BD18342FV-M [ROHM]

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。;
BD18342FV-M
型号: BD18342FV-M
厂家: ROHM    ROHM
描述:

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。

驱动 控制器 晶体管
文件: 总38页 (文件大小:2989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Constant Current LED Drivers  
Constant Current Controller  
for Automotive LED Lamps  
BD18342FV-M  
General Description  
Key Specifications  
BD18342FV-M is 70V-withstanding constant current  
controller for automotive LED lamps. It is able to drive at  
maximum 10 rows of PNP transistors. It can also  
contribute to reduction in the consumption power of the  
set as it has the built-in standby function. The IC provides  
high reliability because it has LED open detection, short  
circuit protection, over voltage mute function and LED  
failure input/output function.  
Input Voltage Range:  
FB Pin Voltage Accuracy:  
4.5 V to 19 V  
650 mV ±3 %  
@Ta=25 °C to 125 °C  
0 µA (Typ)  
Stand-by Current:  
Operating Temperature Range: -40 °C to +125 °C  
Package  
W (Typ) x D (Typ) x H (Max)  
5.00 mm x 6.40 mm x 1.35 mm  
SSOP-B16  
Features  
AEC-Q100 Qualified(Note 1)  
PWM Dimming Function  
LED Open Detection  
Short Circuit Protection (SCP)  
Over Voltage Mute Function (OVM)  
Disable LED Open Detection Function  
at Reduced-Voltage  
LED Failure Input/Output Functions (PBUS)  
(Note 1) Grade1  
SSOP-B16  
Applications  
Automotive LED Exterior Lamp  
(Rear Lamp, Turn Lamp, DRL/Position Lamp, Fog  
Lamp etc.)  
Automotive LED Interior Lamp  
(Air Conditioner Lamp, Interior Lamp, Cluster Light  
etc.)  
Typical Application Circuit  
RFB1  
RFB2  
VIN  
EN  
FB  
PWM_in  
D1  
RLIM  
ZD1  
CVIN1  
CCRT  
CVIN2  
BASE  
D2  
D3  
CRT  
OP  
DC_in  
RCRT  
SCP  
CLED  
DISC  
D
BD18342FV-M  
RDCIN  
VREG  
OPM  
CVREG  
ROPM  
CD  
PBUS  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
1/35  
TSZ22111 14 001  
BD18342FV-M  
Pin Configuration  
(TOP VIEW)  
FB  
BASE  
N.C.  
VIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
EN  
DISC  
CRT  
D
OP  
SCP  
GND  
PBUS  
N.C.  
N.C.  
VREG  
OPM  
Pin Description  
Pin No.  
Pin Name  
Function  
1
2
FB  
BASE  
N.C.  
OP  
Feedback voltage input  
Connecting PNP Tr. BASE  
No internal connection(Note 1)  
LED open detection input  
Short circuit protection input  
GND  
3
4
5
SCP  
GND  
PBUS  
N.C.  
OPM  
VREG  
N.C.  
D
6
7
Output for fault flag / Input to disable Output current  
No internal connection(Note 1)  
8
9
Connecting resistor for disable LED open detection voltage setting at reduced voltage  
Internal reference voltage output  
10  
11  
12  
13  
14  
15  
16  
No internal connection(Note 1)  
Connecting capacitor for disable LED open detection time setting  
Connect capacitor and resistor to set output current ON Duty  
Connecting resistor to set output current on time  
Enable input  
CRT  
DISC  
EN  
VIN  
Power supply input  
(Note 1) Leave this pin unconnected  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
©2018 ROHM Co., Ltd. All rights reserved.  
2/35  
TSZ22111 15 001  
18.Sep.2018 Rev.001  
BD18342FV-M  
Block Diagram  
VREG  
VIN  
EN  
FB  
VREG  
PBUS  
BASE  
Over  
Voltage  
Mute  
VREF  
PBUS  
OPM  
LED OPEN  
OP  
VREG  
VIN  
1.2 V  
Control  
Logic  
OPEN  
MASK  
VREG  
SCP  
SCP  
20 µs  
Filter  
D
D COMP  
1.20 V 1.25 V  
Rise 1 µs  
Filter  
1.0 V  
VREG  
CRT  
CR  
TIMER  
DISC  
GND  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
3/35  
TSZ22111 15 001  
BD18342FV-M  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VIN  
Rating  
-0.3 to +70.0  
-0.3 to +70.0  
-0.3 to VIN+0.3  
-0.3 to +5.0  
-0.3 to +7.0  
-0.3 to VREG+0.3  
-55 to +150  
150  
Unit  
V
Power Supply Voltage(VIN)  
EN, CRT, DISC Pin Voltage  
FB, BASE, OP, SCP Pin Voltage  
VEN, VCRT, VDISC  
VFB, VBASE, VOP,VSCP  
VIN_FB, VIN_BASE  
VPBUS, VREG  
VOPM, VD  
V
V
VIN-FB, VIN-BASE  
Inter-Pin Voltage  
V
PBUS, VREG Pin Voltage  
OPM, D Pin Voltage  
V
V
Storage Temperature Range  
Tstg  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
SSOP-B16  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
140.9  
6
77.2  
5
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
70 μm  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
4/35  
TSZ22111 15 001  
BD18342FV-M  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
4.5  
100  
10  
Typ  
Max  
19.0  
5000  
-
Unit  
V
Supply Voltage(Note 1) (Note 2)  
13.0  
CR TIMER Frequency Range  
PWM Minimum Pulse Width(Note 3)  
fPWM  
tMIN  
-
-
-
Hz  
µs  
°C  
Operating Temperature  
Topr  
-40  
+125  
(Note 1) ASO should not be exceeded  
(Note 2) At start-up time, please apply a voltage 5 V or more once. The value is the voltage range after the temporary rise to 5 V or more.  
(Note 3) At connecting the external PNP Tr. (2SAR573DFHG (ROHM), 1 pcs). That is the same when the pulse input to the CRT pin.  
Operating Conditions  
Parameter  
Symbol  
CVIN1  
Min  
1.0  
Max  
-
Unit  
μF  
μF  
μF  
μF  
μF  
kΩ  
Ω
Capacitor  
Connecting VIN Pin 1  
Capacitor  
(Note 4)  
CVIN2  
0.047  
1.0  
-
Connecting VIN Pin 2  
Capacitor  
(Note 5)  
CVREG  
4.7  
0.68  
0.22  
50.0  
6.5  
Connecting VREG Pin  
Capacitor  
CLED  
0.10  
0.01  
0.1  
Connecting LED Anode  
Capacitor  
CCRT  
RCRT  
for Setting CRT Timer  
Resistor  
for Setting CRT Timer  
Resistor  
(Note 6)  
RFB1, RFB2  
0.8  
for Setting LED Current  
Resistor for Disable LED Open  
Detection Voltage Setting  
at Reduced Voltage  
ROPM  
RDCIN  
25  
55  
kΩ  
Resistor for DCIN Pull-down  
-
10  
kΩ  
μF  
Ω
Capacitor for Setting Disable LED  
Open Detection Time  
(Note 5)  
CD  
RLIM  
Q1  
0.001  
0.100  
Resistor for Limiting  
Base Pin Current  
See Features Description 5  
External PNP Transistor  
-
(Note 7)  
(Note 4) Recommended ceramic capacitor. ROHM Recommended Value (0.1 μF GCM155R71H104KE37 murata)  
(Note 5) Recommended ceramic capacitor. Please setting the Disable LED Open Detection Time less than PWM minimum pulse width.  
(Note 6) At connecting the external PNP Tr. 2SAR573DFHG (ROHM), 1 pcs.  
(Note 7) For external PNP transistor, please use the recommended device 2SAR573DFHG for this IC.  
While using non-recommended part device, validate the design on actual board.  
Please check hfe of the part to design base current limit resistor. (See Features Description, section 5).  
As for parasitic capacitance, please evaluate over shoot of ILED on actual board. (See Features Description, Section 8 -Evaluation example,  
