BD18364EFV-M (新产品) [ROHM]

BD18364EFV-M是一款内置8通道旁路开关的升降压型LED驱动器。采用本IC可实现时序转向灯和动画灯点亮电路。旁路开关可利用微控制器通信单独控制ON和OFF。可通过电流限制电路来防止旁路开关控制时产生的过电流。;
BD18364EFV-M (新产品)
型号: BD18364EFV-M (新产品)
厂家: ROHM    ROHM
描述:

BD18364EFV-M是一款内置8通道旁路开关的升降压型LED驱动器。采用本IC可实现时序转向灯和动画灯点亮电路。旁路开关可利用微控制器通信单独控制ON和OFF。可通过电流限制电路来防止旁路开关控制时产生的过电流。

通信 开关 驱动 控制器 微控制器 驱动器
文件: 总65页 (文件大小:3249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
For Automotive Sequential Winker  
8 ch Internal By-pass Switch LED Driver  
BD18364EFV-M  
General Description  
Key Specifications  
The BD18364EFV-M is a buck-boost LED driver with  
built-in 8 ch By-pass switch. Sequential winker and  
animation lamp light circuits are made possible in this  
circuit. The By-pass switch can be controlled ON and OFF  
individually by micro-controller communication. In By-  
pass switch control, generating high current can be  
prevented from the current limit circuit.  
Input Voltage Range:  
5.5 V to 45.0 V  
60 V  
0.8 A  
±3 %  
1.5 V to 13.5 V  
0.3 Ω (Typ)  
Maximum Voltage Output:  
Maximum LED Current  
LED Current Accuracy:  
LED Voltage/Channel  
By-pass Switch ON Resistance:  
Junction Temperature Range: -40 °C to +150 °C  
Features  
AEC-Q100 Qualified(Note 1)  
Applications  
Functional Safety Supportive Automotive Products  
Buck-boost LED Driver (Boost to VIN)  
Prevents High Current During LED Switching  
8 ch By-pass Switch  
DC Dimming (10 bit)  
Over Voltage Protection (OVP)  
By-pass Switch Independent PWM Dimming  
UART Communication Interface (Supports CAN and  
LIN)  
Automotive Exterior Lamps  
Sequential Winker  
Animation Lamps, etc.  
Package  
W (Typ) x D (Typ) x H (Max)  
10.0 mm x 7.6 mm x 1.0 mm  
HTSSOP-B30  
LED Abnormality Detection Function  
Spread Spectrum Frequency Modulation (Variable)  
8-bit A/D Converter  
(Note 1) Grade 1  
Typical Application Circuit  
COUT  
+B  
D1  
COUT  
L1  
RIS  
M1  
CPIN  
CBOOT  
RBOOT  
PGND  
IS  
GL  
PSW  
CPSW  
BOOT  
VIN  
PCLIM  
SNSP  
CIN  
RSNS  
REN1  
REN2  
CDRV5  
EN  
SNSN  
Q1  
VDRV5  
PGATE  
M2  
CPGATE  
RADIM  
D2  
NTC  
ADIM  
RT  
CH8  
LED7  
RRT  
CCOMP  
CH7  
RCOMP  
COMP  
GND  
MONIAD  
FAULT_B  
CH2  
CH1  
CH0  
LED1  
LED0  
RFLTB  
LDO  
5 V  
CS  
RX  
TX  
CAN/LIN  
Transceiver  
EXP-PAD  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
1/62  
BD18364EFV-M  
Pin Configuration  
HTSSOP-B30  
(TOP VIEW)  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
IS  
GL  
PGND  
PSW  
PCLIM  
SNSP  
SNSN  
PGATE  
CH8  
3
BOOT  
VIN  
4
5
EN  
6
VDRV5  
ADIM  
RT  
7
8
CH7  
9
COMP  
GND  
CH6  
10  
11  
12  
13  
14  
15  
CH5  
MONIAD  
CH4  
FAULT_B  
CS  
CH3  
EXP-PAD  
CH2  
RX  
CH1  
TX  
CH0  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
2/62  
BD18364EFV-M  
Pin Descriptions  
Pin No  
Pin Name  
Function  
1
IS  
GL  
Inductor current sense input.  
2
Output for N-ch MOSFET gate drive.  
3
BOOT  
VIN  
Power supply voltage capacitor connection for switch drive.  
Power supply voltage input.  
4
5
EN  
Enable input.  
6
VDRV5  
ADIM  
RT  
Capacitor connection for gate drive 5 V output.  
Analog dimming input.  
7
8
Resistance connection for switching frequency setting.  
Phase compensation capacitor connection.  
GND  
9
COMP  
GND  
MONIAD  
FAULT_B  
CS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
A/D input.  
LED abnormality detection output (Open drain).  
Chip select (Pull up to VDRV5 or Pull down to GND).  
UART Interface  
RX  
TX  
UART Interface  
CH0  
LED0 cathode connection.  
CH1  
LED0 anode and LED1 cathode connection.  
LED1 anode and LED2 cathode connection.  
LED2 anode and LED3 cathode connection.  
LED3 anode and LED4 cathode connection.  
LED4 anode and LED5 cathode connection.  
LED5 anode and LED6 cathode connection.  
LED6 anode and LED7 cathode connection.  
LED7 anode connection.  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
PGATE  
SNSN  
SNSP  
PCLIM  
PSW  
PGND  
EXP-PAD  
Current limit MOS drive output.  
Current sense input (-).  
Current sense input (+).  
Current limit circuit power supply.  
Power supply voltage capacitor connection for By-pass switch drive.  
Power GND  
Connect EXP-PAD to GND.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
3/62  
BD18364EFV-M  
Block Diagram  
CURRENT  
LIMIT  
CURRENT  
SENSE  
DCDC  
CLK  
OVP  
Driver  
Slope  
OCP  
x4.5  
234 mV  
LEDOCL  
REF  
195 mV  
DC dimming  
DCREF1  
DCREF2  
ADIM  
VIN  
ERRAMP  
DCDIM  
DC/DC  
BOOT  
REG  
VIN  
PSW  
CH8  
VDRV5  
Reference  
Voltage  
PSW  
CH8  
Internal  
Power Supply  
VDRV5  
Internal  
Regulator  
LED  
open/short  
detection  
LED open/short  
ON/OFF  
Level  
shift  
Gate  
Drive  
SW7  
PWMDIM  
UVLO/  
TSD  
CH7  
CH2  
EN  
EN  
PSW  
Internal  
Power Supply  
CH2  
Internal  
OSC  
Control  
Logic  
LED  
open/short  
detection  
LED open/short  
ON/OFF  
Level  
shift  
Gate  
Drive  
SW1  
FAULT_B  
MONIAD  
PWMDIM  
FAULT  
PSW  
CH1  
Internal  
Power Supply  
A/D  
converter  
RX  
TX  
UART  
I/O  
LED  
open/short  
detection  
LED open/short  
ON/OFF  
Level  
shift  
Gate  
Drive  
SW0  
PWMDIM  
CS  
CH8  
CH4  
CH0  
CH0  
CH6  
CH2  
CHxSCP  
CH0  
LEDSW  
GND  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
4/62  
BD18364EFV-M  
Description of Blocks  
1. Total Function  
BD18364EFV-M is a buck-boost LED driver with built-in 8 ch By-pass switch. Individual ON and OFF control of LED is  
possible and by this Sequential winker and Animation lamps are made possible. In the By-pass switch, one or two serial  
connection of LED is possible. The By-pass switch can be set ON, OFF and PWM dimming by UART communication. LED  
open detection and short detection functions are built in the By-pass switch. The LED driver is configured with Buck-boost  
(Boost to VIN). Damages from high current in LED when rush current is generated from output capacitor when By-pass  
switch switches from OFF to ON (light of LED turns OFF) can be suppressed by current limiting circuit.  
2. LED Driver Section  
2.1 LED Current Setting (CURRENT SENSE)  
LED current can be set by resistor RSNS that is connected in between the SNSP pin and the SNSN pin.  
푆푁푆  
퐿퐸퐷  
=
[A]  
푆푁푆  
2.2 Analog Dimming (DCDIM)  
Analog Dimming can be set by DCDIM register (10-bit)  
[
]
ꢄ퐶ꢄ퐼푀 9: 0  
1
ꢁꢂꢁ  
퐿퐸퐷  
=
= (  
× 퐹ꢁ푅 − 0.195 ꢀ) ×  
ꢁꢂꢁ  
1024  
4.5 × ꢃꢁꢂꢁ  
Where:  
퐹ꢁ푅 is the internal ADC converter Full-Scale-Range Voltage 2.5 V (Typ).  
2.3 Analog Dimming (ADIM)  
With voltage input in the ADIM pin, analog dimming is made possible.  
− 0.195 ꢀ  
ꢁꢂꢁ  
퐴퐷ꢅꢆ  
퐿퐸퐷  
=
=
ꢁꢂꢁ  
4.5 × ꢃꢁꢂꢁ  
VSNS  
511.8 mV  
25.6 mV  
0 mV  
VFSR  
2.5 V  
0
VADIM  
0.195 V  
0 %  
ΔVADIM  
5 %  
100 %  
1024  
DCDIM[9:0]  
0
80 127  
1023  
Figure 1. Analog Dimming (DCDIM/ADIM) Setting  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
5/62  
BD18364EFV-M  
2. LED Driver Section – continued  
2.4 Input Voltage (VIN) Derating  
When input voltage drops, output current can be dropped, depending on input voltage, to prevent increase in input  
current. Derating starting voltage can be set in register.  
resister setting start delating voltage  
VSNS  
(OFF,) 6.92 V, 7.49 V, 8.02 V, 8.62 V, 9.17 V, 9.69 V  
511.8 mV  
(100 %)  
341.8 mV  
(66.8 %)  
231.8 mV  
(45.3 %)  
0 mV  
(0 %)  
4.8 V 5.2 V  
6.92 V  
9.69 V VIN (V)  
-43.3 mV  
(offset)  
Figure 2. Input Voltage Derating Setting  
ADIM  
VIN  
minimum voltage  
select  
current sense  
reference voltage  
Resister setting  
VINDIM  
Resister setting  
DCDIM  
Figure 3. Analog Dimming Circuit  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
6/62  
BD18364EFV-M  
2.4 Input Voltage (VIN) Derating – continued  
The DCDIM pin, the ADIM pin and input voltage derating becomes as the circuit configuration such as shown in Figure  
3. It will be as the current value that was set at the lowest.  
For example, the VSNS voltage characteristics base on ADIM when current value was set to 50 % in the DCDIM is such  
as shown in Figure 4.  
VSNS  
511.8 mV  
(100 %)  
DCDIM[9:0] = 1023  
256.2 mV  
(50 %)  
DCDIM[9:0] = 552  
0 mV  
(0 %)  
VADIM (V)  
Figure 4. Example of DCDIM and ADIM Dimming  
2.5 DC/DC Switching Frequency (OSC)  
The switching frequency can be set based on the formula below depending on the external resistor RRT  
.
ꢇꢇꢈꢈ  
표푠푐  
× 103 [kHz]  
ꢉ푇  
2.6 Spread Spectrum Frequency Modulation (SSFM)  
With built-in spread spectrum function to reduce DC/DC switching noise peak level. Frequency modulation range is  
within ± 6 %. The modulation period is set from the register.  
fSW  
fSSFMW = fSW ± 6 %  
fSSFM  
t
Figure 5. Spread Spectrum Frequency Modulation  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
7/62  
BD18364EFV-M  
2. LED Driver Section – continued  
2.7 Protection  
2.7.1 Over Voltage Protection (DCDCOVP)  
The DC/DC output voltage is monitored by the SNSP pin voltage. If the SNSP pin voltage becomes higher than  
VOVP voltage, DC/DC will stop. The COMP pin is discharged until GND level voltage. The PMOS for current limit  
turns OFF. The OVPDET of ERRDET register updates into 1. If the SNSP pin voltage becomes less than  
VOVP_HYS voltage, the DC/DC reboots. After rebooting, the OVPDET of ERRDET register will update to 0 after  
tOVP  
.
Over Voltage Protection threshold can be set by UART communication as following.  
[
]
푂푉푃 = ꢊꢀꢋꢌꢍꢎ ꢏ: 0 × 2.18 + ꢏ4.8 [V]  
VOUT  
SNSP  
OVP  
Figure 6. DCDCOVP  
Error  
Normal  
VOVP  
VOVP-VOVPHYS  
VOUT ( = SNSP )  
OVPDET  
GL  
0
1
0
tOVP  
Figure 7. DCDCOVP Timing Chart (OVP)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
8/62  
BD18364EFV-M  
2.7 Protection – continued  
2.7.2 CHx pin Short Circuit Protection (CHxSCP)  
During the CH0 to CH8 pin ground, when VOUT voltage is higher than LED voltage, the current to be decided by  
current limit circuit will flow. IC has built-in ground short protection circuit to prevent overheating of the PMOS  
for current limitation. DC/DC stops when the CH0 to CH8 pin falls below VSCP voltage and tSCP elapses. The  
current limit PMOS turns off. SCPDET in the ERRDET register is updated to 1. When the CH0 to CH8 pin  
becomes higher than the VSCP_HYS voltage, and tSCPREC elapses, DC/DC reboots. SCPDET of the ERRDET  
