BD6092GU-E2 [ROHM]

Analog Circuit, 1 Func, PBGA24, 2.80 X 2.80 MM, 0.50 MM PITCH, ROHS COMPLIANT, VCSP85H2-24;
BD6092GU-E2
型号: BD6092GU-E2
厂家: ROHM    ROHM
描述:

Analog Circuit, 1 Func, PBGA24, 2.80 X 2.80 MM, 0.50 MM PITCH, ROHS COMPLIANT, VCSP85H2-24

文件: 总29页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System LED Drivers for Mobile Phones  
ALC* PWM controller  
(*ALC : Auto Luminous Control)  
No.09041EAY08  
BD6092GU  
Description  
BD6092GU is the Auto Luminous Control IC, which adjusts PWM duty by surrounding ambient light.  
Analog ambient light sensor is connected, and Auto Luminous Control does the automatic adjustment of the PWM output  
duty by surrounding ambient light. By connecting to the LED driver’s control port, it can decrease the power consumption of  
the back light system. It is possible to input the external PWM signal, and it can be mixed to PWM output.  
This IC achieves compact size with the CSP package. (VCSP85H2).  
Features  
1) Ambient Light Sensor interface  
Main backlight can be controlled by ambient brightness.  
Photo Diode, Photo Transistor, Photo IC(Linear/Logarithm) can be connected.  
Bias source for ambient light sensor, ADC with an average filter, LOG conversion function, gain and offset  
2) adjustment are built in.  
PWM duty as ambient level can be customized.  
Automatic gain control function can reduce sensor current at high brightness, and sensitivity up at dark brightness.  
It can be input the external PWM. Output is mixed internal PWM and external PWM.  
3) UVLO Function  
4) I2C BUS Fast-mode protocol compatible(max 400kHz)  
5) Package : VCSP85H2 (2.8mm2, 0.5mm pitch) CSP package  
*This chip is not designed to protect itself against radioactive rays.  
*This material may be changed on its way to designing.  
*This material is not the official specification.  
Absolute Maximum Ratings (Ta=25 oC)  
Parameter  
Maximum voltage  
Symbol  
VMAX  
Pd  
Limits  
7
Unit  
V
Power Dissipation  
1250 note)  
-40 +85  
-55 +150  
mW  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
note)Power dissipation deleting is 10mW/ oC, when it’s used in over 25 oC.(It’s deleting is on the board that is ROHM’s standard)  
Operating conditions (VBATVIO, Ta=-4085)  
Parameter  
VBAT input voltage  
VIO pin voltage  
Symbol  
VBAT1,2  
VIO  
Limits  
Unit  
V
V
2.7 5.5  
1.65 3.3  
Note1) Using at VBATVIO condition  
Note2) Using at same voltage VBAT1 and VBAT2  
www.rohm.com  
2009.06 - Rev.A  
1/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Circuit Current】  
VBAT Circuit Current 1  
VBAT Circuit Current 2  
IBAT1  
IBAT2  
-
-
0.1  
0.5  
3.0  
3.0  
μA  
μA  
RESETB=0V, VIO=0V  
RESETB=0V, VIO=1.8V  
ALC block ON,ADCYC=0.5s setting.  
Except sensor current  
VBAT Circuit Current 3  
IBAT3  
-
0.17  
1.0  
mA  
Sensor Interface】  
2.85  
2.47  
30  
3.0  
2.6  
-
3.15  
2.73  
-
V
V
Io=200µA  
SBIAS Output voltage  
VoS  
Io=200µA  
SBIAS Output current  
IomaxS  
ROFFS  
mA  
kΩ  
Vo=2.6V setting  
SBIAS Discharge resister at OFF  
-
1.0  
1.5  
VoS×  
255/256  
SSENS Input range  
VISS  
0
-
V
ADC resolution  
ADRES  
ADINL  
8
-
bit  
ADC Integral non-linearity error  
ADC differential non-linearity error  
OSC】  
-3  
-1  
+3  
+1  
LSB  
LSB  
ADDNL  
-
Oscillation frequency  
UVLO】  
FOSC  
0.8  
1.0  
1.2  
MHz  
UVLO detect voltage  
UVLO un-detect voltage  
UVLO detect voltage hysteresis  
SDA, SCL(I2C interface)  
VUVLO1  
VUVLO2  
1.5  
-
1.95  
2.15  
200  
-
2.65  
-
V
V
VBAT fall down  
VBAT rise up  
UVLOHYS  
50  
mV  
0.25 ×  
VIO  
VBAT  
+0.3  
Input L level voltage  
VILI  
VIHI  
-0.3  
-
-
-
V
V
V
0.75 ×  
VIO  
0.05 ×  
VIO  
Input H level voltage  
Hysteresis of Schmitt trigger input  
VhysI  
-
Output L level voltage  
VOLI  
linI  
0
-
-
0.3  
10  
V
SDA, IOL=3 mA  
Input current  
-10  
μA  
Input voltage= 0.1×VIO0.9×VIO  
RESETB,EXPWMIN(CMOS input)  
0.25 ×  
VIO  
VBAT  
+0.3  
Input L level voltage  
Input H level voltage  
VIL  
-0.3  
-
-
V
0.75 ×  
VIO  
VIH  
V
Input current  
Iin  
-10  
-
-
-
10  
μA  
Input volage= 0.1×VIO0.9×VIO  
PWM input frequency range  
DCDCOK(CMOS input)  
fpwm  
1000  
kHz PWMIN, Duty=50% input  
0.25 ×  
VIO  
VBAT  
+0.3  
Input L level voltage  
Input H level voltage  
VIL  
-0.3  
-
V
V
0.75 ×  
VIO  
VIH  
Iin  
-
-
Input current  
-10  
10  
μA  
Input voltage= 0.1×VIO0.9×VIO  
PWMOUT(CMOS output)  
Output L level voltage  
VOLPW  
VOHPW  
DTYRES  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
VIO  
-0.2  
Output H level voltage  
Output Duty resolution  
8
bit  
GC1, GC2(Sensor gain control, CMOS output)  
Output L level voltage  
VOLGC  
-
-
-
0.2  
-
V
V
IOL=1mA  
IOH=1mA  
VoS  
-0.2  
Output H level voltage  
VOHGC  
www.rohm.com  
2009.06 - Rev.A  
2/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Block Diagram / Application Circuit example  
VIO  
Battery  
(
)
(
)
)
RESETB  
(
)(  
)
(
VREF  
OSC  
VBAT1  
VBAT2  
SCL  
SDA  
LEVEL  
SHIFT  
I2C  
CONTROL  
I/O  
UVLO  
EXPWMIN  
DCDCOK  
SBIAS  
Photo IC  
VDD  
GND  
IOUT  
PWMOUT  
1μF  
GC1  
GC2  
PWM  
Controller  
SSENS  
AGND  
Sensor  
I/F  
ALC  
BH1600FVC  
GC2  
GC1  
* The example when using BH1600FVC and assuming  
brightness range 10(lx)-50000(lx) by the panel of  
20% transmissivity  
Pin number : 24 pins  
Pin Arrangement Bottom View]  
E
D
C
B
A
NCIN  
SSENS  
DCDCOK  
NCO0  
PWMOUT  
SCL  
NCO1  
SBIAS  
GC1  
AGND  
SDA  
VIO  
GC2  
NCO2  
EXPWMIN  
NCO5  
index  
VBAT1  
VBAT2  
NCO4  
NCOA  
TESTIN  
GND  
RESETB  
NCO3  
1
2
3
4
5
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