ILED pulse width at PWM Dimming operation).  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
5/35  
TSZ22111 15 001  
BD18342FV-M  
Electrical Characteristics  
(Unless otherwise specified Ta=-40 °C to +125 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
Limit  
Parameter  
[Circuit Current IVIN  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
]
VEN=0 V  
VFB=VIN  
Circuit Current at Stand-by Mode  
Circuit Current at Normal Mode  
IVIN1  
IVIN2  
IVIN3  
IVIN4  
-
-
-
-
0
10  
5.0  
5.0  
5.0  
μA  
VEN=VIN, VFB=VIN-1.0 V  
Base Current Subtracted  
2.0  
2.0  
2.0  
mA  
Circuit Current  
at LED Open Detection  
mA VEN=VIN, VFB=VIN-1.0 V  
VEN=VIN, VFB=VIN-1.0 V  
VPBUS=0 V  
Circuit Current at PBUS=Low  
mA  
[VREG Voltage]  
IVREG=-100 μA  
V
4.85  
5.00  
5.15  
Ta=25 °C to 125 °C  
VREG Pin Voltage  
VREG  
IVREG  
IVREG=-100μA  
Ta=-40 °C to +125 °C  
4.75  
-1.0  
5.00  
-
5.25  
-
V
VREG Pin Current Capability  
mA  
[DRV]  
VFBREG=VIN-VFB  
mV RFB1=RFB2=1.8 Ω,  
Ta=25 °C to 125 °C  
VFBREG=VIN-VFB  
mV RFB1=RFB2=1.8 Ω,  
Ta=-40 °C to +125 °C  
630  
617  
650  
650  
670  
683  
FB Pin Voltage  
VFBREG  
FB Pin Input Current  
IFB  
7.5  
10  
15  
-
30  
-
μA  
mA  
kΩ  
VFB=VIN  
BASE Pin Sink  
Current Capability  
VFB=VIN, VBASE=VIN-1.5 V  
Ta=25 °C  
IBASE  
RBASE  
VCRT=0 V  
VFB=VIN, VBASE=VIN-1.0 V  
BASE Pin Pull-up Resistor  
0.5  
1.0  
1.5  
[Over Voltage Mute Function (OVM)]  
ΔVFB=10.0 mV  
Over Voltage Mute Start Voltage  
Over Voltage Mute Gain  
VOVMS  
20.0  
-
22.0  
-25  
24.0  
-
V
ΔVFB=VFB(@VIN=13 V)-  
VFB(@VIN=VOVMS  
)
VOVMG  
mV/V ΔVFB/ΔVIN  
www.rohm.com  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
6/35  
BD18342FV-M  
Electrical Characteristics continued  
(Unless otherwise specified Ta=-40 °C to +125 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
Limit  
Parameter  
[CR TIMER]  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
CRT Pin Charge Current  
CRT Pin Charge Voltage  
CRT Pin Discharge Voltage 1  
CRT Pin Discharge Voltage 2  
CRT Pin Charge Resistor  
CR Timer Discharge Constant  
DISC Pin ON Resistor 1  
ICRT  
36  
0.72  
1.80  
2.10  
28.5  
0.38  
20  
40  
0.80  
2.00  
2.40  
30.0  
0.40  
50  
44  
μA  
V
VCRT_CHA  
VCRT_DIS1  
VCRT_DIS2  
RCHA  
0.88  
2.20  
3.00  
31.5  
0.42  
100  
10  
V
When VCRT > VCRT_DIS2  
RD1 RD2  
,
V
RCHA  
=
kΩ  
V/V  
Ω
(VCRT_DIS1-VCRT_CHA)/ICRT  
VCRT_CHA  
VCRT_DIS1  
/
RDISC1  
RDISC2  
IDISC=10 mA  
IDISC=100 μA  
VCRT=VIN  
DISC Pin ON Resistor 2  
2.5  
5.0  
kΩ  
μA  
CRT Pin Leakage Current  
[LED Open Detection]  
ICRT_LEAK  
-
-
10  
LED Open Detection Voltage  
VOPD  
IOP  
1.1  
19  
1.2  
21  
1.3  
23  
V
VOPD=VIN-VOP  
VOP=VIN-0.5 V  
OP Pin Input Current  
μA  
[Disable LED Open Detection Function at Reduced-Voltage]  
OPM Pin Source Current  
IOPM  
38  
40  
42  
μA  
V
VIN Pin Disable LED Open  
Detection Voltage  
at Reduced-Voltage  
VOPM  
x 5.9  
VOPM  
x 6.0  
VOPM  
x 6.1  
VIN_OPM  
VOPM_R  
OPM Pin Input Voltage Range  
1.0  
-
2.2  
V
[Disable LED Open Detection Time Setting D Function]  
Input Threshold Voltage  
D Pin Source Current  
D Pin ON Resistor  
VDH  
IDSOURCE  
RD  
0.9  
100  
-
1.0  
230  
-
1.1  
400  
950  
V
μA  
Ω
ID_EXT=100 μA  
www.rohm.com  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
7/35  
BD18342FV-M  
Electrical Characteristics continued  
(Unless otherwise specified Ta=-40 °C to +125 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Short Circuit Protection (SCP)]  
Short Circuit Protection Voltage  
VSCPD  
VSCPR  
VSCPHYS  
ISCP  
1.10  
1.15  
-
1.20  
1.25  
50  
1.30  
1.35  
-
V
V
Short Circuit Protection  
Release Voltage  
Short Circuit Protection  
Hysteresis Voltage  
mV  
mA  
V
SCP Pin Source Current  
0.2  
1.15  
10  
1.0  
2.0  
1.45  
45  
SCP Pin Source Current  
ON Voltage  
VSCP2  
tSCP  
1.30  
20  
SCP Delay Time  
[PBUS]  
µs  
Input High Voltage  
VPBUSH  
VPBUSL  
VPBUSHYS  
IPBUS  
2.4  
-
-
-
V
V
Input Low Voltage  
-
-
0.6  
-
Hysteresis Voltage  
200  
150  
-
mV  
μA  
V
PBUS Pin Source Current  
PBUS Pin Output Low Voltage  
PBUS Pin Output High Voltage  
75  
-
300  
0.6  
5.5  
10  
VEN=5 V  
VPBUS_OL  
VPBUS_OH  
IPBUS_LEAK  
IPBUS_EXT=3 mA  
IPBUS_EXT=-10 μA  
VPBUS=7 V  
3.5  
-
4.5  
-
V
PBUS Pin Leakage Current  
[EN]  
μA  
Input High Voltage  
VENH  
VENL  
VENHYS  
IEN  
2.4  
-
-
-
0.6  
-
V
V
Input Low Voltage  
Hysteresis Voltage  
-
-
-
60  
7
mV  
μA  
Pin Input Current  
[UVLO VIN]  
15  
VEN=5 V  
UVLO Detection Voltage  
VUVLOD  
VUVLOR  
VHYS  
3.88  
4.25  
-
4.10  
4.50  
0.4  
4.32  
4.75  
-
V
V
V
VIN: Sweep down  
VIN: Sweep up,  
VREG > 3.75 V  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
8/35  
TSZ22111 15 001  
BD18342FV-M  
Typical Performance Curves (Reference Data)  
(Unless otherwise specified Ta=25 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=+125 °C  
Ta=+25 °C  
Ta=-40 °C  
Ta=+125 °C  
Ta=+25 °C  
Ta=-40 °C  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Supply Voltage : VIN[V]  
Supply Voltage : VIN[V]  
Figure 1. Circuit Current at Normal Mode vs Supply  
Voltage  
Figure 2. VREG Pin Voltage vs Supply Voltage  
500  
400  
300  
200  
100  
0
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
-50 -25  
0
25 50 75 100 125 150  
0
2
4
6
8
10  
12  
14  
Resistor for Setting LED Current :  
Temperature[°C]  
RFB1+RFB2[Ω]  
Figure 3. VREG Pin Voltage vs Temperature  
Figure 4. LED Current vs Resistor for Setting LED Current  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
9/35  
TSZ22111 15 001  
BD18342FV-M  
Typical Performance Curves (Reference Data) continued  
(Unless otherwise specified Ta=25 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
690  
680  
670  
660  
650  
640  
630  
620  
610  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
ΔILED=(ILED/{0.65 V/(RFB1+RFB2)}-1)  
x100[%]  
0
2
4
6
8
10  
12  
14  
-50 -25  
0
25 50 75 100 125 150  
Resistor for Setting LED Current :  
Temperature[°C]  
RFB1+RFB2[Ω]  
Figure 5. LED Current Accuracy vs Resistor for Setting  
LED Current  
Figure 6. FB Pin Voltage vs Temperature  
50  
45  
40  
35  
30  
800  
700  
600  
500  
400  
300  
200  
100  
0
Ta=+25 °C  
Ta=-40 °C  
25  
Ta=+125 °C  
Ta=+25 °C  
Ta=-40 °C  
20  
Ta=+125 °C  
15  
10  
6
11 16 21 26 31 36 41 46 51 56  
Supply Voltage : VIN[V]  
4
6
8
10 12 14 16 18 20  
Supply Voltage : VIN[V]  
Figure 7. BASE Pin Sink Current Capability vs Supply  