register is updated to 0. Setting SCPEN of the SWRST register to 0, disables the ground fault protection function.  
When each CH pin is grounded, be sure to insert a backflow prevention diode between CH0 and VIN to prevent  
current from flowing through the parasitic diode of the By-pass switch inside the IC.  
VOUT  
VOUT  
VIN  
VIN  
CH8  
CH8  
SW7  
SW7  
CH7  
CH7  
CHxSCP  
CHxSCP  
CH2  
SW1  
CH2  
SW1  
CH1  
SW0  
CH1  
SW0  
CH0  
CH0  
Figure 8. CHxSCP  
3. Current limit part  
LED Current Limit Pch-FET Drive Circuit (CURLIM)  
Damages from high current in LED when rush current is generated from output capacitor when By-pass switch switches  
from OFF to ON (light of LED turns OFF) can be suppressed by current limit circuit. Rush current is limited by VSNS  
+
ΔVSNS_LIM . To prevent overshoot brought by delayed current-limiting circuit, when the bypass switch is switched from off to  
on (lighting off operation), the PMOS is first turned off for 50 µs (Typ), And the bypass switch is switched while the current  
is limited by the PMOS.  
ꢁꢂꢁ  
+ 훥ꢀ  
ꢁꢂꢁ_퐿ꢅꢆ  
퐿퐸퐷_퐿ꢅꢆ  
=
ꢁꢂꢁ  
Refer to Table 20 (OCLIM Description) for ΔVSNS_LIM  
.
PCLIM  
Gate Driving  
for the PGATE  
Driver  
SNSP  
VSNS  
Slope  
PWM Comp  
x4.5  
RSNS  
COMP  
Rail to Rail  
current sense  
CCOMP  
195 mV  
SNSN  
CPGATE  
M2  
VDCDIM  
DCDIM[9:0]  
DCREF1  
PGATE  
234 mV  
default)  
LEDOCL  
REF  
OCLIM[2:0]  
COMP DISCHARGE  
Figure 9. CURLIM  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
9/62  
BD18364EFV-M  
Description of Blocks – continued  
4. By-pass Switch Section  
4.1 By-pass Switch On/Off Control  
The 8 ch By-pass switch is built-in and used by connecting a LED between CHn and CHn+1 of each switch. If 1 is set  
in register LEDEN, the By-pass switch turns OFF and the LED lights up with the configured duty. If set to 0, the By-pass  
switch is on and the LED turns off. Each By-pass switch can be individually PWM dimmed and light depends on duty  
set in register PWMDIM [n]. However, the PWM signal is output from the next PWM period with 1 set in LEDEN. Also,  
if 1 is set in register LEDFC [n], By-pass switch is turned off and the LED lights up regardless of the duty set in PWMDIM  
[n].  
CHn+1  
LEDEN  
(register)  
SWON  
PWM  
generator  
PWM pulse  
PWMDIM  
(register)  
CHn  
main counter  
LEDFC  
(register)  
Figure 10. By-pass Switch on-off Control  
It is possible to connect two LEDs in series and control them at the same time. The number of wire harnesses can be  
reduced. However, be careful in the design of the maximum output voltage.  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
SW7  
SW6  
SW5  
SW4  
SW3  
SW2  
SW1  
SW0  
SW7  
SW6  
SW5  
SW4  
SW3  
SW2  
SW1  
SW0  
Figure 11. Example of LED8 Light Connection  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
10/62  
BD18364EFV-M  
4.1 By-pass Switch On/Off Control – continued  
The LED current rising delay during PWM dimming by the bypass switch depends on the rising delay of the boosted  
voltage of the DC/DC converter. Therefore, it is determined by the number of simultaneous LED lighting, LED current  
setting and the COMP pin setting. The measured waveforms of the LED current rise delay for the number of  
simultaneous LED lights, LED current setting, and the COMP pin setting are shown below.  
The Number of Simultaneous LED Lights: 0 LED -> 1 LED, 2 LED, 4 LED, 8 LED (LED Vf 3.0 V)  
VIN = 13 V, Ta = 25 °C, COUT = 12.5 µF, CCOMP = 0.22 µF, RCOMP = 470 Ω, RSNS = 0.82 Ω, RIS = 0.051 Ω  
PWM frequency 200 Hz (50 % duty), COMPDIS [1:0] = 0  
VSNS_100 (DCDIM [9:0] = 1023) Waveforms  
LED current rising delay: 31 µs  
VSNS_26 (DCDIM [9:0] = 325) Waveforms  
LED current rising delay: 62 µs  
PWM 1 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
LED current rising delay: 49 µs  
LED current rising delay: 137 µs  
PWM 2 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
L
LED current rising delay: 89 µs  
LED current rising delay: 271 µs  
PWM 4 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
LED current rising delay: 192 µs  
LED current rising delay: 520 µs  
PWM 8 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
11/62  
BD18364EFV-M  
4.1 By-pass Switch On/Off Control – continued  
RCOMP = 470 Ω / 0 Ω, The Number of Simultaneous LED Lights: 0 LED -> 1 LED, 8 LED (LED Vf 3.0 V)  
VIN = 13 V, Ta = 25°C, COUT = 12.5 µF, CCOMP = 0.22 µF, RSNS = 0.82 Ω, RIS = 0.05 Ω,  
PWM frequency 200 Hz (50 % duty), COMPDIS [1:0] = 0.  
VSNS_100 (DCDIM [9:0] = 1023) waveforms  
RCOMP = 470 Ω  
VSNS_100 (DCDIM [9:0] = 1023) waveforms  
RCOMP = 0 Ω  
LED current rising delay: 31 µs  
LED current rising delay: 46 µs  
PWM 1 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
LED current rising delay: 192 µs  
LED current rising delay: 282 µs  
PWM 8 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
VSNS_26 (DCDIM [9:0] = 325) waveforms  
RCOMP = 470 Ω  
VSNS_26 (DCDIM [9:0] = 325) waveforms  
RCOMP = 0 Ω  
LED current rising delay: 62 µs  
LED current rising delay: 131 µs  
PWM 1 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
LED current rising delay: 520 µs  
LED current rising delay: 576 µs  
PWM 8 LED  
1 ch:  
VOUT Voltage  
(200 mV/div)  
2 ch:  
COMP Voltage  
(10 V/div)  
4 ch:  
LED Current  
(100 mA/div)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
12/62  
BD18364EFV-M  
4. By-pass switch section – continued  
4.2 Phase Shift  
When the By-pass switch turns on, DC/DC output voltage decreases significantly. It is possible to shift the timing at  
which each switch is turned on to suppress voltage fluctuations.  
For details, refer to the explanation of the page 30 "PHEN" register setting.  
4.3 LED Short Detection  
Each By-pass switch has LED Short detection function.  
Detect  
The voltage between CHn+1 and CHn are monitored while (LED current is generated and under the SGB release  
condition, and) the By-pass switch is off. When less than LED Short detection voltage (VCHLS), LED Short time tLS  
passes detect LED Short. The LEDSHORT [n] of diagnostic register LEDSHORT and LEDSHORTALL of ERRDET are  
updated into 1.  
Release  
The voltage between CHn+1 and CHn are monitored while (LED current is generated and under the SGB release  
condition, and) the By-pass switch is off. When higher than LED Short detection voltage (VCHLS), LED Short time tLS  
passes, LEDSHORT [n] of diagnostic register LEDSHORT [n] and LEDSHORTALL of ERRDET are updated to 0.  
When LEDEN [n] is set to 0, LEDSHORT [n] of diagnostic register LEDSHORT and LEDSHORTALL of ERRDET are  
updated to 0.  
ILED  
VCHLS  
CHn+2  
VCHn+1_CHn  
SWn+1  
OFF  
OFF  
tLS  
CHn+1  
0
0
1
1
LEDSHORT[n]  
SWn  
LEDSHORTALL  
CHn  
Figure 12. LED Short Detection  
VCHLS  
VCHn+1_CHn  
tLS  
tLS  
0
1
LEDEN[n]  
0
0
1
0
0
LEDSHORT[n]  
1
LEDSHORTALL  
Figure 13. LED Short Detection Release  
VCHLS  
VCHn+1_CHn  
tLS  
0
1
0
1
LEDEN[n]  
0
0
1
1
0
0
LEDSHORT[n]  
LEDSHORTALL  
Figure 14. LED Short Detection Release (LEDEN Control)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
13/62  
BD18364EFV-M  
4.3 LED Short Detection – continued  
This section describes the mask time tLS counting operation for LED Short detection.  
LED short occur  
LED short release  
PWMON  
LED short  
(before filter)  
(L: LED short det)  
SGB mask function  
SGB  
(before filter)  
SGB = H -> L, count start  
LED short  
counter  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
80 µs to 100 µs  
80 µs to 100 µs  
80 µs to 100 µs  
LED short  
det Flag  
H: LED short register detection state  
L -> H change  
H -> L change  
L(no change)  
L(no change)  
Figure 15. LED Short detection and release  
(During PWM control, SGB signal and counter status)  
The figure above is the timing chart LED Short detection and SGB signal (detection state at high: LED current is not  
sufficiently generated).  
LED short is detected with low condition (PWMON = H) and SGB = low, and LED short detection flag = 1.  
Since the LED short function at DC/DC startup is masked with SGB = high, LED short is not erroneously detected.  
LED short occur  
PWMON  
LED short  
(before filter)  
L: LED short det  
SGB  
(before filter)  
SGB = H -> L, count start  
LED short  
counter  
0
1
0
1
0
1
0
1
0
1
0
80 µs to 100 µs  
LED short  
det Flag  
H: LED short register detection state  
L(no chage)  
L -> H change  
Figure 16. LED Short Detection  
(In the case of low duty that cannot be sufficiently boosted LED voltage during PWM control.)  
If the LED voltage is not boosted sufficiently due to low PWM duty, the LED short detection flag = 1 will be set in the  
logic of the LED short state detected when PWMON = H after SGB = H -> L.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
14/62  
BD18364EFV-M  
4.3 LED Short detection – continued  
LED short occur  
LED short release  
PWMON  
LED short  
(before filter)  
L: LED short det  
SGB  
(before filter)  
LED short  
counter  
0
1
1
0
1
0
1
0
1
0
1
0
80 µs to 100 µs  
80 µs to 100 µs  
80 µs  
LED short  
det Flag  
to 100 µs  
H: LED short register detection state  
L -> H change  
L(no change)  
H -> L change  
Figure 17. LED Short detection (Maximum Duty, During PWM Control)  
LED short is detected with detection condition (PWMON = H) and SGB = low, and LED short detection flag = 1.  
4.4 LED Open Detection  
Each By-pass switch has LED open detection function.  
Detection  
CHn and CHn+1 voltages are monitored while the By-pass switch is off to detect LED open when it becomes greater  
than LED open detection voltage (VCHLO1, VCHLO2). When detecting LED open, the By-pass switch turns on to prevent  
destruction. (Latch) LEDOPEN [n] of the diagnostic register LEDOPEN and LEDOPENALL of ERRDET are updated to  
1.  
Release  
If LEDEN [n] is set to 0, the latch is released. LEDOPEN [n] of diagnostic register LEDOPEN and LEDOPENALL of  
ERRDET are updated to 0.  
ILED  
ILED  
CHn+2  
CHn+2  
VCHLO  
SWn+1  
SWn+1  
OFF  
OFF  
OFF  
ON  
CHn+1  
CHn+1  
VCHn+1_CHn  
SWn  
SWn  
0
1
LEDEN[n]  
CHn  
CHn  
0
0
1
1
LEDOPEN[n]  
LEDOPENALL  
Figure 18. LED Open Detection  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
15/62  
BD18364EFV-M  
4.4 LED open detection – continued  
VCHLO  
VCHLO  
LED open error  
LED open release  
VCHn+1_CHn  
0
1
0
1
0
1
0
1
0
LEDEN[n]  