3/28  
Application Note  
BD6092GU  
Package  
VCSP85H2  
Size2.80mm2  
Baii pitch0.5mm  
<Bottom View>  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
4/28  
Application Note  
BD6092GU  
Pin Functions  
ESD Diode  
Pin  
No  
Equivalent  
Circuit  
Pin name  
VBAT1  
I/O  
Function  
No.  
For VBAT For GND  
1
2
B1  
B3  
A3  
D2  
C5  
A4  
D5  
D4  
D1  
E2  
C1  
C2  
C4  
E4  
E3  
A2  
E1  
D3  
E5  
C3  
A5  
B5  
B4  
A1  
-
-
-
AGND  
GND  
-
Power supply  
Power supply  
Ground  
A
A
B
B
C
D
E
D
J
VBAT2  
GND  
-
3
-
VBAT2  
VBAT1  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
VBAT1  
VBAT1  
VBAT1  
VBAT1  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
VBAT1  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
VBAT2  
4
AGND  
VIO  
-
-
Ground  
5
-
GND  
GND  
GND  
GND  
AGND  
AGND  
AGND  
AGND  
GND  
GND  
GND  
GND  
AGND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Power supply for I/O  
6
RESETB  
SDA  
I
Reset input (L: reset, H: reset cancel)  
I2C data input / output  
7
I/O  
I
8
SCL  
I2C clock input  
9
SBIAS  
SSENS  
GC1  
O
I
Bias output for the Ambient Light Sensor  
Ambient Light Sensor input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
H
O
O
I
Ambient Light Sensor gain control output 1  
Ambient Light Sensor gain control output 2  
External PWM input  
I
GC2  
I
EXPWMIN  
PWMOUT  
DCDCOK  
TESTIN  
NCIN  
D
G
D
K
K
L
L
L
L
L
L
H
O
I
PWM output  
DC/DC rise up flag input  
Test input (Ground short)  
Test input (Ground short)  
Test output(Open)  
I
I
NCO0  
NCO1  
NCO2  
NCO3  
NCO4  
NCO5  
NCOA  
O
O
O
O
O
O
O
Test output(Open)  
Test output(Open)  
Test output(Open)  
Test output(Open)  
Test output(Open)  
Test output(Open)  
Using at same voltage VBAT1 and VBAT2.  
Using at same voltage GND and AGND.  
Voltage level is based on the voltage of GND and AGND.  
Equivalent Circuit  
A
E
I
B
F
J
VBAT  
C
G
K
VBAT  
D
H
L
VBAT  
VIO  
VBAT  
VIO  
VBAT  
VIO  
VBAT  
VIO  
VBAT  
VoS  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
5/28  
Application Note  
BD6092GU  
I2C BUS format  
The writing/reading operation is based on the I2C slave standard.  
Slave address  
A7  
1
A6  
1
A5  
1
A4  
0
A3  
1
A2  
1
A1  
1
R/W  
1/0  
Bit Transfer  
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes  
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.  
SDA  
SCL  
SDA a state of stability  
Data are effective  
SDA  
It can change  
START and STOP condition  
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L  
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL  
has been H, it will become STOP (P) conditions and an access end.  
SDA  
SCL  
S
P
STOP condition  
START condition  
Acknowledge  
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and  
a receiver returns the acknowledge signal by setting SDA to L.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
1
2
8
9
SCL  
S
clock pulse for  
acknowledgement  
START condition  
www.rohm.com  
2009.06 - Rev.A  
6/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Protocol  
Example  
Master side, transmitter  
Slave side, receiver  
START condition  
STOP condition  
acknowledge  
Terms of repetition start  
A
A
S
P
Sr  
Slave side, transmitter  
Master side, receiver  
not acknowledge  
1. Writing protocol  
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The  
3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register  
address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by  
the next transmission. After the transmission end, the increment of the address is carried out.  
Write Timing  
Write Timing  
0
A A7 A6 A5 A4 A3 A2 A1 A0 A D7D6D5D4D3D2D1D0 A  
register address  
DATA  
D7D6D5 D4D3D2D1D0 A  
DATA  
register address  
increment  
P
S
X
X
X
X
X
X
X
slave address  
register address  
increment  
R/W=0(write)  
2. Reading protocol  
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following  
address accessed at the end, and the data of the address that carried out the increment is read after it. If an address  
turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is  
carried out.  
S
1
A D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
P
X
X X X X X X  
slave address  
R/W=1(read)  
register address  
increment  
register address  
increment  
3. Multiple reading protocols  
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The  
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte  
will read out 00h. After the transmission end, the increment of the address is carried out.  
S
A
A Sr  
1 A  
X X X X X X X  
slave address  
0
A7A6A5A4A3A2A1A0  
register address  
X X X X X X X  
slave address  
R/W=0(write)  
R/W=1(read)  
A
P
D7D6D5D4D3D2D1D0 A  
DATA  
D7D6D5D4D3D2D1D0  
DATA  
register address  
increment  
register address  
increment  
*As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation.  
It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the readingdata of that time  
is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge)is done.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
7/28  
Application Note  
BD6092GU  
Timing diagram  
SDA  
t BUF  
t SU;DAT  
t HD;STA  
t LOW  
SCL  
t SU;STO  
t SU;STA  
t HD;STA  
t HD;DAT  
S
Sr  
P
S
t HIGH  
Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=1.8V)  
Standard-mode  
Fast-mode  
Typ.  
Parameter  
I2C BUS format】  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Max.  
SCL clock frequency  
fSCL  
tLOW  
0
-
-
-
-
-
-
-
-
-
100  
0
-
-
-
-
-
-
-
-
-
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.0  
