BD63800MUF-C [ROHM]

BD63800MUF-C是一款电源额定电压40V、额定输出电流1.35A的低功耗双极PWM恒流驱动的驱动器。输入接口采用CLK-IN驱动方式和SPI-IN驱动方式。励磁模式支持Full step、1/2 step、1/4 step、1/8 step、1/16 step、1/32 step模式。电流衰减方式备有可自由设置Fast decay / Slow decay 比例的Mix decay模式和可自动选择Fast decay / Slow decay的Autodecay模式,可使各种电机实现理想的控制状态。另外,电源也可以用1个系统进行驱动,使配套应用的设计更容易。;
BD63800MUF-C
型号: BD63800MUF-C
厂家: ROHM    ROHM
描述:

BD63800MUF-C是一款电源额定电压40V、额定输出电流1.35A的低功耗双极PWM恒流驱动的驱动器。输入接口采用CLK-IN驱动方式和SPI-IN驱动方式。励磁模式支持Full step、1/2 step、1/4 step、1/8 step、1/16 step、1/32 step模式。电流衰减方式备有可自由设置Fast decay / Slow decay 比例的Mix decay模式和可自动选择Fast decay / Slow decay的Autodecay模式,可使各种电机实现理想的控制状态。另外,电源也可以用1个系统进行驱动,使配套应用的设计更容易。

电机 驱动 驱动器
文件: 总51页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
40 V Max  
Stepping Motor Driver for Automotive  
BD63800MUF-C  
General Description  
Key Specifications  
BD63800MUF-C is a bipolar low-consumption driver that  
is driven by PWM current. Rated power supply voltage of  
the device is 40 V, and rated output current is 1.35 A.  
BD63800MUF-C has two input interface as driving mode:  
CLK-IN and SPI-IN, and six excitation modes: Full step,  
1/2, 1/4, 1/8, 1/16 and 1/32 step. Mix Decay Mode: the  
seamless adjustment function of slow/fast decay ratio,  
and Auto Decay Mode: Automatic switching function of  
slow/fast decay, can realize the optimized control status  
for all kinds of motor. In addition, BD63800MUF-C  
operates with single power supply which can simplify the  
set design.  
Supply Voltage Range:  
Output Current Rating (peak):  
Output Current Rating (DC):  
Output On Resistance (up and down):  
Operating Temperature Range: -40 °C to +125 °C  
6.0 V to 28.0 V  
1.35 A  
1.21 A  
0.75 Ω  
Package  
VQFN32FBV050  
W (Typ) x D (Typ) x H (Max)  
5.0 mm x 5.0 mm x 1.0 mm  
Features  
AEC-Q100 Qualified (Note 1)  
Low ON Resistance DMOS Output  
CLK-IN Drive Mode  
PWM Constant Current Control (Separately Excited)  
Built-in Spike Noise Cancel Function  
(No external noise filter is required)  
Supported Modes: Full step, 1/2, 1/4, 1/8, 1/16 and  
1/32 step  
Excitation Mode Switching Timing Free  
Current Decay Mode Switch Function  
Mix Decay: Linear Adjustment of  
Slow Decay / Fast Decay Ratio  
Auto Decay: Automatic Switch of  
Slow Decay / Fast Decay  
Selectable Rotation Direction: Clockwise/Counter  
Clockwise  
Typical Application Circuits  
PSB  
12 V  
C1  
VCC  
SCK  
SDI  
CSB  
SDO  
+
OUT1A  
OUT1B  
C2  
M
GND  
CLK  
CWB  
Power Save Function  
Built-in Pull-down Resistors for Logic Input  
Power-on Reset Function  
MCU  
RHB  
MODE0  
MODE1  
VCC  
Malfunction prevention function w/o power supply  
(Ghost Supply Prevention Function)  
Thermal Shutdown Function (TSD)  
Thermal Warning Function (TW)  
Over Current Protection Function (OCP)  
Over Voltage Lock-out Function (OVLO)  
Under Voltage Lock-out Function (UVLO)  
Under Voltage Motor Hold Function  
Open Detection Function  
5 V  
OUT2A  
OUT2B  
R2  
R1  
DIAG1  
DIAG2  
GND  
R3  
R4  
RREF  
CR  
Stall Detection Function  
Adjacent Pin Short Protection  
(Note 1) Grade 1  
C5  
R6  
R5  
5 V  
Applications  
Head-up Display  
LED Headlight  
etc.  
MTH  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0P2P0C702070-1-2  
1/48  
10.Feb.2021 Rev.001  
 
 
 
 
 
 
BD63800MUF-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuits .............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................4  
Pin Description................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Function Description.......................................................................................................................................................................6  
Detailed Description for Pin Function ..........................................................................................................................................6  
CLK (Clock Input Pin for Micro Step).......................................................................................................................................6  
MODE0, MODE1 (Motor Excitation Mode Selection Pin) ........................................................................................................6  
CWB (Motor Rotation Direction Selection Pin) ........................................................................................................................7  
RHB (Drive/Hold Mode Selection Pin).....................................................................................................................................7  
PSB (Power Save Pin).............................................................................................................................................................7  
VCC (Power Supply Pin) .........................................................................................................................................................8  
GND (Ground Pin)...................................................................................................................................................................8  
OUT1A, OUT1B, OUT2A, OUT2B (H-Bridge Output Pin)........................................................................................................8  
RREF (Output Current Level Setting Pin)................................................................................................................................8  
CR (Chopping Frequency Setting Pin).....................................................................................................................................9  
MTH (Current Damping Method Setting Pin)...........................................................................................................................9  
NC Pins ...................................................................................................................................................................................9  
IC Backside Metal....................................................................................................................................................................9  
PWM Constant Current control .................................................................................................................................................10  
Current Decay Mode..............................................................................................................................................................11  
Slow Decay Mode..................................................................................................................................................................11  
Fast Decay Mode ..................................................................................................................................................................11  
Mix Decay Mode....................................................................................................................................................................12  
Auto Decay Mode..................................................................................................................................................................12  
Translator Circuit Operation ......................................................................................................................................................13  
Reset Operation ....................................................................................................................................................................13  
Initializing sequence when power supply is turned on........................................................................................................13  
Initialization sequence during motor operation...................................................................................................................13  
Control Input Timing...............................................................................................................................................................14  
Switching of CWB ..............................................................................................................................................................14  
Switching of Motor Excitation Mode ...................................................................................................................................15  
Cautions on Simultaneous Switching of CWB and Excitation Mode (MODE0, MODE1)....................................................15  
Step Sequence......................................................................................................................................................................16  
Step Sequence in Full Step Mode......................................................................................................................................16  
Step Sequence in 1/2, 1/4, 1/8, 1/16 and 1/32 Step Modes...............................................................................................17  
Drive Mode and Hold Mode.......................................................................................................................................................21  
SPI Interface .............................................................................................................................................................................22  
Examples of SPI Input / Output Sequence ............................................................................................................................23  
SPI Bit Count Error Detection................................................................................................................................................24  
Multi IC connection example..................................................................................................................................................24  
Protection/Detection Functions .................................................................................................................................................25  
Malfunction Prevention Function w/o Power Supply (Ghost Supply Prevention Function) ....................................................25  
Thermal Shutdown Function (TSD) .......................................................................................................................................25  
Thermal Warning Function (TW)............................................................................................................................................25  
Over Current Protection Function (OCP)...............................................................................................................................25  
Over Voltage Lock-out Function (OVLO) ...............................................................................................................................25  
Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function .................................................................................26  
Open Detection Function.......................................................................................................................................................26  
Stall Detection Function.........................................................................................................................................................27  
DIAG Output Selection Function............................................................................................................................................29  
Control Register ........................................................................................................................................................................30  
Control Register Map.............................................................................................................................................................30  
Definition of each Control Register Bit...................................................................................................................................31  
CR1 (0x01).........................................................................................................................................................................31  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
CR2 (0x02).........................................................................................................................................................................31  
CR3 (0x03).........................................................................................................................................................................31  
CR5 (0x05).........................................................................................................................................................................31  
CR6 (0x06).........................................................................................................................................................................31  
CR7 (0x07).........................................................................................................................................................................32  
CR1A (0x11).......................................................................................................................................................................32  
CR2A (0x12) ......................................................................................................................................................................32  
CR5A (0x15) ......................................................................................................................................................................33  
CR6A (0x16) ......................................................................................................................................................................33  
Status Register..........................................................................................................................................................................34  
Status Register Map..............................................................................................................................................................34  
Definition of each Status Register Bit ....................................................................................................................................35  
SR1 (0x08).........................................................................................................................................................................35  
SR2 (0x09).........................................................................................................................................................................35  
SR3 (0x0A) ........................................................................................................................................................................36  
SR5 (0x0C) ........................................................................................................................................................................36  
SR6 (0x0D) ........................................................................................................................................................................36  
SR7A (0x1E) ......................................................................................................................................................................37  
SR8A (0x1F) ......................................................................................................................................................................37  
Power-on Sequence .....................................................................................................................................................................38  
Power Dissipation.........................................................................................................................................................................39  
Thermal Calculation ..................................................................................................................................................................39  
Absolute Maximum Rating............................................................................................................................................................40  
Recommended Operating Condition.............................................................................................................................................40  
Thermal Resistance......................................................................................................................................................................40  
Electrical Characteristics...............................................................................................................................................................41  
I/O Equivalence Circuit .................................................................................................................................................................43  
Operational Notes.........................................................................................................................................................................44  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................44  
Power Supply Lines........................................................................................................................................................44  
Ground Voltage...............................................................................................................................................................44  
Ground Wiring Pattern....................................................................................................................................................44  
Recommended Operating Conditions.............................................................................................................................44  
Inrush Current.................................................................................................................................................................44  
Testing on Application Boards ........................................................................................................................................44  
Inter-pin Short and Mounting Errors ...............................................................................................................................44  
Unused Input Pins ..........................................................................................................................................................44  
Regarding the Input Pin of the IC ...................................................................................................................................45  
Ceramic Capacitor..........................................................................................................................................................45  
Thermal Shutdown Circuit (TSD)....................................................................................................................................45  
Over Current Protection Circuit (OCP) ...........................................................................................................................45  
9.  
10.  
11.  
12.  
13.  
Ordering Information.....................................................................................................................................................................46  
Marking Diagram ..........................................................................................................................................................................46  
Physical Dimension and Packing Information...............................................................................................................................47  
Revision History............................................................................................................................................................................48  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Pin Configuration  
EXP-PAD  
NC 25  
16 NC  
OUT1A 26  
VCC 27  
NC 28  
15 OUT2A  
14 VCC  
13 NC  
CR 29  
12 GND  
11 DIAG2  
10 DIAG1  
9 RHB  
MTH 30  
RREF 31  
PSB 32  
EXP-PAD  
EXP-PAD  
(TOP VIEW)  
Pin Description  
Pin No.  
Pin Name  
P/G/I/O  
Function  
1
CLK  
CWB  
Input  
Input  
Input  
Input  
Input  
Micro step clock input pin  
2
Motor rotation direction selection pin  
Serial interface chip select pin  
Serial interface clock pin  
3
CSB  
4
SCK  
5
SDI  
Serial interface data input pin  
6
SDO  
Output Serial interface data output pin  
7
MODE0  
MODE1  
RHB  
Input  
Input  
Input  
Motor excitation mode selection pin  
Motor excitation mode selection pin  
Motor drive / hold mode selection pin  
8
9
10  
DIAG1  
DIAG2  
OUT2A  
OUT2B  
OUT1B  
OUT1A  
CR  
Output Protection / detection output pin  
Output Protection / detection output pin  
Output H-bridge output pin  
11  
15  
18  
Output H-bridge output pin  
23  
Output H-bridge output pin  
26  
Output H-bridge output pin  
29  
Output Chopping frequency setting pin  
30  
MTH  
Input  
Input  
Input  
Current decay mode setting pin  
Output current level setting pin  
Power save pin  
31  
RREF  
PSB  
32  
14, 27  
12, 20, 21  
VCC  
Power Input power supply pin  
GND  
Ground Ground pin  
No-Connection  
13, 28  
NC  
NC  
-
(Keep this pin open to avoid damage when it shorts with the VCC pin)  
16, 17, 19,  
22, 24, 25  
-
No-Connection  
Connect central EXP-PAD to GND  
The central EXP-PAD and the corner EXP-PADs are shorted inside the package  
-
EXP-PAD  
Ground  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
4/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Block Diagram  
CSB  
SCK  
SDI  
PSB  
VCC  
Regulator  
(For Logic)  
SPI  
Regulator  
(For Analog)  
SDO  
CLK  
CWB  
MODE0  
MODE1  
RHB  
Power-on Reset  
H-bridge  
Translator  
OUT1A  
OUT1B  
DIAG1  
DIAG2  
GND  
VCC  
OSC  
(System Clock)  
H-bridge  
Current Control  
OUT2A  
OUT2B  
+
-
RREF  
CR  
GND  
GND  
OSC  
(PWM Control)  
TSD/TW  
OCP  
OVLO  
Mix Decay  
Control  
UVLO  
Open Detection  
Stall Detection  
MTH  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
5/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Function Description  
Detailed Description for Pin Function  
CLK (Clock Input Pin for Micro Step)  
The electrical angle changes by one step for each rising edge of input clock pulse.  
The effect is also the same when ‘1’ is written to CLKP in the Control Register.  
Noise introduced to the CLK pin can cause missteps in motor. Design the PCB layout so that noise will not affect the CLK  
input easily.  
MODE0, MODE1 (Motor Excitation Mode Selection Pin)  
These pins set the motor excitation mode. The motor excitation mode can also be set through SM[2:0] in the Control  
Register.  
The setting change of excitation mode is forcibly reflected regardless of the clock pulse input to the CLK pin. Refer to P15  
Switching of Motor Excitation Mode.  
In case SM[2:0] is not used (SM[2:0] = ‘000’):  
MODE1  
MODE0  
Excitation Mode  
Full step  
L
L
L
H
L
1/2 step  
H
H
1/8 step  
H
1/16 step  
In case the MODE1 and MODE0 pins are not used (MODE1 = L and MODE0 = L):  
SM2  
0
SM1  
0
SM0  
0
Excitation Mode  
Full step  
1/2 step  
0
0
1
0
1
0
1/8 step  
0
1
1
1/16 step  
Full step  
1/2 step  
1
0
0
1
0
1
1
1
0
1/4 step  
1
1
1
1/32 step  
In case both SM[2:0] and the MODE1, MODE0 pins are used:  
SM2  
0
MODE1 xor SM1  
MODE0 xor SM0  
Excitation Mode  
Full step  
1/2 step  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1/8 step  
0
1/16 step  
Full step  
1/2 step  
1
1
1
1/4 step  
1
1/32 step  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10.Feb.2021 Rev.001  
6/48  
 