Voltage  
Figure 8. FB Pin Voltage vs Supply Voltage  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
10/35  
TSZ22111 15 001  
BD18342FV-M  
Typical Performance Curves (Reference Data) continued  
(Unless otherwise specified Ta=25 °C, VIN=13 V, CVREG=1.0 µF, Transistor PNP=2SAR573DFHG)  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
38.5  
38.0  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
39.0  
38.5  
38.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature[°C]  
Temperature[°C]  
Figure 9. CRT Pin Charge Current vs Temperature  
Figure 10. OPM Pin Source Current vs Temperature  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
11/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function  
(Unless otherwise specified, Ta=25 °C, VIN=13 V, Transistor PNP=2SAR573DFHG, and numbers are “Typical” values.)  
1. LED Current Setting  
LED current ILED can be defined by setting resistances RFB1 and RFB2  
.
퐹퐵푅ꢀ퐺  
퐿퐸퐷  
=
[A]  
+ꢁ  
퐹퐵2  
퐹퐵1  
where:  
ꢃꢄꢁ퐸ꢅ  
is the FB pin voltage 650 mV (Typ).  
How to connect LED current setting resistors  
LED current setting resistors must always be connected at least two or more in series as below.  
If only one current setting resistor is used, then in case of a possible resistor short (pattern short on the board  
etc.), the external PNP Tr. and LED may be broken due to large current flow.  
PNP Tr. rating current, LED rating current, RFB1 and RFB2 must have the following relations:  
퐹퐵푅ꢀ퐺  
퐿퐸퐷_푀퐴푋 > 퐼푃푁푃_푀퐴푋  
>
[A]  
푀푖푛(ꢁ  
,ꢁ  
)
퐹퐵1 퐹퐵2  
where:  
퐿퐸퐷_푀퐴푋  
is the LED rating current.  
푃푁푃_푀퐴푋  
ꢃꢄꢁ퐸ꢅ  
is the PNP Tr. rating current.  
is the FB pin voltage 650 mV (Typ).  
ꢆꢇꢈ(ꢉꢃꢄꢊ, ꢉꢃꢄꢋ  
)
is the lowest value of RFB1 and RFB2.  
R
R
FB1  
FB2  
VIN  
FB  
+B  
EN  
VREG  
BASE  
VCE_PNP  
VREG  
VREF  
GND  
C
VREG  
ILED  
Figure 11. LED Current Setting  
Constant current control dynamic range  
Constant current control dynamic range of LED current ILED can be calculated as follows.  
ꢂ ≥ ꢂ  
× ꢍ ꢎ ꢂ  
ꢎ ꢂ  
ꢃꢄꢁ퐸ꢅ  
[V]  
ꢌ푁  
푓_퐿퐸퐷  
퐶퐸_푃푁푃  
where:  
푓_퐿퐸퐷  
is the VIN pin voltage.  
is the LED Vf.  
ꢌ푁  
is the number of rows of LED.  
is the external PNP Tr. collector-emitter saturation voltage.  
is the FB pin voltage 650 mV (Typ).  
퐶퐸_푃푁푃  
ꢃꢄꢁ퐸ꢅ  
2. Reference voltage (VREG)  
Reference voltage VREG 5.0 V (Typ) is generated from VIN input voltage. This voltage is used as power source for the  
internal circuit, and also used to fix the voltage of pins outside LSI to HIGH side. The VREG pin must be connected with  
CVREG=1.0 μF to 4.7 μF to ensure capacity for the phase compensation. If CVREG is not connected, the circuit behavior  
would become extraordinarily unstable, for example with the oscillation of the reference voltage.  
The VREG pin voltage must not be used as power source for other devices than this LSI.  
VREG circuit has a built-in UVLO function. The IC is activated when the VREG pin voltage rises to 4.00 V (Typ) or higher,  
and shut down when the VREG pin voltage drops to 3.75 V (Typ) or lower.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
12/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
3. Table of Operations  
The PWM dimming mode switches to DC control depending on the CRT pin voltage.  
The switching conditions are as shown in the table below. When VIN > 22.0 V (Typ), LED current is limited to reduce the  
heat dissipation of external PNP Tr..  
Depending on the OP pin and the SCP pin voltage status, detect LED open or short circuit then LED current is turned  
OFF. LED current is also turned OFF when Low signal is input to the PBUS pin.  
In addition, UVLO and TSD further increases system reliability.  
For each functions, please refer to Description of Function.  
Detecting Condition  
Operation  
Mode  
CRT  
Pin  
LED Current  
(ILED  
PBUS Pin  
Hi-Z  
)
[Detect]  
[Release]  
Stand-by  
Mode(Note 1)  
-
VEN 0.6 V  
VEN 2.4 V  
OFF(Note 3)  
VCRT  
2.0 V (Typ)  
High  
4.5 V (Typ)  
DC  
-
-
-
-
50 mA to 400 mA  
See Features  
Description 4  
See Features  
Description 4  
High  
4.5 V (Typ)  
PWM Dimming  
Over Voltage  
Mute  
VIN  
>
VIN  
See Features  
Description 10  
High  
4.5 V (Typ)  
-
-
-
-
22.0 V (Typ)  
22.0 V (Typ)  
LED Open  
Detection(Note 2)  
VOP  
VOP  
<
OFF(Note 3)  
OFF(Note 3)  
OFF(Note 3)  
Low  
Low  
VIN 1.2 V (Typ)  
VIN 1.2 V (Typ)  
Short Circuit  
Protection (SCP)  
VSCP  
1.20 V (Typ)  
VSCP ≥  
1.25 V (Typ)  
PBUS Control  
OFF  
Input  
VPBUS 0.6 V  
VPBUS 0.6 V  
VPBUS 2.4 V  
VIN 4.10 V (Typ)  
VIN ≥ 4.50 V (Typ)  
OFF(Note 3)  
UVLO  
TSD  
-
-
High  
Hi-Z  
or  
or  
VREG ≤ 3.75 V (Typ) VREG ≥ 4.00 V (Typ)  
Tj ≥  
Tj ≤  
OFF(Note 3)  
175 C (Typ)  
150 C(Typ)  
(Note 1) Circuit current 0 μA (Typ)  
(Note 2) In regard to the sequence of LED current OFF, see Features Description 5.  
(Note 3) The BASE pin sink current: OFF, and LED current(ILED): OFF.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
13/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
4. PWM Dimming Operation  
PWM Dimming is performed with the following circuit.  
The dimming cycle and ON Duty Width, can be set by values of the external components (CCRT, RCRT).  
Connect the CRT pin to VIN and the DISC pin to GND or open if it is not used.  
The CR timer function is activated if DC SW is OPEN. To perform PWM dimming of LED current, a triangular waveform  
is generated at the CRT pin. The LED current (ILED) is turned OFF while CRT voltage is ramp up, and LED  
current(ILED) is turned ON while CRT voltage is ramp down.  
When VCRT VCRT_DIS1(2.0 V(Typ)), dimming mode turns to DC Control. When VCRT > VCRT_DIS2(2.4 V(Typ)), the DISC pin  
ON resister changes from RDISC1(50 Ω(Typ)) to RDISC2(5 (Typ)), and the power consumption of the IC is reduced by  
reducing the inflow current of the DISC pin.  
PWM SW  
ON  
VIN  
EN  
VREG  
FB  
DC SW  
OPEN  
VREG  
Control  
Logic  
BASE  
ICRT  
VREF  
CRT  
CCRT  
RCRT  
ILED  
VCRT_DIS1  
VCRT_DIS2  
GND  
DISC  
RDISC1  
RDISC2  
Figure 12. PWM Dimming Operation  
CRT Voltage  
Ramp up  
CRT Voltage  
Ramp down  
VCRT_DIS1  
VCRT_CHA  
2.0 V(Typ)  
CRT Pin  
Waveform  
ΔVCRT  
0.8 V(Typ)  
tOFF  
tON  
ΔVCRT×CCRT  
V
CRT_CHA  
CRT_DIS1  
tOFF  
=
=RCHA×CCRT  
tON= - (RCRT+ RDISC1)×CCRT×ln  
ICRT  
V
LED Current  
I
LED  
I
LED  
I
LED  
I
LED  
I
LED  
I
LED  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ILED  