0
0
1
1
0
0
1
1
0
0
LEDSHORT[n]  
LEDSHORTALL  
Figure 19. LED Open Detection Release (When LEDEN Control)  
VCHLO  
LED open error  
PWM Duty  
Setting  
ON  
OFF  
ON  
OFF  
ON  
OFF  
-
0
1
LEDEN[n]  
0
0
1
1
0
0
LEDSHORT[n]  
LEDSHORTALL  
Figure 20. LED Open Detection Release (PWM Control)  
4.5 Forced-LED Lighting Control  
When switching from PWM dimming to 100 % Duty, updating with the PWMDIM register setting may delay the switch  
depending on the timing of the communication. Setting LEDFC [n] = 1 in the LEDFC register does not affect the PWM  
period when transmitting data, and the By-pass switch is turned off.  
PWMDIM0 = 0x7F  
LEDFC[0] = 0  
PWMDIM0 = 0xFF  
LEDFC[0] = 0  
PWMDIM0 = 0x7F  
LEDFC[0] = 0  
PWMDIM0 = 0x7F  
LEDFC[0] = 1  
PWM period  
PWM period  
OF  
F
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
LED0  
LED0  
(a) Control by PWM dimming settings  
(b) Control by forced LED lighting  
Figure 21. Forced LEDON Control  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
16/62  
BD18364EFV-M  
4. By-pass switch section – continued  
4.6 Open Drain Outputs For Abnormal Status (FAULT_B)  
When LEDOPENALL and LEDSHORTALL of the register are updated to 1, the FAULT_B pin outputs the L level. When  
the register is updated to 0, the FAULT_B pin outputs Hi-z.  
Table 1. Abnormal Detection/Protection Function  
Detecting Condition  
Description in Detecting  
(All The Value is Typical)  
Function  
By-pass  
Switch  
FAULT_B  
output  
Detection  
Release  
DC/DC  
PGATE  
COMP  
Register  
Reset  
All SWn on  
EN pin  
< 0.9 V  
EN pin  
> 1.0 V  
High  
( = SNSP)  
EN (Low)  
OFF  
(LED OFF)  
Discharge  
Hiz  
Hiz  
(Note 2)  
All SWn on  
VIN UVLO  
Detect  
VIN pin  
< 4.80 V  
VIN pin  
< 5.20 V  
High  
( = SNSP)  
OFF  
(LED OFF)  
Discharge  
Reset  
(Note 2)  
All SWn on  
VDRV5  
< 4.10 V  
VDRV5  
> 4.40 V  
High  
( = SNSP)  
VDRV5 UVLO  
TSD Detect  
OFF  
OFF  
OFF  
(LED OFF)  
Discharge  
Discharge  
-
Reset  
Reset  
Hiz  
Low  
Hiz  
(Note 2)  
All SWn on  
High  
( = SNSP)  
Tj > 175 °C(Note 1)  
Tj < 150 °C  
(LED OFF)  
(Note 2)  
DC/DC  
OCP Detect  
(BSTEN = 1)  
OVP Detect  
(OVPSET [3:0] =  
10)  
IS Pin  
> 300 mV  
IS Pin  
< 300 mV  
-
-
-
-
Low  
(Release  
after 20  
ms)  
OVPDET  
SNSP Pin  
> 56.6 V  
SNSP Pin  
< 54.8 V  
High  
( = SNSP)  
OFF  
OFF  
Discharge (Release  
after 20 ms)  
(BSTEN = 1)  
CHx Pin  
< 0.9 V  
And  
CHx Pin  
> 2.0 V  
And  
Low  
SCPDET  
Discharge (Release  
after 20 ms)  
CHxSCP  
(BSTEN = 1)  
High  
( = SNSP)  
(Release  
after 20  
ms)  
-
After 50 µs  
After 20 ms  
LEDEN = 1,  
VCHn+1_CHn  
> 1.0 V  
LEDEN = 1,  
VCHn+1_CHn < 1.0 V  
and  
VSNS > 13.6 mV  
After 100 µs  
LED  
SHORT [n]  
-
-
-
-
LED Short Detect  
and  
Low  
Dont care Don’t care  
Dont care Dont care  
VSNS > 13.6 mV  
After 100 µs  
or LEDEN = 0  
LEDSHORT  
ALL  
LEDOPEN  
[n]  
SWn on  
(LED OFF)  
LED Open Detect  
(LEDOPSETn =  
0)  
LEDEN = 1,  
VCHn+1_CHn > 6.0 V  
-
-
-
LEDEN = 0  
Low  
Hiz  
Dont care Depend on Dont care Dont care  
LEDOPEN  
ALL  
detect ch  
LED Average  
Current Status  
(BSTEN = 1)  
VSNS Voltage <  
11.1 mV  
After 10 ms  
VSNS Voltage  
> 13.6 mV  
After 1 ms  
-
-
-
-
SGB  
Dont care Dont care  
Dont care Dont care  
-
-
-
-
CRC Error  
CRC Error  
ERRCLR = 1  
ERRCLR = 1  
CRCER  
Low  
Low  
Dont care Dont care  
Dont care Dont care  
WDTEN = 1  
No Access Over  
100 ms  
Watch Dog Timer  
Error  
-
-
-
-
WDTDET  
Dont care Dont care  
Dont care Dont care  
(Note 1) TSD does not work below Tj = 150 °C.  
(Note 2) Due to the reset condition, the bypass switch section has SW ON logic, but the boost DC/DC section stops, so the PSW pin voltage, which is the power  
supply for the SW section, drops, and finally the SW turns OFF. At the same time, PGATE turns off PMOS, so the LED turns off.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
17/62  
BD18364EFV-M  
Description of Blocks – continued  
5. UART  
5.1 UART Protocol and AC Electrical Characteristics  
UART Interface (UART) controls the IC with RX and TX signals. In the start of UART communication the initial value of  
RX and TX is ‘Hi-z’ (high). The format of a frame consist of 10-bits: start bit, 8-bit data and stop bit. Data is sent from  
LSB first. This IC synchronizes timing every stop/start bit. Hence, when MCU read data, it is synchronized every  
stop/start bit.  
start bit  
"0"  
stop bit  
"1"  
DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7  
Figure 22. Data Format of a Frame  
start bit  
"0"  
stop bit  
"1"  
1
0
1
0
1
0
1
0
initialized format  
Figure 23. Clock Synchronization (SYNC)  
SYNC  
Dev,B,RW  
NumOfData  
Address  
Data1  
Datan  
CRCL  
CRCH  
RX  
TX  
Hi-z  
Figure 24. UART Protocol (Write)  
DA  
[0]  
ND ND ND ND ND ND ND ND  
[0] [1] [2] [3] [4] [5] [6] [7]  
RW  
B
1
0
1
0
1
0
1
0
0
0
0
0
0
RX  
TX  
S
P
S
P
S
P
S:  
P:  
RW:  
B:  
start condition  
stop condition  
0: Write / 1: Read  
Broadcast  
Device Address[5:0]  
RW,B,DevAdd[5:0]  
clock synchronization  
(0x55)  
NumofData[7:0]  
DA[5:0]: Device Address  
ND[7:0]: Number Of Data  
AD[7:0]: Register Address  
DT[7:0]: Data  
Hi-z  
CR[15:0]: CRC16  
AD AD AD AD AD AD AD AD  
[0] [1] [2] [3] [4] [5] [6] [7]  
DT DT DT DT DT DT DT DT  
[0] [1] [2] [3] [4] [5] [6] [7]  
CR CR CR CR CR CR CR CR  
[0] [1] [2] [3] [4] [5] [6] [7]  
CR CR CR CR CR CR CR CR  
P
[8] [9] [10] [11] [12] [13] [14] [15]  
RX  
TX  
S
P
S
P
S
P
S
Hi-z  
Figure 25. Detail of UART Protocol (Write)  
stop  
SYNC  
Dev,B,RW  
NumOfData  
Address  
CRCL  
CRCH  
RX  
TX  
start  
Hi-z  
Data1  
Datan  
CRCL  
CRCH  
Figure 26. UART Protocol (Read)  
Communication Reset  
This IC has a communication reset function. This interface circuit can be recovered from abnormal condition of UART  
communication with this function. Set RX to Low for 12 consecutive cycles based on baud rate used. Set RX to Low  
over 500 µs to invoke communication reset. If communication reset is executed, register value do not change, it will not  
affect LED Dimming.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
18/62  
BD18364EFV-M  
5. UART – continued  
5.2 UART AC Timing chart  
RX  
TX  
VRX_IH  
VRX_IL  
trx trxslew1  
trxslew2  
ttxwait  
ttxslew1  
ttxslew2  
ttx  
Figure 27. UART AC Timing  
Table 2. UART AC characteristics  
Recommended Operation Condition (Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = 13 V)  
Rating  
Parameter  
Symbol  
Unit  
Comments  
Min  
Typ  
Max  
20  
RX Transfer Time  
trx  
2
2
-
-
μs  
μs  
TX Transfer Time  
ttx  
20  
TX Output Delay Time  
RX Slew Rate High -> Low  
RX Slew Rate Low -> High  
TX Slew Rate High -> Low  
ttxwait  
trxslew1  
trxslew2  
ttxslew1  
0.5  
-
1
-
1.5  
bit  
μs  
trx x 10 %  
trx x 10 %  
ttx x 10 %  
μs  
μs  
μs  
-
-
-
-
TX Slew Rate Low -> High  
ttxslew2  
-
-
ttx x 10 %  
Baud rate at 500 kHz to 200  
kHz, use synchronized to each  
START bit.  
TXtore1  
-6.25  
-
+6.25  
%
%
TX Output Tolerance  
Baud rate under 200 kHz,  
use synchronized to each  
START bit.  
TXtore2  
-3.75  
-
+3.75  
(Output load capacitance: 15 pF)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
19/62  
BD18364EFV-M  
5. UART – continued  
5.3 UART Protocol  
5.3.1 Initialize Format  
bit 7 bit 6 bit 5 bit 4 Bit 3 Bit 2 bit 1 bit 0  
0
1
0
1
0
1
0
1
MCU sends 55 h (0101_0101b) to the IC to adjust communication rate. IC will receive the data and determine  
the baud rate of the incoming command. IC generates internal sampling time based on the computed baud rate  
(1-bit period / 2).  
After sending SYNC byte, BD18364EFV-M expects succeeding frames have the same data rate as that of SYNC  
frame. If incorrect input timing occurred it will trigger CRC error.  
5.3.2 Device address, Broadcast, Write/Read  
bit 7 bit 6 bit 5 bit 4 Bit 3 Bit 2 bit 1 bit 0  
RW  
B
DA [5:0]  
bit  
Parameter  
Function  
We can set “000000b” or “000001b”.  
DA [0] = CS setting  
DA [1] = 0  
DA [5:0]  
Device Address  
DA [2] = 0  
DA [3] = 0  
DA [4] = 0  
DA [5] = 0  
bit  
B
Parameter  
Broadcast  
Function  
0: It accesses register to device which matched  
device address.  
1: It accesses register to all device.  
Note:  
1. Broadcast is not possible for Read access.  
2. If Broadcast = 1; ignore device address setting.  
bit  
Parameter  
Read/Write  
Function  
0: Write access  
1: Read access  
RW  
5.3.3 Number of Data  
bit 7 bit 6 bit 5 bit 4 Bit 3 Bit 2 bit 1 bit 0  
Num of Data [7:0]  
bit  
Parameter  
Number of Data transferred  
Function  
It is available to use from 1 to 10  
Num of Data [7:0]  
Note:  
1. Available data buffer for multiple write access is maximum 10 data.  
2. Num of Data = 0 is not valid  
3. Num of Data > 10 is not valid  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
20/62  
BD18364EFV-M  
5.3 UART Protocol – continued  
5.3.4 Register Address  
bit 7 bit 6 bit 5 bit 4 Bit 3 Bit 2 bit 1 bit 0  
Reg Addr [7:0]  
bit  
Parameter  
Register Address  
Function  
It is available to access from 0x00 to 0x15  
Reg Addr [7:0]  
5.3.5 Data  
bit 7 bit 6 bit 5 bit 4 Bit 3 Bit 2 bit 1 bit 0  
Data [7:0]  
bit  
Parameter  
value  
Data [7:0]  
Data  
0x00 to 0xFF  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
21/62  
BD18364EFV-M  
5.3 UART Protocol – continued  
5.3.6 CRC  
16 bit LSB First  
Cyclic Redundancy Check (CRC)  
The CRC-16 (BUYPASS) is used to detect errors in the I/F transaction data.  
CRC is calculated in the order of Device address, Number of Data, Address Data, Write or Read Data.  
For Write Sequence  
This received CRC 2 byte data will then be compared to the computed CRC checksum.  
If CRC data is the same with the computed CRC checksum, Register Map will be updated with all the written  
data.  
Else, All written data will be disregarded.  
CRC Polynomial  
CRC Polynomial is expressed as :  
CRC16-IBM  
ꢐ6 + 푥ꢐꢑ + 푥+ 1  
Bit order LSB First  
The CRC calculation starts with LSB and proceeds from bit [0] to bit [7] of each byte.  
Figure 28. Polynomial  
CRC Initial Setting  
The initial value is “0000h”.  
The CRC calculate registers are reset to the initial value of “0000h” prior to each CRC bytes calculation.  
Example for  
RW,B,DA[5:0] NumofData[7:0]  
Address[7:0]  
Data[7:0]  