4.7  
0
-
1.3  
0.6  
0.6  
0.6  
0
-
tHIGH  
-
-
Hold time (repeated) START condition  
After this period, the first clock is generated  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
-
-
Set-up time for a repeated START condition  
Data hold time  
-
-
0.9  
-
3.45  
Data set-up time  
250  
4.0  
4.7  
-
-
-
100  
0.6  
1.3  
Set-up time for STOP condition  
-
Bus free time between a STOP  
and START condition  
-
www.rohm.com  
2009.06 - Rev.A  
8/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Register List  
Resister data  
Address W/R  
Function  
D7  
D6  
D5  
-
D4  
D3  
-
D2  
-
D1  
-
D0  
SFTRST  
VSB  
00h  
01h  
W
W
-
-
-
-
-
Software reset  
ADCYC (1) ADCYC (0)  
FOUT (1)  
GAIN (1)  
GAIN(0)  
STYPE  
Measurement mode setting  
Output mode setting  
Output frequency setting  
02h  
W
-
FOUT (2)  
FOUT (0) EXPWMEN OUTMD(2) OUTMD(1) OUTMD(0)  
03h  
04h  
05h  
W
W
W
FIXDUT (7) FIXDUT (6) FIXDUT (5) FIXDUT (4) FIXDUT (3) FIXDUT (2) FIXDUT (1) FIXDUT (0) Fixed PWM duty setting  
THL (3)  
THL (2)  
THL (1)  
THL (0)  
TLH (3)  
TLH (2)  
TLH (1)  
TLH (0)  
PWM duty transition time  
SOFS (3)  
SOFS (2)  
SOFS (1)  
SOFS (0)  
SGAIN (3) SGAIN (2) SGAIN (1) SGAIN (0) Measurement data correction  
Ambient level output  
06h  
W/R  
SB_ON  
ADSTW(2) ADSTW(1) ADSTW(0)  
AMB (3)  
AMB (2)  
AMB (1)  
AMB (0)  
AD start time setting  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
DUT0 (7)  
DUT1 (7)  
DUT2 (7)  
DUT3 (7)  
DUT4 (7)  
DUT5 (7)  
DUT6 (7)  
DUT7 (7)  
DUT8 (7)  
DUT9 (7)  
DUTA (7)  
DUTB (7)  
DUTC (7)  
DUTD (7)  
DUTE (7)  
DUTF (7)  
DUT0 (6)  
DUT1 (6)  
DUT2 (6)  
DUT3 (6)  
DUT4 (6)  
DUT5 (6)  
DUT6 (6)  
DUT7 (6)  
DUT8 (6)  
DUT9 (6)  
DUTA (6)  
DUTB (6)  
DUTC (6)  
DUTD (6)  
DUTE (6)  
DUTF (6)  
DUT0 (5)  
DUT1 (5)  
DUT2 (5)  
DUT3 (5)  
DUT4 (5)  
DUT5 (5)  
DUT6 (5)  
DUT7 (5)  
DUT8 (5)  
DUT9 (5)  
DUTA (5)  
DUTB (5)  
DUTC (5)  
DUTD (5)  
DUTE (5)  
DUTF (5)  
DUT0 (4)  
DUT1 (4)  
DUT2 (4)  
DUT3 (4)  
DUT4 (4)  
DUT5 (4)  
DUT6 (4)  
DUT7 (4)  
DUT8 (4)  
DUT9 (4)  
DUTA (4)  
DUTB (4)  
DUTC (4)  
DUTD (4)  
DUTE (4)  
DUTF (4)  
DUT0 (3)  
DUT1 (3)  
DUT2 (3)  
DUT3 (3)  
DUT4 (3)  
DUT5 (3)  
DUT6 (3)  
DUT7 (3)  
DUT8 (3)  
DUT9 (3)  
DUTA (3)  
DUTB (3)  
DUTC (3)  
DUTD (3)  
DUTE (3)  
DUTF (3)  
DUT0 (2)  
DUT1 (2)  
DUT2 (2)  
DUT3 (2)  
DUT4 (2)  
DUT5 (2)  
DUT6 (2)  
DUT7 (2)  
DUT8 (2)  
DUT9 (2)  
DUTA (2)  
DUTB (2)  
DUTC (2)  
DUTD (2)  
DUTE (2)  
DUTF (2)  
DUT0 (1)  
DUT1 (1)  
DUT2 (1)  
DUT3 (1)  
DUT4 (1)  
DUT5 (1)  
DUT6 (1)  
DUT7 (1)  
DUT8 (1)  
DUT9 (1)  
DUTA (1)  
DUTB (1)  
DUTC (1)  
DUTD (1)  
DUTE (1)  
DUTF (1)  
DUT0 (0)  
DUT1 (0)  
DUT2 (0)  
DUT3 (0)  
DUT4 (0)  
DUT5 (0)  
DUT6 (0)  
DUT7 (0)  
DUT8 (0)  
DUT9 (0)  
DUTA (0)  
DUTB (0)  
DUTC (0)  
DUTD (0)  
DUTE (0)  
DUTF (0)  
PWM duty at ambient level 0  
PWM duty at ambient level 1  
PWM duty at ambient level 2  
PWM duty at ambient level 3  
PWM duty at ambient level 4  
PWM duty at ambient level 5  
PWM duty at ambient level 6  
PWM duty at ambient level 7  
PWM duty at ambient level 8  
PWM duty at ambient level 9  
PWM duty at ambient level A  
PWM duty at ambient level B  
PWM duty at ambient level C  
PWM duty at ambient level D  
PWM duty at ambient level E  
PWM duty at ambient level F  
Input "0” for "-".  
Vacancy address may be use for test.  
Prohibit to accessing the address that isn’t mentioned and the register for test.  
When reading data, I2C control timing and IC internal timing are non-synchronous relations. Please design that the problem  
does not occur in application. For example, Three times agreement sequence is introduced.  
The time indicated in register explanation is the TYP time made by dividing of the built-in OSC.  
The registers except the following must be changed when only BD6092GU is not operate (OUTMD (2:0) = "000").  
FIXDUT (7:0) (Address03h: bit [7:0])  
THL (3:0)  
TLH (3:0)  
SB_ON  
(Address04h: bit [7:4])  
(Address04h: bit [3:0])  
(Address06h: bit [7])  
(Value setting of SB_ON has some restriction. See “About setting of the output mode” to get more information.)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
9/28  
Application Note  
BD6092GU  
Register Map  
Address 00h < Software reset >  
Function  
BIT  
Name  
Init  
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SFTRST  
Reset Release  
Reset (Auto Return 0)  
Address 01h < Measurement mode setting>  
Function  
BIT  
Name  
Init  
0
1
D7  
D6  
-
-
-
-
-
-
-
-
ADCYC(1)  
ADCYC(0)  
Ambient brightness  
measurement period  
D5  
ADCYC(1)  
0
0
0
1
1
0
1
0
1
0.52 s  
1.05 s  
1.57 s  
2.10 s  
D4  
D3  
D2  
ADCYC(0)  
GAIN(1)  
GAIN(0)  
0
1
1
GAIN(1)  
GAIN(0)  
GC1 output  
GC2 output  
0
0
1
1
0
1
0
1
Automatic  
1
0
0
0
1
0
linear sensor connection  
(Internal LOG conversion)  
D1  
D0  
STYPE  
VSB  
1
1
LOG sensor connection (Internal through)  
SBIAS output voltage 2.6V  
SBIAS output voltage 3.0V  
www.rohm.com  
2009.06 - Rev.A  
10/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Address 02h < Output mode, Output frequency setting>  
Function  
BIT  
D7  
Name  
-
Init  
-
0
-
1
-
D6  
D5  
D4  
FOUT(2)  
FOUT(1)  
FOUT(0)  
0
0
0
FOUT(2)  
FOUT(1)  
FOUT(0)  
Output frequency  
FOSC x 1/8192 (122.1Hz)  
FOSC x 1/4096 (244.1Hz)  
FOSC x 1/2048 (488.3Hz)  
FOSC x 1/1024 (976.6Hz)  
FOSC x 1/512 (1953.1Hz)  
FOSC x 1/256 (3906.2Hz)  
Prohibit  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Prohibit  
Frequency is a calculation value as an internal OSC frequency 1MHz (typ)  
D3  