Figure 13. PWM Dimming Operation  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
14/35  
TSZ22111 15 001  
BD18342FV-M  
4. PWM Dimming Operation continued  
(1) CRT ramp up Time tOFF and CRT ramp down Time tON  
CRT ramp up Time tOFF and CRT ramp down Time tON can be defined from the following equations.  
Make sure that tON is set PWM Minimum Pulse Width tMIN 10 μs or more.  
∆푉  
×퐶  
ꢏ푅푇  
ꢏ푅푇  
푂ꢃꢃ  
=
= ꢉ퐶퐻퐴 × ꢐ퐶ꢁꢑ [s]  
ꢏ푅푇  
푂푁 = − ꢉ퐶ꢁꢑ ꢎ ꢉ퐷ꢌ푆퐶ꢊ × ꢐ퐶ꢁꢑ × 퐼ꢈ ꢒꢏ푅푇_ꢏꢓꢔ [s]  
(
)
ꢏ푅푇_ꢕꢖꢗ1  
where:  
퐶ꢁꢑ  
퐶퐻퐴  
퐷ꢌ푆퐶ꢊ  
is the CRT pin charge current, 40 μA (Typ).  
is the CRT pin charge resistor, 30 (Typ).  
is the DISC pin ON resistor1, 50 Ω (Typ).  
is the CRT pin charge voltage, 0.8 V (Typ).  
is the CRT pin discharge voltage1, 2.0 V (Typ).  
퐶ꢁꢑ_퐶퐻퐴  
퐶ꢁꢑ_퐷ꢌ푆ꢊ  
(2) PWM Dimming Frequency fPWM  
PWM frequency is defined by tON and tOFF  
.
푃푊푀  
=
[Hz]  
+ꢚ  
ꢛꢜ ꢛ퐹퐹  
(3) ON Duty(DON  
)
PWM ON duty is defined by tON and tOFF  
.
ꢛꢜ  
푂푁  
=
[%]  
+ꢚ  
ꢛ퐹퐹  
ꢛꢜ  
(Example) In case of RCRT=3.6 kΩ, CCRT=0.1 μF (Typ)  
푂ꢃꢃ = ꢉ퐶퐻퐴 × ꢐ퐶ꢁꢑ = 30 × 0.ꢞ = 3.0 [ms]  
(
)
퐶ꢁꢑ_퐷ꢌ푆ꢊꢠ  
푂푁 = − ꢉ퐶ꢁꢑ ꢎ ꢉ퐷ꢌ푆퐶ꢊ × ꢐ퐶ꢁꢑ × 퐼ꢈ 퐶ꢁꢑ_퐶퐻/ꢂ  
(
)
(
)
= − 3.6 ꢎ 50 × 0.ꢞ × 퐼ꢈ 0.8/ꢡ.0 = 0.334 [ms]  
푃푊푀  
= ꢞ/(푡푂푁 ꢎ 푡푂ꢃꢃ ) = ꢞ/(3.0 ꢎ 0.334) = 300 [Hz]  
푂푁 = 푡푂푁 /(푡푂푁 ꢎ 푡푂ꢃ) = 0.334/(3.0 ꢎ 0.334) = ꢞ0.0 [%]  
[PWM Dimming Operation Using External Signal]  
In case external PWM input to the CRT pin, make sure that input pulse high voltage 2.2 V and pulse low voltage 0.6  
V. Also please open the DISC pin or connect to GND.  
VIN  
EN  
VREG  
FB  
Control  
Logic  
VREG  
BASE  
ICRT  
VREF  
μ-Con  
or  
CRTIMER  
CRT  
ILED  
GND  
DISC  
Figure 14. PWM Dimming Operation Using External Signal  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
15/35  
TSZ22111 15 001  
BD18342FV-M  
4. PWM Dimming Operation continued  
About deviation of CRT ramp up/down time with a reverse connection protection diode  
If this LSI is used to drive LED like below schematic, there is a possibility of occur CRT ramp up/down time deviation  
due to characteristics of reverse current Ir diode (D2, D3) .  
Consider to choose a diode (D2, D3) which is recommended by Rohm or Ir value 1 μA (Max) or less.  
Since reverse current flows even with the recommended diodes, connect a resistor of RDCIN of 10 or less between  
Point A and GND so that the voltage at point A does not rise.  
Mechanism of deviation of CRT ramp up/down time from set values.  
During the PWM dimming operation mode, Point A on Figure 15 is Hi-Z.  
Reverse current Ir of D2 and D3 goes to Point A.  
(Power supply voltage is being input into the cathode of D2, so mainly reverse current of D2 goes into C1.)  
Reverse current Ir of D3 is added to the CRT pin charge current and discharge current, so CRT ramp  
up/down time deviates from the settings.  
C1 gets charged, voltage at Point A rises.  
Point A voltage the CRT pin voltage of each IC.  
Vf occurs in the diodes D3.  
D3 circulate forward current If  
Forward current If of D3 is added to the CRT pin charge current and discharge current, so CRT ramp  
up/down time deviates from the settings.  
Repetition of to .  
D1  
D2  
VIN  
EN  
FB  
BASE  
Point A  
BD18342FV-M  
Ir  
D3  
CRT  
If  
RDCIN  
C1  
Vf  
GND  
DISC  
Figure 15. How Reverse Protection Diode Affects the CRT Pin Ramp Up/Down Time  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
16/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
5. LED Open Detection Function  
In case any one of the LEDs is in the open state, the IC can detect LED open condition when the OP pin voltage (VOP  
)
meets the following condition: VOP VIN-1.2 V (Typ). As soon as VOP VIN-1.2 V (Typ) condition is achieved, the D pin  
source current (230 μA (Typ)) turns on and starts charging the disable LED open detection time setting capacitor (CD).  
Once the D pin voltage (VDH) becomes 1.0 V (Typ) or more and 1 μs (Typ) elapses, the BASE pin sink current (IBASE) is  
latched OFF and the PBUS pin voltage (VPBUS) is switched to Low.  
[Base Current Limit Resistance (RLIM)]  
The OP pin voltage VOP at LED open is defined by the following formula:  
(Note that the external PNP Tr. goes into the saturation mode when the collector is open, it becomes the following  
formula.)  
(
)
푂푃 = ꢂ − { ꢃꢄꢊ ꢎ ꢉꢃꢄꢋ × 퐼ꢄ퐴푆퐸  
ꢎ ꢂ  
}
[V]  
ꢌ푁  
퐶퐸  
ꢤꢜꢤ  
ꢢꢔꢣ  
ꢄ퐴푆퐸_푀퐴푋 = 6.0ꢂ/ꢉ퐿ꢌ푀 [A]  
ꢄ퐴푆퐸_푀퐴푋 < 80 푚ꢥ  
where:  
ꢃꢄꢊ, ꢉꢃꢄꢋ is the LED current setting resistance.  
ꢄ퐴푆퐸_푀퐴푋 is the maximum BASE pin sink current.  
퐿ꢌ푀  
is the resistor for limiting BASE pin current.  
is the external PNP Tr. Collector-emitter voltage (Note: ICE=IOP (23 μA (Max))).  
퐶퐸_푃푁푃  
Please determine the BASE current limit resistance RLIM to ensure that the OP pin voltage when the LED is open should  
meet the following condition: VOP > VIN-1.2 V (Typ).  
Also note that the BASE current limit resistance must meet the following condition in order to obtain the BASE current to  
be needed during normal LED operation.  
4.0/ꢉ퐿ꢌ푀 > 퐼퐿퐸퐷 /ℎꢙ푒_푀ꢌ푁 [A]  
where:  
ℎꢙ푒_푀ꢌ푁  
is the minimum external PNP Tr. hfe.  
For the D pin, it is possible to set the disable time tD from when the OP pin voltage meets the condition “VOP > VIN-1.2 V  
(Typ)” until the BASE pin sink current (IBASE) is latched off, according to the following formula. Note that the disable  
time must be shorter than or equal to the ON pulse width of the PWM dimming tON  
.
퐶 ×푉  
ꢕꢓ  
푂푁 > 푡=  
[s]  
ꢕꢗꢛ푈푅ꢏꢀ  
where:  
푂푁  
퐷  
퐷퐻  
is the ON pulse width of the PWM dimming(CRT ramp down time).  
is the disable LED open detection time setting capacitor.  
is the D pin input threshold voltage, 1.0 V (Typ).  
퐷푆푂ꢦꢁ퐶퐸 is the D pin source current, 230 μA (Typ).  
To reset the latched off LED current, EN must be turned-on again (The time when the EN Pin is Lsince the power is  
turned on again: 50 μs or more) or the condition “UVLO (VIN 4.10 V or VREG ≤ 3.75 V)” must be fulfilled.  
VIN  
LED  
OPEN  
Discharge Co  
by the OP pin input current(21μA)  
RFB1  
RFB2  
OP Pin  
Voltage  
VOP  
VIN  
VIN  
FB  
-
1.2 V(Typ)  
VF_LED  
DRV  
PBUS  
BASE  
PBUS  
VCE_PNP  
RLIM  
LED Open  
Detection  
Comparator  
Output  
IBASE  
OPEN  
Control  
Logic  
LED OPEN  
OP  
VOP  
1.0  
V
230 μA  
1.2 V  
(Typ)  
D Pin  
Voltage  
VD  
1
μs  
(Typ)  
CLED  
VD  
CD x  
230 μA  
1.0 V  
D
D COMP  
1.0 V  
ILED  
1 μs  
Filter  
CD  
PBUS Pin  
Voltage  
VPBUS  
I
BASE  
Latch Release Condtion  
EN: -> Lor UVLO: detect  
: OFF(DRV: OFF)  
GND  
I
BASE:  
ON  
(DRV: ON)  
:
H