CRC Data[7:0] CRC Data[15:8]  
Figure 29. CRC Data format  
RW, B, DA [5:0]:  
Num Of Data [7:0]: ND [7:0]  
Address [7:0]:  
Data [7:0]:  
CRC Data [7:0]:  
CRC Data [15:8]:  
DA [7:0]  
= 0x01  
= 0x01  
= 0x02  
= 0xAA  
= 0xC4  
AD [7:0]  
DT [7:0]  
CR [7:0]  
CR [15:8] = 0x8B  
5.3.7 Example of UART Protocol  
Single device, 1 byte Write (Write to Device #1)  
B =  
0:  
Target Device Receives the Data  
RW =  
0:  
Write  
Dev Addr [5:0] =  
Num Of Data [7:0] = 1:  
Reg Addr [7:0] =  
Data [7:0] =  
0x01:  
Target Device Address  
1 byte Write Mode  
Address  
0x02:  
0xAA:  
Data  
RX  
S
initialize (0x55)  
P
S
Device address  
(0x1)  
B
RWP  
S
NumOfData (0x1)  
P
S
Address (0x2)  
P
S
Data(0xAA)  
P
Figure 30. UART Protocol of the 1 byte Write to Device #1  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
22/62  
BD18364EFV-M  
5. UART – continued  
5.4 Register Map  
All registers except PWMDIM (LEDEN = 0 -> 1) are updated immediately.  
PWMDIM function is applied on the next PWM timing.  
Type A  
UART Write  
Analog  
Circuit  
and  
MCU  
Register  
Logic  
function  
Type B  
PWM base  
UART Read  
timing  
(Control  
Signal)  
Figure 31. Data Update Image  
Type A update immediately:  
All registers except for TypeB registers  
UART  
PWM timing  
Register Map  
Control Signal  
update  
update  
Type B update at internal PWM timing:  
PWMDIMn, LEDEN(only 0 -> 1 setting)  
UART  
PWM timing  
Register Map  
Control Signal  
update  
update  
Figure 32. Data Update Image Timing Chart  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
23/62  
BD18364EFV-M  
5.4 Register Map – continued  
Table 3. Register MAP  
Register  
Access  
update  
timing  
Register Name  
Address  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
initial  
SWRST  
0x00  
0x01  
0x02  
ERRCLR  
FAULTBCNT  
FAULTBEN  
VINDIM[2:0]  
SYNCEREN  
WDTEN  
CURLIMEN  
SSFM[2:0]  
SCPEN  
SWRST  
BSTEN  
R/W  
R/W  
R/W  
0x06  
0x00  
0x0A  
Type A  
Type A  
Type A  
SYSSET1  
SYSSET2  
-
COMPDIS_EN  
COMPDIS[1:0]  
-
OVPSET[3:0]  
LEDOPSET  
SYSSET3  
ADCTRL  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
LEDOPSET[7:0]  
R/W  
R/W  
WO  
RO  
0x00  
Type A  
reserved  
PWMSYNCEN  
-
PHEN  
-
FPWM[3:0]  
0xC1 Type A  
-
-
-
-
-
-
AD_TRIG  
0x00  
0x00  
0x8A  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
Type A  
Type A  
Type A  
Type A  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type B  
Type A  
Type A  
Type A  
Type A  
ADSTORE  
DCDIMH  
AD_STORE[7:0]  
DCDIM[9:2]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
DCDIML  
OCLIM[2:0]  
-
-
DCDIM[1:0]  
PWMDIM0  
PWMDIM1  
PWMDIM2  
PWMDIM3  
PWMDIM4  
PWMDIM5  
PWMDIM6  
PWMDIM7  
LEDEN  
PWMDIM0[7:0]  
PWMDIM1[7:0]  
PWMDIM2[7:0]  
PWMDIM3[7:0]  
PWMDIM4[7:0]  
PWMDIM5[7:0]  
PWMDIM6[7:0]  
PWMDIM7[7:0]  
LEDEN[7:0]  
LEDFC  
LEDFC[7:0]  
ERRDET  
CRCER  
SGB  
-
WDTDET  
LEDSHORTALL LEDOPENALL  
SCPDET  
OVPDET  
LEDOPEN  
LEDSHORT  
LEDOPEN[7:0]  
LEDSHORT[7:0]  
RO  
RO  
Reset Condition  
EN = Low, VDRV5 UVLO, VIN UVLO, TSD, SWRST = 1 (Except for SWRST register)  
R/W: Read/Write, WO: Write only, RO: Read only  
There are two Update timing for LEDEN. LEDEN (0 -> 1 setting) is Type B. LEDEN (1 -> 0 setting) is Type A.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
24/62  
BD18364EFV-M  
5. UART – continued  
5.5 Description of Registers  
●Address 0x00: SWRST  
Software reset  
bit [5]  
[Read/Write]  
bit [3]  
initial value 0x06  
bit No  
bit [7]  
bit [6]  
bit [4]  
bit [2]  
bit [1]  
bit [0]  
Name ERRCLR FAULTBCNT  
Initial  
value  
FAULTBEN  
SYNCEREN WDTEN  
CURLIMEN  
SCPEN  
SWRST  
0
0
0
0
0
1
1
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [0]  
bit [1]  
bit [2]  
SWRST  
Set ‘1’ in this register when you want to reset digital circuit.  
SWRST register return ‘0’ automatically.  
Table 4. SWRST Description  
SWRST  
reset  
0
1
Normal  
Reset for digital circuit (return ‘0’ automatically)  
SCPEN  
This register is enabled for “CHx pin Short Circuit Protection “ function.  
Table 5. SCPEN Description  
SCPEN  
operation  
It is not available to use SCP function.  
SCPDET register is ‘0’.  
0
1
It is available to use SCP function  
CURLIMEN  
This register is enabled for current limiter.  
Table 6. CURLIMEN Description  
CURLIMEN  
operation  
It is not available to control AMP for current limit.  
(OFF)  
0
1
It is available to control AMP for current limit.  
bit [3]  
WDTEN  
This register is setting of WDT enable. This timer is reset by CRC OK.  
FAULT_B = Low and WDTDET = 1 when WDTEN = 1 and no UART access during 100 ms (Typ).  
Table 7. WDTEN Description  
WDTEN  
operation  
UART Watch Dog Timer is disable  
UART Watch Dog Timer is enable  
0
1
bit [4]  
SYNCEREN  
Set only ‘0’. ‘1’ is prohibit.  
Table 8. SYNCEREN Description  
operation  
SYNCEREN  
0
1
Default. (do not change)  
prohibit  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
25/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
bit [5]  
bit [6]  
FAULTBEN  
FAULTBCNT  
When FAULTBEN = 1, the FAULT_B pin is controlled by FAULTBCNT register.  
Table 9. FAULTBEN and FAULTBCNT Description  
FAULTBEN  
0
FAULTBCNT  
FAULT_B  
0
1
0
1
error status  
Low  
High (Hi-z)  
1
FAULT_B  
error signal  
0
1
FAULTBCNT register  
FAULTBEN register  
Figure 33. FAULT_B Controlled  
bit [7]  
ERRCLR  
“UART Watch Dog Timer Error condition” and “CRC error” clear.  
The WDTDET and CRCER register are cleared by set ‘1’ in this register.  
FAULT_B will de-assert.  
ERRCLR register return ‘0’ automatically.  
Table 10. ERRCLR Description  
ERRCLR  
operation  
0
1
Normal  
WDTDET and CRCER are cleared and FAULT_B de-asserts.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
26/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x01: SYSSET1  
system setting1  
bit [5]  
VINDIM [2:0]  
[Read / Write]  
bit [2]  
SSFM [2:0]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
-
bit [6]  
bit [4]  
0
bit [3]  
0
bit [1]  
bit [0]  
BSTEN  
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [0]  
BSTEN  
This register controls Boost enable.  
Table 11. BSTEN Setting  
DC/DC operation  
BSTEN  
0
1
DC/DC OFF  
DC/DC ON  
bit [3:1]  
SSFM [2:0]  
This register controls SSCG ON/OFF and modulation frequency.  
Table 12. SSFM Setting  
SSFM[2:0]  
SSCG modulation ratio  
0
1
2
3
4
5
6
7
SSCG OFF (Fixed frequency of DC/DC)  
137 Hz  
183 Hz  
275 Hz  
366 Hz  
549 Hz  
732 Hz  
1,099 Hz  
bit[6:4]  
VINDIM  
VIN derating start voltage setting.  
This IC has protection for input current. If input voltage (VIN) is down, it flows big current. So it controls  
output current for decreasing input current. This register is setting of voltage of “derating start threshold”. If  
VIN voltage is down and under UVLO, it controls VSNS = 0 V. Refer description (Description of Blocks “2.  
LED Driver Section / 2.4 Input Voltage (VIN) Derating”)  
Table 13. VINDIM Start Setting  
VINDIM  
Setting  
0
1
2
3
4
5
6
7
OFF  
6.92 V  
7.49 V  
8.02 V  
8.62 V  
9.17 V  
9.69 V  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
27/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x02: SYSSET2  
bit No bit [7]  
Name COMPDIS_EN  
system setting2  
bit [6] bit [5]  
COMPDIS [1:0]  
[Read / Write] initial value 0x0A  
bit [4]  
-
bit [3]  
1
bit [2]  
bit [1]  
bit [0]  
OVPSET [3:0]  
Initial  
value  
0
0
0
0
0
1
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [3:0]  
OVPSET  
OVP Setting Value  
This register controls the threshold of voltage OVP detection.  
[
]
푂푉푃 = ꢊꢀꢋꢌꢍꢎ ꢏ: 0 × 2.18 + ꢏ4.8 [V]  
bit [6:5]  
bit [7]  
COMPDIS  
COMP Discharge current setting in “LED over current detection”  
COMPDIS_EN  
COMP Discharge function setting in “LED over current detection”  
Table 14. COMPDIS, COMPDIS_EN  
COMPDIS_EN  
COMPDIS  
operation  
No COMP Discharge  
x1 (discharge current 180 µA)  
x2 (360 µA)  
x4 (720 µA)  
x6 (1080 µA)  
0
1
1
1
1
*
0
1
2
3
●Address 0x03: LEDOPSET LED open error detection voltage setting [Read / Write]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
LEDOPSET [7:0]  
bit [3]  
bit [2]  
bit [1]  
bit [0]  
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [7:0]  
LEDOPSET  
This register is setting of detection voltage of LED open error.  
Set this register when LEDEN = 0x00.  
Table 15. LEDOPSET  
LEDOPSET  
Monitor  
SW0  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
operation  
0: LED open error detection voltage1  
(VCHLO1).  
1: LED open error detection voltage2  
(VCHLO2).  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
28/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x04: SYSSET3  
system setting3  
bit [5]  
PWMSYNCEN  
[Read/Write]  
bit [2]  
initial value 0xC1  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [4]  
PHEN  
bit [3]  
0
bit [1]  
bit [0]  
Reserved  
FPWM [3:0]  
1
1
0
0
0
0
1
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [3:0]FPWM  
This register control PWM frequency when PWMSYNCEN register = 0.  
Set this register when LEDEN = 0x00 (Set this register before starting PWM dimming and keep this value  
until reset.)  
Table 16. PWM Frequency Setting  
FPWM  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
PWM frequency [Hz]  
200  
252  
300  
347  
400  
446  
504  
558  
600  
651  
710  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
29/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
bit [4]  
PHEN:  
Phase Shift function enable.  
This register controls phase in PWM dimming.  
Set this register when LEDEN = 0x00 (Set this register before starting PWM dimming and keep this value  
until reset.)  
Table 17. PHEN Description  
Phase Shift (Delay value)  
PHEN  
PWMSYNCEN  
0
SW0  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
0/8 x (1/FPWM)  
1/8 x (1/FPWM)  
2/8 x (1/FPWM)  
3/8 x (1/FPWM)  
4/8 x (1/FPWM)  
5/8 x (1/FPWM)  
6/8 x (1/FPWM)  
7/8 x (1/FPWM)  
1
0
Phase Shift function is disable.  
Phase Shift  
Lighting  
SW7  
SW6  
SW5  
SW4  
SW3  
Lighting  
Lighting  
Lighting  
Lighting  
Lighting  
SW2  
SW1  
Lighting  
Lighting  
Lighting Duty  
SW0  
5 ms (FPWM = 0x0)  
Figure 34. Phase Shift Function  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
30/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
bit [5]  
PWMSYNCEN  