 
BD63800MUF-C  
Detailed description for Pin function – continued  
CWB (Motor Rotation Direction Selection Pin)  
This pin sets the direction of the motor rotation. Changes in the CWB pin settings are reflected at the rising edge of the  
following clock pulse input to the CLK pin. (Refer to P14 Switching of CWB)  
The effect of the CWB pin is inverted when CWBP is ‘1’ in the Control Register.  
CWBP  
0
CWB  
L
Rotation Direction  
Clockwise  
The phase of CH1 current output is advanced by 90° from the phase of CH2 current output.  
Counter Clockwise  
0
1
1
H
L
The phase of CH1 current output is delayed by 90° from the phase of CH2 current output.  
Counter Clockwise  
The phase of CH1 current output is delayed by 90° from the phase of CH2 current output.  
Clockwise  
H
The phase of CH1 current output is advanced by 90° from the phase of CH2 current output.  
RHB (Drive/Hold Mode Selection Pin)  
This pin selects modes from a drive mode where the IC drives output / a hold mode where the IC holds an electrical angle. In  
the hold mode, the input clock pulse to the CLK pin is ignored and the micro stepping behavior in the internal translator  
circuit is stopped. The logic of the RHB pin is inverted when RHBP register is ‘1’. Refer to a table below for each setting.  
If MCU changes the motor excitation mode setting (the level of the MODE0 pin and the MODE1 pin and the value of SM[2:0]  
register) during the hold mode, the actual excitation mode switches after changing from the hold mode to the drive mode.  
RHBP  
RHB  
L
Mode  
0
0
1
1
Hold mode  
Drive mode  
Drive mode  
Hold mode  
H
L
H
PSB (Power Save Pin)  
This pin puts the IC in standby state and sets the motor output to open state. In standby state, the translator circuit is RESET  
and the electrical angle is initialized.  
Note that a maximum of 40 µs is necessary as the recovery period from the standby state to normal state when PSB is set  
from ‘L’ to ‘H’. Refer to P13 Reset Operation.  
PSB  
L
H
Motor Output State  
Standby State (RESET)  
ACTIVE  
The initial electrical angle of each excitation mode after RESET is as follows. (Refer to P16 Step Sequence)  
Excitation mode  
Full step  
Initial electrical angle  
45°  
45°  
45°  
45°  
45°  
45°  
1/2 step  
1/4 step  
1/8 step  
1/16 step  
1/32 step  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
7/48  
10.Feb.2021 Rev.001  
 