Figure 16. LED Open Detection Timing Chart  
17/35  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
6. Disable LED Open Detection Function at Reduced-Voltage  
The disable LED open detection function serves to prevent false detection of LED open at the reduced-voltage during  
the ramp-up/ramp-down of the VIN pin voltage. Even though LED is in the open state, LED open will not be detected  
until the VIN pin voltage becomes more than Disable Open Detection Voltage at Reduced-Voltage (VIN_OPM). Once  
VIN_OPM is surpassed, the LED current will be latched OFF (The BASE pin sink current (IBASE) is latched OFF) and the  
PBUS voltage will be switched to Low following the sequence explained in Description of Function 5.  
VIN_OPM must be defined by the following formula. (The OPM pin voltage must be set between 1.0 V and 2.2 V.)  
≥ ꢂ  
[V]  
ꢌ푁_푂푃푀  
ꢌ푁_푂푃퐸ꢁꢁ  
VIN  
where:  
is the VIN pin disable open detection voltage  
at reduced-voltage.  
ꢌ푁_푂푃푀  
FB  
Control  
Logic  
is the VIN pin open erroneous detection  
voltage at reduced-voltage.  
ꢌ푁_푂푃퐸ꢁꢁ  
VCE_PNP  
VREG  
BASE  
IOPM  
VREF  
(
)
= 푂푃푀 × 6.0 ꢧ푦푝  
[V]  
ꢌ푁_푂푃푀  
OPM  
OPEN  
MASK  
LED OPEN  
OP  
Vf_LED×N  
푂푃푀 = 퐼푂푃푀 × ꢉ푂푃푀 [V]  
= ꢂ × ꢍ ꢎ 푂푃퐷 [V]  
ROPM  
VOPD=1.2 V  
ꢌ푁_푂푃퐸ꢁꢁ  
푓_퐿퐸퐷  
GND  
where:  
Figure 17. Disable LED Open Detection Function  
at Reduced-Voltage  
푂푃푀 is the OPM pin voltage.  
푂푃푀 is the pin source current, 40 μA (Typ)  
푂푃푀 is the OPM pin connection resistance.  
푓_퐿퐸퐷  
is the LED Vf.  
is the number of rows of LED.  
푂푃퐷 is the LED open-circuit detection voltage, 1.2 V (Typ)  
When connecting resistor for heat dispersion, or connecting resistor or diodes between the OP pin and LED  
anode  
The formula to calculate VIN_OPERR will be different from the one above when the current flowing the LED is large and it  
is necessary to connect a resistor for heat dispersion in series with the LED to reduce the heat generation from the  
external PNP Tr., when multiple rows of the LEDs are driven, or when connecting a resistor to adjust the threshold  
voltage for detecting the LED open-circuit. Please read the Application Note of BD1834xFV-M series for details.  
VIN_OPERR  
VIN_OPM  
VIN_OPM  
VIN_OPERR  
VIN >  
Vf_LED × N + VCE_PNP + VFBREG  
VIN  
Controllable Range of  
constant current  
Disable  
LED Open  
Detection  
Area  
Disable  
LED Open  
Detection  
Area  
VIN  
VOPD =VIN -1.2 V  
LED Open  
Detection  
Area  
LED Open  
Detection  
Area  
VOP  
VOP = Vf_LED × N  
ILED  
ILED  
4.5 V  
VPBUS  
Figure 18. VIN Pin Disable LED Open Detection Voltage at Reduced-Voltage  
and LED Open Erroneous Detection Voltage at Reduced-Voltage  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
18/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
7. Short Circuit Protection (SCP)  
Short Circuit Protection function will be activated by decreasing the SCP pin voltage when the collector of the external  
PNP Tr. is short to GND. After a lapse of the short circuit protection delay time(tSCP)(20 μs(Typ)) following the drop of the  
SCP pin voltage(VSCP) is 1.2 V(Typ) or less, the external PNP Tr. is turned OFF to prevent its thermal destruction, and it  
can be notify the abnormally to the outside by changing the PBUS pin output to low.  
In order to avoid malfunction since the power is turned on, the Short Circuit Protection function will not be activated until  
VCRT > 2.0 V(Typ) after UVLO is reset.  
If it is in the short circuit state (VSCP < 1.2 V(Typ)) since the power is turned on, the Short Circuit Protection function will  
be activated when VCRT > 2.0 V(Typ) condition is reached and 60 µs(Typ) passes, after UVLO is reset.  
VIN  
FB  
BASE  
EN  
VREG  
VREF  
VIN  
PBUS  
Control  
Logic  
PBUS  
ILED  
SCP  
SCP  
SHORT  
GND  
20 µs  
Filter  
1.20 V 1.25 V  
Short  
Circuit  
Short Circuit  
4.5 V  
VIN  
2.0 V  
V
CRT  
SCP  
1.25 V  
ON  
1.25 V  
ON  
1.20 V  
V
ON  
60 μs  
20 μs  
OFF  
High  
OFF  
Low  
OFF  
ILED  
High  
High  
Low  
VPBUS  
Figure 19. Short Circuit Protection (SCP)  
SCP Pin Source Current  
The SCP pin sources the current (1 mA(Typ)) once its voltage (VSCP) drops under 1.3 V in order to prevent the  
malfunction of the short circuit protection.  
VIN  
FB  
EN  
1.3 V (Typ)  
VREG  
BASE  
VSCP  
VREF  
0 V  
PBUS  
GND  
PBUS  
VIN  
Control  
Logic  
SCP  
1.3 V  
1.0 mA (Typ)  
0 mA  
SCP  
ISCP  
20 µs  
Filter  
ISCP  
1.2 V1.25 V  
Figure 20. SCP Pin Source Current  
19/35  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
8. About the Capacitor of Connecting LED Anode  
There is a zone which the output (LED anode) will become high impedance (Hi-Z) at PWM dimming Mode. During this  
time noise(Note 1) can couple on to this pin and cause false detection of SHORT condition.  
To prevent this, it is necessary to connect a Capacitor CLED between LED anode and GND pin nearby pin.  
Make sure that the capacitor of connecting LED anode is the following equation:  
0.ꢞ ≤ ꢐ퐿퐸퐷 ≤ 0.68 [µF]  
In case CLED is set the range from 0.1 μF to 0.68 μF, the ILED current becomes dull, so please evaluate ILED waveform in  
PWM mode operation.  
About the example of evaluation, please see evaluation example on page 21.  
In case a capacitor exceeding the recommended range is connected to LED anode, there is a possibility that delay time  
of start-up will reach about several ten ms, so special attention is needed.  
(Note 1) Conducted noise, Radiated noise, Crosstalk of connecter and PCB pattern etc…  
VIN  
EN  
VREG  
FB  
Control  
Logic  
VREG  
BASE  
ICRT  
VREF  
CRT  
CLED  
GND  
DISC  
ILED  
Figure 21. About the Capacitor of Connecting LED Anode  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
20/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
Evaluation example (ILED pulse width at PWM Dimming operation)  
Condition: +B=13 V  
Ta=25 °C  
LED=1 Strings  
CCRT=0.01 μF  
RDISC=1.0 kΩ  
PWM Dimming Mode  
ILED=50 mA  
ILED=500 mA  
CLED=0.1 μF  
CLED=0.47 μF  
ILED=50 mA  
ILED=200 mA  
CLED=0.1 μF  
CLED=0.47 μF  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
21/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
9. PBUS Function  
The PBUS pin is the pin to input and output an error signal.  
When abnormality such as LED open or output ground fault occurs, it can notify the abnormality to the outside by  
changing the PBUS pin output from high to low. In addition, by externally controlling the PBUS pin from high to low, the  
