1  
400  
950  
V
μA  
Ω
ID_EXT = 100μA  
www.rohm.co.jp  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
6/35  
BD18340FV-M BD18341FV-M  
Electrical Characteristics3  
(Unless otherwise specified Ta = -40 to +125°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[ Short Circuit Protection(SCP) ]  
Short Circuit Protection  
Voltage  
VSCP1  
VSCPR  
VSCPHYS  
ISCP  
1.1  
1.15  
-
1.2  
1.25  
50  
1.3  
1.35  
-
V
V
Short Circuit Protection  
Release Voltage  
Short Circuit Protection  
Hysteresis Voltage  
mV  
mA  
V
SCP Terminal Source Current  
0.2  
1.15  
10  
1.0  
1.30  
20  
2.0  
1.45  
45  
SCP Terminal Source Current  
ON Voltage  
VSCP2  
tSCP2  
SCP Delay Time  
[ PBUS ]  
µs  
Input High Voltage  
VPBUSH  
VPBUSL  
VPBUSHYS  
IPBUS  
2.40  
-
-
-
V
V
Input Low Voltage  
-
-
0.6  
-
Hysteresis Voltage  
200  
150  
-
mV  
μA  
V
PBUS Terminal Source Current  
75  
-
300  
0.6  
5.5  
10  
VEN = 5V  
PBUS Terminal  
Output Low Voltage  
RPBUS  
IPBUS_EXT = 3mA  
IPBUS_EXT = -10μA  
VPBUS = 7V  
PBUS Terminal  
Output High Voltage  
VPBUS_OH  
IPBUS_LEAK  
3.5  
-
4.5  
-
V
PBUS Terminal  
Leakage Current  
μA  
[ EN ]  
Input High Voltage  
VENH  
VENL  
VENHYS  
IEN  
2.4  
-
-
-
0.6  
-
V
V
Input Low Voltage  
Hysteresis Voltage  
-
-
-
60  
7
mV  
μA  
Terminal Input Current  
[ UVLO VIN ]  
15  
VEN = 5V  
UVLO Detection Voltage  
VUVLOD  
VUVLOR  
VHYS  
3.88  
4.25  
-
4.10  
4.50  
0.4  
4.32  
4.75  
-
V
V
V
VIN: Sweep down  
VIN: Sweep up,  
VREG > 3.75V  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
7/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified Ta = 25°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=125°C  
Ta= 25°C  
Ta=-40°C  
Ta=125°C  
Ta= 25°C  
Ta=-40°C  
0
2
4
6
8
10 12 14 16 18 20  
VIN[V]  
0
2
4
6
8
10 12 14 16 18 20  
VIN[V]  
Figure 1. IVIN2 vs VIN  
Figure 2. VREG vs VIN  
500  
400  
300  
200  
100  
0
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
-50 -25  
0
25 50 75 100 125 150  
Temp[°C]  
0
2
4
6
8
10  
12  
14  
RFB1+RFB2[Ω]  
Figure 3. VREG vs Temp  
Figure 4. ILED vs RFB1+RFB2  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
8/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified Ta = 25°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
690  
680  
670  
660  
650  
640  
630  
620  
610  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
ΔILED = (ILED / (0.65V / RFB1+RFB2))-1)x100[%]  
0
2
4
6
8
10  
12  
14  
-50 -25  
0
25 50 75 100 125 150  
Temp[°C]  
RFB1+RFB2[Ω]  
Figure 5. ΔILED vs RFB1+RFB2  
Figure 6. VFBREG vs Temp  
800  
700  
600  
500  
400  
300  
200  
100  
0
760  
750  
740  
730  
720  
710  
700  
690  
680  
Ta= 25°C  
Ta=-40°C  
Ta=125°C  
-50 -25  
0
25 50 75 100 125 150  
Temp[°C]  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
VDCDIM[V]  
Figure 7. VFBREG vs VDCDIM  
Figure 8. DDG vs Temp  
www.rohm.co.jp  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
9/35  
BD18340FV-M BD18341FV-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified Ta = 25°C, VIN = 13V, CVREG = 1.0µF, Transistor PNP = 2SAR573D3FRA)  
800  
700  
600  
500  
50  
45  
40  
35  
Ta= 25°C  
Ta=-40°C  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
Ta=125°C  
Ta=125°C  
Ta= 25°C  
Ta=-40°C  
4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
VIN[V]  
6
11 16 21 26 31 36 41 46 51 56  
VIN[V]  
Figure 9. IBASE vs VIN  
Figure 10. VFBREG vs VIN  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
38.5  
38.0  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
38.5  
38.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temp[]  
Temp[]  
Figure 11. ICRT vs Temp  
Figure 12. IOPM vs Temp  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
10/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Features Description  
(Unless otherwise specified, Ta=25°C, VIN=13V, Transistor PNP = 2SAR573D3FRA, and numbers are “Typical” values.)  
1. LED Current Setting  
LED current ILED can be defined by setting resistances RFB1 and RFB2  
.
퐹퐵푅퐸퐺  
[ ]  
퐿퐸퐷  
=
퐹퐵1 + ꢀ퐹퐵2  
where:  
V
FBREG is the FB Terminal Voltage 650mV (Typ)  
How to connect LED current setting resistors  
LED current setting resistors must always be connected at least in pair arranged in series as below.  
If only one current setting resistor is used, then in case of a possible resistor short, the external PNP Tr. and LED  
may be broken due to large current flow.  
PNP Tr. rating current, LED rating current, RFB1 and RFB2 must have the following relations:  
퐹퐵푅퐸퐺  
[ ]  
퐿퐸퐷_푀푎푥 > 퐼푃푁푃_푀푎푥  
>
ꢁꢂ푛(ꢀ퐹퐵1, ꢀ퐹퐵2  
)
where:  
I
I
V
LED_Max is the LED Rating Current  
PNP_Max is the PNP Tr. Rating Current  
FBREG is the FB Terminal Voltage 650mV(Typ)  
Min(RFB1,RFB2) is the Lowest value of RFB1 and RFB2  
R
R
FB1  
FB2  
VIN  
FB  
+B  
EN  
VREG  
BASE  
VCE(SAT)  
VREG  
GND  
VREF  
C
VREG  
ILED  
Figure 13. LED Current Setting  
Constant current control dynamic range  
Constant current control dynamic range of LED current ILED can be calculated as follows.  