 
BD63800MUF-C  
Detailed description for Pin function – continued  
VCC (Power Supply Pin)  
Since the motor driving current flows into the VCC pin, design the PCB layout with low impedance by making the trace for  
the VCC pin thick and short. VCC voltage has large fluctuations due to back electromotive force of the motor, PWM switching  
noise etc. In order to stabilize VCC voltage level, place the bypass capacitors (ranged from 100 μF to 470 μF) as close as  
possible to the VCC pin.  
Larger capacitors are necessary especially when the application needs larger current or when the motor has large back  
electromotive force. In addition, we recommend placing multilayer ceramic capacitors (ranged from 0.01 μF to 0.1 μF) in  
parallel to the bypass capacitor. The purpose is to decrease the impedance of the power supply in a wide frequency  
bandwidth.  
Higher VCC voltage level than the rating is prohibited even for a moment.  
Make sure to short all VCC pins on the PCB layout though they are shorted inside IC. When these are not shorted,  
malfunction or destruction may occur because of current flow concentration.  
Each power supply pin has a built-in clamper for preventing electrostatic damage. When a steep pulse signal or voltage,  
such as a surge exceeding the absolute maximum rating is applied to power supply pins, the clampers are actuated and  
destroyed. Therefore, do not exceed the absolute maximum rating. It is also recommended to attach a Zener diode that  
matches the absolute maximum rating.  
Between the VCC pins and the GND pins, diodes are inserted for preventing electrostatic damage. Note that the IC will be  
destroyed if reversed voltage is applied between them.  
GND (Ground Pin)  
In order to reduce the noise caused by switching current and to stabilize the internal reference voltage of IC, design the PCB  
layout to make the wiring impedance from these pins as low as possible to achieve the lowest electrical potential in any  
operating conditions. Design the PCB layout so that it does not have common impedance with other GND patterns.  
OUT1A, OUT1B, OUT2A, OUT2B (H-Bridge Output Pin)  
Since the motor driving current flows into these pins, design the PCB layout with low impedance by making the trace for the  
output pin thick and short. It is recommended to add Schottky diodes in case that the output voltage swings largely between  
positive and negative side in an application with large current, and in case that the back electromotive voltage level is large.  
Each output pin has a built-in clamper for preventing electrostatic damage. When a steep pulse signal or voltage, such as a  
surge exceeding the absolute maximum rating is applied to the power supply pins, the clampers are actuated and destroyed.  
Therefore, do not exceed the absolute maximum rating.  
RREF (Output Current Level Setting Pin)  
This pin is used to set output current level. The maximum output current value can be set by RREF voltage and  
current-sensing resistor (RREF resistor).  
푅푅퐸퐹  
퐼푂푈푇 =  
× 14,900 [A]  
푅푅퐸퐹  
Where:  
ꢁꢂꢃ is the Maximum Output Current  
ꢀꢀꢅꢆ is the RREF Voltage [V]. 0.457 V (Typ).  
ꢀꢀꢅꢆ is the RREF Resistor [Ω]. 6.2 kΩ to 43 kΩ.  
If the RREF pin is open, the output current is set to 700 mA. The minimum current that can be controlled by the RREF  
resistor, will depend on L/R value of the motor coil and the minimum ON time of PWM Drive.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
8/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Detailed description for Pin function – continued  
CR (Chopping Frequency Setting Pin)  
This pin is to set the output chopping frequency. Connect an external capacitance (470 pF to 1500 pF) and resistor (10 kΩ to  
200 kΩ) to GND.  
Refer to 3) CR Timer in P10 PWM Constant Current control for setting method of the chopping frequency.  
In PCB, ensure that GND line from the external components has no common impedance with other GND patterns. Also  
ensure that it is far from wires with steep pulses like square waves, etc. to prevent noise.  
Both of capacitance and resistance must be attached when PWM constant current control is used. The control doesn’t work  
correctly if the external voltage is applied to the CR pin.  
MTH (Current Damping Method Setting Pin)  
This pin is for setting the current decay method. It can be selected by changing the input voltage level.  
Input voltage in the MTH pin  
0.0 V to 0.3 V  
Current Decay Method  
Slow Decay  
0.4 V to 1.0 V  
Mix Decay  
1.5 V to 2.0 V  
Fast Decay  
2.5 V or more, or open  
Auto Decay  
In case of using slow decay mode, connect MTH to GND. If MTH voltage is generated by a voltage divider composed of  
resistors, select the resistance value in taking the outflow current (Max 2 μA) and the internal pull-up resistor (1 MΩ) into  
consideration. Refer to P11 Current Decay Mode for each current decay method.  
BD63800MUF-C  
Internal Reg.  
1 MΩ  
MTH  
2 µA  
NC Pins  
These are no connection pins. They are not connected electrically to the internal circuit of IC.  
IC Backside Metal  
VQFN32FBV050 package has a metal for heat dissipation on the back of the IC. Since the heat is supposed to be dissipated  
through this metal, the metal must be connected to GND plane on substrate with soldering and GND pattern as large as  
possible must be used for the sufficient heat dissipation area.  
In addition, the backside metal is shorted to the back of the IC chip. So the backside metal is at GND potential. If it is shorted  
to a potential other than GND potential, malfunction and destruction will occur. Don’t route signals other than GND potential  
at the back-side of the IC  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Function Description – continued  
PWM Constant Current control  
1) Current Control Operation  
The output current increases when the output transistor is turned on. When the current reaches the level set by RREF  
resistor and DAC in IC, the current limit comparator operates, then the IC enters current decay mode. After a wait period  
set by CR timer, the output transistor turns on again. This sequence repeats continuously.  
2) Noise Canceling Function  
To avoid misdetection of current-sense comparator caused by spike noise generated when the output turns ON, the IC  
has a minimum ON time tONMIN (Blank time). The current detection is invalid for the minimum ON time after the output  
transistor is turned on.  
3) CR Timer  
The CR pin is repeatedly charged and discharged between the VCRH and VCRL levels through the external capacitor and  
resistor.  
The detection of the current-sense comparator is disabled while charging from VCRL level to VCRH level.  
This charging period is the minimum ON Time: tONMIN  
.
After CR level reaches VCRH, CR starts discharging. During this discharge period, IC enters current decay mode when  
the output current reaches the target current level.  
When CR is discharged to VCRL level, IC recovers to output ON mode from current decay mode. At the same time, IC  
starts charging again.  
CR charging time: the minimum ON Time tONMIN and CR discharge time tDISCHARGE are determined by the following formula  
(Typ) with external capacitor (C) and resistor (R). The sum of two parameters is the chopping cycle time tCHOP  
.
ꢀ×ꢀ′  
ꢁ푁푀ꢈ푁  
≈ 퐶 ×  
× 푙푛 (..ꢊ  
)
[s]  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
ꢀ+ꢀ  
ꢌ+훼  
퐷ꢈ푆ꢉ퐻퐴ꢀ퐺ꢅ ≈ 퐶 × ꢇ × 푙푛 (  
)
[s]  
[s]  
ꢊ.ꢋ  
ꢉ퐻ꢁ푃  
≈ 푡ꢁ푁푀ꢈ푁 ꢍ 푡퐷ꢈ푆ꢉ퐻퐴ꢀ퐺ꢅ  
Where:  
is the external resistor in the CR pin  
is the external capacitor in the CR pin  
is the internal regulator output voltage. 5 V (Typ)  
is the internal impedance in the CR pin. 5 kΩ (Typ)  
0
500  
1000  
C [pF]  
1500  
2000  
is referred to the chart to the right  
ꢄ퐶ꢇ =  
× ꢄ  
ꢀ+ꢀꢏ  
Output Current  
Target Current  
0 mA  
time  
CR Voltage  
VCRH  
1.0 V (Typ)  
VCRL  
0.4 V (Typ)  
Discharge Period  
tDISCHARGE  
GND  
time  
Minimum ON Period Chopping Period  
tONMIN  
tCHOP  
Figure 1. Timing Chart of CR Voltage and Output Current  
Use 10 kΩ or more for the resistor in the CR pin since CR level doesn’t reach VCRH level with lower resistor values. (10 kΩ  
to 200 kΩ is recommended).  
For the capacitor in the CR pin, the minimum ON time: tONMIN will become long by the capacitance value of over several  
thousand pF. So note that output current may exceed the target current level depending on L and R values of the motor coils  
(470 pF to 1,500 pF is recommended as the capacitance value).  
Note that a very long chopping cycle time: tCHOP causes larger ripple in output current, smaller average output current and  
lower rotation efficiency. Select the optimum value of the resistor and the capacitor for the CR pin to minimize motor sound  
and distortion of output current waveform.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10/48  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
PWM Constant Current control - continued  
Current Decay Mode  
BD63800MUF-C PWM realizes a PWM Constant Current Control with two kinds of decay state (Fast Decay/Slow Decay).  
The following diagrams show the states of output transistors and paths of the motor regenerative current during current  
decay period in each decay mode.  
Fast Decay  
Slow Decay  
ONOFF  
OFF→ON  
ONOFF  
ONOFF  
OFF  
ON  
M
M
OFFON  
OFFON  
Output ON  
Current Decay  
Figure 2. Paths of Regenerated Current during Current Decay  
BD63800MUF-C implements 4 decay mode of combination of these decay states in order to realize optimized operation for  
motor characteristics, excitation mode and pulse rate.  
The features of each decay mode are as follows:  
Slow Decay Mode  
During current decay period, regenerative current decreases slowly because of smaller voltage between both ends of a  
motor coil. It makes ripple on output current smaller and torque of motor higher.  
However, (1) in the lower operating current condition, the output current increases because of lower controllability of current.  
And (2) in using 1/2 step to 1/32 step with high-pulse-rate driving, the current waveform cannot follow the change of the  
current target due to the influence of motor back electromotive voltage. As the result, the distortion and motor vibration are  
increased.  
Thus, this decay mode is suitable for Full step mode or low-pulse-rate driven 1/2 step to 1/32 step modes.  
Fast Decay Mode  
The regeneration current is decreased quickly, so distortion of the output current waveform is reduced even in the  
high-pulse-rate driving condition  
However, the average current is reduced by large ripple of output current. It causes (1) Motor torque reduction (This issue  
can be solved by larger current limit setting though the rated output current must be satisfied) and (2) Heat Generation  
caused by motor power loss.  
If these points can be allowed, fast decay is stable for high-pulse rate 1/2 step to 1/32 step modes.  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
BD63800MUF-C  
PWM Constant Current control - continued  
Mix Decay Mode  
The mix decay mode can improve issues caused in both of slow and fast decay mode.  
It can improve current controllability without increasing the current ripple by switching slow and fast decay states during  
current decay period. In addition, the time ratio of slow decay and fast decay can be adjusted by the voltage applied to the  
MTH pin. So it can provide the optimal control state for any kind of motors.  
In decay state, period from t1 to t2 of the discharge section of the CR pin in the chopping cycle tCHOP is the slow decay, and  
the remaining interval from t2 to t3 is the fast decay. If the current doesn’t reach the target value during the period from t1 to  
t2, the slow decay is skipped and only fast decay is applied.  
t1  
t2  
t3  
CR Voltage  
1.0 V  
MTH level  
0.4 V  
GND  
time  
Chopping Period  
tCHOP  
Output Current  
Target Current  
0 A  
time  
Slow Decay  
Fast Decay  
Figure 3. CR Pin Voltage and Output Current during Mix Decay  
Auto Decay Mode  
In the auto decay mode automatically select fast decay and slow decay during decay state according to the difference  
between the target current and the output current. It causes small current ripple and quick following for the change of target  
current. For example, when target current drops and the output current is excess the target current, Fast decay is selected  
as current decay mode.  
Current waveform in Auto decay is shown below.  
CLK  
Target Current  
Output  
Current  
Slow Decay  
Slow Decay  
Slow Decay  
Fast  
Decay  
Target Current  
Slow Decay  
Fast  
Decay  
Figure 4. Current Decay by Auto Decay in Reducing Target Current  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
12/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Function Description – continued  
Translator Circuit Operation  
This IC has a built-in translator circuit and can drive stepping motors by CLK-IN mode and SPI command. The operation of  
the translator circuit in CLK-IN drive mode is described below.  
Reset Operation  
The translator circuit is initialized by power ON reset function and the PSB pin.  
Initializing sequence when power supply is turned on  
(1) Power-on in PSB = L (Recommended)  
When power supply is turned on, the internal power-on reset function initializes IC. During PSB = L, IC is in standby state  
and the motor output keeps open state. After PSB = Low to High, IC enters normal state and it can accept SPI command. In  
this state, by setting ‘1’ to MOTEN in the control register CR1 by SPI, IC enters active state and the motor output becomes  
active and the excitation starts in the initial electrical angle.  
Note that there is 40 µs (Max) delay from the standby state to the normal state when PSB = L → H.  
Standby State  
Normal State  
Active State  
Delay  
PSB  
MOTEN = ‘1’  
CSB  
SCK  
SDI  
45°  
135°  
CLK  
OUT1A  
OUT1B  
Motor Output: Open  
Motor Output: Active  
MODE0/MODE1/CWB = all low level, RHB = high level  
(2) Power-on in PSB = H  
When power supply is turned on, the Power-on reset function in IC operates and the IC is initialized. Then, by setting ‘1’ to  
MOTEN in the control register CR1 by SPI, IC enters active state and the motor output becomes active and the excitation  
starts in the initial electrical angle. However, there is a possibility that IC is not initialized normally if VCC rises up rapidly  
because of no Power-on reset operation. In that case, set PSB level to ground level once after VCC rises up. (Refer to P38  
Power-on Sequence and P14 Control Input Timing)  
Initialization sequence during motor operation  
Input a reset signal to the PSB pin to initialize translator circuit during motor operation. IC is reset only by the PSB pin  
regardless of the other input signals. After reset, IC internal circuit enters the normal state and makes the motor output open.  
Note that there is 40 µs (Max) delay from the standby state to the normal state when PSB = L → H.  
Standby State  
Normal State  
Active State  
Standby State  
Normal State  
Active State  
Delay  
Delay  
PSB  
MOTEN = ‘1’  
MOTEN = ‘1’  
CSB  
SCK  
SDI  
45° 135°  
45° 135°  
225°  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
IOUT1  
IOUT2  
Motor Output: Open  
Motor Output: Active  
Motor Output: Active  
Motor Output: Open  
MODE0/MODE1/CWB = all low level, RHB = high level  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10.Feb.2021 Rev.001  
13/48  
 