LED current is turned off. When using multiple LSIs to drive multiple LEDs, it is possible to turn off all LED lines at once  
by connecting the PBUS pins of each CH as shown in the figure below, even if LED open or output ground fault occurs.  
Caution of using the PBUS pin  
Do not connect to the PBUS pins other than BD1834xFV-M series due to the difference of ratings, internal  
threshold voltages, and so on.  
FB  
FB  
VIN  
EN  
VIN  
EN  
BASE  
BASE  
BD18342FV-M  
CH 1  
BD18342FV-M  
CH 2  
OP  
OP  
SCP  
SCP  
PBUS  
PBUS  
GND  
GND  
LED  
OPEN  
LED  
OFF  
communication each other by PBUS  
Figure 22. PBUS Function  
▼Example of Protective Operation due to LED Open Circuit  
CH1 LED  
Open  
CH1 PNP Tr.  
Collector  
Voltage  
ON  
CH1 ILED  
OFF  
After CH1LED Open Detection Mask time  
LEDLatch OFF  
I
V
PBUSHighLow  
V
PBUS  
CH2 PNP Tr.  
Collector  
VPBUSHighLow  
CH2 PNP Tr. : OFF  
Voltage  
ON  
CH2 ILED  
OFF  
Figure 23. Example of Protective Operation  
If LED OPEN occurs, the PBUS pin of CH1 is switched from High to Low output. As the PBUS pin becomes Low, LED  
drivers of other CH detect the condition and turns OFF their own LEDs. The collector voltage of PNP transistor clamps  
to 1.3 V (Typ) during the OFF period, in order to prohibit ground fault detection.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
22/35  
TSZ22111 15 001  
BD18342FV-M  
Description of Function continued  
10. Over Voltage Mute Function (OVM)  
Once the VIN pin voltage (VIN) goes above 22.0 V (Typ), the over voltage mute function is activated to decrease the LED  
current (ILED) in order to suppress heat generation from the external PNP Tr.  
The FB pin voltage VFBREG which controls the LED current (ILED) will decay at -25 mV/V (Typ).  
VIN  
FB  
BASE  
EN  
VREG  
Over  
Voltage  
Mute  
VREF  
GND  
VFBREG [mV]  
22.0 V(Typ)  
650  
-25 mV/V(Typ)  
Output current is  
muted by power  
supply overvoltage  
0
VOVMS  
VIN [V]  
Figure 24. Overvoltage Mute Function (OVM)  
11. Under Voltage Lockout (UVLO)  
UVLO is a protection circuit to prevent malfunction of the IC when the power is turned on or when the power is suddenly  
shut off.  
This IC has two UVLO circuits; UVLO VIN for VIN and UVLO VREG for VREG  
.
As soon as UVLO status is detected, the BASE pin sink current will be turned off and switch OFF the LED current (ILED).  
The following shows the threshold conditions of both UVLO circuits.  
Detection Conditions  
LED Current  
Operating Mode  
PBUS Pin  
(ILED  
)
[Detect]  
[Release]  
High  
4.5 V (Typ)  
UVLO VIN  
OFF(Note 1)  
OFF(Note 1)  
VIN ≤ 4.10 V (Typ)  
VIN ≥ 4.50 V (Typ)  
High  
4.5 V (Typ)  
UVLO VREG  
VREG ≤ 3.75 V (Typ) VREG ≥ 4.00 V (Typ)  
(Note 1) The BASE pin sink current is turned OFF to switch OFF the LED current (ILED).  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
23/35  
TSZ22111 15 001  
BD18342FV-M  
Timing Chart  
(Unless otherwise specified Ta=25 °C, VIN=13 V, Transistor PNP=2SAR573DFHG, LED 2 strings, and values are Typical.)  
PWM Dimming Mode  
DC Mode  
EN  
reclosing  
EN  
reclosing  
OUTPUT  
GND  
OUTPUT  
GND  
LED  
LED  
OPEN  
SHORT  
OPEN  
SHORT  
13V  
13V  
4.5V  
VIN  
4.1V  
VEN  
2.4V  
0.6 V  
2.4V  
0.6V  
4.0V  
4.0V  
V
REG  
CRT  
13V  
V
1.0V  
1.0 V  
VD  
VIN-1.2 V  
VIN-1.2V  
1.25 V  
V
V
OP  
SC P  
1.25V  
1.20V  
1.25 V  
1.25V  
1.20V  
20μs  
20 μs  
V
PBU S  
V
FBREG  
ILED  
Output  
Latch OFF  
Output  
Latch OFF  
Figure 25. Timing Chart  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
24/35  
TSZ22111 15 001  
BD18342FV-M  
Application Examples  
(1) ILED=120 mA  
RFB1  
RFB2  
DC_in  
VIN  
EN  
FB  
D1  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1  
CRT  
OP  
U1  
SCP  
CLED  
DISC  
D
BD18342FV-M  
VREG  
OPM  
CD  
CVREG  
ROPM  
PBUS  
GND  
Figure 26. Application Example 1  
(ILED 120 mA, LED white 2 strings)  
Recommended Parts List 1 (ILED 120 mA, LED white 2 strings)  
Parts  
IC  
No  
U1  
Parts Name  
BD18342FV-M  
Value  
-
Unit  
Product Maker  
ROHM  
-
D1  
RFN2LAM6STF  
-
-
ROHM  
Diode  
ZD1  
TND12H-220KB00AAA0  
2SAR573DFHG  
-
-
NIPPON CHEMICON  
ROHM  
Transistor PNP  
Q1  
-
-
RFB1  
RFB2  
ROPM  
CVIN1  
CVIN2  
CVREG  
CD  
LTR10EVHFL2R70  
2.7  
2.7  
39  
4.7  
0.1  
1.0  
0.01  
0.1  
Ω
ROHM  
Resistor  
LTR10EVHFL2R70  
Ω
ROHM  
MCR03EZPFX3902  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R11H103KA40  
GCM155R71H104KE37  
kΩ  
μF  
μF  
μF  
μF  
μF  
ROHM  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(Note 1) About ZD1, please place according to test standard of battery line.  
Please note the following  
1. External PNP transistor  
For external PNP transistor, please use the recommended device 2SAR573DFHG for this IC.  
While using non-recommended device, validate the design on actual board with sufficient confirmation of the parts  
specifications (hfe, parasitic capacitance).  
Please check hfe of the part when designing base current limit resistor. (See Features Description, section 5). As for  
parasitic capacitance (CLED connected at LED anode), the smaller it is, the smaller its overshoot is. Use devices that has  
smaller parasitic capacitance than that of recommended device. Also parasitic capacitance is possible to be varied by PCB  
layout so please evaluate overshoot of ILED on actual board. (See Features Description, Section 8 -Evaluation example, ILED  
pulse width at PWM Dimming operation).  
2. Power supply steep variation  
This IC is validated with test conditions as per ISO7637-2 standards.  
There is possibility of unexpected LED regulation (peak current of output etc.) due to sudden transients outside the  
specification range standards in input power supply. Please check the maximum ratings of LED and evaluate on actual  
board for any unexpected LED regulation.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
©2018 ROHM Co., Ltd. All rights reserved.  
25/35  
TSZ22111 15 001  
18.Sep.2018 Rev.001  
BD18342FV-M  
Application Examples - continued  
(2) ILED=120 mA, PWM ON Duty=10 %  
RFB1  
RFB2  
VIN  
EN  
FB  
PWM_in  
D1  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1  
D2  
CRT  
OP  
DC_in  
D3  
CCRT  
RCRT  
U1  
SCP  
CLED  
DISC  
D
BD18342FV-M  
RDCIN  
VREG  
OPM  
CD  
CVREG  
ROPM  
PBUS  
GND  
Figure 27. Application Example 2  
(ILED 120 mA, LED white 2 strings, PWM ON Duty: 10 %(Pulse width: 0.334 ms), PWM frequency: 300 Hz)  
Recommended Parts List 2  
