BD7220FV-C [ROHM]

BD7220FV-C是适用于大电流检测应用的库仑计IC。不仅内置16位ΔΣADC,还内置了高精度运算放大器和电流累加逻辑电路,因此可以高精度地计算电流累加值。电流检测输入支持分流电阻器和电流输出型电流传感器,并且采用SPI作为通信I/F。高精度测量所需的校准可以仅使用SPI命令执行,因此只使用本IC即可获取预测剩余电量所需的电流累加信息。;
BD7220FV-C
型号: BD7220FV-C
厂家: ROHM    ROHM
描述:

BD7220FV-C是适用于大电流检测应用的库仑计IC。不仅内置16位ΔΣADC,还内置了高精度运算放大器和电流累加逻辑电路,因此可以高精度地计算电流累加值。电流检测输入支持分流电阻器和电流输出型电流传感器,并且采用SPI作为通信I/F。高精度测量所需的校准可以仅使用SPI命令执行,因此只使用本IC即可获取预测剩余电量所需的电流累加信息。

通信 放大器 运算放大器 传感器 电阻器
文件: 总68页 (文件大小:1909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Precision Coulomb Counter /  
Low Side Current Monitor  
for High-current Applications  
BD7220FV-C  
General Description  
Key Specifications  
BD7220FV-C is a coulomb counter IC for high-current  
applications. The product integrates a high-accuracy  
operational amp, a current accumulation logic circuit and  
a 16-bit ΔΣADC to perform current accumulation with  
high precision. The current sense input supports shunt  
resistors and output current sensors, and uses the SPI  
communication interface. BD7220FV-C only requires SPI  
commands to carry out the calibration necessary for  
high-precision measurement, so it can also get current  
accumulation information for battery state-of-charge  
estimation.  
Input Voltage Range  
VCC Input Voltage Range 4.5 V to 5.5 V  
VDD Input Voltage Range 2.5 V to 5.5 V  
Operating Temperature  
-40 °C to +125 °C  
Applications  
Battery Current Sense for EV  
Electricity Storage Systems  
Automated Guided Vehicle (AGV)  
Robot  
Package  
Features  
W (Typ) x D (Typ) x H (Max)  
6.5 mm x 6.4 mm x 1.45 mm  
AEC-Q100 Qualified (Note 1)  
16-bit ΔΣADC  
SSOP-B20  
Flexible Noise Filter (4 settings)  
Automatic Calibration via SPI  
High-accuracy Op-amp with 3 Gain Settings  
(5 V/V, 25 V/V, 51 V/V)  
Supports Current Sensing Using Shunt Resistors  
Supports Current Sensing Using Current Output Type  
Current Sensors  
SPI I/F (Optional CRC)  
Coulomb Counter Function with SPI External  
Communication  
Accumulation Current Counter which Counts Charge  
and Discharge Independently  
SSOP-B20  
Adjustable Current Detection Interruption (3 settings)  
4 Operation Modes  
(NORMAL, SLEEP, SSHDN, OFF)  
Wake Up Current Detection Function  
UVLO  
(Note 1) Grade 1  
Typical Application Circuit  
5V  
AMPOUT  
ADINP  
VCC  
VREF15  
VREFCAL  
VREF25  
VDD  
CSB  
SDI  
VCC  
VCC  
SHDNB  
SPI/IF  
VREF15  
VREFCAL  
VREF25  
SDO  
SCK  
VCC  
ALARMB  
VREF15  
VCC  
VREF15  
INP  
INN  
INTB  
Current  
Sense  
+
-
Alarm output  
ΔΣ  
ADC  
Accumulator  
Data Register  
OSC  
EXADIN  
ADINM GND  
VREF25  
DGND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
1/65  
BD7220FV-C  
Pin Configuration  
VREF15  
DGND  
SCK  
1
2
GND  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VREFCAL  
VCC  
3
SDO  
4
VREF25  
ADINM  
INN  
SDI  
5
CSB  
6
INTB  
7
INP  
VDD  
8
AMPOUT  
ADINP  
EXADIN  
ALARMB  
SHDNB  
9
10  
SSOP-B20 (TOP VIEW)  
Pin Description  
Pin No.  
Pin Name  
I/O  
Function  
LDO output for internal power  
Digital ground  
1
2
VREF15  
DGND  
SCK  
O
-
SPI clock input  
3
I
SPI data output  
4
SDO  
O
I
SPI data input  
5
SDI  
SPI chip select input  
Event interrupt output open drain  
Power supply for SPI I/F  
Alarm output open drain  
6
CSB  
I
7
INTB  
O
-
8
VDD  
9
ALARMB  
SHDNB  
EXADIN  
ADINP  
AMPOUT  
INP  
O
I
Shutdown Input (H: operating, L: shutdown)  
Delta sigma ADC select input  
Delta sigma ADC monitor input  
Internal amp output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
I
I
O
I
Internal amp non-inverting input  
Internal amp inverting input  
INN  
I
Delta sigma ADC reference input  
Internal reference output  
ADINM  
VREF25  
VCC  
I
O
-
Power supply  
Reference output for calibration in BD7220FV-C shipment process  
Analog ground  
VREFCAL  
GND  
O
-
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
2/65  
BD7220FV-C  
Application Example  