D2  
EXPWMEN  
OUTMD(2)  
0
0
Outside PWM input non-permission  
Outside PWM input permission  
Mode  
OUTMD(2) OUTMD(1) OUTMD(0)  
Output setting  
Mode0  
Mode1  
Mode2  
0
0
0
0
0
1
0
1
0
Forced L output (ALC=OFF)  
Forced L output (ALC=ON)  
Internal PWM forced H  
(ALC=OFF)  
D1  
D0  
OUTMD(1)  
OUTMD(0)  
0
0
Mode3  
0
1
1
Internal PWM forced H  
(ALC=ON)  
Mode4  
Mode5  
Mode6  
Mode7  
1
1
1
1
0
0
1
1
0
1
0
1
Fixed PWM output (ALC=OFF)  
Fixed PWM output (ALC=ON)  
(Prohibition)  
ALC PWM output  
Address 03< Fixed PWM duty setting >  
Function  
BIT  
Name  
Init  
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIXDUT(7)  
FIXDUT(6)  
FIXDUT(5)  
FIXDUT(4)  
FIXDUT(3)  
FIXDUT(2)  
FIXDUT(1)  
FIXDUT(0)  
0
0
0
0
0
0
0
0
FIXDUT(7)  
FIXDUT(6)  
FIXDUT(5)  
FIXDUT(4)  
FIXDUT(3)  
FIXDUT(2)  
FIXDUT(1)  
FIXDUT(0)  
PWM Duty  
0
0
0
0
0
0
0
0
1/256  
2/256  
1/256  
step  
255/256  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
1
1
1
1
1
1
256/256  
www.rohm.com  
2009.06 - Rev.A  
11/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Address 04h <PWM duty transition time>  
Function  
BIT  
Name  
Init  
0
1
THL (3)  
TLH (3)  
THL (2)  
TLH (2)  
THL (1)  
TLH (1)  
THL (0)  
TLH (0)  
LED Current slope control  
1 step time  
D7  
THL (3)  
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.128 ms  
0.256 ms  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
THL (2)  
THL (1)  
THL (0)  
TLH (3)  
TLH (2)  
TLH (1)  
TLH (0)  
1
0
0
0
1
1
1
0.512 ms  
1.024 ms  
2.048 ms  
4.096 ms  
8.192 ms  
16.384 ms (TLH Initial)  
32.768 ms  
65.536 ms  
98.304 ms  
131.072 ms  
163.840 ms(THL Initial)  
196.608 ms  
229.376 ms  
262.144 ms  
The duty step and the amount of Duty change per slope time vary according to the chosen output PWM frequency.  
Moreover, final step is maybe rounded in the particular case of duty setting.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
12/28  
Application Note  
BD6092GU  
Address 05h < Measurement data correction >  
Function  
BIT  
Name  
Init  
0
1
AD data  
Offset adjust  
SOFS(3)  
1
SOFS(2)  
0
SOFS(1)  
SOFS(0)  
0
D7  
SOFS(3)  
0
0
-8 LSB  
1
0
0
1
-7 LSB  
D6  
D5  
D4  
SOFS(2)  
SOFS(1)  
SOFS(0)  
0
0
0
1
0
0
1
0
0
1
0
0
1
0
1
-1 LSB  
non-adjust  
+1 LSB  
0
0
1
1
1
1
0
1
+6 LSB  
+7 LSB  
Offset adjust is performed to ADC data.  
AD data  
Gain adjust  
SGAIN(3)  
SGAIN(2)  
SGAIN(1)  
SGAIN(0)  
D3  
D2  
D1  
D0  
SGAIN(3)  
SGAIN(2)  
SGAIN(1)  
SGAIN(0)  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
(reserved)  
(reserved)  
-37.5%  
-31.25%  
-25%  
-18.75%  
-12.5%  
-6.25%  
non-adjust  
+6.25%  
+12.5%  
+18.75%  
+25%  
+31.25%  
+37.5%  
(reserved)  
Gain adjust is performed to ADC data  
The data after adjustment are round off by 8-bit data.  
www.rohm.com  
2009.06 - Rev.A  
13/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Address 06h < Ambient level output, AD start time setting>  
Wright / Read resister  
Function  
BIT  
D7  
Name  
Init  
0
0
1
SB_ON  
Intermittent ON  
Usually ON  
ADSTW (2) ADSTW (1) ADSTW (0)  
AD start wait time  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.512ms(16cycle)  
8.704ms(272 cycle)  
16.90ms(528 cycle)  
33.28ms(1040 cycle)  
66.05ms(2064 cycle)  
131.6ms(4112 cycle)  
262.7ms(8208 cycle)  
Prohibit  
D6  
D5  
D4  
ADSTW(2)  
ADSTW(1)  
ADSTW(0)  
0
0
0
“1cycle=FOSC/32 (Hz)” FOSC means internal clock frequency.  
Internal frequency is 1MHz (typ.)  
AMB (3)  
AMB (2)  
AMB (1)  
AMB (0)  
Brightness data  
D3  
D2  
D1  
D0  
AMB (3)  
AMB (2)  
AMB (1)  
AMB (0)  
-
-
-
-
0
0
1
0
0
1
0
0
1
0
1
0
Brightness 0  
Brightness 1  
Brightness E  
Brightness F  
1
1
1
1
Read-out is possible only with AMB (3:0) of D3-0 through I2C. "0000" does read-out with D7-4  
Address 07h~16h < PWM duty at ambient level * >  
Function  
BIT  
Name  
Init  
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DUT* (7)  
DUT* (6)  
DUT* (5)  
DUT* (4)  
DUT* (3)  
DUT* (2)  
DUT* (1)  
DUT* (0)  
(*1)  
(*1)  
(*1)  
(*1)  
(*1)  
(*1)  
(*1)  
(*1)  
DUT* (7)  
DUT* (6)  
DUT* (5)  
DUT* (4)  
DUT* (3)  
DUT* (2)  
DUT* (1)  
DUT* (0)  
PWM Duty  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1/256  
2/256  
1/256  
step  
255/256  
256/256  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
* in the table shows 0F.  
(*1) Refer to 8.PWM output duty change (table setup (initial value)).  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
14/28  
Application Note  
BD6092GU  
The explanation of the Auto Luminous Control  
PWM duty to the brightness level is output by detecting the ambient information from the external ambient light sensor.  
The auto luminous control system to the ambient brightness can be built by controlling DC/DC for the back light.  
Since BD6092GU has the bias adjustment function for sensors, ADC with an average filter, a gain offset adjustment  
function, and LOG conversion function, an ambient light can be broadly chosen from Photo Diode, Photo Transistor,  
Photo IC (a linear output / LOG output), etc.  
Ambient light is changed into brightness data by digital processing. The external output of data is possible by I2C.  
PWM Duty to brightness can be customized by the built-in pre-set table or the setting the registers.  
A slope function at PWM duty changing is built in. PWM duty changes without the incongruity.  
"Brightness data" is changing by IC internal clock. Be careful that the internal clock and the I2C clock are asynchronous  
when reading the brightness by I2C.  
EXPWMIN  
Output voltage control  