[ ]  
푉 ≥ 푉  
∙ ꢄ + 푉  
+ 푉  
ꢃ푁  
푓_퐿퐸퐷  
퐶퐸_푃푁푃  
퐹퐵푅퐸퐺  
where:  
V
V
IN is the VIN Terminal Voltage  
f_LED is the LED Vf  
N is the Number of Rows of LED  
V
V
CE(sat) is the External PNP Tr. Collector-Emitter Saturation Voltage  
FBREG is the FB Terminal Voltage 650mV(Typ)  
2. Reference-Voltage (VREG)  
VIN terminal generates 5.0V (Typ). This voltage is used as power source for the internal circuit, and also used to fix the  
voltage of terminals outside LSI to HIGH side. VREG terminal must be connected with CVREG = 1.0μF to 4.7μF to ensure  
capacity for the phase compensation. If CVREG is not connected, the circuit behavior would become extraordinarily unstable,  
for example with the oscillation of the reference-voltage.  
VREG terminal voltage must not be used as power source for other devices than this LSI.  
VREG circuit has a built-in UVLO function. The IC is activated when the VREG terminal voltage rises to 4.0V (Typ) or higher,  
and shut down when the VREG terminal voltage drops to 3.75V(Typ) or lower.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
11/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
3. Table of Operations  
The PWM dimming mode switches to DC control depending on CRT terminal voltage.  
When VIN > 22.0V (Typ), LED current is limited to reduce the heat dissipation of external PNP Tr.  
Depending on OP/SCP terminal voltage status, output current is turned OFF. Output current is also turned OFF  
when Low signal is input to PBUS terminal.  
In addition, UVLO, TSD further increases system reliability  
For each functions, please refer to Features Description.  
Detecting Condition  
Operation  
Mode  
CRT  
Terminal  
LED Current  
(ILED)  
PBUS Terminal  
Hi-Z  
[Detect]  
[Release]  
Stand-by  
Mode(Note1)  
-
VEN 0.6V  
VEN 2.4V  
OFF(Note3)  
VCRT  
2.0V(Typ)  
High  
(4.5V(Typ))  
DC  
-
-
-
50mA to 400mA  
See Features  
Description, 4.  
See Features  
Description, 4.  
High  
(4.5V(Typ))  
PWM Dimming  
DC Dimming  
-
VDCDIM  
1.0V(Typ)  
See Features  
Description, 9.  
High  
(4.5V(Typ))  
-
-
-
-
-
VDCDIM > 1.25V  
Over Voltage  
Mute  
VIN  
22.0V(Typ)  
>
VIN  
22.0V(Typ)  
See Features  
Description, 11.  
High  
(4.5V(Typ))  
LED Open  
Detection(Note2)  
VOP  
VOP  
<
OFF(Note3)  
OFF(Note3)  
OFF(Note3)  
Low  
Low  
VIN 1.2V(Typ)  
VIN 1.2V(Typ)  
Short Circuit  
Protection  
(SCP)  
VSCP  
1.2V(Typ)  
VSCP ≥  
1.25V(Typ)  
PBUS Control  
OFF  
Input  
VPBUS 0.6V  
VPBUS 0.6V  
VPBUS 2.4V  
VIN 4.1V(Typ)  
or  
VIN 4.5V(Typ)  
or  
High  
(4.5V(Typ))  
OFF(Note3)  
UVLO  
TSD  
-
-
VREG 3.75V(Typ)  
VREG 4.0V(Typ)  
Tj ≥  
Tj ≤  
OFF(Note3)  
Hi-Z  
175C(Typ)  
150C(Typ)  
(Note1) Circuit Current 0μA(Typ)  
(Note2) In regard to the sequence of LED current OFF, see Features Description, 5.  
(Note3) BASE Terminal Current: OFF, and LED Current (ILED): OFF.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
12/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
4. PWM Dimming Operation using external RC network  
PWM Dimming is performed with the following circuit.  
The ramp up/down time of the CRT voltage, and therefore the dimming cycle and Duty, can be set by values of the external  
components (CCRT, RCRT).  
Please connect CRT to VIN and DISC to GND or open if it is not used.  
The CR timer function is activated if DC SW is OPEN. To perform PWM light control of LED current, a triangular  
waveform is generated at CRT terminal. The LED current (ILED) is turned OFF while CRT voltage is ramping up,  
and LED current(ILED) is turned ON while CRT voltage is ramping down.  
When VCRT > VCRT_DIS1 (2.0V(Typ)), Dimming mode turns to DC Control. When VCRT > VCRT_DIS2 (2.4V(Typ)),  
discharge resistance of DISC terminal changes from RDISC1(5(Typ)) to RDISC2(5kΩ(Typ)).  
PWM SW  
ON  
VIN  
EN  
VREG  
FB  
DC SW  
OPEN  
VREG  
Control  
Logic  
BASE  
ICRT  
VREF  
CRT  
CCRT  
RCRT  
ILED  
VCRT_DIS1  
VCRT_DIS2  
GND  
DISC  
RDISC1  
RDISC2  
PWMOUT  
Figure 14. PWM Dimming Operation  
CRT Voltage  
Ramp-up  
CRT Voltage  
Ramp-down  
VCRT_DIS1  
VCRT_CHA  
2.0V(Typ)  
CRT Terminal  
Waveform  
VCRT  
0.8V(Typ)  
tOFF  
tON  
VCRT×CCRT  
V
CRT_CHA  
tOFF  
=
=RCHA×CCRT  
tON= - (RCRT+ RDISC1)×CCRT×ln  
ICRT  
V
CRT_DIS1  
5V  
0V  
PWMOUT Terminal  
Waveform  
LED Current  
I
LED  
I
LED  
I
LED  
I
LED  
I
LED  
I
LED  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ILED  
Figure 15. PWM Dimming Operation  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
13/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
(1) CRT Ramp up Time tOFF and CRT Ramp down Time tON  
CRT Ramp up Time tOFF and CRT Ramp down Time tON can be defined from the following equations.  
Make sure that tON is set > PWM Minimum Pulse Width tMIN:10μs (Min).  
∆푉 × 퐶푅푇  
퐶푅푇  
[ ]  
= ꢀ퐶퐻ꢆ × ꢅ퐶푅푇 푠  
푂퐹퐹  
=
퐶푅푇  
퐶푅푇_퐶퐻ꢆ  
(
)
[ ]  
ꢈ 푠  
푂푁 = − ꢀ퐶푅푇 + ꢀ퐷ꢃ푆퐶1 × ꢅ퐶푅푇 × 퐼푛 ꢇ  
퐶푅푇_퐷ꢃ푆1  
where:  
ICRT is the CRT Terminal Charge Current  
RCHA is the CRT Terminal Charge Resistor  
RDISC1 is the DISC Terminal ON Resistor1  
VCRT_CHA is the CRT Terminal Charge Voltage  
VCRT_DIS1 is the CRT Terminal Discharge Voltage1  
40μA(Typ)  
30kΩ(Typ)  
50Ω(Typ)  
0.8V(Typ)  
2.0V(Typ)  
(2) PWM Dimming Frequency fPWM  
PWM frequency is defined by tON and tOFF  
.