Set only ‘0’. ‘1’ is prohibit.  
Table 18. PWMSYNCEN Description  
PWMSYNCEN  
operation  
Default (do not change)  
Prohibit  
0
1
bit [7:6]  
(Reserved)  
Set only ‘3’. ‘0,1,2’ is prohibit.  
Table 19. SYSSET3 bit [7:6] Description  
bit [7:6] (Reserved)  
operation  
0, 1, 2  
3
Prohibit  
Do not change  
●Address 0x05: ADCTRL  
A/D Control  
[Write]  
bit [2]  
-
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
-
bit [6]  
bit [5]  
-
bit [4]  
-
bit [3]  
-
bit [1]  
-
bit [0]  
AD_TRIG  
-
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [0]  
AD_TRIG  
A/D Sampling Start  
When this register is set to ‘1’, A/D sampling (1 sample) will commence.  
This register will auto-reset to ‘0’ after A/D sampling finishes.  
●Address 0x06: ADSTORE A/D Store Value  
[Read]  
bit [2]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
AD_STORE [7:0]  
bit [3]  
bit [1]  
bit [0]  
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
bit [7:0]  
AD_STORE  
A/D Stored Value  
This register contains the sampled 8-bit value of the A/D converter.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
31/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x07: DCDIMH  
DC current setting bit 9 to 2  
[Read / Write] initial value 0x8A  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
bit [3]  
1
bit [2]  
bit [1]  
bit [0]  
DCDIM[9:2]  
1
0
0
0
0
1
0
Update: Immediately  
initial value 0x00  
●Address 0x08: DCDIML  
DC current setting bit 1 to 0  
[Read / Write]  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
OCLIM [2:0]  
bit [5]  
bit [4]  
-
bit [3]  
-
bit [2]  
-
bit [1]  
bit [0]  
DCDIM [1:0]  
0
0
0
0
0
0
0
0
Update: Immediately  
The data in register is updated to the newest data immediately when the new data is written.  
DCDIMH, DCDIML  
bit [7:0]  
bit [1:0]  
DCDIM [9:0]:  
Analog Dimming Setting by Adjusting 10-bit Reference Voltage (VDCDIM) for LED current sense Voltage VSNS  
.
[
]
ꢄ퐶ꢄ퐼푀 9: 0  
1
ꢁꢂꢁ  
= ꢓ  
× 2.5 ꢀ − 0.195 ꢀꢔ ×  
1024  
4.5  
VSNS  
511.8 mV  
25.6 mV  
0 mV  
VFSR  
0
2.5 V  
VADIM  
0.195 V  
0 %  
ΔVADIM  
5 %  
100 %  
1024  
DCDIM[9:0]  
0
80 127  
1023  
Figure 35. DCDIM Setting  
bit [4:2]  
bit [7:5]  
-
OCLIM [2:0]  
LED over current detection threshold is programmed by this register.  
Table 20. OCLIM Description  
OCLIM[2:0]  
ΔVSNS_LIM [V]  
0.0520  
0.0869  
0.1216  
0.1563  
0.1910  
0.2256  
0.2606  
0.2952  
0
1
2
3
4
5
6
7
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
32/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x09: PWMDIM0  
PWM dimming setting for SW0  
[Read / Write]  
bit [2]  
initial value 0xFF  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
bit [3]  
bit [1]  
bit [0]  
PWMDIM0 [7:0]  
1
1
1
1
1
1
1
1
Update: PWM  
bit [7:0]  
PWMDIM0  
PWM Dimming Setting for SW0  
This register controls Lighting PWM duty (By-pass Switch OFF) when LEDEN [0] = 1 and LEDFC [0] = 0.  
Lighting position is tail as Figure 36.  
Table 21. PWMDIM0 Description  
PWMDIM0  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
to  
Lighting Duty [%]  
0 %  
0 %  
0 %  
0 %  
0 %  
2.34 %  
2.73 %  
3.12 %  
Xx  
(PWMDIM0 + 1) /256  
to  
0xFD  
0xFE  
0xFF  
99.22 %  
99.61 %  
100.00 %  
5 ms (FPWM = 0x0)  
5 ms (FPWM = 0x0)  
Lighting Duty  
OFF  
Lighting  
SW0  
Figure 36. PWM Dimming Setting  
Address 0x0A to 0x10: PWMDIMn (n = 1 to 7)  
This register is used to make PWM setting for SW1 to SW7. The setting procedure is the same as that for SW0 of  
Address 0x09.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
33/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x11: LEDEN  
LED enable  
[Read / Write]  
bit [3] bit [2]  
LEDEN [7:0]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
0
bit [5]  
bit [4]  
bit [1]  
bit [0]  
0
0
0
0
0
0
0
Update: PWM/immediately  
bit [7:0]  
LEDEN [7:0]  
This register controls channel enable.  
LEDEN = 1 -> 0 is updated immediately. But LEDEN = 0 -> 1 is updated same as PWMDIMn (n = 0 to 7).  
Table 22. LEDEN Setting  
LEDEN[n]  
0
Description  
LED is light OFF. (SWn = ON)  
If it detects “LED open error” or “LED short error”,  
it releases these error latched condition.  
1
It is available to control PWM dimming and detect  
“LED open error” and “LED short error” protection.  
n = 0 to 7  
●Address 0x12: LEDFC LED force 100 % duty lighting  
[Read / Write]  
bit [3] bit [2]  
LEDFC [7:0]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
bit [1]  
bit [0]  
0
0
0
0
0
0
0
0
Update: immediately  
bit [7:0]  
LEDFC [7:0]  
This register controls PWM dimming or not. If this register is 1, PWM Duty is fixed by 100 %.  
Table 23. LEDFC Setting  
LEDFC[n]  
Description  
0
1
By-pass switch is controlled by PWMDIMn and LEDEN [n].  
100 % duty lighting (SWn = OFF).  
Update immediately. Asynchronous with PWM cycle.  
n = 0 to 7  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
34/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x13: ERRDET  
SG and Error status register  
[Read]  
bit [2]  
initial value 0x00  
bit No  
bit [7]  
bit [6]  
SGB  
bit [5]  
-
bit [4]  
bit [3]  
bit [1]  
bit [0]  
Name CRCER  
WDTDET LEDSHORTALL LEDOPENALL SCPDET  
OVPDET  
Initial  
value  
0
0
0
0
0
0
0
0
Update: Immediately  
bit [0]  
OVPDET  
Table 24. OVPDET Operation  
Description  
OVPDET  
0
1
Not detect “Over Voltage Protection”.  
Detect “Over Voltage Protection”.  
It outputs FAULT_B = Low.  
bit [1]  
SCPDET  
This register is “CHx pin Short Circuit Protection error” status. This register is programmed by SCPEN. This  
status register doesn’t become 1 when SCPEN = 0.  
Table 25. SCPDET Operation  
SCPDET  
0
Description  
Not detect “CHx pin Short Circuit Protection”.  
Detect “CHx pin Short Circuit Protection”.  
It outputs FAULT_B = Low.  
1
bit [2]  
bit [3]  
bit [4]  
LEDOPENALL  
This register is logical OR of each bit of LEDOPEN register.  
Table 26. LEDOPENALL Operation  
LEDOPENALL  
0
Description  
Not detect “LED open error” each SW.  
Detect “LED open error” any of SW.  
It outputs FAULT_B = Low.  
LEDOPENALL becomes 0 when LEDOPEN [7:0] = 0x00.  
1
LEDSHORTALL  
This register is logical OR of each bit of LEDSHORT register.  
Table 27. LEDSHORTALL Operation  
LEDSHORTALL  
0
Description  
Not detect “LED short error” in all SW.  
Detects “LED short error” in any of SW.  
It outputs FAULT_B = Low.  
1
LEDSHORTALL becomes 0 when LEDSHORT [7:0] = 0x00.  
WDTDET  
This register is “Watch Dog Timer error” status. This register is programmed by WDTEN. If MCU don’t  
communicate with this IC over 100 ms, this IC detects error. This status register doesn’t become 1 when  
WDTEN = 0.  
Table 28. WDTDET Setting  
WDTDET  
0
Description  
Not detect “Watch Dog Timer error”  
Detects “Watch Dog Timer error” .  
It outputs FAULT_B = Low.  
1
WDTDET becomes 0 when ERRCLR = 1.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
35/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
bit [5]  
-
Table 29. ERRDET bit [5]  
Description  
ERRDET Bit[5]  
0
Default.  
bit [6]  
SGB  
LED average current status. Detect SGB condition, VSNS Voltage < SGB Detect Voltage.  
Table 30. LED Average Current Status  
SGB  
0
Description  
“LED Average Current” status is good.  
“LED Average Current” status is not good.  
Only monitor status. It doesn’t control FAULT_B.  
1
bit [7]  
CRCER  
CRC error status.  
Table 31. CRC Error  
Description  
Not detect “CRC Error”.  
CRCER  
0
Detect “CRC Error”.  
1
FAULT_B = Low when CRCER = 1.  
CRCER becomes 0 by ERRCLR = 1  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
36/62  
BD18364EFV-M  
5.5 Description of Registers – continued  
●Address 0x14: LEDOPEN  
LED open error status register  
[Read]  
bit [2]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
bit [3]  
bit [1]  
bit [0]  
LEDOPEN [7:0]  
0
0
0
0
0
0
0
0
Update: Immediately  
Table 32. LEDOPEN Setting  
Description  
Not detect “LED open error” SWn.  
Detect “LED open error” SWn  
Keep this value until writing LEDENn = 0  
LEDOPEN[n]  
0
1
(n = 0 to 7)  
●Address 0x15: LEDSHORT  
LED short error status register  
[Read]  
bit [2]  
initial value 0x00  
bit No  
Name  
Initial  
value  
bit [7]  
bit [6]  
bit [5]  
bit [4]  
bit [3]  
bit [1]  
bit [0]  
LEDSHORT [7:0]  
0
0
0
0
0
0
0
0
Update: Immediately  
Table 33. LEDSHORT Setting  
Description  
LEDSHORT[n]  
0
1
Not detect “LED short error” SWn.  
Detect “LED short error” SWn  
Keep this value until writing LEDENn = 0 or released “LED short  
error”  
(n = 0 to 7)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
37/62  
BD18364EFV-M  
5. UART – continued  
5.6 Lighting Pattern Example  
No.  
Dimming type  
Sequential Winker  
(Sequential LED ON)  
LEDEN register  
0xFF  
LEDFC register  
Control  
PWMDIM register  
0x00 (0 % setting)  
1
Sequential Winker  
2
3
4
Control  
Control  
Control  
0x00  
0xFF  
0x00  
0xFF (100 % setting)  
0xXX (all setting)  
(Sequential LED ON)  
Sequential Winker OFF 1  
(Sequential LED OFF)  
Sequential Winker OFF 2  
(Sequential LED OFF)  
0xFF (100 % setting)  
5.6.1 Sequential Winker 1 (Sequential LED ON)  
LEDEN: 0xFF  
LEDFC: Control  
PWMDIMn: 0 % Duty Setting (All SW)  
UART  
LEDEN  
writing  
writing  
writing  
writing  
writing  
writing  
writing  
0xFF  
0x00  
LEDFC  
0x00  
0x01  
0x03  
0x07  
0x0F  
0x1F  
0x3F  
PWMDIMn  
internal  
PWM Cycle  
LED7  
LED6  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
LED5  
LED4  
ON  
LED3  
LED2  
LED1  
LED0  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Figure 37. Sequential Winker 1 (Sequential LED ON) LEDFC Controlled  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
38/62  
BD18364EFV-M  
5.6 Lighting Pattern Example – continued  
5.6.2 Sequential Winker 2 (Sequential LED ON)  
LEDEN: Control  
LEDFC: 0x00  
PWMDIMn: 100 % Duty Setting (All SW)  
UART  
LEDEN  
writing  
writing  
writing  
writing  
writing  
writing  
writing  
0x00  
0x01  
0x03  
0x07  
0x0F  
0x1F  
0x3F  
LEDFC  
0x00  
0xFF  
PWMDIMn  
internal  
PWM Cycle  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
LED7  
LED6  
LED5  
LED4  
LED3  
LED2  
LED1  
LED0  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Figure 38. Sequential Winker 2 (Sequential LED ON) LEDEN Controlled  
5.6.3 Sequential Winker OFF 1 (Sequential LED OFF)  