BD63800MUF-C  
Translator Circuit Operation - continued  
Control Input Timing  
The translator circuit operates at the rising edge of the CLK signal. The input timing shown below must be satisfied.  
Note that there is a risk that the translator circuit will not operate as expected if input timing is violated.  
There is 40 µs (Max) delay from the standby state to the normal state when PSB = L → H (Interval B). Note that SPI  
command input during the delay period is not acceptable.  
A
PSB  
B
MOTEN = ‘1’  
CSB  
SCK  
SDI  
MOTEN(Internal Signal)  
H
C
CLK  
D
E
F
G
RHB, MODE0, MODE1, CWB  
Symbol  
Item  
Required Time  
20 μs (Min)  
40 μs (Max)  
4 μs (Min)  
2 μs (Min)  
2 μs (Min)  
1 μs (Min)  
1 μs (Min)  
1 μs (Min)  
A
B
C
D
E
F
Low pulse width of PSB  
Period from PSB rising edge to SPI command input start time  
Cycle time of CLK  
High pulse width of CLK  
Low pulse width of CLK  
Set-up time of RHB, MODE0, MODE1, CWB for CLK  
Hold time of RHB, MODE0, MODE1, CWB for CLK  
Setup time of MOTEN for CLK  
G
H
Switching of CWB  
The switch in CWB is reflected at the next rising edge of CLK after CWB is changed.  
However, depending on the motor status at CWB switching, there are possibilities of step-out or misstep in motor when the  
motor cannot follow the input even if the control input for driver IC is valid. Therefore, the transition sequence must be  
evaluated with application condition well.  
Clockwise  
Counter Clockwise  
45°  
135° 225°  
135° 45°  
PSB  
MOTEN = ‘1’  
CSB  
SCK  
SDI  
CWB  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
IOUT1  
IOUT2  
MODE0/MODE1 = all low level, RHB = high level  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
14/48  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
Translator Circuit Operation - continued  
Switching of Motor Excitation Mode  
The excitation mode is switched at the timing of changing MODE0, MODE1 level regardless of CLK signal.  
This product has a function which can prevent motor out-of-step caused by discrepancies of torque vector between transition  
excitations. However, depending on the motor status at MODE0 and MODE1 switching, there are possibilities of step-out or  
misstep in motor when the motor cannot follow the input even if the control input for driver IC is valid. Therefore, evaluate the  
switching sequence of excitation mode fully.  
Cautions on Simultaneous Switching of CWB and Excitation Mode (MODE0, MODE1)  
Interval A is defined as the period from reset (PSB = L → H) to the 1st CLK pulse input and Interval B is defined as the period  
after the 1st CLK pulse input as shown in the figure below.  
Interval A  
Interval B  
PSB  
MOTEN = ‘1’  
CSB  
SCK  
SDI  
MOTEN(Internal Signal)  
CLK  
Interval A  
There is no constraint in switching CWB and the excitation mode.  
During one CLK cycle or MOTEN = L, simultaneous switching of CWB and excitation mode should be  
Interval B avoided. If this is violated, it is possible to have misstep of motor (extra one more step) and out-of-step in  
motor.  
Therefore, when switching CWB and excitation mode simultaneously, reset first the IC by setting PSB = L → H. Then set  
CWB and excitation mode during interval A.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
15/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Translator Circuit Operation – continued  
Step Sequence  
In motor stepping, Micro-step Position (MSP), IOUT current ratio and electric angle of each step are decided depending on  
the excitation mode. The initial excited position is 45° in all excitation modes.  
Step Sequence in Full Step Mode  
Timing chart, MSP, IOUT current ratio and the electric angle for Full step mode are shown in the figure below.  
({SM2, MODE1 xor SM1, MODE0 xor SM0} = ‘100’ or ‘000’, CWB = High)  
MSP  
PSB  
CSB  
SCK  
SDI  
’000 0000’ ‘110 0000’ ‘100 0000’ ‘010 0000’ ‘000 0000’ ‘110 0000’  
CLK  
OUT1A  
OUT1B  
OUT2A  
OUT2B  
IOUT1  
IOUT2  
MSP = ‘110 0000’  
MSP = ‘000 0000’  
OUT1A  
100 %  
45°  
OUT2B  
OUT2A  
OUT1B  
MSP = ‘100 0000’  
MSP = ‘010 0000’  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
16/48  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
Step Sequence - continued  
Step Sequence in 1/2, 1/4, 1/8, 1/16 and 1/32 Step Modes  
MSP, IOUT current ratio and the electric angle for 1/2, 1/4, 1/8, 1/16 and 1/32 step of each excitation mode are shown in the  
figure below. (CWB = L)  
Step Mode  
{SM2, MODE1 xor SM1, MODE0 xor SM0}  
% of Imax  
Step angle  
[°]  
MSP[6:0]  
111  
1/32  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
0
011  
1/16  
56  
010  
1/8  
28  
110  
1/4  
14  
101 / 001  
Coil 1  
Coil 2  
0.0  
1/2  
7
111 0000  
111 0001  
111 0010  
111 0011  
111 0100  
111 0101  
111 0110  
111 0111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
100.0  
99.9  
99.5  
98.9  
98.1  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
0.0  
4.9  
9.8  
2.8  
5.6  
57  
58  
59  
60  
61  
62  
63  
0
14.7  
19.5  
24.3  
29.0  
33.7  
38.3  
42.8  
47.1  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
8.5  
29  
30  
31  
0
11.2  
14.1  
16.9  
19.7  
22.5  
25.3  
28.1  
30.9  
33.8  
36.6  
39.4  
42.2  
45.0  
47.8  
50.6  
53.4  
56.2  
59.1  
61.9  
64.7  
67.5  
70.3  
73.1  
75.9  
78.8  
81.5  
84.4  
87.2  
15  
0
0
1
2
1
3
4
2
1
5
6
3
7
8
4
2
1
9
10  
5
11  
12  
6
3
13  
14  
7
15  
4.9  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
17/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Step Sequence in 1/2, 1/4, 1/8, 1/16 and 1/32 Step Modes – continued  
Step Mode  
{SM2, MODE1 xor SM1, MODE0 xor SM0}  
MSP[6:0]  
% of Imax  
Coil 1 Coil 2  
Step angle  
[°]  
111  
1/32  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
011  
1/16  
8
010  
1/8  
4
110  
1/4  
2
101 / 001  
1/2  
1
001 0000  
001 0001  
001 0010  
001 0011  
001 0100  
001 0101  
001 0110  
001 0111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
010 0000  
010 0001  
010 0010  
010 0011  
010 0100  
010 0101  
010 0110  
010 0111  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
0.0  
-4.9  
100.0  
99.9  
99.5  
98.9  
98.1  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
90.0  
92.8  
9
-9.8  
95.6  
-14.7  
-19.5  
-24.3  
-29.0  
-33.7  
-38.3  
-42.8  
-47.1  
-51.4  
-55.6  
-59.6  
-63.4  
-67.2  
-70.7  
-74.1  
-77.3  
-80.3  
-83.1  
-85.8  
-88.2  
-90.4  
-92.4  
-94.2  
-95.7  
-97.0  
-98.1  
-98.9  
-99.5  
-99.9  
98.5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
5
6
101.2  
104.1  
106.9  
109.7  
112.5  
115.3  
118.1  
120.9  
123.8  
126.6  
129.4  
132.2  
135.0  
137.8  
140.6  
143.4  
146.2  
149.1  
151.9  
154.7  
157.5  
160.3  
163.1  
165.9  
168.8  
171.5  
174.4  
177.2  
3
4
5
7
8
2
9
10  
11  
4.9  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
18/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Step Sequence in 1/2, 1/4, 1/8, 1/16 and 1/32 step Modes – continued  
Step Mode  
{SM2, MODE1 xor SM1, MODE0 xor SM0}  
MSP[6:0]  
% of Imax  
Coil 1 Coil 2  
0.0  
Step angle  
[°]  
111  
1/32  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
011  
1/16  
24  
010  
1/8  
12  
110  
1/4  
6
101 / 001  
1/2  
3
011 0000  
011 0001  
011 0010  
011 0011  
011 0100  
011 0101  
011 0110  
011 0111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 0000  
100 0001  
100 0010  
100 0011  
100 0100  
100 0101  
100 0110  
100 0111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
-100.0  
-99.9  
-99.5  
-98.9  
-98.1  
-97.0  
-95.7  
-94.2  
-92.4  
-90.4  
-88.2  
-85.8  
-83.1  
-80.3  
-77.3  
-74.1  
-70.7  
-67.2  
-63.4  
-59.6  
-55.6  
-51.4  
-47.1  
-42.8  
-38.3  
-33.7  
-29.0  
-24.3  
-19.5  
-14.7  
-9.8  
180.0  
182.8  
185.6  
188.5  
191.2  
194.1  
196.9  
199.7  
202.5  
205.3  
208.1  
210.9  
213.8  
216.6  
219.4  
222.2  
225.0  
227.8  
230.6  
233.4  
236.2  
239.1  
241.9  
244.7  
247.5  
250.3  
253.1  
255.9  
258.8  
261.5  
264.4  
267.2  
-4.9  
-9.8  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
-14.7  
-19.5  
-24.3  
-29.0  
-33.7  
-38.3  
-42.8  
-47.1  
-51.4  
-55.6  
-59.6  
-63.4  
-67.2  
-70.7  
-74.1  
-77.3  
-80.3  
-83.1  
-85.8  
-88.2  
-90.4  
-92.4  
-94.2  
-95.7  
-97.0  
-98.1  
-98.9  
-99.5  
-99.9  
13  
14  
15  
16  
17  
18  
19  
7
8
9
4
-4.9  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
19/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Step Sequence in 1/2, 1/4, 1/8, 1/16 and 1/32 step Modes – continued  
Step Mode  
{SM2, MODE1 xor SM1, MODE0 xor SM0}  
MSP[6:0]  
% of Imax  
Coil 1 Coil 2  
Step angle  
[°]  
111  
1/32  
80  
011  
1/16  
40  
010  
1/8  
20  
110  
1/4  
10  
101 / 001  
1/2  
5
101 0000  
101 0001  
101 0010  
101 0011  
101 0100  
101 0101  
101 0110  
101 0111  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 0000  
110 0001  
110 0010  
110 0011  
110 0100  
110 0101  
110 0110  
110 0111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
0.0  
4.9  
-100.0  
-99.9  
-99.5  
-98.9  
-98.1  
-97.0  
-95.7  
-94.2  
-92.4  
-90.4  
-88.2  
-85.8  
-83.1  
-80.3  
-77.3  
-74.1  
-70.7  
-67.2  
-63.4  
-59.6  
-55.6  
-51.4  
-47.1  
-42.8  
-38.3  
-33.7  
-29.0  
-24.3  
-19.5  
-14.7  
-9.8  
270.0  
272.8  
275.6  
278.5  
281.2  
284.1  
286.9  
289.7  
292.5  
295.3  
298.1  
300.9  
303.8  
306.6  
309.4  
312.2  
315.0  
317.8  
320.6  
323.4  
326.2  
329.1  
331.9  
334.7  
337.5  
340.3  
343.1  
345.9  
348.8  
351.5  
354.4  
357.2  
81  
82  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
9.8  
83  
14.7  
19.5  
24.3  
29.0  
33.7  
38.3  
42.8  
47.1  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
84  
21  
22  
23  
24  
25  
26  
27  
85  
86  
87  
88  
11  
12  
13  
89  
90  
91  
92  
93  
94  
95  
96  
6
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
-4.9  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
20/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Function Description – continued  
Drive Mode and Hold Mode  
The IC has a drive mode and a hold mode and the peak current for each mode can be set by SPI.  
The drive mode = Not (hold mode) and this mode is determined by exclusive OR of the RHB pin and RHBP register.  
The peak current in drive mode is determined by IRUN[3:0] register, and the peak current in hold mode is determined by  
IHOLD[3:0] register. The percentage of peak current for each register value is shown below  
IRUN[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Peak Motor Current IRUN [%]  
IHOLD[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Peak Motor Current IHOLD [%]  
(Note 1)  
9.1  
10.1  
11.6  
13.0  
15.1  
17.4  
20.3  
24.0  
30.4  
36.1  
42.9  
50.0  
59.5  
70.8  
83.9  
100.0  
0.0  
9.1  
10.1  
11.6  
13.0  
15.1  
17.4  
20.3  
24.0  
30.4  
36.1  
42.9  
50.0  
59.5  
70.8  
83.9  
(Note 1) Open detection is disabled under this condition.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10.Feb.2021 Rev.001  
21/48  
 