[ ]  
ꢋ푧  
푃푊푀  
=
푂푁 + 푡푂퐹퐹  
(3) ON Duty(DON  
)
Like the above, PWM ON duty is defined by tON and tOFF  
.
푂푁  
푂푁 + 푡푂퐹퐹  
[ ]  
%
푂푁  
=
(Example) In case of RCRT=3.6kΩ, CCRT=0.1μF (Typ)  
tOFF = RCHA × CCRT = 30kΩ × 0.1μF = 3.0ms  
tON = - (RCRT + RDISC1) × CCRT × ln(VCRT_CHA / VCRT_DIS1)= - (3.6+ 50Ω) × 0.1μF × ln(0.8V / 2.0V) = 0.334ms  
fPWM = 1 / (tON + tOFF) = 1 / (3.0ms + 0.334ms) = 300Hz  
DON  
= tON / (tON + tOFF) = 0.334ms / (3.0ms + 0.334ms) =10.0%  
[PWM Dimming Operation using external signal]  
In case external PWM input to CRT terminal,  
Make sure that input pulse High voltage >2.2V and  
pulse Low voltage<0.72V.  
VIN  
EN  
VREG  
Also please open DISC terminal or connect to GND.  
FB  
Control  
Logic  
VREG  
BASE  
ICRT  
VREF  
μ-Con  
or  
CRTIMER  
CRT  
ILED  
GND  
DISC  
Figure 16. PWM Dimming Operation using external signal  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
©2016 ROHM Co., Ltd. All rights reserved.  
14/35  
TSZ22111 15 001  
2019.02.28 Rev.003  
BD18340FV-M BD18341FV-M  
About a reverse connection protection diode  
Caution on using Reverse protection Diode  
With temperature, reverse current Ir of diode (D2, D3) can affect the charge and discharge current to capacitance C1.  
It is recommended to choose a diode (D2, D3) with Ir value less than 1μA. To avoid High-Z at point A,a resistor RDCIN of  
10kΩ is also recommended between Point A and GND.  
CRT rise / fall time deviation from set values  
During the PWM dimming operation mode, the A-point on Figure.17 becomes Hi-Z  
Reverse current Ir of D2 and D3 goes to the A-point  
(Power supply voltage is being input into the cathode of D2, so reverse current of D2 goes to mainly into C1)  
Reverse current Ir of D3 is added to the CRT terminal charge current and discharge current,  
so CRT start-up / fall time deviates from the settings.  
C1 gets charged, voltage at A-point rises  
Voltage at A-point exceeds voltage in CRT terminals of each IC  
Vf occurs in the diodes D3  
D3 circulate forward current If  
Forward current If of D3 is added to the CRT terminal charge current and discharge current,  
so CRT start-up / fall time deviates from the settings.  
Repetition -⑥  
D1  
D2  
VIN  
EN  
FB  
BASE  
A point  
BD18340FV-M  
BD18341FV-M  
Ir  
D3  
CRT  
If  
RDCIN  
C1  
Vf  
GND  
DISC  
Figure 17. how reverse protection diode affects the CRT terminal rise/fall time  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
15/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
5. LED Open Detection Function  
The IC can detect LED open condition when the OP terminal voltage (VOP) meets the following condition: VOP > VIN - 1.2V  
(Typ). As soon as VOP > VIN - 1.2 V (Typ) condition is achieved, D terminal source current (230μA (Typ)) turns on and starts  
charging the disable LED open detection time setting capacitor (CD).  
Once the D terminal voltage (VD) becomes higher than 1.0 V (Typ) and 1μs (Typ) elapses, the BASE terminal sink current  
(IBASE) is latched OFF and PBUS terminal voltage (VPBUS) is switched to Low.  
[Base Current Limit Resistance (RLIM)]  
The OP terminal voltage VOP is defined by the following formula:  
(Note that the external PNP Tr. goes into the saturation mode when the collector is open)  
(
)
[ ]  
푂푃 = 푉 − { 퐹퐵1 + ꢀ퐹퐵2 × 퐼퐵ꢆ푆퐸_푀푎푥 + 퐶퐸_푃푁} 푉  
ꢃ푁  
[ ]  
퐵ꢆ푆퐸_푀푎푥 = 6.0푉/ꢀ퐿ꢃ푀  
퐵ꢆ푆퐸_푀푎푥 < 80푚퐴  
where:  
RFB1, RFB2 is the LED Current Setting Resistance  
IBASE_Max is the Maximum BASE Terminal Sink Current  
RLIM is the BASE Terminal Sink Current Limit Resistance  
VCE_PNP is the External PNP Tr. Collector-Emitter Voltage (Note: ICE=IOP (23 μA (Max)))  
Please determine the BASE current limit resistance RLIM to ensure that the OP terminal voltage when the LED is open should  
meet the following condition: VOP > VIN - 1.2 V (Typ).  
Also note that the BASE current limit resistance must meet the following condition in order to obtain the BASE current to be  
needed during normal LED operation.  
[ ]  
4.0/ꢀ퐿ꢃ푀 > 퐼퐿퐸퐷 /ℎꢉ푒_푀ꢃ푁  
where:  
hfe_MIN is the Minimum External PNP Tr. hfe  
Disable LED open detection time tD, or the length of time from the moment the OP terminal voltage meets the condition “VOP  
> VIN - 1.2 V (Typ)” until the moment the BASE terminal sink current (IBASE) is latched OFF, can be defined by the following  
formula. Note that the disable time must be shorter than the ON pulse width of the PWM dimming.  
× 퐷퐻  
[ ]  
푂푁 > 푡=  
퐷  
where:  
ON is the ON pulse width of the PWM dimming(CRT Ramp down Time)  
CD is the disable LED open detection time setting capacitor  
DH is the D Terminal Input Threshold Voltage 1.0V (Typ)  
t
V
ID is the D Terminal Source Current 230μA (Typ)  
To reset the latched off LED current, EN must be turned-on again (The time when EN Terminal is L: more than 50μs )  
or the condition “UVLO (VIN < 4.1 V or VREG < 3.75 V)” must be fulfilled.  