PWM Permission  
LIN/LOG  
Sensor offset adjust  
Sensor Gain adjust  
SBIAS  
SBIAS  
Conversion table  
Change time setup  
PWMOU  
Equalization  
processing LOG  
conversion  
sensor  
Duty  
SSENS  
Measured  
ADC  
Slope  
-value adjust  
PWM  
Change  
processing  
Controller  
GC1  
GC2  
Gain  
FIX Duty  
Brightness data  
Gain control ON/OFF  
OSC  
REF  
: Effective even if not using ALC function  
(1) Auto Luminous Control ON/OFF  
ALC block is ON/OFF automatically in accordance with the setup of OUTMD (2:0).  
When only reading brightness information, an auto luminous control system can be built by reading resister by I2C.  
(2) Sensor I/F  
The bias voltage is supplied to the ambient sensor by using SBIAS circuit.  
The bias voltage (VoS) is selectable by register setup.  
Register: VSB  
The external resistance for the I-V conversion (Rs) is adjusted with adaptation of sensor characteristic.  
Rs is large  
Rs is small  
Ambient  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
15/28  
Application Note  
BD6092GU  
(3) I/V conversion  
Sensor gain switching function is built in to extend the dynamic range.  
It is controlled by register setup.  
When automatic gain control is off, the output logic of GC1 and GC2 can be set up in the manual.  
Register: GAIN (1:0)  
Non  
Gain Cont.  
Gain Cont.  
Ambient  
ex1  
ex2  
ex3  
(BH1600FVC and connection)  
SBIAS  
SBIAS  
SBIAS  
VCC  
IOUT  
SSENS  
SSENS  
SSENS  
BH1600  
GC1  
Applicationcircuit  
GC1  
GC1  
GC1  
GC2  
GC2  
GC2  
GND  
GC2  
SGND  
SGND  
SGND  
Resistance is a relative value.  
Operation mode  
GAIN(1:0)  
Automatic  
00  
Manual  
01  
Automatic  
00  
Manual  
01  
Fixation  
10  
L
10  
L
11  
L
GC1 output  
H
L
L
H
L
H
L
L
H
L
GC2 output  
Sensor  
H
H
H
H
L
Application  
Automatic  
High  
Low  
Automatic  
High  
Low  
Low  
Gain state  
Auto luminous control operates as Low gain when GAIN (1:0) is "01", as High gain when “10” or “11”.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
16/28  
Application Note  
BD6092GU  
(4). AD conversion  
Detection of ambient light information is periodically performed for low-power realization.  
Bit:ADCYC(1:0)  
The current consumption of the sensor is reduced by turning off SBIAS and ADC except when measuring the brightness.  
Pull-down of SBIAS terminal and the SSENS terminal is on except when measuring the brightness.  
AD start wait time can be changed.  
BitADSTW(2:0)  
Since The calculation time of AMB (3:0) value is varied according to ADTSW (2:0), which means AD start wait time,  
TAMB_first = 6-350mS. Take this time into consideration when reading AMB (3:0).  
SBAIS output can be set up in Intermittent or usually on.  
Bit : SB_ON  
SB_ON must be changed when REF block is ON only. Refer to “About setting of the output mode”.  
ALCEN  
ADCYC(1:0)  
At SB_ON=1  
ADC Cycle  
At SB_ON=0  
SBIAS Output  
ADSTW (2:0)AD start wait tim e  
AD conversion tim e =5.5m s  
ADC  
AM B(3:0)  
AM B(3:0)  
Initial =0000  
TAM B_first = m in 6m s  
(5) ADC data gain / offset adjustment  
Gain and offset adjustment to ADC output data is possible.  
They are controlled by register setup.Register: SGAIN(3:0) Register: SOFS(3:0)  
Gain Adjust = +  
Gain adj.  
Offset adj.  
Offset Adjust = +  
Ambient  
(6) Average filter  
Average filter is built in to rid noise or flicker.  
16 times average  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
17/28  
Application Note  
BD6092GU  
(7) Brightness data conversion  
Brightness data is judged to the 16 level by the ambient light.  
The table with LOG conversion or without LOG conversion can be chosen by the type of ambient light sensor.  
Using linear type sensor: Logarithmic conversion  
Using logarithmic type sensor: Data through  
ResisterSTYPE  
The brightness data is output through I2C.  
(I2C and internal data are asynchronous.)  
Ambient-brightness  
conversion curve  
Ambient  
SSENS voltage  
With LOG conversion  
With GAIN control (GAIN 11)  
Without LOG conversion  
Without GAIN control  
(GAIN=11, STYPE=1)  
VoS×0256  
Brightness data  
Without GAIN control  
(GAIN=11, STYPE=0)  
Low mode  
High mode  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VoS×0256  
VoS×1256  
VoS×2256  
VoS×3256  
-
VoS×0256  
VoS×17256  
VoS×18256  
VoS×26256  
VoS×27256  
VoS×36256  
VoS×37256  
VoS×47256  
VoS×48256  
VoS×59256  
VoS×60256  
VoS×71256  
VoS×72256  
VoS×83256  
VoS×84256  
VoS×95256  
VoS×96256  
VoS×107256  
VoS×108256  
VoS×119256  
VoS×120256  
VoS×131256  
VoS×132256  
VoS×143256  
VoS×144256  
VoS×155256  
VoS×156256  
VoS×168256  
VoS×169256  
VoS×181256  
VoS×182256  
VoS×255256  
-
VoS×1256  
VoS×2256  
-
VoS×3256  
VoS×4256  
-
VoS×4256  
VoS×5256  
VoS×6256  
VoS×7256  
VoS×8256  
VoS×5256  
VoS×7256  
-
VoS×8256  
VoS×0256  
VoS×1256  
VoS×12256  
VoS×13256  
VoS×21256  
VoS×22256  
VoS×37256  
VoS×38256  
VoS×65256  
VoS×66256  
VoS×103256  
VoS×104256  
VoS×179256  
VoS×180256  
VoS×255256  
VoS×10256  
VoS×11256  
VoS×15256  
VoS×16256  
VoS×22256  
VoS×23256  
VoS×32256  
VoS×33256  
VoS×47256  
VoS×48256  
VoS×68256  
VoS×69256  
VoS×95256  
VoS×96256  
VoS×135256  
VoS×136256  
VoS×186256  
VoS×187256  
VoS×255256  
VoS×2256  
VoS×3256  
VoS×4256  
VoS×6256  
VoS×7256  
VoS×10256  
VoS×11256  
VoS×18256  
VoS×19256  
VoS×32256  
VoS×33256  
VoS×59256  
VoS×60256  
VoS×99256  
VoS×100256  
VoS×186256  
VoS×187256  
VoS×255256  
-
-
-
-
In the Gain control mode, sensor gain changes in gray-colored ambient level.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
18/28  
Application Note  