BD63800MUF-C  
Function Description – continued  
SPI Interface  
This IC supports Serial Peripheral Interface (SPI) to set parameter into IC and to read out status data from IC.  
SPI frame structure is as follows,  
SDI ADDR[7:4]  
SDI ADDR[3:0]  
SDI DATA[7:0]  
CSB  
SCK  
SDI  
MSB  
MSB  
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
MSB  
MSB  
6
6
5
5
4
4
3
3
2
2
1
1
LSB  
LSB  
SDO  
SDO BYTE1 (For previous frame)  
SDO BYTE2 (For previous frame)  
The SPI transfer data length is 16 bits.  
When CSB is ‘L’, the SPI is active and IC latches SDI data at the rising of SCK.  
During CSB is ‘L’, the frame data is stored at every multiples of 16 SCK pulses.  
The frame data is not latched internally if the number of SCK pulses is less than 16 after CSB becomes ‘L’ or after latching  
frame data.  
The structure of SPI address, data input and data output is described below,  
SDI  
SDI  
SDI  
SDO  
SDO  
Comment on Use  
ADDR[7:4]  
ADDR[3:0]  
DATA[7:0]  
BYTE1  
BYTE2  
Control Register CR1 Data Input  
Data Output of CR1 and CR2  
Control Register CR1 Data Input  
Data Output of CR1 and SR1  
Control Register CR1 Data Input  
Data Output of CR1  
ACR1  
ACR1  
ACR1  
ASR1  
ASR1  
ASR1  
NOP  
ACR2  
ASR1  
NOP  
SDICR1  
SDICR1  
SDICR1  
XXh  
SDOCR1  
SDOCR1  
SDOCR1  
SDOSR1  
SDOSR1  
SDOSR1  
00h  
SDOCR2  
SDOSR1  
00h  
ACR1  
ASR2  
NOP  
SDOCR1  
SDOSR2  
00h  
Data Output of SR1 and CR1  
Data Output of SR1 and SR2  
Data Output of SR1  
XXh  
XXh  
ACR1  
ASR2  
NOP  
XXh  
SDOCR1  
SDOSR2  
00h  
Data Output of CR1  
NOP  
XXh  
00h  
Data Output of SR2  
NOP  
XXh  
00h  
Dummy/Placeholder  
ACR1, ACR2  
ASR1, ASR2  
SDICR1  
: Control Register Address. Refer to P30 Control Register.  
: Status Register Address. Refer to P34 Status Register.  
: Control Register Data Input  
SDOCRx, SDOSRx  
NOP  
XXh  
: Data Output (x = 1, 2)  
: Register Address outside the range  
: Any Value  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
22/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
SPI Interface - continued  
Examples of SPI Input / Output Sequence  
In writing data to Control Register, the addresses are specified by the first 4 bits, and the data in the last 8bits is stored.  
Output data is output in 16 bit of the next frame from SDO. The data corresponding to the address indicated in the first 4 bits  
is output in the first 8 bits of the next frame. The data corresponding to the address indicated in the next 4 bits is output in the  
last 8 bits of the next frame.  
Register is updated at the rising edge of 16th SCK pulse  
CSB  
SCK  
ACR1  
ACR2  
ACR1 DATA  
This data is stored in the register indicated by ACR1.  
Output data at the specified address  
Output data at the specified address  
SDI  
ACR1 DATA  
ACR2 DATA  
SDO  
In reading data from Status Register, the address is indicated in the first 4 bits and the next 4 bits.  
It is not necessary to input values to the last 8 bits.  
Output data is output in 16 bit of the next frame from SDO. The data corresponding to the address indicated in the first 4 bits  
is output in the first 8 bits of the next frame. And the data corresponding to the address indicated in the next 4 bits is output in  
the last 8 bits of the next frame.  
Register is updated at the rising edge fo 16 th SCK pulse  
CSB  
SCK  
ASR1  
ASR2  
xxh  
SDI  
This 8bit data is ignored.  
Output data at the specified address  
Output data at the specified address  
ASR1 DATA  
ASR2 DATA  
SDO  
This IC supports a burst transfer. MCU can write data to registers continuously by inputting data in multiple of 16 to SCK and  
SDI with CSB = ‘L’.  
Registers are updated at the rising edge of every 16th SCK pulse  
CSB  
SCK  
ACR1 ACR2 ACR1 DATA ACR1 ACR2 ACR1 DATA ACR1 ACR2 ACR1 DATA  
ACR1 DATA ACR2 DATA ACR1 DATA ACR2 DATA  
SDI  
ACR1 DATA  
SDO  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
23/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
SPI Interface - continued  
SPI Bit Count Error Detection  
This IC supports SPI error check function. Then IC counts the SCK pulses during CSB = L and checks the count at the rising  
edge of CSB. If the count is not a multiple of 16, SPI bit count error is detected.  
(If there are no SCK pulses during CSB = L, any SPI bit count errors are not detected because of no effect for register  
access.)  
In case of single packet transfer  
Loss of SCK  
CSB  
SCK  
Addr1  
Addr2  
DATA  
SDI  
DIAG1  
Error detection by fewer SCK pulses than 16.  
In case of burst transfer  
Mixed noise in SCK  
CSB  
SCK  
SDI  
Addr1  
Addr2  
DATA  
Addr1  
Addr2  
DATA  
Addr1  
Addr2  
DATA  
Received as DATA  
Received as packet  
DIAG1  
Error detection by SCK pulses is not equal to multiple of 16.  
Multi IC connection example  
MCU  
BD63800MUF-C  
CSB1  
SCK  
SDI  
CSB  
IC1  
SCK  
SDI  
CSB1  
SDO  
SDO  
CSB2  
CSB3  
SCK  
SDI  
BD63800MUF-C  
CSB2  
CSB3  
CSB  
IC2  
SCK  
SDI  
A1 A2  
A3 A4  
A5 A6  
SDO  
SDO  
BD63800MUF-C  
Access to IC1  
Access to IC2  
Access to IC3  
CSB  
IC3  
SCK  
SDI  
SDO  
Figure 5. Example of Multi IC Connection  
The Figure 5 shows the connection diagram and the access timing chart where three ICs are connected in parallel.  
The pins SCK, SDI, SDO can be shorted to each other. The MCU can select the specific IC to write to Control Register and to  
read from Status Register by controlling each CSB pin.  
The SDO pin is CMOS type. But it switches to HiZ state during CSB = H. Therefore, the MCU can read data from specific IC even  
if all SDOs are shorted.  
If the MCU send command two or more ICs at the same time, each IC may output different levels. Note that large current flows in  
the SDO pin in that case.  
Also, the MCU input from SDO becomes HiZ when CSB pins of all ICs are set to ‘H’. Ensure that there is enough time of CSB = H  
so that each IC’s output does not overlap. (Refer to tDCSBSDO1, tDCSBSDO2 in SPI timing table in P41 Electrical Characteristics)  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
Function Description – continued  
Protection/Detection Functions  
Malfunction Prevention Function w/o Power Supply (Ghost Supply Prevention Function)  
This function prevents IC malfunction when there is no power supplied to the IC and a control signal(Note 1) is input to the IC.  
The voltage supplied to the power supply of this IC or other IC in the system is shorted through the electrostatic destruction  
prevention diode from these input pins to the VCC. Therefore, there is no malfunction of the circuit even when voltage is  
supplied to these input pins while there is no power supply.  
(Note 1) control signal: Logic signals, MTH, RREF  
Thermal Shutdown Function (TSD)  
This IC has a built-in Thermal Shutdown circuit for protection against overheating. If the chip temperature of the IC is above  
+175 °C (Typ), the motor output will become open. It will automatically return to normal operation when the temperature goes  
below +150 °C (Typ). However, even when TSD is in operation, if heat is continuously applied externally, it will result in  
thermal runaway and can lead to destruction of the IC.  
Thermal Warning Function (TW)  
This IC has a built-in temperature warning circuit to detect overheating. When the chip temperature of the IC is above the  
level set by SPI, a temperature warning is output to the SDO and DIAG1/DIAG2 pins. The warning is cleared when  
temperature goes down under the level set by SPI. Unlike Thermal Shutdown Function (TSD), IC keeps the motor control  
operation even in Thermal Warning Function.  
TWThr[3:0]  
TW Threshold Level ON/OFF [˚C] (Typ)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
65.7  
71.4  
77.1  
82.8  
88.4  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
33.8  
39.8  
45.9  
51.9  
58.0  
64.0  
70.1  
76.1  
82.2  
94.1  
99.8  
105.4  
111.1  
116.8  
122.4  
128.1  
133.8  
139.5  
145.1  
150.8  
88.2  
94.2  
100.3  
106.3  
112.4  
118.4  
124.5  
Over Current Protection Function (OCP)  
This IC has a built-in over current protection circuit as a countermeasure against destruction when the motor outputs are  
shorted to each other, to VCC or to GND. This circuit latches the motor output to open state when the current is above the  
specified level (reference value: 3 A in 25 °C, Typ) for 4 μs (Typ). The IC can only recover by power-on again or reset by the  
PSB pin.  
The overcurrent protection circuit is designed to prevent the breakdown of IC caused by overcurrent in abnormal conditions  
such as shorted motor outputs. This protection is not intended to guarantee the protection of application circuit. Therefore,  
do not design the protection of the system using this circuit function. After detecting over current, then power-on again or  
recovery by reset while IC is still in abnormal state, the OCP operates repeatedly (‘latch → recover → latch’). Note that the IC  
may generate heat and may lead to deterioration of the IC.  
If the L value of the wiring is large, such as when the wiring during a shorted circuit to each other, to VCC or to GND is long,  
there is a possibility of destruction of the IC after the over current has flowed and the output pin voltage suddenly jumps to a  
value that is over the absolute maximum ratings.  
If the current is below the OCP detection current level and above the output current rating level, the IC can heat up, exceed  
Tjmax = 150 °C and then deteriorate, so current which exceeds the output rating should not be applied.  
Over Voltage Lock-out Function (OVLO)  
This IC has a built-in over voltage lock-out circuit to protect the IC output and the motor during power supply over voltage.  
When the applied voltage to the VCC pin goes up to 32 V (Typ) or more, the motor output is set to OPEN. To prevent false  
operation by noise, etc., the switching voltage has a 1 V (Typ) hysteresis and there is a 4 μs (Typ) mask time for the  
detection time  
Although the overvoltage lock out circuit is built-in, there is a possibility of destruction if the absolute maximum value for  
power supply voltage is exceeded. Avoid to exceed the absolute maximum rating. Note that this circuit does not operate  
during power save state.  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
 
 
 
 
BD63800MUF-C  
Protection/Detection Functions – continued  
Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function  
This IC has a built-in under voltage lock-out circuit to prevent malfunction of IC output caused by low level power supply to IC.  
When the VCC pin is lower than the level set by SPI, IC set the motor output to open.  
Under voltage motor hold mode can also be selected. In this mode, when IC detects low level of power supply, IC keeps  
motor hold although the detected results are output to DIAG1/DIAG2 and Status Register.  
These modes can be selected by setting UVM3 to UVM0 in the control register.  
UVM3  
UVM2  
UVM1  
UVM0  
Mode  
Protection  
Hold  
Operation  
0
1
0
1
0
0
0
1
Motor output: Open during low voltage in VCC  
Motor output: Hold during low voltage in VCC  
(Note 1)  
Others  
Prohibited  
-
(Note 1) In this mode, IC keeps the operation. But there is a possibility that the following status occurs. If each of protection/hold is set to UVM3 to UVM0, SDO  
output normally.  
SDO output unexpected logical value.  
Protection/Detection function are turned off.  
This switching voltage has hysteresis to prevent false operation by noise etc. Note that this circuit does not operate during  
power save mode.  
UVThr[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
UV Threshold Level ON/OFF [V] (Typ)  
3.92  
4.29  
4.67  
5.04  
5.41  
5.78  
6.15  
6.52  
6.89  
7.26  
7.64  
8.01  
8.38  
8.75  
9.12  
9.49  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
4.53  
4.96  
5.39  
5.82  
6.24  
6.67  
7.10  
7.53  
7.96  
8.39  
8.82  
9.24  
9.67  
10.10  
10.53  
10.96  
Open Detection Function  
This IC has a built-in open detection function.  
It outputs open detection result to the SDO and DIAG1/DIAG2 pins when any of H-bridge output pins (OUT1A, OUT1B,  
OUT2A, and OUT2B) become open.  
The open detection is asserted when the open status keeps over 5.12 ms (Typ). The open detection is not asserted in the  
following conditions because an internal timer counting the open period will be stopped. If the open state continues after  
recovering from the following conditions, the timer starts to count-up again and the open detection will be asserted.  
(1) In detection of TSD, OCP, UVLO(Note 1), OVLO  
(2) In Hold mode with IHOLD = ‘0000’  
(3) When Electric angle is 0°/180° (Stopping detection Only in OUT2 side), 90°/270° (Stopping detection Only in OUT1 side)  
(Note 1) The open detection is available when under voltage motor hold mode is selected.  
In case of fast motor rotation without chopping operation, the open status is detected even if the outputs are not open.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
26/48  
10.Feb.2021 Rev.001  
 