VIN  
LED  
OPEN  
Discharge Co  
by OP terminal input current(21μA)  
RFB1  
RFB2  
OP Terminal  
Voltage  
VOP  
VIN  
FB  
VIN - 1.2V(Typ)  
VF_LED  
DRV  
PBUS  
BASE  
PBUS  
VCE_PNP  
RLIM  
LED Open  
Detection  
Comparator  
Output  
IBASE  
OPEN  
Control  
Logic  
LED OPEN  
OP  
VOP  
1.0V  
230uA  
1.2V  
(Typ)  
D Terminal  
Voltage  
VD  
1μs  
(Typ)  
CLED  
VD  
CD×1.0V  
230μA  
D
D COMP  
ILED  
DELAY  
1μs  
CD  
PBUSTerminal  
Voltage  
1.0V  
VPBUS  
I
BASEOFF(DRVOFF)  
GND  
I
BASEON  
Latch Release Condtion :  
(DRVON)  
ENH Lor UVLOdetect  
Figure 18. LED Open Detection Timing Chart  
16/35  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
6. Disable LED Open Detection Function at Reduced-Voltage  
The disable LED open detection function serves to prevent false detection of LED open at the reduced-voltage during the  
ramp-up/ramp-down of the VIN terminal voltage. LED open will not be detected until the VIN terminal Disable Open  
Detection Voltage at Reduced-Voltage (VIN_OPM). Once VIN_OPM is surpassed, the LED current will be latched OFF (BASE  
terminal sink current (IBASE) is latched OFF) and the PBUS voltage will be switched to Low following the sequence explained  
in Description of Functions 5.  
VIN_OPM must be defined by the following formula. (The OPM terminal voltage must be set between 1.0 V to 2.2 V.)  
VIN  
[ ]  
ꢃ푁_푂푃퐸푅푅  
≥ 푉  
ꢃ푁_푂푃푀  
FB  
where:  
VIN_OPM is theVIN Terminal Disable Open Detection Voltage  
at Reduced-Voltage  
VIN_OPERR is the VIN Terminal Open Erroneous Detection Voltage  
at Reduced-Voltage  
Control  
Logic  
VCE_PNP  
VREG  
BASE  
IOPM  
VREF  
(
) [ ]  
= 푂푃푀 × 6.0 ꢏ푦푝  
OPM  
ꢃ푁_푂푃푀  
OPEN  
MASK  
OPENLOAD  
OP  
Vf_LED×N  
[ ]  
푂푃푀 = 퐼푂푃푀 × ꢀ푂푃푀  
ROPM  
VOPD=1.2V  
[ ]  
= 푉 × ꢄ + 푂푃퐷  
ꢃ푁_푂푃퐸푅푅  
푓_퐿퐸퐷  
GND  
where:  
VOPM is the OPM Terminal Voltage  
IOPM is the Terminal Source Current 40 μA (Typ)  
ROPM is the OPM Terminal Connection Resistance  
Vf_LED is the LED Vf  
Figure 19. Disable LED Open Detection Function  
at Reduced-Voltage  
N is the Number of Rows of LED  
VOPD is the LED Open-Circuit Detection Voltage 1.2 V (Typ)  
VIN_OPERR  
VIN_OPM  
VIN__OPM VIN_OPERR  
VIN >  
Vf_LED × N + VCE_PNP + VFBREG  
VIN  
Controllable Range of  
constant current  
Disable  
LED Open  
Detection  
Area  
Disable  
LED Open  
Detection  
Area  
VIN  
VOPD =VIN -1.2V  
LED Open  
Detection  
Area  
LED Open  
Detection  
Area  
VOP  
VOP = Vf_LED × N  
ILED  
ILED  
4.5V  
VPBUS  
Figure 20. VIN Terminal Disable LED Open Detection Voltage and LED Open Erroneous Detection Voltage  
at Reduced-Voltage  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
17/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
7. Short Circuit Protection (SCP)  
Short Circuit Protection function lowers the SCP terminal voltage when the collector of the external PNP Tr. is grounded.  
After a lapse of the short circuit protection delay time (tSCP)(20μs(Typ)) following the drop of the SCP terminal  
voltage (VSCP) under 1.2V(Typ), the external PNP Tr. is turned OFF to prevent its thermal destruction, and the PBUS  
terminal is switched to Low to communicate the faulty condition.  
In order to avoid malfunction, the Short Circuit Protection function will not be activated until CRT > 2.0 V(Typ)  
after UVLO is reset.  
In case where the short circuit (VSCP < 1.2V(Typ)) is present from the beginning when the power is turned on,  
the short circuit protection function will be activated 60µs(Typ) after VCRT > 2.0V(Typ) condition is reached.  
VIN  
FB  
BASE  
EN  
VREG  
VREF  
VIN  
PBUS  
Control  
Logic  
PBUS  
ILED  
SCP  
SCP  
SHORT  
GND  
20µs  
Filter  
1.2V 1.25V  
Short  
Circuit  
Short Circuit  
4.5V  
VIN  
2.0V  
V
CRT  
SCP  
1.25V  
ON  
1.25V  
ON  
1.2V  
V
ON  
60μs  
20μs  
OFF  
High  
OFF  
Low  
OFF  
ILED  
High  
High  
Low  
VPBUS  
Figure 21. Short Circuit Protection (SCP)  
SCP Terminal Source Current  
The SCP terminal sources the SCP terminal source current (1mA (Typ)) once its voltage (VSCP) drops under 1.3V in order to  
prevent the malfunction of the short circuit protection.  
VIN  
FB  
EN  
1.3V(Typ)  
VREG  
BASE  
VSCP  
VREF  
0V  
PBUS  
GND  
PBUS  
VIN  
Control  
Logic  
SCP  
1.25V 1.3V  
1.0mA(Typ)  
0mA  
SCP  
ISCP  
20µs  
Filter  
ISCP  
1.2V1.25V  
Figure 22. SCP Terminal Source Current  
18/35  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
8. About the capacitor of connecting LED anode  
During PWM Mode, the output (LED anode) will be high impedance (‘Hi-Z’). During this time noise (Note1) can couple on  
to this pin and cause false detection of SHORT condition.  
To prevent this it is necessary to connect a Capacitor (0.1µF to 0.68µF) between LED anode and GND terminal nearby  
terminal  
(Note1) Conducted noise, Radiated noise, Crosstalk of connecter and PCB pattern etc…  
Make sure that the capacitor of connecting LED anode is the following equation:  
[
]
0.ꢊ ≤ ꢅ퐿퐸퐷 ≤ 0.68 휇ꢐ  
In case above range is exceeded, the ILED current becomes dull, so please evaluate ILED waveform in PWM mode operation.  