(ILED 120 mA, LED white 2 strings, PWM ON Duty: 10 %(Pulse width: 0.334 ms), PWM frequency: 300 Hz)  
Parts  
IC  
No  
U1  
Parts Name  
BD18342FV-M  
Value  
-
Unit  
-
Product Maker  
ROHM  
D1, D2  
D3  
RFN2LAM6STF  
-
-
ROHM  
Diode  
RFN1LAM6STF  
-
-
ROHM  
ZD1  
TND12H-220KB00AAA0  
2SAR573DFHG  
-
-
NIPPON CHEMICON  
ROHM  
Transistor PNP  
Q1  
-
-
RFB1  
RFB2  
RCRT  
ROPM  
RDCIN  
CVIN1  
CVIN2  
CVREG  
CCRT  
CD  
LTR10EVHFL2R70  
LTR10EVHFL2R70  
MCR03EZPFX3601  
MCR03EZPFX3902  
ESR10EZPF2001  
2.7  
2.7  
3.6  
39  
2
Ω
ROHM  
Ω
ROHM  
Resistor  
kΩ  
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
ROHM  
ROHM  
ROHM  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R71H104KE37  
GCM155R11H103KA40  
GCM155R71H104KE37  
4.7  
0.1  
1.0  
0.1  
0.01  
0.1  
murata  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(Note 1) About ZD1, please place according to test standard of battery line.  
www.rohm.com  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
26/35  
BD18342FV-M  
Application Examples - continued  
(3) ILED=524 mA, PWM ON Duty=10 %  
RFB1  
RFB2  
VIN  
EN  
FB  
PWM_in  
D1  
ZD1  
CVIN1  
CVIN2  
BASE  
Q1 to Q3  
D2  
CRT  
OP  
DC_in  
D3  
CCRT  
RCRT  
U1  
SCP  
CLED  
DISC  
D
BD18342FV-M  
RDCIN  
VREG  
OPM  
CD  
CVREG  
ROPM  
PBUS  
GND  
Figure 28. Application Example 3  
(ILED 524 mA, LED white 2 strings, PWM ON Duty: 10 %(pulse width: 0.334 ms), PWM frequency: 300 Hz)  
Recommended Parts List 3  
(ILED 524 mA, LED white 2 strings, PWM ON Duty: 10 %(pulse width: 0.334 ms), PWM frequency: 300 Hz)  
Parts  
IC  
No  
U1  
Parts Name  
BD18342FV-M  
Value  
-
Unit  
-
Product Maker  
ROHM  
D1, D2  
D3  
RFN2LAM6STF  
-
-
ROHM  
Diode  
RFN1LAM6STF  
-
-
ROHM  
ZD1  
TND12H-220KB00AAA0  
2SAR573DFHG  
-
-
NIPPON CHEMICON  
ROHM  
Transistor PNP  
Q1 to Q3  
RFB1  
-
-
LTR10EVHFLR620  
LTR10EVHFLR620  
MCR03EZPFX3601  
MCR03EZPFX3902  
ESR10EZPF2001  
0.62  
0.62  
3.6  
39  
2
Ω
ROHM  
RFB2  
Ω
ROHM  
Resistor  
RCRT  
ROPM  
RDCIN  
CVIN1  
CVIN2  
CVREG  
CCRT  
CD  
kΩ  
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
ROHM  
ROHM  
ROHM  
GCM32ER71H475KA40  
GCM155R71H104KE37  
GCM188R71E105KA49  
GCM155R71H104KE37  
GCM155R11H103KA40  
GCM155R71H104KE37  
4.7  
0.1  
1.0  
0.1  
0.01  
0.1  
murata  
murata  
murata  
Capacitor  
murata  
murata  
CLED  
murata  
(Note 1) About ZD1, please place according to test standard of battery line.  
www.rohm.com  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
27/35  
BD18342FV-M  
Application Examples - continued  
(4) ILED=150 mA, Three Rows Drive, PWM ON Duty=10 %  
RFB11  
RFB12  
RFB21  
RFB22  
RFB31  
RFB32  
VIN  
FB  
PWM_in  
D1  
R1  
R2  
R3  
RLIM  
ZD1  
CVIN1  
CCRT  
CVIN2  
EN  
BASE  
Q1  
Q2  
Q3  
D2  
D3  
D4  
D5  
D6  
CRT  
OP  
SCP  
DC_in  
RCRT  
U1  
DISC  
D
BD18342FV-M  
RDCIN  
VREG  
OPM  
CLED1  
CLED2  
CLED3  
CD  
CVREG  
ROPM  
PBUS  
GND  
ILED1  
ILED2  
ILED3  
Figure 29. Application Example 4  
(ILED1 to ILED 3 150 mA, LED white 2 strings x 3, PWM ON Duty: 10 %( pulse width: 0.334 ms), PWM frequency: 300 Hz)  
Refer to Application Note of BD1834xFV-M series for details about the multiple rows drive such as the one above.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
©2018 ROHM Co., Ltd. All rights reserved.  
28/35  
TSZ22111 15 001  
18.Sep.2018 Rev.001  
BD18342FV-M  
Power Dissipation  
Thermal design should meet the following equation.  
> 퐶  
ꢠ ꢟ  
− ꢧꢑ  
= ꢞ/휃퐽퐴 × ꢧ  
− ꢧ 표푟 ꢞ/훹 × ꢧ  
푗ꢩ푎푥  
퐽ꢑ  
푗ꢩ푎푥  
= ꢂ × 퐼푉ꢌ푁ꢋ ꢎ ꢂ  
× 퐼ꢄ퐴푆퐸  
ꢌ푁  
ꢄ퐴푆퐸  
where:  
푑  
is the power dissipation.  
퐶  
ꢌ푁  
is the power consumption.  
is the VIN pin voltage.  
푉ꢌ푁ꢋ is the circuit current at normal mode.  
is the BASE pin voltage.  
ꢄ퐴푆퐸  
ꢄ퐴푆퐸 is the BASE pin sink current.  
퐽퐴 is the thermal resistance of junction to ambient.  
퐽ꢑ  
is the thermal characterization parameter of junction to center case surface.  
푗ꢩ푎푥  
is the maximum junction temperature(150 °C).  
ꢑ  
is the ambient temperature.  
is the case surface temperature.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
29/35  
TSZ22111 15 001  
BD18342FV-M  
I/O Equivalence Circuits  
Pin  
No.  
Pin  
Name  
I/O Equivalence Circuit  
No.  
I/O Equivalence Circuit  
Name  
VIN  
VREG  
(Pin 16)  
(Pin 10)  
1 kΩ (Typ)  
FB  
(Pin 1)  
5.6 kΩ (Typ)  
1
FB  
9
OPM  
10 kΩ (Typ)  
OPM  
(Pin 9)  
GND  
(Pin 6)  
GND  
(Pin 6)  
VIN  
VIN  
(Pin 16)  
(Pin 16)  
1 kΩ  
(Typ)  
BASE  
(Pin 2)  
VREG  
(Pin 10)  
2
3
4
BASE  
N.C.  
OP  
10  
11  
12  
VREG  
N.C.  
D
370 kΩ  
(Typ)  
10 kΩ (Typ)  
92.5 kΩ  
(Typ)  
GND  
(Pin 6)  
GND  
(Pin 6)  
VIN  
(Pin 16)  
VREG  
(Pin 10)  
OP  
(Pin 4)  
D
100 kΩ (Typ)  
(Pin 12)  
100 kΩ (Typ)  
GND  
(Pin 6)  
GND  
(Pin 6)  
VIN  
VREG  
(Pin 16)  
(Pin 10)  
100 kΩ (Typ)  
SCP  
(Pin 5)  
CRT  
(Pin 13)  
5
6
7
8
SCP  
GND  
PBUS  
N.C  
13  
CRT  
100 kΩ (Typ)  
GND  
(Pin 6)  
GND  
(Pin 6)  
DISC  
(Pin 14)  
-
VREG  
(Pin 10)  
14  
DISC  
5 kΩ  
(Typ)  
5.2V  
(Typ)  
PBUS  
(Pin 7)  
100 kΩ (Typ)  
10Ω  
(Typ)  
GND  
(Pin 6)  
GND  
(Pin 6)  
EN  
(Pin 15)  
260 kΩ  
(Typ)  
150 kΩ  
(Typ)  
1 kΩ (Typ)  
1 kΩ (Typ)  
15  
16  
EN  
5.2V  
(Typ)  
5.2V  
(Typ)  
1080 kΩ  
(Typ)  
1333 kΩ  
(Typ)  
143 kΩ  
(Typ)  
GND  
(Pin 6)  
-
VIN  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
30/35  
TSZ22111 15 001  
BD18342FV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
©2018 ROHM Co., Ltd. All rights reserved.  
31/35  
TSZ22111 15 001  
18.Sep.2018 Rev.001  
BD18342FV-M  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 30. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
32/35  
TSZ22111 15 001  
BD18342FV-M  
Ordering Information  
B D 1  
8
3
4
2
F
V -  
M E 2  
Product Name  
Package  
FV: SSOP-B16  
Product Rank  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B16(TOP VIEW)  
Part Number Marking  
18342  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
33/35  
TSZ22111 15 001  
BD18342FV-M  
Physical Dimension and Packing Information  
Package Name  
SSOP-B16  
www.rohm.com  
©2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
34/35  
BD18342FV-M  
Revision History  
Date  
Revision  
001  
Changes  
18.Sep.2018  
New Release  
www.rohm.com  
TSZ02201-0T3T0B300230-1-2  
18.Sep.2018 Rev.001  
©2018 ROHM Co., Ltd. All rights reserved.  
35/35  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18343FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-ME2