 
BD63800MUF-C  
Protection/Detection Functions – continued  
Stall Detection Function  
This IC has a built-in stall detection circuit.  
Stall is detected by monitoring the back electromotive voltages at zero cross points.  
If the motor gets stalled, the IC outputs the Status register value from the SDO pin by SPI and Stall detection result from the  
DIAG1/DIAG2 pins.  
Normal status  
Stall status  
OUT1 Output Current [A],  
OUT1 Back Electromotive Voltage [V]  
Sample Back Electromotive Voltage Waveform. (Actual  
voltage level can be monitored only in OFF state of motor).  
Output Current  
Comparator  
Level [V]  
0
Time  
Comparator  
Level [V]  
Above the comparator level  
Below the comparator level  
OUT2 Output Current [A],  
OUT2 Back Electromotive Voltage [V]  
Stall detection is turned on when CLK is within a  
specified period. (The period is set by SpThr[7:0].)  
Comparator  
Level [V]  
0
Time  
Comparator  
Level [V]  
1st  
2nd  
3rd  
4th  
Stall Detection  
Status  
Not detected  
Detected  
The stall detection is asserted after four consecutive drop below the  
comparator level in total of OUT1/OUT2 side. In case of StCnt[1:0] = ‘10’)  
DIAG2  
Comparator Voltage Level: Set StThr[7:0] and BeGain2/BeGain referring to the table below  
Unit [V] (all values are typical)  
BeGain2/BeGain  
StThr[7:0]  
‘0’/‘0’  
‘0’/‘1’  
‘1’/‘0’  
‘1’/‘1’  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
:
0
1
Stall detection: Disabled  
0.20  
0.39  
0.59  
0.78  
:
0.15  
0.29  
0.44  
0.59  
:
0.06  
0.12  
0.18  
0.24  
:
0.03  
0.06  
0.09  
0.12  
:
2
3
4
:
1111 1110  
1111 1111  
254  
255  
49.80  
50.00  
37.35  
37.50  
14.94  
15.00  
7.47  
7.50  
10  
5
2
1
Calculation Formula  
× 푛  
51  
× 푛  
34  
× 푛  
34  
× 푛  
34  
Comparator Hysteresis: Hysteresis is the share for Comparator Voltage Level. Set StHys[3:0] referring to the table below.  
StHys[3:0]  
0000  
0001  
0010  
:
0
Hysteresis (Typ)  
4 %  
8 %  
12 %  
:
1
2
1110  
1111  
14  
15  
60 %  
64 %  
Calculation Formula  
4 × ꢐ푚 ꢍ 1ꢑ  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
27/48  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
Stall Detection Function – continued  
CLK-IN period condition where stall detection is enabled: Set SpThr[7:0] referring to the table below. Stall detection is  
enabled when CLK-IN period is less than or equal to the values in the table.  
SpThr[7:0]  
0000 0000  
0000 0001  
0000 0010  
:
Threshold setting of CLK-IN Period for Stall detection (Typ)  
Stall detection: Disabled  
20 µs  
40 µs  
:
1111 1110  
1111 1111  
5,080 µs  
5,100 µs  
Total count of asserting Stall detection: Set StCnt[1:0] referring to the table below. Stall detection is asserted when the back  
electromotive voltage falls below the comparator level in consecutive certain times indicated in the table below.  
StCnt[1:0]  
Total times of stall status for asserting stall detection  
1 time stall status  
00  
01  
10  
11  
2 times consecutive stall status  
4 times consecutive stall status  
8 times consecutive stall status  
Stall detection is available in 1/2, 1/4, 1/8, 1/16 and 1/32 step modes.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
28/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Protection/Detection Functions – continued  
DIAG Output Selection Function  
This IC has DIAG output function.  
The following detection results are output from the DIAG1/DIAG2 pins.  
(1) Over Current Detection  
(2) Open Detection  
(3) Thermal Warning (TW)  
(4) Thermal Shutdown (TSD)  
(5) Stall Detection  
(6) Under Voltage Detection  
(7) Over Voltage Detection  
(8) SPI Bit Count Error Detection  
MCU can freely select detection/protection to output to the DIAG1 and DIAG2 pins by setting Control Register CR5A/CR6A.  
In the initial state after the IC resets, DIAG1 outputs logical OR of all detection results mentioned above and DIAG2 outputs  
only stall detection result. Refer to P33 CR5A (0x15) CR6A (0x16).  
www.rohm.com  
TSZ02201-0P2P0C702070-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/48  
TSZ22111 • 15 • 001  
10.Feb.2021 Rev.001  
 