(Please refer to the following waveform).  
About the example of evaluation, please see to the following waveform.  
In case a capacitor exceeding the recommended range (above 0.68μF) is connected to LED anode, there is a  
possibility that delay time of start-up will reach about several decades ms, so special attention is needed.  
VIN  
EN  
VREG  
FB  
Control  
Logic  
VREG  
BASE  
ICRT  
VREF  
CRT  
CLED  
GND  
DISC  
ILED  
PWMOUT  
Figure 23. About the capacitor of connecting LED anode  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
19/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Evaluation example (ILED pulse width at PWM Dimming operation)  
Condition: +B = 13V  
Ta = 25°C  
LED = 1 Strings  
CCRT = 0.01μF  
RDISC = 1.0kΩ  
PWM Dimming Mode  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
20/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
9. LED Current De-rating Function (DC Dimming Function)  
The LED current (ILED) will be cut down once the DCDIM terminal voltage goes under 1.0 V (Typ).  
If LED de-rating function is not used, please DCDIM terminal must be kept 1.25V or more always and as stable as possible.  
Any ripples at DCDIM terminal will cause oscillations in output current ILED .It is recommended to insert a capacitor at  
DCDIM terminal.  
Steep changes in the DCDIM terminal voltage also might affect the ability of the output amplifier to keep up with the  
changes. So Please evaluate ILED waveform on actual board.  
The LED current de-rating function can be defined by the following formula:  
푁푇퐶  
푁푇퐶 + ꢀ퐷퐶퐷ꢃ푀  
[ ]  
퐷퐶퐷ꢃ푀 = 푉  
푅퐸퐺  
(
)
( ) [ ]  
− ꢊ.0푉 퐷퐶퐷ꢃ푀 × ꢌ퐷퐺 푉  
퐹퐵푅퐸퐺  
퐹퐵푅퐸퐺  
퐷퐶퐷ꢃ푀 < ꢊ.0푉 = 푉  
where:  
RDCDIM is The Resistor for setting DC Dimming  
RNTC is the NTC Thermistor Resistance  
VFBREG is the FB Terminal Voltage VIN 650 mV (Typ)  
DDG is the DCDIM Dimming Gain 725 mV/V (Typ)  
VIN  
FB  
EN  
BASE  
VREG  
VREF  
VREG  
R
DCDIM  
DC Dimming  
DCDIM  
ILED  
GND  
1.0V  
R
NTC  
ILED  
for Prevention  
Chattering  
VFBREG  
(VIN-VFB  
)
[mV]  
650  
466  
284  
175  
0
0.35 0.5  
0.75  
1.0  
1.25  
VDCDIM [V]  
Figure 24. LED Current De-rating Function (DC Dimming Function)  
www.rohm.co.jp  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
21/35  
BD18340FV-M BD18341FV-M  
10. PBUS Function  
The PBUS terminal has two functions. When the IC detects OPEN/SHORT of LED’s the PBUS is pulled LOW.  
It is also possible to turn OFF ILED current by externally pulling the PBUS to LOW voltage. This feature is useful when  
multiple this IC’s are used to drive LED loads. An OPEN/SHORT detection by one IC can be used to turn OFF current of  
other driver IC’s. (Please refer connection diagram below)  
Caution of using PBUS terminal  
Do not connect to the PBUS terminal other than below items list due to the difference of ratings, internal threshold  
voltages, and so on. (BD18340FV-M, BD18341FV-M, BD18342FV-M, BD18343FV-M, BD18345EFV-M, BD18337EFV-M,  
BD18347EFV-M)  
FB  
FB  
VIN  
EN  
VIN  
EN  
BASE  
BASE  
BD18340FV-M  
BD18341FV-M  
BD18340FV-M  
BD18341FV-M  
OP  
OP  
CH 1  
CH 2  
PBUS  
PBUS  
GND  
GND  
LED  
OPEN  
LED  
OFF  
communication each other by PBUS  
Figure 25. PBUS Function  
▼Example of Protective Operation due to LED Open Circuit  
CH1 LED  
Open  
CH1 PNP Tr.  
Collector  
Voltage  
ON  
CH1 ILED  
OFF  
After CH1LED Open Detection Mask time  
LEDLatch OFF  
I
V
PBUSHighLow  
V
PBUS  
CH2 PNP Tr.  
Collector  
VPBUSHighLow  
CH2 PNP Tr. : OFF  
Voltage  
ON  
CH2 ILED  
OFF  
Figure 26. Example of Protective Operation  
If LED OPEN occurs, PBUS of CH1 is switched from Hi-Z to Low output. As PBUS becomes Low, LED drivers of  
other CH detect the condition and turns OFF their own LEDs. LED anode clamps to 1.3V (Typ) during  
the OFF period, in order to prohibit ground fault detection.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
22/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
11. Over Voltage Mute Function (OVM)  
Once the VIN terminal voltage (VIN) goes above 22.0 V (Typ), the over voltage mute function is activated to decrease the  
LED current (ILED) in order to suppress heat generation from the external PNP Tr.  
The FB terminal voltage VFBREG which controls the LED current (ILED) will decay at -25 mV/V (Typ).  
VIN  
FB  
BASE  
EN  
VREG  
Over  
Voltage  
Mute  
VREF  
GND  
VIN-VFB [mV]  
22.0V(Typ)  
650  
-25mV/V(Typ)  
Output current is  
muted by power  
supply overvoltage  
0
VOVMS  
VIN [V]  
Figure 27. Overvoltage Mute Function (OVM)  
12. Under voltage Lockout (UVLO)  
UVLO is a protection circuit to prevent malfunction of the IC when the power is turned on or then the power is suddenly shut  
off.  
This IC has two UVLO circuits; UVLO VIN for VIN and UVLO VREG for VREG  
.
As soon as UVLO status is detected, BASE terminal sink current will be turned off to switch OFF the LED current (ILED).  
The following shows the threshold conditions of both UVLO circuits.  
Detection Conditions  
LED Current  
Operating Mode  
PBUS Terminal  
(ILED)  
[Detect]  
[Release]  
High output  
(4.5 V (Typ))  
UVLO VIN  
OFF(Note1)  
VIN ≤ 4.1 V(Typ)  
VIN ≥ 4.5 V(Typ)  
High output  
(4.5 V (Typ))  
UVLO VREG  
OFF(Note1)  
VREG ≤ 3.75V(Typ)  
VREG ≥ 4.0 V(Typ)  
(Note 1) BASE terminal sink current is turned OFF to switch OFF the LED current ILED  
.