LEDEN: Control  
LEDFC: 0xFF  
PWMDIMn: All Setting  
UART  
LEDEN  
writing  
writing  
writing  
writing  
writing  
writing  
writing  
0xFF  
0x7F  
0x3F  
0x1F  
0x0F  
0x07  
0x03  
LEDFC  
0xFF  
all setting  
PWMDIMn  
internal  
PWM Cycle  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
LED7  
LED6  
LED5  
LED4  
LED3  
LED2  
LED1  
LED0  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Figure 39. Sequential Winker 1 (Sequential LED OFF) LEDEN controlled  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
39/62  
BD18364EFV-M  
5.6 Lighting Pattern Example – continued  
5.6.4 Sequential Winker OFF 2 (Sequential LED OFF)  
LEDEN: Control  
LEDFC: 0x00  
PWMDIMn: 100 %  
UART  
writing  
writing  
writing  
writing  
writing  
writing  
writing  
LEDEN  
0xFF  
0x7F  
0x3F  
0x1F  
0x0F  
0x07  
0x03  
LEDFC  
0x00  
0xFF  
PWMDIMn  
internal  
PWM Cycle  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
LED7  
LED6  
LED5  
LED4  
LED3  
LED2  
LED1  
LED0  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Figure 40. Sequential Winker 2 (Sequential LED OFF) LEDEN Controlled  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
40/62  
BD18364EFV-M  
5.6 Lighting Pattern Example – continued  
5.6.5 PWM Dimming  
PWM Frequency:  
FPWM Setting:  
PWMSYNCEN:  
FPWM Register  
Valid  
0
RX Status in No Communication: High  
PWM frequency  
UART(RX)  
Low Counter  
Low detector  
Less than target counter value  
Low  
Low  
PWMSYNCEN  
register  
② This timing is controlled by  
internal counter.  
internal base  
signal  
PWMDIM7  
register  
PWMDIM7  
control data  
LED7  
LED6  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
LED0  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
OFF  
Lighting  
Figure 41. PWM Dimming  
1
2
3
PWMDIMn register is written.  
This Timing is controlled by internal counter.  
PWMDIMn setting is updated from register every timing of internal base signal.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
41/62  
BD18364EFV-M  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
-0.3 to +50  
-0.3 to +50  
-0.3 to +7  
Unit  
V
Power Supply Voltage (VIN)  
EN Voltage  
VIN  
VEN  
V
VDRV5 Voltage  
VDRV5  
V
VIN to VDRV5 Voltage  
PCLIM Voltage  
VVIN_VDRV5  
VPCLIM  
VPSW_PCLIM  
VBOOT  
VSNSP, VSNSN  
VSNS  
-0.3 to +50  
-0.3 to +72  
-0.3 to +7  
V
V
PSW to PCLIM Voltage  
BOOT Voltage  
V
-0.3 to VPSW_PCLIM + VPCLIM  
-0.3 to VPCLIM  
-0.3 to +0.6  
-0.3 to VPCLIM  
-0.3 to +7  
V
SNSP, SNSN Voltage  
SNSP to SNSN Voltage  
PGATE Voltage  
V
V
VPGATE  
V
PCLIM to PGATE Voltage  
CHn Voltage  
VPCLIM_PGATE  
VCHn  
V
-0.3 to VPCLIM  
-0.3 to +20  
-0.3 to +7  
V
CHn to CHn-1 Voltage  
MONIAD, RX, TX, CS Voltage  
FAULT_B Voltage  
VCHn+1_CHn  
VMONIAD, VRX, VTX, VCS  
VFAULT_B  
V
V
-0.3 to +7  
V
GL, IS, ADIM, RT, COMP Voltage  
Maximum Junction Temperature  
Storage Temperature Range  
VGL, VIS, VADIM, VRT, VCOMP  
Tjmax  
-0.3 to VDRV5  
+150  
V
°C  
Tstg  
-55 to +150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0T1T0B400430-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
42/62  
23.May.2022 Rev.001  
TSZ22111 • 15 • 001  
BD18364EFV-M  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HTSSOP-B30  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
86.40  
13.00  
31.80  
9.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air), using a BD18364EFV-M Chip.  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
43/62  
BD18364EFV-M  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
5.5  
-
Typ  
Max  
45.0  
60  
Unit  
V
Power Supply Voltage (VIN) (Note 1)  
Output Voltage (PCLIM)  
13.0  
VPCLIM  
-
-
V
LED Voltage (VCHn+1_CHn  
)
VCHn+1_CHn  
1.5  
13.5  
V
PWM Minimum Pulse Width  
tMIN_100  
tMIN_26  
50  
-
-
-
-
μs  
μs  
(VSNS_100 1 LED: 3.0 V Vf Condition)(Note 2)  
PWM Minimum Pulse Width  
100  
(VSNS_26 1 LED : 3.0 V Vf Condition)(Note 2)  
Switching Frequency Setting Range  
CHx Pin Allowable Pulse Current(Note 3)  
fSW  
IPLSCHx  
Topr  
200  
2.0  
-40  
-
-
550  
-
kHz  
A
Operating Temperature  
+25  
+125  
°C  
(Note 1) ASO should not be exceeded.  
(Note 2) COUT = 12.5 µF, CCOMP = 0.22 µF, RCOMP = 470 Ω, RSNS = 0.82 Ω, RIS = 0.051 Ω, PWM frequency 200 Hz , COMPDIS [1:0]: 0,  
Time when the LED current reaches 50 % of the setting from the start of PWM dimming lighting. Please refer to page 11 for the measured waveform.  
(Note 3) Pulse width time 100 µs, Pulse current cycle 800 ms.  
Recommended Setting Parts Range  
Parameter  
Symbol  
CIN  
Min  
1.0  
1.0  
0.10  
700  
0.047  
4.7  
0
Typ  
2.2  
2.2  
0.22  
1000  
0.1  
-
Max  
-
Unit  
μF  
μF  
μF  
pF  
μF  
μF  
Ω
Capacitor Connecting to the VIN Pin(Note 4)  
Capacitor Connecting to the VDRV5 Pin(Note 4)  
Capacitor Connecting to the COMP Pin(Note 4)  
PGATEPCLIM Capacitor(Note 4), (Note 5)  
BOOT, PSW Capacitor(Note 4)  
CVDRV5  
CCOMP  
CPGATE  
CBOOT, CPSW  
COUT  
3.3  
0.30  
1500  
0.15  
20  
DC/DC Output Capacitor(Note 4)  
Resistor Connecting to the COMP Pin  
Resistor Connecting to the BOOT Pin  
Resistor Connecting to the RT Pin  
RCOMP  
RBOOT  
470  
47  
750  
56  
38  
Ω
RRT  
15  
-
49  
kΩ  
(Note 4) Set the capacitor taking temperature characteristics, DC bias characteristics, etc. into consideration.  
(Note 5) Regarding PMOS (M2), ROHM's: RSQ015P10 and ON semiconductor's: FDC3535 are assumed as basic parts.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
44/62  
BD18364EFV-M  
Electrical Characteristics (Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Total]  
VIN Circuit Current 1  
IIN1  
-
5
10  
20  
mA  
mA  
V
VEN = 0 V  
VIN Circuit Current 2  
IIN2  
-
10  
VEN = 5 V  
VIN UVLO Detect Voltage  
VIN UVLO Release Voltage  
VIN UVLO Hysteresis Voltage  
VDRV5 UVLO Detect Voltage  
VDRV5 UVLO Release Voltage  
VINUVD  
VINUVR  
VINUVHYS  
VDRV5UVD  
VDRV5UVR  
4.57  
4.95  
-
4.80  
5.20  
0.4  
5.04  
5.46  
-
VIN Falling  
VIN Rising  
V
V
3.94  
4.22  
4.10  
4.40  
4.26  
4.58  
V
VDRV5 Falling  
VDRV5 Rising  
V
VDRV5 UVLO  
Hysteresis Voltage  
-
0.3  
-
VDRV5UVHYS  
V
VDRV5UVR - VDRV5UVD  
[Reference Voltage]  
CVDRV5 = 2.2 μF  
IVDRV5 = 0 mA to 10 mA  
VDRV5 Reference Voltage  
VDRV5  
4.85  
45  
5.00  
5.15  
V
VDRV5 Current Limit  
[EN]  
IDRV5LM  
-
-
mA  
EN Pull Down Current  
EN High Level Threshold Voltage  
EN Low Level Threshold Voltage  
EN Hysteresis Voltage  
[OSCILLATOR]  
IEN  
0.6  
0.96  
0.86  
-
1.2  
1.00  
0.90  
0.1  
1.8  
1.04  
0.94  
-
μA  
V
VEN = 5 V  
VENIH  
VENIL  
VENHYS  
VEN Rising  
VEN Falling  
VENIH - VENIL  
V
V
Switching Frequency  
RT Output Voltage  
fSW  
VRT  
270  
-
300  
0.8  
330  
-
kHz RRT = 33 kΩ  
V
SSFM Disable  
SSFM [2:0] = 3  
Spread Spectrum Sweep Frequency  
fSSFM  
220  
275  
330  
Hz  
Spread Spectrum Frequency  
Sweep Width  
fSSFMW  
-
±6  
-
%
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
45/62  
BD18364EFV-M  
Electrical Characteristics – continued (Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
[N-ch Gate Driver]  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
GL ON Resistor High  
RGLH  
RGLL  
-
-
-
1
2.5  
1.5  
-
Ω
Ω
IGL = -10 mA  
GL ON Resistor Low  
0.6  
60  
IGL = 10 mA  
RRT = 33 kΩ  
Minimum OFF Time  
tOFFMIN  
ns  
[DC/DC Current Detection]  
Over Current Detection Threshold Voltage  
Leading Edge Blanking Time  
Slope Compensation Current Ramp Peak  
279  
300  
120  
50  
321  
VISOCP  
tISBLK  
mV  
ns  
-
-
-
-
IISSLPP  
μA  
No Slope Compensation  
Added  
-
1.26  
-
IS to COMP Level Shift Voltage  
VISCMPLS  
V
[Error Amplifier]  
Trans Conductance  
gM  
-
120  
130  
130  
195  
-
μs  
μA  
μA  
mV  
VSNS = 256 mV  
VSNS = 512 mV  
VSNS = 0 V  
COMP Sink Current  
COMP Source Current  
ADIM OFF Threshold Voltage  
ICOMPSI  
ICOMPSO  
VADIM_0  
65  
65  
150  
260  
260  
240  
ADIM falling  
VSNS = 511.8 mV  
VINDIM = 1  
VSNS = 511.8 mV  
VINDIM = 2  
VSNS = 511.8 mV  
VINDIM = 3  
VSNS = 511.8 mV  
VINDIM = 4  
VSNS = 511.8 mV  
VINDIM = 5  
VSNS = 511.8 mV  
VINDIM = 6  
VSNS = 511.8 mV  
VINDIM = 7  
VVINDIM1  
VVINDIM2  
VVINDIM3  
VVINDIM4  
VVINDIM5  
VVINDIM6  
VVINDIM7  
6.40  
6.93  
7.41  
7.97  
8.47  
8.95  
8.95  
6.92  
7.49  
8.02  
8.62  
9.17  
9.69  
9.69  
7.48  
8.10  
V
V
V
V
V
V
V
8.67  
VINDIM Start Voltage  
9.32  
9.90  
10.46  
10.46  
gVINDIM1  
gVINDIM2  
gVINDIM3  
gVINDIM4  
gVINDIM5  
gVINDIM6  
gVINDIM7  
75  
70  
65  
60  
57  
54  
54  
80  
74  
69  
64  
61  
57  
57  
85  
78  
73  
68  
64  
60  
60  
mV/V VINDIM = 1  
mV/V VINDIM = 2  
mV/V VINDIM = 3  
mV/V VINDIM = 4  
mV/V VINDIM = 5  
mV/V VINDIM = 6  
mV/V VINDIM = 7  
VINDIM Derating Gain  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
46/62  
BD18364EFV-M  
Electrical Characteristics – continued (Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Current Sense Amplifier]  
VSNSP - VSNSN, VSNSN = 40 V,  
DCDIM [9:0] = 1023  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 552 (default)  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 410  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 325  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 278  
VSNS_100  
VSNS_50  
VSNS_35  
VSNS_26  
VSNS_21  
VSNS_05  
496.4  
248.5  
173.8  
128.4  
103.2  
21.7  
511.8  
256.2  
179.2  
133.1  
107.6  
25.6  
527.1  
263.9  
184.6  
137.7  
111.9  
29.5  
mV  
mV  
mV  
mV  
mV  
mV  
Current Sense Voltage  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 127  
SNSN Voltage Dependence  
Characteristics of Current  
Sense Voltage  
VSNSN = 6 V to 40 V  
DCDIM [9:0] = 552 (default)  
ΔVSNS_LINE  
-0.5  
-
+0.5  
%
Current Sense Threshold  
Resolution  
Current Sense Threshold  
Differential Non-linearity  
Current Sense Input Voltage  
Range  
2.5/4.5  
/1024  
ΔVSNS_LSB  
ΔVSNS_DNL  
VSNSND  
ISNSP  
-
-
+3  
-
mV  
LSB  
V
-3  
-
4.0  
49  
18  
-
VSNSN Rising  
VSNSP_SNSN = 511.8 mV  
VSNSN = 60 V  
VSNSP_SNSN = 511.8 mV  
VSNSN = 60 V  
SNSP Input Current  
SNSN Input Current  
95  
31  
140  
43  
μA  
μA  
ISNSN  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 552 (default)  
OCLIM [2:0] = 7  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 552 (default)  
OCLIM [2:0] = 3  
ΔVSNS_LIM7  
241.8  
116.2  
295.2  
156.3  
348.6  
196.3  
mV  
mV  