BD63800MUF-C  
Function Description – continued  
Control Register  
Control Register Map  
Values in the bottom row are the default value after reset  
5-bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Address  
CWBP  
RHBP  
CLKP  
MOTEN  
StThr7  
StThr6  
StThr5  
StThr4  
01h(CR1)  
0
0
0
0
0
0
0
0
IHOLD3  
IHOLD2  
IHOLD1  
IHOLD0  
IRUN3  
IRUN2  
IRUN1  
IRUN0  
02h(CR2)  
03h(CR3)  
05h(CR5)  
06h(CR6)  
07h(CR7)  
11h(CR1A)  
12h(CR2A)  
15h(CR5A)  
16h(CR6A)  
0
0
0
0
0
0
0
0
-
-
EMC1  
EMC0  
UVM3  
SM2  
SM1  
SM0  
0
0
1
0
0
0
0
0
SpThr7  
SpThr6  
SpThr5  
SpThr4  
SpThr3  
SpThr2  
SpThr1  
SpThr0  
0
0
0
0
0
0
0
0
UVThr3  
UVThr2  
UVThr1  
UVThr0  
-
-
-
-
0
0
0
UVM2  
0
0
0
0
0
0
AD4  
BeGain  
UVM1  
-
-
-
-
0
0
0
0
0
0
0
UVM0  
BeGain2  
StCnt1  
0
StCnt0  
TwThr3  
TwThr2  
TwThr1  
TwThr0  
0
0
StHys2  
0
1
0
0
0
0
StHys3  
StHys1  
0
StHys0  
StThr3  
StThr2  
StThr1  
StThr0  
0
0
0
0
0
SelUV1  
1
0
SelOV1  
1
SelSPI1  
SelSHORT1 SelOPEN1  
SelTW1  
SelTSD1  
SelSTALL1  
1
SelSPI2  
0
1
1
1
SelTW2  
0
1
SelTSD2  
0
1
SelSHORT2 SelOPEN2  
SelSTALL2  
1
SelUV2  
0
SelOV2  
0
0
0
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
30/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Control Register - continued  
Definition of each Control Register Bit  
CR1 (0x01)  
Symbol  
Bit  
Description  
Motor rotation direction selection.  
When CWBP = 1, the CWB pin logic is inverted.  
CWBP  
7
Refer to P7 CWB (Motor Rotation Direction Selection Pin)  
Drive/Hold mode selection.  
When RHBP = 1, the RHB pin logic is inverted.  
In RHB xor RHBP = 0, Hold mode is selected  
Refer to P7 RHB (Drive/Hold Mode Selection Pin)  
CLKIN input. It’s recognized as CLKIN input to set ‘1’ to this bit. Internally the value is  
cleared to ‘0’ automatically after receiving next rising edge of SCK. (Note that the  
external CLK input is ignored during this period)  
RHBP  
CLKP  
6
5
Refer to P6 CLK (Clock Input Pin for Micro Step)  
Enable of H-bridge. Motor driving operation starts after ‘1’ is set to this bit. H-bridge is  
open after ‘0’ is set to this bit.  
Refer to P13 Translator Circuit Operation  
MOTEN  
4
Threshold setting for Stall detection. Stall detection is disabled in StThr[7:0]=0000  
0000’. When other values are set, Stall detection is enabled.  
Refer to P27 Stall Detection Function  
StThr[7:4]  
[3:0]  
CR2 (0x02)  
Symbol  
Bit  
Description  
Current ratio setting for the hold mode.  
Refer to P21 Drive Mode and Hold Mode  
IHOLD[3:0]  
[7:4]  
Current ratio setting for the drive mode.  
Refer to P21 Drive Mode and Hold Mode  
IRUN[3:0]  
[3:0]  
CR3 (0x03)  
Symbol  
Bit  
Description  
Switching slew rate setting for motor driver.  
EMC[1:0]  
[5:4]  
'00': 12 V/µs, '01': 24 V/µs, '10': 96 V/µs, '11': 192 V/µs  
Excitation mode selector.  
Refer to P6 MODE0, MODE1 (Motor Excitation Mode Selection Pin)  
SM[2:0]  
UVM3  
[2:0]  
3
Selection bit for Protection /Hold mode in Under Voltage state.  
Refer to P26 Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function  
CR5 (0x05)  
Symbol  
Bit  
Description  
Threshold setting of stepping speed for Stall detection. 1 step = 20 µs (Typ). Stall  
detection is enabled when the CLKIN period is smaller than this register. Stall  
detection is disabled in SpThr[7:0]=’0000 0000’.  
SpThr[7:0]  
[7:0]  
Refer to P27 Stall Detection Function  
CR6 (0x06)  
Symbol  
Bit  
Description  
Threshold setting for UVLO  
Refer to P26 Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function  
UVThr[3:0]  
[7:4]  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
31/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Definition of each Control Register Bit – continued  
CR7 (0x07)  
Symbol  
Bit  
Description  
Address setting bit.  
AD4 = ‘0’: Access to following registers is available.  
CR1,CR2, CR3, CR5, CR6, SR1, SR2, SR3, SR5 and SR6  
AD4 = ‘1’: Access to following registers is available.  
CR1A, CR2A, CR5A, CR6A, SR7A and SR8A  
AD4  
7
Note that writing access to CR7 is available both in AD4 = ‘0’/‘1’ but reading access  
to CR7 is available only in AD4 = ‘0’.  
Gain setting for back electromotive voltage for Stall detection.  
Refer to P27 Stall Detection Function  
BeGain  
6
Selection bit for Protection /Hold mode in Under Voltage state.  
Refer to P26 Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function  
UVM2, UVM1  
[5:4]  
CR1A (0x11)  
Symbol  
Bit  
7
Description  
Selection bit for Protection /Hold mode in Under Voltage state.  
Refer to P26 Under Voltage Lock-out (UVLO) / Under Voltage Motor Hold Function  
UVM0  
Gain setting for back electromotive voltage for Stall detection.  
Refer to P27 Stall Detection Function  
BeGain2  
StCnt[1:0]  
TwThr[3:0]  
6
Counter setting for Stall detection.  
Refer to P27 Stall Detection Function  
[5:4]  
[3:0]  
Threshold setting for Thermal warning  
Refer to P25 Thermal Warning Function (TW)  
CR2A (0x12)  
Symbol  
Bit  
Description  
Hysteresis setting for Stall detection.  
Refer to P27 Stall Detection Function  
StHys[3:0]  
[7:4]  
Threshold setting for Stall detection.  
Refer to P27 Stall Detection Function  
StThr[3:0]  
[3:0]  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
32/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Definition of each Control Register Bit – continued  
CR5A (0x15)  
Symbol  
Bit  
Description  
DIAG1 output selector for SPI bit count error detection result  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
7
SelSPI1  
DIAG1 output selector for Over current protection  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
SelSHORT1  
SelOPEN1  
SelTW1  
6
5
4
3
2
1
0
DIAG1 output selector for Open detection result  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
DIAG1 output selector for Thermal warning (TW)  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
DIAG1 output selector for Thermal shutdown (TSD)  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
SelTSD1  
SelSTALL1  
SelUV1  
DIAG1 output selector for Stall detection result  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
DIAG1 output selector for Under voltage detection result  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
DIAG1 output selector for Over voltage detection result  
‘1’: the detection result output to DIAG1. Refer to P29 DIAG Output Selection  
Function.  
SelOV1  
CR6A (0x16)  
Symbol  
Bit  
Description  
DIAG2 output selector for SPI bit count error detection result  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
SelSPI2  
7
DIAG2 output selector for Over current protection  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
SelSHORT2  
SelOPEN2  
SelTW2  
6
5
4
3
2
1
0
DIAG2 output selector for Open detection result  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
DIAG2 output selector for Thermal warning (TW)  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
DIAG2 output selector for Thermal shutdown (TSD)  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
SelTSD2  
SelSTALL2  
SelUV2  
DIAG2 output selector for Stall detection result  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
DIAG2 output selector for Under voltage detection result  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
DIAG2 output selector for Over voltage detection result  
‘1’: the detection result output to DIAG2. Refer to P29 DIAG Output Selection  
Function.  
SelOV2  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
33/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Function Description – continued  
Status Register  
Status Register Map  
Values in the bottom row are the default value after reset  
5-bit  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PAR  
0
SPI  
SHORT  
OPEN  
TSD  
TW  
STALL  
Reserved  
08h(SR1)  
Errors1  
0
0
OV  
0
0
UV  
0
0
0
0
0
PAR  
0
ORErr  
Reserved  
Reserved  
Reserved  
Reserved  
09h(SR2)  
Errors2  
0
0
0
0
0
PAR  
0
MSP6  
MSP5  
0
MSP4  
0
MSP3  
MSP2  
MSP1  
MSP0  
0Ah(SR3)  
Position  
0
0
0
0
0
Sp7  
0
Sp6  
Sp5  
0
Sp4  
0
Sp3  
Sp2  
Sp1  
Sp0  
0Ch(SR5)  
Speed  
0
0
0
0
0
PAR  
0
Sl6  
Sl5  
0
Sl4  
0
Sl3  
Sl2  
Sl1  
Sl0  
0Dh(SR6)  
StepLoss  
0
OPEN1  
0
0
0
0
0
PAR  
0
MODE0pin MODE1pin  
SHRT1AB  
SHRT1BB  
SHRT1AT  
SHRT1BT  
1Eh(SR7A)  
In&Short1  
0
RHBpin  
0
0
CWBpin  
0
0
SHRT2AB  
0
0
SHRT2BB  
0
0
SHRT2AT  
0
0
SHRT2BT  
0
PAR  
0
OPEN2  
0
1Fh(SR8A)  
In&Short2  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
34/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Status Register - continued  
Definition of each Status Register Bit  
SR1 (0x08)  
Symbol  
Bit  
Description  
Parity bit for Status Register SR1. PAR value is calculated so that total of ‘1’ in SR1 is  
even.  
PAR  
7
SPI input bit count check result. ‘1’ is set when total bit number during CSB = Lis not  
multiple of 16. This bit is cleared by setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer  
to P24 SPI Bit Count Error Detection.  
OCP detection status. ‘1’ is set when over current status is detected. This bit is cleared  
by PSB = L or VCC power down. SR7A[3:0] and SR8A[3:0] show the positions where  
over current actually flows. Refer to P25 Over Current Protection Function (OCP).  
Open detection status. ‘1’ is set when the open status is detected. This bit is cleared by  
setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1. SR7A[6] and SR8A[6] show which of  
OUT1/OUT2 is open. Refer to P26 Open Detection Function.  
SPI  
SHORT  
OPEN  
TSD  
6
5
4
3
2
1
Thermal shutdown status. ‘1’ is set when TSD is detected. This bit is cleared by setting  
CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer to P25 Thermal Shutdown Function (TSD).  
Thermal warning status. ‘1’ is set when temperature of IC chip is over the threshold set  
by SPI. This bit is cleared by setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer to P25  
Thermal Warning Function (TW).  
TW  
Stall detection status. ‘1’ is set when stall is detected. This bit is cleared by setting  
CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer to P27 Stall Detection Function.  
STALL  
SR2 (0x09)  
Symbol  
Bit  
7
Description  
Parity bit for Status Register SR2. PAR value is calculated so that total of ‘1’ in SR2 is  
PAR  
even.  
ORErr  
OV  
6
5
OR output of bit 6 to bit0 in SR1  
Over voltage lock-out status. ‘1’ is set when ‘over voltageis detected. This bit is  
cleared by setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer to P25 Over Voltage  
Lock-out Function (OVLO)  
Under voltage lock-out status. ‘1’ is set when ‘under voltageis detected. This bit is  
cleared by setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1. Refer to P26 Under Voltage  
Lock-out (UVLO) / Under Voltage Motor Hold Function.  
UV  
4
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
35/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Definition of each Status Register Bit – continued  
SR3 (0x0A)  
Symbol  
Bit  
Description  
Parity bit for Status Register SR3 PAR value is calculated so that total of ‘1’ in SR3 is  
even.  
PAR  
7
Micro step position. MSP is updated by CLK-IN input based on the excitation mode  
and CW setting. But MSP is not updated when CLK-IN is input during TSD, OCP,  
OVLO, UVLO and Open detection because the motor is turned off. And MSP is also  
not updated in the hold mode (including under voltage motor hold mode.) where  
CLK-IN is ignored.  
MSP[6:0]  
[6:0]  
Refer to P16 Step Sequence  
SR5 (0x0C)  
Symbol  
Bit  
Description  
CLK-IN stepping period. Sp shows the period between the rising edge of last two  
CLK-IN. 1 step is 20 us (Typ) and the maximum period is 5.1 ms (Typ) at Sp[7:0] =  
‘1111 1111’. IC keeps the maximum value if the period is longer than it.  
Sp[7:0]  
[7:0]  
SR6 (0x0D)  
Symbol  
Bit  
7
Description  
Parity bit for Status Register SR6. PAR value is calculated so that total of ‘1’ in SR6 is  
PAR  
even.  
Step Loss Counter. IC counts CLK-IN input while the motor is in open state by  
TSD/OCP/UVLO/OVLO. The maximum number is 127 pulses (Sl[6:0] = ‘111 1111’). IC  
keeps the maximum value if more CLK-IN pulses are input.  
In the hold mode where CLK-IN is no available, Sl is not updated even in the protected  
state.  
Sl[6:0]  
[6:0]  
This bit is cleared by setting CLKP = ‘0’ and MOTEN = ‘1’ in CR1.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
36/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Definition of each Status Register Bit – continued  
SR7A (0x1E)  
Symbol  
Bit  
Description  
Parity bit for Status Register SR7A. PAR value is calculated so that total of ‘1’ in SR7A  
is even.  
PAR  
7
Output of Open detection result for OUT1. ‘1’ is set when the open status is detected.  
This bit goes back ‘0’ when the open state is cleared.  
OPEN1  
6
5
4
3
2
1
0
MODE0pin  
MODE1pin  
SHRT1AB  
SHRT1BB  
SHRT1AT  
SHRT1BT  
Output of the MODE0 pin logic level  
Output of the MODE1 pin logic level  
Short status of OUT1A - GND. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT1B - GND. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT1A - VCC. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT1B - VCC. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
SR8A (0x1F)  
Symbol  
Bit  
7
Description  
Parity bit for Status Register SR8A. PAR value is calculated so that total of ‘1’ in SR8A  
PAR  
is even.  
Output of Open detection result for OUT2. ‘1’ is set when the open status is detected.  
This bit goes back ‘0’ when the open state is cleared.  
OPEN2  
6
5
4
3
2
1
0
RHBpin  
Output of the RHB pin logic level  
Output of the CWB pin logic level  
CWBpin  
SHRT2AB  
SHRT2BB  
SHRT2AT  
SHRT2BT  
Short status of OUT2A - GND. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT2B - GND. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT2A - VCC. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
Short status of OUT2B - VCC. ‘1’ is set when the short status is detected.  
This bit is cleared by PSB = L or VCC power down.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
37/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Power-on Sequence  
To initialize this IC completely in power-on, follow the sequences shown below.  
t1 > 1 µs, t2 > 0 µs, t4 > 0 µs (all Typ). Refer to P14 Control Input Timing for t3 and t5.  
If t1 > 1 µs is not satisfied, there is a possibility that IC is not initialized completely because of no power-on reset operation by  
steep rise of VCC. In that case, PSB should be set to GND level once after the rise of VCC.  
Case of power-on with PSB = L  
Case of power-on with PSB = H  
VCC  
VCC  
6.0 V  
6.0 V  
To initialize this IC completely,  
set PSB to GND level once  
after rise of VCC if t1 > 1 µs  
cannot be satisfied.  
0.8 V  
0.8 V  
GND  
GND  
t1  
t2  
t1  
t4  
PSB  
GND  
PSB  
GND  
VINH  
VINH  
VINH  
VINL  
VINL  
t3  
t5  
t3  
VINH  
VINL  
VINH  
SCK/SDI/CSB  
GND  
SCK/SDI/CSB  
GND  
VINL  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
38/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Power Dissipation  
In consideration of the IC’s power consumption (W), thermal resistance (θJA), and ambient temperature (Ta), confirm that the  
IC’s chip temperature Tj is not over 150 °C. When Tj = 150 °C is exceeded, the functions as a semiconductor do not operate  
and problems such as parasitism and leaks occur. Constant use under these circumstances leads to deterioration and  
eventually destruction of the IC. Tjmax = 150 °C must be strictly obeyed under all circumstances.  
Thermal Calculation  
The power consumption of this IC can be estimated roughly. The calculation formula in case of Full step mode in slow decay  
mode is shown below:  
Self-power consumption in VCC  
:
ꢉꢉ × 퐼ꢉꢉ  
[W]  
[W]  
(1)  
(2)  
(3)  
Output DMOS power consumption during output ON:  
ꢁ푁퐻 ꢍ ꢇꢁ푁퐿 × 퐼ꢁꢂ× 2 × 표푛_푑푢푡푦  
Output DMOS power consumption during decay:  
2 × ꢇꢁ푁퐿 × 퐼ꢁꢂ× 2 × ꢐ1 ꢓ 표푛_푑푢푡푦ꢑ [W]  
IC total power consumption:  
ꢐ ꢑ ꢐ ꢑ ꢐ ꢑ  
ꢃꢁꢃ퐴퐿 = 1 ꢍ 2 ꢍ 3  
[W]  
Junction temperature:  
푇푗 = 푇푎 ꢍ 퐽퐴 × ꢃꢁꢃ퐴퐿  
[°C]  
Where  
ꢉꢉ  
is the power supply voltage [V].  
ꢉꢉ  
is the circuit current [A] without motor load.  
is the motor output current [A].  
is the Upper Pch DMOS ON Resistance [Ω]. 0.45 Ω in BD63800MUF-C (Typ).  
ꢁꢂꢃ  
ꢁ푁퐻  
ꢁ푁퐿  
is the Lower Nch DMOS ON Resistance [Ω]. 0.30 Ω in BD63800MUF-C (Typ).  
ꢁ푁  
표푛_푑푢푡푦  
ꢉ퐻ꢁ푃  
=
ꢉ퐻ꢁ푃  
is the chopping cycle time [s], which depends on the CR pin. Refer P10 PWM Constant Current control for  
details.  
ꢁ푁  
is the CR charging period during ꢉ퐻ꢁ푃 [s], which depends on the L and R values of the motor coil and the  
current setting. Confirm by actual measurement, or make an approximate calculation.  
is the ambient temperature [°C].  
푇푎  
퐽퐴  
is the thermal resistance from junction to ambient [°C/W].  
Note that the thermal resistance value θJA [°C/W] differs greatly depending on circuit board conditions. ROHM provides a  
service to measure the thermal resistance θJA with a PCB which customers actually designed. Contact us about this service.  
The calculated values above are only theoretical. For actual thermal design, perform sufficient thermal evaluation for the  
application board used, and make the thermal design with enough margin so as not to exceed Tjmax = 150 °C.  
Consider attaching an external Schottky diode between the motor output pin and the GND pin / the VCC pin to abate heat  
from the IC if the IC is used under particularly severe heat conditions. (This counter measure is not necessary for normal  
use)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
39/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Absolute Maximum Rating  
(Ta = 25 °C)  
Item  
Symbol  
VCC  
Rated Value  
-0.2 to +40.0  
-0.2 to +7.0  
-0.2 to +7.0  
1.21(Note 1)  
1.35(Note 1)  
-55 to +150  
+150  
Unit  
Supply Voltage  
V
Input Voltage for Control Pin  
Output Voltage for Control Pin  
Output Current (Steady-state)  
Output Current (Peak)(Note 2)  
Storage Temperature Range  
Maximum Junction Temperature  
VIN  
V
V
VOUT  
IOUT  
A/Phase  
A/Phase  
°C  
IOUTPEAK  
Tstg  
Tjmax  
°C  
(Note 1) Do not exceed Tjmax = 150 °C.  
(Note 2) Pulse width tw ≤ 1 ms, duty 20 %  
Caution 1:Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2:Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Recommended Operating Condition  
Item  
Operating Temperature  
Supply Voltage  
Symbol  
Topr  
Min  
-40  
6.0  
Typ  
+25  
12.0  
Max  
+125  
28.0  
Unit  
°C  
V
VCC  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note4)  
VQFN32FBV050  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
89.20  
10.00  
30.80  
7.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
40/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Electrical Characteristics  
(Unless otherwise specified VCC = 8.0 V to 28.0 V, Ta = -40 °C to +125 °C)  
Limit  
Item  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
Whole  
Standby Circuit Current  
Circuit Current  
ICCST  
ICC  
-
-
0.1  
3.5  
10.0  
µA  
PSB = L  
-
mA  
PSB = H, RREF = 6.2 kΩ  
Control input (CLK, CWB, MODE0, MODE1, RHB, PSB, SCK, SDI, CSB)  
H Level Input Voltage  
L Level Input Voltage  
VINH  
VINL  
IINH  
IINL  
2.0  
-
-
-
-
V
V
0.8  
100  
-
H Level Input Current  
35  
-10  
50  
0
µA  
µA  
VIN = 5.0 V  
VIN = 0.0 V  
L Level Input Current  
Output(OUT1A, OUT1B, OUT2A, OUT2B)  
IOUT = ±0.5 A, Total of  
upper and lower side  
Output On Resistance  
RON  
-
0.75  
1.50  
Output Leakage Current  
Output Rising Slew Rate  
Output Falling Slew Rate  
Current Control Unit  
Maximum Output Current  
PWM Frequency  
ILEAK  
tR  
-
-
-
0.1  
2.0  
2.0  
10.0  
µA  
µs  
µs  
-
-
VCC = 24 V  
EMC[1:0] = ‘00’  
tF  
IOMAX  
fPWM  
0.99  
1.10  
25.0  
74  
1.21  
A
kHz  
µA  
V
RREF = 6.2 kΩ  
-
-
-
-
C = 1000 pF, R = 39 kΩ  
RREF = 6.2 kΩ  
RREF Outflow Current  
RREF Output Voltage  
MTH Input Current  
IRREF  
VRREF  
IMTH  
-
0.457  
-5  
-
-10  
0
-
µA  
V
MTH = 0 V  
MTH Input Voltage Range  
Minimum ON Time (Blank Time)  
DIAG Output (DIAG1, DIAG2)  
Output L Voltage  
VMTH  
tONMIN  
-
3.5  
1.5  
0.3  
0.8  
µs  
C = 1000 pF, R = 39 kΩ  
VOLD  
IOD  
-
-
0.15  
0
0.50  
10  
V
ILOAD = -1 mA  
Output Leakage Current  
SDO Output  
µA  
VDG = 5 V  
Output H Voltage  
VOHS  
VOLS  
IOS  
4.50  
4.85  
0.15  
0
-
V
V
ILOAD = +1 mA  
ILOAD = -1 mA  
VSDO = 5 V  
Output L Voltage  
-
-
0.50  
10  
Output Leakage Current  
Protection circuit  
µA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Thermal Shutdown ON Temperature  
TTSDON  
175.0  
150.0  
150.8  
124.5  
5.04  
°C  
°C  
°C  
°C  
V
Thermal Shutdown OFF Temperature TTSDOFF  
Thermal Warning ON Ambient Temp  
Thermal Warning OFF Ambient Temp  
Low Voltage Protection ON Voltage  
Low Voltage Protection OFF Voltage  
Over Voltage Protection ON Voltage  
TTAON  
TTAOFF  
VUVON  
VUVOFF  
VOVON  
TWThr = ‘1111’  
TWThr = ‘1111’  
UVThr = ‘0011’  
UVThr = ‘0011’  
5.82  
V
32.0  
V
Over Voltage Protection OFF Voltage VOVOFF  
Output Load Open Detection Time tLOPEN  
31.0  
V
5.12  
ms  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
41/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Electrical Characteristics - continued  
(Unless otherwise specified VCC = 8.0 V to 28.0V, Ta = -40 °C to +125 °C)  
Specification  
Item  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
SPI Timing  
SPI Clock Cycle  
tSCK  
tHSCK  
tRSCK  
tFSCK  
1
200  
-
-
-
-
-
-
-
-
-
-
-
-
-
µs  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
SPI Clock High Time Range  
SPI Clock Rise Time  
-
1
SPI Clock Fall Time  
-
1
SPI Clock Low Time Range  
SDI Setup Time for SCK  
SDI Hold Time for SCK  
CSB High Time  
tLSCK  
200  
50  
50  
200  
1
-
tSTSDI  
tHDSDI  
tHCSB  
tSTLCSB  
tHDHCSB  
-
-
-
CSB Low Setup Time for SCK  
CSB High Hold Time for SCK  
-
-
200  
-
SDO Delay Time for CSB Rising Edge tDCSBSDO1  
250  
RL = 1.5 kΩ, CL = 10 pF  
RL = 1.5 kΩ, CL = 10 pF  
RL = 1.5 kΩ, CL = 10 pF  
SDO Delay Time for CSB Falling  
Edge  
SDO Delay Time for SCK  
tDCSBSDO2  
tDSCKSDO  
-
-
-
-
250  
100  
ns  
ns  
tSTLCSB  
tHDHCSB  
tHCSB  
CSB  
tSCK  
tFSCK  
tRSCK  
tLSCK  
2.0 V  
0.8 V  
SCK  
tHSCK  
tSTSDI  
tHDSDI  
SDI  
tDCSBSDO2  
tDSCKSDO  
tDCSBSDO1  
4.5 V  
0.5 V  
HiZ  
HiZ  
SDO  
Figure 6. SPI Timing Chart  
BD63800MUF-C  
SDO  
MCU  
RL  
CL  
Figure 7. SDO Load Model  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
42/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
I/O Equivalence Circuit  
Internal Reg.  
Internal Reg.  
SCK, SDI,  
CSB,  
PSB,CLK,  
CWB,  
MTH  
RHB,MODE0,  
MODE1  
Internal Reg.  
CR  
RREF  
Internal Reg.  
VCC  
OUT1A,  
OUT1B,  
OUT2A,  
OUT2B  
DIAG1,  
DIAG2  
SDO  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
43/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
44/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 8. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
45/48  
10.Feb.2021 Rev.001  
BD63800MUF-C  
Ordering Information  
B D 6 3 8 0 0 M U F  
-
C E 2  
Package  
Product Rank  
MUF: VQFN32FBV050  
C: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN32FBV050 (TOP VIEW)  
Part Number Marking  
6 3 8 0 0  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10.Feb.2021 Rev.001  
46/48  
Daattaasshheeeett  
BD63800MUF-C  
Physical Dimension and Packing Information  
Package Name  
VQFN32FBV050  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
10.Feb.2021 Rev.001  
47/48  
 