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
23/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Timing Chart  
(Unless otherwise specified Ta=25°C, VIN=13V, Transistor PNP=2SAR573D3FRA, LED2strings, Value is Typical.)  
PWM Dimming Mode  
DC Mode  
EN  
reclosing  
EN  
reclosing  
OUTPUT  
GND  
OUTPUT  
GND  
LED  
LED  
OPEN  
SHORT  
OPEN  
SHORT  
13V  
13V  
4.5V  
VIN  
4.1V  
VEN  
2.4V  
0.6V  
2.4V  
0.6V  
4.0V  
4.0V  
V
REG  
CRT  
13V  
V
1.0V  
1.0V  
VD  
VIN-1.2V  
VIN-1.2V  
1.25V  
V
V
OP  
SC P  
1.25V  
1.2V  
1.25V  
1.25V  
1.2V  
20μs  
20μs  
V
PBU S  
V
FBREG  
ILED  
Output  
Latch OFF  
Output  
Latch OFF  
Figure 28. Timing Chart  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
24/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Recommended Application Circuit  
(1) ILED=120mA  
RFB1  
RFB2  
DC_in  
D1  
VIN  
EN  
FB  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1  
CRT  
OP  
U1  
SCP  
CLED  
BD18340FV-M  
DISC  
D
BD18341FV-M  
VREG  
CD  
CVREG  
ROPM  
PWMOUT  
PBUS  
OPM  
GND  
DCDIM  
Figure 29. Recommended Application Circuit1 (ILED 120mA, LED white 2strings)  
Recommended Parts List1 (ILED 120mA, LED white 2strings)  
Parts  
IC  
No  
U1  
Parts Name  
BD18340FV-M/BD18341FV-M  
RFN2LAM6STF  
Value  
-
UNIT  
-
Product Maker  
ROHM  
D1  
-
-
ROHM  
Diode  
ZD1  
TND12H-220KB00AAA0  
2SAR573D3FRA  
-
-
NIPPON CHEMICON  
ROHM  
PNP Tr.  
Q1  
-
-
RFB1  
RFB2  
ROPM  
CVIN1  
CVIN2  
CVREG  
CD  
LTR10EVHFL2R70  
2.7  
2.7  
39  
4.7  
0.1  
1.0  
0.01  
0.1  
Ω
ROHM  
Resistor  
LTR10EVHFL2R70  
Ω
ROHM  
MCR03EZPFX3902  
kΩ  
μF  
μF  
μF  
μF  
μF  
ROHM  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R11H103KA40  
GCM155R71H104KE37  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(About ZD1, please place according to Test Standard of Battery line.)  
Please note the following  
1. External PNP transistor  
For external PNP transistor, please use the recommended device 2SAR573D3FRA for this IC.  
While using non-recommended device, validate the design on actual board.  
Please check hfe of the part to design base current limit resistor. (See Features Description, section 5). As for parasitic  
capacitance (CLED connected at LED anode), The more it is small overshoot will be smaller. Please use devices that parasitic  
capacitance smaller than recommended device, also parasitic capacitance is possible to variation by PCB layout.  
So please evaluate over shoot of ILED on actual board. (See Features Description, Section 8 -Evaluation example, ILED  
pulse width at PWM Dimming operation).  
2. Power supply steep variation  
This IC is validated with test conditions as per ISO7637-2 standards.  
There is possibility of unexpected LED regulation due to sudden transients outside the specification range standards in input  
power supply.Please check the maximum ratings of LED and evaluate on actual board for any unexpected LED regulation.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
25/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
(2) ILED=120mA, PWM ON Duty=10%  
RFB1  
RFB2  
VIN  
EN  
FB  
PWM_in  
D1  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1  
D2  
CRT  
OP  
DC_in  
D3  
CCRT  
RCRT  
U1  
SCP  
CLED  
BD18340FV-M  
BD18341FV-M  
DISC  
D
RDCIN  
VREG  
CD  
CVREG  
PWMOUT  
PBUS  
OPM  
ROPM  
GND  
DCDIM  
Figure 30. Recommended Application Circuit 2  
(ILED 120mA , LED white 2strings, PWM ON Duty: 10%(Pulse width: 0.334ms), PWM frequency: 300Hz)  
Recommended Parts List 2  
(ILED 120mA, LED white 2strings, PWM ON Duty: 10%(Pulse width: 0.334ms),PWM frequency: 300Hz)  
Parts  
IC  
No  
U1  
Parts Name  
BD18340FV-M/BD18341FV-M  
RFN2LAM6STF  
Value  
-
UNIT  
-
Product Maker  
ROHM  
D1,D2  
D3  
-
-
ROHM  
Diode  
RFN1LAM6STF  
-
-
ROHM  
ZD1  
TND12H-220KB00AAA0  
2SAR573D3FRA  
-
-
NIPPON CHEMICON  
ROHM  
PNP Tr.  
Q1  
-
-
RFB1  
RFB2  
RCRT  
ROPM  
RDCIN  
CVIN1  
CVIN2  
CVREG  
CCRT  
CD  
LTR10EVHFL2R70  
2.7  
2.7  
3.6  
39  
2
Ω
ROHM  
LTR10EVHFL2R70  
Ω
ROHM  
Resistor  
MCR03EZPFX3601  
MCR03EZPFX3902  
ESR10EZPF2001  
kΩ  
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
ROHM  
ROHM  
ROHM  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R71H104KE37  
GCM155R11H103KA40  
GCM155R71H104KE37  
4.7  
0.1  
1.0  
0.1  
0.01  
0.1  
murata  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(About ZD1, please place according to Test Standard of Battery line.)  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
26/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
(3) ILED=524mA, PWM ON Duty=10%, LED Current De-rating function  
RFB1  
RFB2  
VIN  
EN  
FB  
PWM_in  
DC_in  
D1  
D2  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1 to Q3  
CRT  
OP  
D3  
CCRT  
RCRT  
U1  
SCP  
CLED  
BD18340FV-M  
BD18341FV-M  
DISC  
D
RDCIN  
VREG  
CD  
CVREG  
PWMOUT  
PBUS  
OPM  
ROPM  
RDCDIM  
GND  
DCDIM  
NTC  
Figure 31. Recommended Application Circuit 3  
(ILED 524mA, LED white 2strings, PWM ON Duty: 10%(pulse width: 0.334ms), PWM frequency: 300Hz)  
Recommended Parts List 3  
(ILED 524mA, LED white 2strings, PWM ON Duty: 10%(pulse width: 0.334ms), PWM frequency: 300Hz)  
Parts  
IC  
No  
U1  
Parts Name  
BD18340FV-M/BD18341FV-M  
RFN2LAM6STF  
Value  
-
Unit  
-
Product Maker  
ROHM  
D1,D2  
D3  
-
-
ROHM  
Diode  
RFN1LAM6STF  
-
-
ROHM  
ZD1  
TND12H-220KB00AAA0  
2SAR573D3FRA  
-
-
NIPPON CHEMICON  
ROHM  
PNP Tr.  