BD6092GU  
(8) PWM output Duty setting  
The current of the LED driver to each Brightness is set up.  
Although a table setup (initial value) is prepared beforehand, it can change into a user setup by overwriting.  
BitDUT*(7:0)  
Table setup (Initial value)  
Brightness setup  
Duty  
Brightness setup  
Duty  
0
1
2
3
4
5
6
7
2Dh  
31h  
36h  
3Fh  
4Eh  
60h  
7Ch  
99h  
46/256  
50/256  
55/256  
64/256  
79/256  
97/256  
125/256  
154/256  
8
9
B9h  
DEh  
F5h  
FFh  
FFh  
FFh  
FFh  
FFh  
186/256  
223/256  
246/256  
256/256  
256/256  
256/256  
256/256  
256/256  
A
B
C
D
E
F
A conversion  
rule can be  
changed.  
Brightness  
(9) Slope process  
Slope process is given to LED current to dim naturally.  
LED current changes in the 256Step gradation in slopeing.  
UP(darkbright ),Down(brightdark) LED current transition speed are set individually.  
Bit THL(3:0), TLH(3:0)  
PWM Duty as follows at the time of a slope.  
TLH (THL) is a time setup of the current steps 2/256.  
Data of a conversion table  
PWM Duty  
TLH  
slope time  
lightDark, lightDark  
A setup to each is possible.  
1
THL  
256  
t
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
19/28  
Application Note  
BD6092GU  
(10) External PWM input  
The external PWM signal is output in accordance with the setup of OUTMD (2:0).  
It becomes PWM operation added to the PWM signal formed inside, and the most suitable for brightness compensation,  
which reflected a factor except for ambient light.  
The external PWM signal and an internal PWM signal are composed of the simple gate circuit with an output step, and it  
can't keep synchronous relations. Therefore, a short pulse at the time of the mixing input may be output. Confirm that  
you don't have an influence with a device to connect fully.  
The frequency of the external PWM signal and the internal PWM signal is to give the difference in ten times and more as  
a recommendation. The frequency of the internal PWM signal can be set up with FOUT [2:0].  
(Example)  
The external PWM input frequency =5kHz  
Internal PWM output frequency = 488.3Hz (FOUT [2:0] = "010" setup)  
EXPWMEN  
(Register)  
FOUT(2:0)  
Inside PWM  
EXPWMIN  
(Input)  
PWMOUT  
(Output)  
Set up Duty of internal longer PWM than the period of the external PWM when a mixing has the external PWM signal and  
an internal PWM signal. (Recommendation)  
In case of theALC (automatic style light) mode, DUT* register (*=0F)  
Period B  
In case of the fixed PWM mode, FIXDUT (7:0) register  
Internal PWM  
EXPWMIN  
(Input)  
Period A  
Periodic A << Periodic B  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
20/28  
Application Note  
BD6092GU  
About setting of the output mode  
The output mode is set up by the register OUTMD (2:0) as follows.  
The state of internal circuit operation to each setup as follows.  
Ambient lbrightness measurement  
and external PWM function  
Internal block  
Mode  
PWMOUT output  
(OUTMD(2:0)  
A/D Internal PWM  
SBIAS Slope setting  
Ambient light  
External PWM  
measurement  
REF OSC  
Mode 0  
(“000”)  
Mode 1  
(“001)  
Forced L output  
(ALC= off)  
Forced L output  
(ALC=ON)  
OFF OFF  
OFF  
ON  
Invalid  
Invalid  
Acceptable  
Possible  
It can't be output.  
It can't be output.  
ON  
ON  
By EXPWMEN  
(EXPWMIN through  
is possible.)  
By EXPWMEN  
(EXPWMIN through  
is possible.)  
By EXPWMEN  
(An EXPWMIN mixing is  
possible.)  
By EXPWMEN  
(An EXPWMIN mixing  
is possible.)  
Mode 2  
(“010)  
Internal PWM forced H  
(ALC=OFF)  
OFF OFF  
OFF  
ON  
Invalid  
Invalid  
Acceptable  
Possible  
Mode 3  
(“011)  
Internal PWM forced H  
(ALC=ON)  
ON  
ON  
ON  
ON  
ON  
ON  
Mode 4  
(“100”)  
Fixed PWM output  
(ALC=OFF)  
OFF  
ON  
Effective  
Effective  
Acceptable  
Possible  
Mode 5  
(“101”)  
Fixed PWM output  
(ALC=ON)  
Mode 6  
(“110”)  
(Prohibition  
against a setup)  
(Prohibition against a setup)  
ON ON Effective  
(Prohibition against a setup)  
By EXPWMEN  
Mode 7  
(“111”)  
ON  
ALC PWM output  
Possible  
(An EXPWMIN mixing  
is possible.)  
A/D circuit operates regardless of SB_ON synchronizing with a measurement cycle.  
SBIAS circuit operates synchronizing with a measurement cycle at SB_ON=0, and always operates at SB_ON=1.  
(Note)It is necessary for setting SB_ON=1, to turn on REF block (Mode1,3,4,5,7).  
When REF block turn off (Mode0,2), SB_ON must be set to “0”.  
Example of SB_ON value setting  
Mode  
Mode7("111")  
ON state  
Mode0("000")  
Mode0("000")  
(OUTMD(2:0))  
Internal  
Reference  
OFF state  
Fix "0"  
OFF state  
Fix "0"  
SB_ON  
Measured brightness is reflected in AMB (3:0) register when A/D, SBIAS circuit are operating.  
The enable/disenable of external PWM signal input, is controlled by register EXPWMEN.  
PWMOUT output forced L at Mode0, Mode.  
In order to spread external PWM signal in the IO or internal circuit, it consumes toggle current.  
Supposing you care about consumption current, please stop an external PWM signal.  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
21/28  
Application Note  
BD6092GU  
Output PWM frequency and slope time  
Output PWM frequency to choose, and slope time become the following relations.  
When slope time is shortened in the slow PWM frequency, PWM Duty value to change in 1 step hit disappears in every 1  
step. (The yellow part of the bottom table) Because of that, a slope becomes rough. Though it becomes the following step by  
the internal calculation, it is rounded, and an error goes through the final step  
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