LED Over Current Limit  
Voltage  
ΔVSNS_LIM3  
VSNSP - VSNSN, VSNSN = 40 V  
DCDIM [9:0] = 552 (default)  
OCLIM [2:0] = 0 (default)  
ΔVSNS_LIM0  
25.3  
4.7  
52.0  
5.1  
78.7  
5.5  
mV  
V
Low Voltage between  
PCLIM – PGATE Pin  
VPCLIM-PGATE  
SGB Detect Voltage  
VSGBDET  
VSGBREL  
3.0  
4.0  
11.1  
13.6  
20.7  
21.7  
mV  
mV  
VSNS Falling  
VSNS Rising  
SGB Release Voltage  
[Over Voltage Protection]  
VSNSP Rising  
OVPSET [3:0] = 15  
VSNSP Rising  
OVPSET [3:0] = 10 (default)  
VSNSP Rising  
OVPSET [3:0] = 5  
VSNSP Rising  
OVPSET [3:0] = 0  
VOVP_15  
VOVP_10  
VOVP_5  
VOVP_0  
VOVPHYS  
tOVP  
65.0  
54.1  
43.2  
32.3  
-
67.5  
56.6  
45.7  
34.8  
1.8  
70.0  
59.1  
48.2  
37.3  
-
V
V
Over Voltage Protection  
Voltage  
V
V
Over Voltage Protection  
Hysteresis Voltage  
Over Voltage Register  
Recovery Time  
V
VSNSP Falling  
17  
20  
23  
ms  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
47/62  
BD18364EFV-M  
Electrical Characteristics – continued (Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
1.6  
Typ  
Max  
2.4  
[CH0 to CH8 Short Circuit Protection]  
CH0, CH2, CH4, CH6, CH8  
Short Circuit Protection  
Voltage  
VCH0, VCH2, VCH4, VCH6, VCH8  
Falling Monitor  
VCH8SCP  
2.0  
V
CH1, CH3, CH5, CH7 Short  
Circuit Protection Voltage  
CHx Short Circuit Protection  
Hysteresis Voltage  
VCH1, VCH3, VCH5, VCH7 Falling  
Monitor  
VCH7SCP  
0.7  
-
1.4  
0.2  
2.1  
-
V
V
VSCP_HYS  
VCH0 to VCH8 Rising  
CHxSCP Detect Time  
CHxSCP Recovery Time  
[By-pass Switch]  
tSCP  
30  
17  
50  
20  
70  
23  
μs  
tSCPREC  
ms  
By-pass Switch ON Resistor  
1
Between CHn+1, CHn  
ISW = 300 mA  
RCH  
-
0.30  
0.75  
Ω
By-pass Switch ON Resistor  
2
Between CH8, CH0  
ISW = 300 mA  
RCH80  
VCHLS  
VCHLO1  
-
1.70  
1.0  
4.25  
1.5  
Ω
V
V
VCHn+1_CHn Falling  
LED Short Detection Voltage  
0.7  
4.5  
VCHn+1_CHn Rising  
LED Open Detection Voltage  
1
6.0  
7.0  
(LEDOPSETn = 0)  
VCHn+1_CHn Rising  
LED Open Detection Voltage  
2
VCHLO2  
13.5  
15.0  
16.5  
V
(LEDOPSETn = 1)  
LED Short Time  
tLS  
80  
100  
200  
120  
230  
μs  
PWM Dimming Frequency  
[A/D Convertor ]  
A/D Resolution  
fPWM  
170  
Hz  
FPWM [3:0] = 0  
RESADC  
-
-
8
-
-
bit  
μs  
MONIAD Input  
MONIAD Input  
A/D Conversion time  
tADC  
150  
A/D Full Scale  
Reference Voltage  
VFSRADC  
-
VDRV5  
-
V
Integral Non-linearity  
Differential Non-linearity  
[Interface]  
INL  
-2  
-2  
-
-
LSB  
LSB  
+2  
+2  
DNL  
FAULT_B Output Voltage Low  
FAULT_B Leak Current  
RX Input High Voltage  
RX Input Low Voltage  
RX Input Current  
VFAULT_BOL  
IFAULT_B  
VRX_IH  
-
0.1  
0
-
0.4  
V
μA  
V
IFAULT_B = 5 mA  
VFAULT_B = 5.5 V  
-
1
-
2.2  
VRX_IL  
-
-
0.8  
1
V
IRX_IN  
-
0
0
-
μA  
μA  
V
VRX = 5 V  
VRX = 0 V  
ITX = -1 mA  
ITX = 1 mA  
RX Output Current  
IRX_OUT  
VTX_OH  
VTX_OL  
-1  
-
TX Output Voltage High  
TX Output Voltage High  
VDRV5-0.4  
-
VDRV5  
0.4  
-
V
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
48/62  
BD18364EFV-M  
Typical Performance Curves  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
Figure 42. VIN Circuit Current 1 vs VIN Supply Voltage  
(EN = 0 V)  
Figure 43. VIN Circuit Current 2 vs VIN Supply Voltage  
(EN = 5 V)  
Figure 44. VIN UVLO Detect/Release Voltage vs  
Temperature  
Figure 45. VDR5 Reference Voltage vs Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
49/62  
BD18364EFV-M  
Typical Performance Curves – continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
Figure 46. Switching Frequency vs Temperature  
(RRT = 33 kΩ)  
Figure 47. Current Sense Voltage VSNS_100 vs Temperature  
(DCDIM [9:0] = 1023)  
Figure 48. Current Sense Voltage VSNS_50 vs Temperature  
(DCDIM [9:0] = 552)  
Figure 49. Current Sense Voltage VSNS_35 vs Temperature  
(DCDIM [9:0] = 410)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
50/62  
BD18364EFV-M  
Typical Performance Curves – continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
Figure 50. Current Sense Voltage VSNS_26 vs Temperature  
(DCDIM [9:0] = 325)  
Figure 51. Current Sense Voltage VSNS_21 vs Temperature  
(DCDIM [9:0] = 278)  
Figure 52. Current Sense Voltage VSNS_05 vs Temperature  
(DCDIM [9:0] = 127)  
Figure 53. Over Voltage Protection Voltage VOVP_15 vs  
Temperature  
(OVPSET [3:0] = 15)  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
51/62  
BD18364EFV-M  
Typical Performance Curves – continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
Figure 55. LED Open Detection Voltage 1 vs Temperature  
(LEDOPSETn = 0)  
Figure 54. Over Voltage Resister Recovery Time vs  
Temperature  
Figure 56. LED Open Detection Voltage 2 vs Temperature  
(LEDOPSETn = 1)  
Figure 57. LED Short Detection Voltage vs Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
52/62  
BD18364EFV-M  
Typical Performance Curves – continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
Figure 58. LED Short Time vs Temperature  
Figure 59. PWM Dimming Frequency vs Temperature  
(FPWM [3:0] = 0)  
Figure 60. Low voltage between PCLIM – PGATE Pin vs  
Temperature  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
53/62  
BD18364EFV-M  
Application Examples  
(VIN = 13 V, ILED = 316 mA at DCDIM [9:0] = 552, 8 LED)  
D2  
Cathode  
L1  
Q1  
VIN  
VOUT  
D1  
RSNS2  
RSNS1  
MP1  
CINP3  
CINP2  
CINP1  
CBOOT  
COUT6 COUT7 COUT8  
MN1  
Anode  
RGL  
CPGATE  
RGMN  
RIS  
COUT1  
GND  
COUT2 COUT3 COUT4 COUT5  
GND  
RBOOT  
U1 BD18364EFV-M  
PGND  
IS  
GL  
PGND  
PSW  
1
30  
29  
28  
27  
26  
25  
24  
23  
IS  
CPSW  
2
GL  
PSW  
PCLIM  
SNSP  
SNSN  
PGATE  
CH8  
BOOT  
CVIN  
BOOT  
VIN  
PCLIM  
SNSP  
SNSN  
PGATE  
3
RVIN  
BOOT  
VIN  
Ranode  
4
VDRV5  
SW  
C2VIN  
EN  
5
EN  
VDRV5  
VDRV5  
LED board  
C2VDRV5  
CVDRV5  
VDRV5  
ADIM  
RT  
6
CEN  
RADIM1  
VDRV5  
ADIM  
RT  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
7
ADIM  
CADIM  
RADIM2  
8
CH7  
RRT  
CCOMP  
COMP  
9
22  
COMP  
GND  
MONIAD  
FAULT_B  
CS  
CH6  
CH5  
VDRV5  
RMONIAD1  
RCOMP  
GND  
10  
11  
12  
13  
14  
15  
21  
20  
19  
18  
17  
16  
CH4  
CH3  
CH2  
CH1  
CH0  
VDRV5  
CMONIAD  
RMONIAD2  
RFLTB  
RCS1  
GND  
FAULT_B  
GND  
RX  
RX  
UART  
Communication  
TX  
TX  
Figure 61. Application Circuit  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
54/62  
BD18364EFV-M  
Application Parts Choice Example  
Parts  
Component Name  
Value  
Product Name  
Manufacture  
Capacitor  
CINP1  
CINP2  
CINP3  
CVIN  
4.7 µF  
4.7 µF  
Open  
GCM32ER71H475KA55#_X7R_±10 %  
Murata  
Murata  
-
GCM32ER71H475KA55#_X7R_±10 %  
-
0.1 µF  
1000 pF  
2.2 µF  
1000 pF  
1000 pF  
0.01 µF  
0.22 µF  
0.01 µF  
0.1 µF  
0.1 µF  
1000 pF  
0.1 µF  
4.7 µF  
Open  
GCM188L81H104KA57#_-_±10 %  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
-
C2VIN  
CVDRV5  
C2VDRV5  
CEN  
GCM1882C1H102JA01#_CH_±5 %  
GCM21BR71E225KA73#_X7R_±10 %  
GCM1882C1H102JA01#_CH_±5 %  
GCM188R92A102KA37#_X8R_±10 %  
CADIM  
CCOMP  
CMONIAD  
CBOOT  
CPSW  
CPGATE  
COUT1  
COUT2  
COUT3  
COUT4  
COUT5  
COUT6  
COUT7  
COUT8  
RIS  
GCM188L81H103KA03#_-_±10 %  
GCG188R91H224KA01#_X8R_±10 %  
GCM188L81H103KA03#_-_±10 %  
GCJ188R72A104KA01#_X7R_±10 %  
GCJ188R72A104KA01#_X7R_±10 %  
GCM188R92A102KA37#_X8R_±10 %  
GCJ188R72A104KA01#_X7R_±10 %  
GCM32DC72A475KE02#_X7S_±10 %  
-
Open  
-
-
Open  
-
-
4.7 µF  
4.7 µF  
Open  
GCM32DC72A475KE02#_X7S_±10 %  
Murata  
Murata  
-
GCM32DC72A475KE02#_X7S_±10 %  
-
LTR18  
Resistor  
0.051 Ω  
10 Ω  
ROHM  
ROHM  
-
RGL  
MCR03  
RGMN  
RBOOT  
RVIN  
Open  
-
47 Ω  
MCR03  
ROHM  
ROHM  
ROHM  
-
10 Ω  
MCR03  
RADIM1  
RADIM2  
RRT  
100 kΩ  
Open  
MCR03  
-
33 kΩ  
470  
MCR03  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
RCOMP  
RMONIAD1  
RMONIAD2  
RFLTB  
RCS1  
MCR03  
100 kΩ  
100 kΩ  
10 kΩ  
100 kΩ  
0.51 Ω  
0.30 Ω  
Short  
MCR03  
MCR03  
MCR03  
MCR03  
RSNS1  
RSNS2  
Ranode  
L1  
LTR18  
LTR18  
-
Coil  
Tr  
10 µH  
MSS1278-103MLB  
IRLR3110ZTRPBF  
FDC3535  
SST2907AHZG  
RB098BM100FH  
RB098BM100FH  
BD18364EFV-M  
Coilcraft  
Infineon  
ON Semiconductor  
ROHM  
ROHM  
ROHM  
ROHM  
MN1  
MP1  
Q1  
Diode  
IC  
D1  
D2  
U1  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
55/62  
BD18364EFV-M  
I/O Equivalence Circuits  
Pin  
No  
Pin  
Name  
Pin  
No  
Pin  
Name  
I/O Equivalence Circuits  
I/O Equivalence Circuits  
VDRV5  
VDRV5  
2
30  
GL  
PGND  
1
IS  
IS  
GL  
GND  
GND  
PGND  
VDRV5  
PCLIM  
BOOT  
VIN  
EN  
3
29  
BOOT  
PSW  
4
5
VIN  
EN  
PSW  
GND  
VIN  
GND  
VDRV5  
VDRV5  
6
VDRV5  
7
ADIM  
ADIM  
GND  
GND  
VDRV5  
VDRV5  
8
RT  
9
COMP  
RT  
COMP  
GND  
GND  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
56/62  
BD18364EFV-M  
I/O Equivalence Circuits - continued  
Pin  
No  
Pin  
Name  
Pin  
No  
Pin  
Name  
I/O Equivalence Circuits  
I/O Equivalence Circuits  
VDRV5  
FAULT_B  
MONIAD  
GND  
11  
MONIAD  
12  
FAULT_B  
GND  
VDRV5  
VDRV5  
CS  
RX  
13  
14  
CS  
RX  
15  
TX  
TX  
GND  
GND  
PCLIM  
PGATE  
PSW  
25  
28  
PGATE  
PCLIM  
CH8  
(CH[n+1])  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
GND  
CH7  
(CH[n])  
PCLIM  
SNSP  
SNSN  
26  
27  
SNSN  
SNSP  
CH0  
GND  
GND  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
57/62  
BD18364EFV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0T1T0B400430-1-2  
© 2022 ROHM Co., Ltd. All rights reserved.  
58/62  
23.May.2022 Rev.001  
TSZ22111 • 15 • 001  
BD18364EFV-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 62. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
59/62  
BD18364EFV-M  
Ordering Information  
B D 1  
8
3
6
4
E F V  
-
M E 2  
Part Number  
Package  
Product Rank  
EFV: HTSSOP-B30  
M: For Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSSOP-B30 (TOP VIEW)  
Part Number Marking  
LOT Number  
BD18364EFV  
Pin 1 Mark  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
60/62  
BD18364EFV-M  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B30  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
61/62  
BD18364EFV-M  
Revision History  
Date  
Revision  
001  
Changes  
23.May.2022  
New Release  
www.rohm.com  
© 2022 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400430-1-2  
23.May.2022 Rev.001  
62/62  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18377EFV-M