Q1 to Q3  
RFB1  
-
-
LTR10EVHFLR620  
0.62  
0.62  
3.6  
39  
43  
150  
2
Ω
ROHM  
RFB2  
LTR10EVHFLR620  
Ω
ROHM  
RCRT  
ROPM  
RDCDIM  
NTC  
RDCIN  
CVIN1  
CVIN2  
CVREG  
CCRT  
CD  
MCR03EZPFX3601  
MCR03EZPFX3902  
MCR03EZPFX4302  
NTCG104LH154JTDS  
ESR10EZPF2001  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
ROHM  
Resistor  
ROHM  
ROHM  
TDK  
ROHM  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R71H104KE37  
GCM155R11H103KA40  
GCM155R71H104KE37  
4.7  
0.1  
1.0  
0.1  
0.01  
0.1  
murata  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(About ZD1, please place according to Test Standard of Battery line.)  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
27/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
(4) ILED=120mA, Three rows drive, PWM ON Duty=10%, LED Current De-rating function  
RFB11  
RFB12  
RFB21  
RFB22  
RFB31  
RFB32  
VIN  
EN  
FB  
PWM_in  
DC_in  
D1  
D2  
D3  
R1  
R2  
R3  
RLIM  
ZD1  
CVIN1  
CCRT  
CVIN2  
BASE  
Q1  
Q2  
Q3  
D4  
D5  
D6  
CRT  
OP  
SCP  
RCRT  
U1  
DISC  
D
BD18340FV-M  
BD18341FV-M  
RDCIN  
VREG  
CLED1  
CLED2  
CLED3  
CD  
CVREG  
PWMOUT  
PBUS  
OPM  
ROPM  
RDCDIM  
GND  
DCDIM  
ILED1  
ILED2  
ILED3  
NTC  
Figure 32. Recommended Application Circuit 4  
(ILED1~3 120mA, LED white 2strings×3, PWM ON Duty: 10%( pulse width: 0.334ms), PWM frequency: 300Hz)  
Recommended Parts List 4  
(ILED 120mA, LED white 2strings, PWM ON Duty: 10%(pulse width: 0.334ms), PWM frequency: 300Hz)  
Parts  
IC  
No  
U1  
Parts Name  
BD18340FV-M/BD18341FV-M  
RFN2LAM6STF  
Value  
UNIT  
Product Maker  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
murata  
murata  
murata  
murata  
murata  
murata  
-
-
-
-
-
-
D1,D2  
D3  
Diode  
RFN1LAM6STF  
D4 to D6  
Q1 to Q3  
RLIM  
DA228UFH  
PNP Tr.  
2SAR573D3FRA  
-
-
MCR03EZPFX1000  
100  
2.7  
2.7  
3.6  
39  
Ω
RFB11, RFB21, RFB31 LTR10EVHFL2R70  
RFB12, RFB22, RFB32 LTR10EVHFL2R70  
Ω
Ω
Resistor  
RCRT  
ROPM  
MCR03EZPFX3601  
kΩ  
kΩ  
kΩ  
Ω
MCR03EZPFX3902  
RDCIN  
ESR10EZPF2001  
2
R1 to R3  
CVIN1  
MCR03EZPFX51R0  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R71H104KE37  
GCM155R11H103KA40  
GCM155R71H104KE37  
51  
4.7  
0.1  
1.0  
0.1  
0.01  
0.1  
μF  
μF  
μF  
μF  
μF  
μF  
CVIN2  
CVREG  
Capacitor  
CCRT  
CD  
CLED1 to CLED3  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
28/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Thermal Loss  
Thermal design should meet the following equation:  
> 퐶  
ꢎ ꢍ  
ꢎ ꢍ  
ꢎ ꢍ  
− ꢏ푇  
= ꢊ/휃퐽ꢆ ∙ ꢏ  
− ꢏ 표푟 ꢊ/훹 ∙ ꢏ  
푗ꢒ푎푥  
퐽푇  
푗ꢒ푎푥  
= 푉 ∙ 퐼ꢓꢃ푁2 + 푉  
∙ 퐼퐵ꢆ푆퐸  
ꢃ푁  
퐵ꢆ푆퐸  
where:  
Pd is the Power Dissipation  
Pc isthe Power Consumption  
VIN isthe VIN Terminal Voltage  
IVIN2 istheCircuit Current at Normal Mode  
VBASE isthe BASE Terminal Voltage  
IBASE isthe BASE Terminal Sink Current  
ΘJA isthe Thermal Resistance of Junction to Ambient  
ΨJT isthe thermal Characterization Parameter of Junction to centerCase Surface  
Tjmax isthe Max Joint Temperature (150 °C)  
Ta isthe Ambient Temperature  
TT isthe Case Surface Temperature  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
29/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
I/O equivalence circuits  
Terminal  
Name  
Terminal  
Name  
No.  
I/O Equivalent Circuit  
No.  