0.128  
0.256  
1
1
64  
32  
16  
8
0.128  
0.256  
1
1
32  
16  
8
0.512  
1
0.512  
1
1.024  
1
1.024  
1
4
2.048  
1
4
2.048  
1
2
4.096  
1
2
4.096  
1
1
8.192  
1
1
8.192  
2
1
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
2
1
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
4
1
(000)  
(001)  
4
1
8
1
8
1
16  
24  
32  
40  
48  
56  
64  
1
12  
16  
20  
24  
28  
32  
1
1
1
1
1
1
1
1
1
1
1
1
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
0.128  
0.256  
1
1
16  
8
4
2
1
1
1
1
1
1
1
1
1
1
1
1
0.128  
0.256  
1
1
8
4
2
1
1
1
1
1
1
1
1
1
1
1
1
1
0.512  
1
0.512  
1
1.024  
1
1.024  
1
2.048  
1
2.048  
2
4.096  
2
4.096  
4
8.192  
4
8.192  
8
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
8
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
16  
32  
64  
96  
128  
160  
192  
224  
256  
(010)  
(011)  
16  
32  
48  
64  
80  
96  
112  
128  
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
FOUT  
(2:0)  
The time per  
1 step (ms)  
The number of PWM  
clocks per 1 step  
The change value  
of PWM duty  
0.128  
0.256  
1
1
4
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.128  
0.256  
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.512  
1
0.512  
2
1.024  
2
1.024  
4
2.048  
4
2.048  
8
4.096  
8
4.096  
16  
8.192  
16  
32  
64  
128  
192  
256  
320  
384  
448  
512  
8.192  
32  
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
16.384  
32.768  
65.536  
98.304  
131.072  
163.840  
196.608  
229.376  
262.144  
64  
(100)  
(101)  
128  
256  
384  
512  
640  
768  
896  
1024  
Slope  
image  
Setup PWM Duty value  
PWM Duty value  
Slope image  
Final Step is at the limit  
by the setup Duty  
value.  
PWM The amount of a change in Duty ・・・ Does Duty change what Step each ?  
PWM The amount of a change in Duty  
The number of PWM clocks of the 1step hit ・・  
How many PWM pulses are within 1Step time?  
www.rohm.com  
2009.06 - Rev.A  
22/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Start sequence  
1. Powers supply applied, register access  
Do applied of the VIO voltage, a release of resetting and access to the register with the following process.  
When the voltage condition of the VIO voltage >VBAT voltage occurred in short off of VBAT and so on,  
the ESD protection diode of the VIO-VBAT space has the possibility that has electric current pass occurs.  
But, there is no faulty operation if it is within the movement voltage range in a VIO voltage  
and a VBAT voltage.  
VBAT (Supplied)  
VIO (Supplied)  
RESETB  
(External terminal control)  
Register access  
Possible  
Impossible  
Impossible  
Release RESETB after supplying VIO.  
Prohibit to release VIO before falling RESETB.  
2.PWM output start  
A PWM signal starts as follows.  
The start sequence which kept in touch with the LED driver is possible by using the DCDCOK input.  
m
o d e  
7
(m o d e 4 , 5 )  
O
U T M D (2 :0 )  
In te r n a l  
O
S C  
K
D C D C O  
T L H ( 3 :0 )  
( E x te r n a l In p u t)  
P W  
M O u tp u t D u ty  
A L C fu n c tio n ( m o d e 7 )>  
h e n U T M D ( 2 :0 )= (1 11 ) a n d  
W
O
D C D C O K = H ’, P W M o u tp u t  
d u ty s ta rts in c r e a s in g to th e v a lu e s e t in b r ig h tn e s s le v e l 0 .  
F ix e d d u ty fu n c tio n (m o d e 4 , 5 )>  
W
h e n  
O
U T M D ( 2 :0 )= (1 0 0 ) o r ( 1 0 1 ), a n d  
o u tp u t d u ty s ta r ts in c r e a s in g to th e v a lu e s e t b y  
F IX D U T ( 7 :0 ) .  
D C D C O K = H ’,  
P W  
M
3.PWM output end  
Do the following sequence when you make it finish LED electric current of the LED driver which connects PWM output  
smoothly. PWM output becomes L momentarily when DCDCOK=L or OUTMD (2:0) = "000" is taken.  
mode7  
mode4  
mode0  
OUTMD(2:0)  
AMB(3:0)  
When A/D is off, AMB (3:0) =”0000”  
Inside OSC  
DCDCOK  
Tfinish  
(External Input)  
THL(3:0)  
1/256  
PWM output Duty  
0/256(=L output)  
<When turning PWM output duty ‘0’>  
Initially set FIXOUT (7:0) =’0’.  
PWM output duty start decreasing to 1/256 in the slope of THL(3:0).  
Set OUTMD(2:0)=”000” after PWM output duty is 1/256.  
Host must manage Tfinish, which means the sloping time.  
<Switching to the fixed mode>  
In this case, internal OSC doesn't stop. PWM output duty will be  
changing to the fixed value by the time set by TLH (3:0) or THL (3:0  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
23/28  
Application Note  
BD6092GU  
Explanation for operate  
1. Reset  
There are two kinds of reset, software reset and hardware reset.  
(1) Software reset  
All the registers are initialized by SFTRST="1".  
SFTRST is an automatically returned to "0". (Auto Return 0).  
Reset state needs over 1µs wait times from SFTRST=”1”.  
(2) Hardware reset  
It shifts to hardware reset by changing RESETB pin “H” “L”.  
The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address.  
It’s possible to release from a state of hardware reset by changing RESETB pin “L” “H”.  
RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.  
Even if RESETB=L, at FLASHCNT=H, Flash mode becomes ON by minimum setting.  
(3) Reset Sequence  
When hardware reset was done during software reset, software reset is canceled whenhardware reset is canceled.  
(Because the initial value of software reset is “0”)  
I/O  
An optional input signal never spreads in the part Logic of the IC to stop the movement of the input buffer of SDA and SCL at  
the time of the RESETB terminal =L.  
At the time of RESETB=L, output "H"  
Level Shift  
SCL  
Logic  
(SDA)  
EN  
RESETB  