LED Driver,
ROHM

BD18345EFV-M

BD18345EFV-M是耐压高达70V的车载LED灯用恒流控制器。仅1枚本IC即可驱动多达10个外置PNP晶体管。另外,内置待机功能,有助于降低配套应用的功耗。内置两种LED电流降额功能、LED开路检测功能、输出接地故障保护功能、过电压静音功能及LED异常状态输入输出功能,可靠性更高。
ROHM

BD18347AEFV-M

BD18347AEFV-M是一款40V耐压的车载用LED恒流驱动器。是内置Energy Sharing控制功能、有助于缩减电路板尺寸的4通道LED驱动器。还内置有LED开路检测、OUTx(以后全部x=1~4)引脚输出接地故障保护、过电压静音功能和热关断功能,可实现更高可靠性。
ROHM

BD18347EFV-M

BD18347EFV-M是4通道线性LED驱动器,可通过1个引脚控制多个输出的热分散。不仅可显著减少部件数量和安装面积,还非常有助于平台化扩展机型的汽车LED灯驱动模块电路板的通用化设计。可用于车后灯(刹车灯、尾灯)、雾灯、转向灯、牌照灯、日间行车灯(Daylight Running Lamps)等汽车和摩托车领域的众多LED灯驱动。产品内置LED开路检测功能、OUTx(之后全部为 x=1~4)引脚输出接地故障保护功能、过电压静音功能及热关断功能,可实现高可靠性。连接于输出引脚的LED如果是2段的,请使用BD18347EFV-M;如果是3段的,请使用本BD18337EFV-M。
ROHM

BD18351EFV-M

BD18351EFV-M是内置1ch升压控制器的LED驱动器。本LSI通过对LED电流设定进行相对于输出电压的高边检测实现升压/降压,适合车头灯/DRL、车尾灯、转向灯的LED驱动。内置了CRTIMER,在需要进行DRL等的PWM调光的应用中,无需微控制器即可进行PWM调光,可实现组件的低成本化和小型化。
ROHM

BD18351EFV-ME2

LED Driver,
ROHM

BD18353EFV-M

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。
ROHM

BD18353MUF-M

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。
ROHM

BD18362EFV-M

BD18362EFV-M是内置8ch的FET开关的矩阵LED控制器。可通过开关内置FET开关,控制LED的依次亮灯。内置电荷泵为栅极驱动器供电。内置亮灯图案,无需微控制器。
ROHM

BD18364EFV-M (新产品)

BD18364EFV-M是一款内置8通道旁路开关的升降压型LED驱动器。采用本IC可实现时序转向灯和动画灯点亮电路。旁路开关可利用微控制器通信单独控制ON和OFF。可通过电流限制电路来防止旁路开关控制时产生的过电流。
ROHM

BD18377EFV-M

12 Channel Constant Current LED Driver IC
ROHM