I/O Equivalent Circuit  
VIN  
(16Pin)  
VREG  
(10Pin)  
1kΩ(Typ)  
FB  
(1Pin)  
5.6kΩ(Typ)  
1
FB  
9
OPM  
VREG  
DCDIM  
D
10kΩ(Typ)  
OPM  
(9Pin)  
GND  
(6Pin)  
GND  
(6Pin)  
VIN  
(16Pin)  
VIN  
(16Pin)  
1kΩ  
(Typ)  
BASE  
(2Pin)  
VREG  
(10Pin)  
2
3
4
BASE  
N.C  
10  
11  
12  
13  
14  
370kΩ  
(Typ)  
10kΩ(Typ)  
92.5kΩ  
(Typ)  
GND  
(6Pin)  
GND  
(6Pin)  
VIN  
(16Pin)  
DCDIM  
(11Pin)  
10kΩ(Typ)  
OP  
(4Pin)  
100kΩ(Typ)  
OP  
GND  
(6Pin)  
GND  
(6Pin)  
VREG  
(10Pin)  
VIN  
(16Pin)  
D
(12Pin)  
100kΩ(Typ)  
SCP  
(5Pin)  
5
6
7
SCP  
GND  
100kΩ(Typ)  
GND  
(6Pin)  
GND  
(6Pin)  
VREG  
(10Pin)  
-
100kΩ(Typ)  
CRT  
(13Pin)  
VREG  
(10Pin)  
CRT  
GND  
(6Pin)  
PBUS  
(7Pin)  
PBUS  
100kΩ(Typ)  
10Ω  
(Typ)  
DISC  
(14Pin)  
GND  
(6Pin)  
VREG  
(10Pin)  
DISC  
5kΩ  
(Typ)  
5.2V  
(Typ)  
10Ω  
(Typ)  
GND  
(6Pin)  
PWM  
OUT  
PWMOUT  
(8Pin)  
8
380Ω  
(Typ)  
EN  
(15Pin)  
GND  
(6Pin)  
260kΩ  
(Typ)  
150kΩ  
(Typ)  
1kΩ(Typ)  
5.2V  
1kΩ(Typ)  
15  
16  
EN  
5.2V  
(Typ)  
1080kΩ  
(Typ)  
143kΩ  
(Typ)  
(Typ)  
1333kΩ  
(Typ)  
GND  
(6Pin)  
VIN  
-
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
30/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
OR  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may  
result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the  
board size and copper area to prevent exceeding the maximum junction temperature rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
31/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Operational Notes continued  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 33. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within  
the Area of Safe Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
32/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Ordering Information  
B D 1  
8
8
3
3
4
4
0
F
V -  
ME2  
Product Name  
Package  
FV: SSOP-B16  
Packaging and forming specification  
M: High Reliability Design  
E2: Embossed tape and reel  
B D 1  
1
F
V -  
ME2  
Product Name  
Package  
FV: SSOP-B16  
Packaging and forming specification  
M: High Reliability Design  
E2: Embossed tape and reel  
Marking Diagrams  
SSOP-B16(TOP VIEW)  
Part Number Marking  
18340  
LOT Number  
1PIN MARK  
SSOP-B16(TOP VIEW)  
Part Number Marking  
18341  
LOT Number  
1PIN MARK  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
33/35  
TSZ22111 15 001  
BD18340FV-M BD18341FV-M  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B16  
www.rohm.co.jp  
©2016 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
34/35  
BD18340FV-M BD18341FV-M  
Revision History  
Date  
Revision  
001  
Changes  
2016.03.29  
New Release  
Page.3 Footprints and Traces  
74.2mm2 (Square)  
74.2mm x 74.2mm  
002  
2016.04.21  
Page.12 Table of Operations  
Operation Mode: TSD  
PBUS Terminal: High(4.5V(Typ)) to Hi-z  
Page.5 Electrical Characteristics1  
VREG Terminal Voltage  
±3%(Ta= 25 to 125°C) ±3%(Ta=-40 to 125°C)  
±5%(Ta=-40 to 125°C)  
Page.16 Formula  
[ ]  
(
)
푂푃 = ꢀ퐹퐵1 + ꢀ퐹퐵2 × 퐼퐵ꢆ푆퐸_푀푎푥 + 퐶퐸_푃푁푃  
[ ]  
(
)
푂푃 = ꢃ푁 − { 퐹퐵1 + ꢀ퐹퐵2 × 퐼퐵ꢆ푆퐸_푀푎푥 + 퐶퐸_푃푁푃 } 푉  
Page. 17 Delete the description of when installing heat sink resistor, or connecting  
resistor or diodes between OP terminal and LED anode  
2019.02.28  
003  
Page. 21 DCDIM terminal must be kept below 1.25V  
DCDIM terminal must be kept 1.25V or more  
Page. 22 Caution of using PBUS terminal  
Revise the description and the items list  
Page.25, 26, 27 Recommended Parts List  
Update discontinued parts to latest parts number  
Page. 28 Recommended Application Circuit 4  
ILED: 150mA  
120mA  
Add recommended parts list 4 and delete the description  
www.rohm.co.jp  
TSZ02201-0T1T0C700180-1-2  
2019.02.28 Rev.003  
©2016 ROHM Co., Ltd. All rights reserved.  
35/35  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18340FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18341FV-M

BD18341FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18341FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18342FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-ME2

LED Driver,
ROHM

BD18345EFV-M

BD18345EFV-M是耐压高达70V的车载LED灯用恒流控制器。仅1枚本IC即可驱动多达10个外置PNP晶体管。另外,内置待机功能,有助于降低配套应用的功耗。内置两种LED电流降额功能、LED开路检测功能、输出接地故障保护功能、过电压静音功能及LED异常状态输入输出功能,可靠性更高。
ROHM

BD18347AEFV-M

BD18347AEFV-M是一款40V耐压的车载用LED恒流驱动器。是内置Energy Sharing控制功能、有助于缩减电路板尺寸的4通道LED驱动器。还内置有LED开路检测、OUTx(以后全部x=1~4)引脚输出接地故障保护、过电压静音功能和热关断功能,可实现更高可靠性。
ROHM

BD18347EFV-M

BD18347EFV-M是4通道线性LED驱动器,可通过1个引脚控制多个输出的热分散。不仅可显著减少部件数量和安装面积,还非常有助于平台化扩展机型的汽车LED灯驱动模块电路板的通用化设计。可用于车后灯(刹车灯、尾灯)、雾灯、转向灯、牌照灯、日间行车灯(Daylight Running Lamps)等汽车和摩托车领域的众多LED灯驱动。产品内置LED开路检测功能、OUTx(之后全部为 x=1~4)引脚输出接地故障保护功能、过电压静音功能及热关断功能,可实现高可靠性。连接于输出引脚的LED如果是2段的,请使用BD18347EFV-M;如果是3段的,请使用本BD18337EFV-M。
ROHM

BD18351EFV-M

BD18351EFV-M是内置1ch升压控制器的LED驱动器。本LSI通过对LED电流设定进行相对于输出电压的高边检测实现升压/降压,适合车头灯/DRL、车尾灯、转向灯的LED驱动。内置了CRTIMER,在需要进行DRL等的PWM调光的应用中,无需微控制器即可进行PWM调光,可实现组件的低成本化和小型化。
ROHM

BD18351EFV-ME2

LED Driver,
ROHM

BD18353EFV-M

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。
ROHM