12 Channel Constant Current LED Driver IC
ROHM

BD18377EFV-ME2

12 Channel Constant Current LED Driver IC
ROHM

BD18378EFV-M

Advanced 12 Channel Constant Current LED Driver IC
ROHM

BD18378EFV-ME2

Advanced 12 Channel Constant Current LED Driver IC
ROHM

BD18395EFV-M

BD18395EFV-M是可用于矩阵LED控制(时序控制)的降压LED驱动器。输入电压范围可达4.5V至70V,具备低功耗关断功能,可提供最大2.0A的平均输出电流。LED电流可使用外接电流设定电阻来设定,通过峰值电流检测OFFTIME控制进行动作。内置UVLO、过电流保护、LED开路检测、热关断功能、LED低电压检测、状态良好输出功能。适合进行矩阵控制的LED驱动器。
ROHM

BD18397EUV-M (开发中)

The BD18397EUV-M is 2ch synchronous buck DC/DC LED driver with using on-time topology supporting near fixed switching frequency and fast switching duty regulation and with using average LED current feed buck topology for more accreted LED current regulation system over wide input, LED output range.
ROHM

BD18397RUV-M

BD18397RUV-M是一款双通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。
ROHM

BD18398EUV-M (开发中)

The BD18398EUV-M is 3ch synchronous buck DC/DC LED driver with using on-time topology supporting near fixed switching frequency and fast switching duty regulation and with using average LED current feed buck topology for more accreted LED current regulation system over wide input, LED output range.
ROHM

BD18398RUV-M

BD18398RUV-M是一款三通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。
ROHM

BD185

TECHNICAL DATA
MOTOROLA

BD186

PLASTIC MEDIUM POWER SILICON PNP TRANSISTOR
MOTOROLA

BD187

TECHNICAL DATA
MOTOROLA