BD63800MUF-C  
Revision History  
Date  
Revision  
001  
Changes  
10.Feb.2021  
The first edition  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0P2P0C702070-1-2  
48/48  
10.Feb.2021 Rev.001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD63801EFV

Silicon monolithic integrated circuits
ROHM

BD63801EFV-E2

Stepper Motor Controller, 0.8A, BIPolar, PDSO24, ROHS COMPLIANT, HTSSOP-24
ROHM

BD63801EFV_10

Silicon monolithic integrated circuits
ROHM

BD63801EFV_12

Stepping Motor Driver Series Standard 36V Stepping Motor Drivers
ROHM

BD6380EFV

Bipolar stepping motor driver
ROHM

BD6380EFV-E2

Stepper Motor Controller, 0.8A, BIPolar, PDSO24, ROHS COMPLIANT, HTSSOP-24
ROHM

BD6380EFV_11

Silicon monolithic integrated circuits
ROHM

BD6380EFV_12

Low Voltage Stepping Motor Drivers
ROHM

BD6381EFV

Bipolar stepping motor driver
ROHM

BD6381EFV_11

Silicon monolithic integrated circuits
ROHM

BD63821EFV

Moter Drivers for Printers Motor Drivers with Brush for Printers
ROHM

BD63821EFV_12

Moter Drivers for Printers Motor Drivers with Brush for Printers
ROHM