It goes through the protection Diode of the terminal by rise up of the I/O power supply and the input level, and an electric  
current route may occur.  
UVLO  
The decrease voltage detection circuit of the VBAT terminal is built in.  
It is effective when an internal standard voltage (REF) is turned on.  
PWMOUT output becomes L forcibly at the time of the decrease voltage detection, and resetting gets the order circuit of the  
ALC block except for the control register of I2C and the PWM control block, and it is initialized  
About the terminal management of the function which isn't used  
Set up a test terminal and the terminal which isn't used as follows.  
Do terminal management so that there may not be a problem referring to the equivalent circuit of the former extension under  
the state of actual use.  
EXPWMIN・・・・・・It short-circuits to the ground. (Make a setup of a register EXPWMEN=0.)  
DCDCOK ・・・・・・It short-circuits to VIO. (It doesn't start when it short-circuits in the ground.)  
GC1, GC2 ・・・・・・For the output terminal, opening  
NCIN, TESTIN ・・・・It short-circuits to the ground.  
NCO05,NCOA ・・・For the output terminal, opening  
www.rohm.com  
2009.06 - Rev.A  
24/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
PCB pattern of the Power dissipation measuring board  
1st layer(component)  
2nd layer  
3rd layer  
4th layer  
5th layer  
6th layer  
7th layer  
8th layer(solder)  
www.rohm.com  
2009.06 - Rev.A  
25/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Power supply and ground line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay  
attention to the interference by common impedance of layout pattern when there are plural power supplies and ground  
lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external  
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between  
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the  
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low  
temperature, thus determining the constant.  
(3) Ground voltage  
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric  
transient.  
(4) Short circuit between pins and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the  
pin and the power supply or the ground pin, the ICs can break down.  
(5) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(6) Input pins  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower  
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input  
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to  
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.  
(7) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(8) Thermal shutdown circuit (TSD)  
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,  
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating  
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do  
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(9) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(10) LDO  
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it  
has the possibility that an operation becomes unstable.  
(11) About the pin for the test, the un-use pin  
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a  
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our  
company person in charge.  
(12) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width  
of ground wiring, and routing of wiring.  
(13) About the function description or application note or more.  
The function description and the application notebook are the design materials to design a set. So, the contents of the  
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the  
external elements.  
www.rohm.com  
2009.06 - Rev.A  
26/28  
© 2009 ROHM Co., Ltd. All rights reserved.  
Application Note  
BD6092GU  
Power dissipation (On the ROHM’s standard board)  
1.6  
ROHM’s standard board  
Material : glass-epoxy  
1.4  
1250mW  
Size : 50mm×58mm×1.75mm (8 layers)  
Pattern : Refer to after  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
150  
Ta(℃)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
27/28  
Application Note  
BD6092GU  
Ordering part number  
B
D
6
0
9
2
G U  
-
E
2
Part No.  
Part No.  
6092  
Package  
Packaging and forming specification  
GU : VCSP85H2 E2: Embossed tape and reel  
VCSP85H2 (BD6092GU)  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
1PIN MARK  
Quantity  
E2  
Direction  
of feed  
2.8 0.1  
0.08  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
S
S
φ
24- 0.30 0.05  
0.05  
A B  
A
E
D
C
B
B
φ
(
0.15)INDEX POST  
A
1
2 3 4 5  
Direction of feed  
1pin  
0.4 0.1  
P=0.5×4  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.06 - Rev.A  
28/28  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

BD6095GU

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD6095GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6095GUL_11

Mulitifunction Backlight LED Driver for Small LCD Panels (Charge Pump Type)
ROHM

BD60A00NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX-TR

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60A00NUX_12

White LED Driver
ROHM

BD60A00NUX_13

White LED Driver With PWM Brightness Control
ROHM

BD60A60NUX

White Backlight LED Drivers for Small to Medium LCD Panels (Switching Regulator Type)
ROHM

BD60AX0NUX-TR

White LED Driver With PWM Brightness Control
ROHM

BD60BC0FP

Fixed Positive LDO Regulator, 6V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD60BC0FPE2

Fixed Positive LDO Regulator, 6V, PSSO3, ROHS COMPLIANT, TO-252, 3 PIN
ROHM

BD60BC0T

Fixed Positive LDO Regulator, 6V, PSFM3, ROHS COMPLIANT, TO-220FP, 3 PIN
ROHM