SHDNB  
VDD  
EXADIN  
VREF25  
ADINM  
INTB  
ADINP  
ALARMB  
AMPOUT  
INP  
CSB  
SDI  
INN  
SDO  
SCK  
VCC  
VREF15  
VREFCAL  
GND  
DGND  
Block Diagram  
AMPOUT  
VREF25  
ADINP  
VCC  
VREF15  
VREFCAL  
VDD  
CSB  
SDI  
SDO  
SCK  
VCC  
VCC  
SHDNB  
SPI/IF  
VREF15  
VREFCAL  
VREF15  
VREF25  
VCC  
VCC  
ALARMB  
VREF15  
INP  
INN  
INTB  
+
-
Alarm output  
ΔΣ  
ADC  
Accumulator  
Data Register  
OSC  
EXADIN  
GND  
ADINM  
DGND  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
3/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Absolute Maximum Ratings (Ta = 25 °C)  
Item  
Symbol  
Limit  
Unit  
Voltage Range1 (VCC, VDD)  
Voltage Range2 (VREF15)  
VAMR_1  
VAMR_2  
-0.3 to +7.0  
-0.3 to +2.1  
V
V
Voltage Range3  
(VREF25, VREFCAL, INP, INN, EXADIN,  
SHDNB, INTB, ALARMB, AMPOUT, ADINP,  
ADINM, CSB, SDI, SDO, SCK)  
VAMR_3  
-0.3 to +7.0  
V
Maximum Junction Temperature  
Storage Temperature Range  
Tjmax  
Tstg  
150  
°C  
°C  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 2)  
Thermal Resistance(Typ)  
Parameter  
Symbol  
Unit  
1s (Note 4)  
2s2p (Note 5)  
SSOP-B20  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 3)  
θJA  
115.4  
10  
57.3  
8
°C/W  
°C/W  
ΨJT  
(Note 2) Based on JESD51-2A (Still-Air)  
(Note 3) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 4) Using a PCB board based on JESD51-3  
(Note 5) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
FR-4  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
Recommended Operating Condition  
Limit  
Item  
Symbol  
Unit  
Max  
Condition  
Min  
Typ  
Voltage Range1 (VCC)  
Voltage Range2 (VDD)  
Operating Temperature  
VOPR_1  
VOPR_2  
Topr  
4.5  
2.5  
-40  
5.0  
3.3  
5.5  
5.5  
V
V
+25  
+125  
°C  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
4/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Electrical Characteristics  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
VREF15  
Output Voltage1  
Output Voltage2  
VO15_1  
VO15_2  
CVO15  
1.470  
1.450  
0.4  
1.500  
1.500  
-
1.530  
1.550  
2.0  
V
V
Io = 0 mA, Ta= +25 °C  
Io = 0 mA, Ta= -40 °C to +125 °C  
Effective Output Capacitance  
μF  
Recommended Nominal Capacitor:1 μF  
VREF25  
Output Voltage1  
Output Voltage2  
VO25_1  
VO25_2  
CVO25  
2.450  
2.400  
0.4  
2.500  
2.500  
-
2.550  
2.600  
2.0  
V
V
Io = 0 mA, Ta= +25 °C  
Io = 0 mA, Ta= -40 °C to +125 °C  
Recommended Nominal Capacitor:1 μF  
Effective Output Capacitance  
μF  
OSC  
Frequency1  
Frequency2  
Start up Time  
fOSC_1  
fOSC_2  
8110  
8028  
-
8192  
8192  
50  
8274  
8356  
200  
kHz  
kHz  
μs  
Ta= +25 °C  
Ta= -40 °C to +125 °C  
tWAKEOSC  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
Current Consumption  
SHDNB = L, MODE_SEL [1:0] = 2'bXX  
VREF15 = OFF, VREF25 = OFF  
AMP = OFF, ΔΣADC = OFF  
Shutdown Current 1_1  
(OFF) = HSHDN  
IQVB1_1  
IQVB1_2  
IQVB2_1  
IQVB2_2  
IQVB3_1  
IQVB3_2  
-
-
-
-
-
-
0
0
5
μA  
μA  
OSC = OFF, Ta= +25 °C  
SHDNB = L, MODE_SEL [1:0] = 2'bXX  
VREF15 = OFF, VREF25 = OFF  
AMP = OFF, ΔΣADC = OFF  
OSC = OFF, Ta= -40 °C to +125 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b11  
VREF15 = ON, VREF25 = OFF  
AMP = OFF, ΔΣADC = OFF  
Shutdown Current 1_2  
(OFF) = HSHDN  
10  
Shutdown Current 2_1  
(Soft Shutdown Mode) = SSHDN  
20  
40  
μA  
OSC = OFF, Ta= +25 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b11  
VREF15 = ON, VREF25 = OFF  
AMP = OFF, ΔΣADC = OFF  
OSC = OFF, Ta= -40 °C to +125 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b01  
VREF15 = ON, VREF25 = ON  
AMP = ON, ΔΣADC = ON  
Shutdown Current 2_2  
(Soft Shutdown Mode) = SSHDN  
20  
200  
3.75  
7.50  
μA  
Operating Current 1_1  
(NORMAL Mode)  
2.50  
2.50  
mA  
mA  
OSC = ON, Ta= +25 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b01  
VREF15 = ON, VREF25 = ON  
AMP = ON, ΔΣADC = ON  
Operating Current 1_2  
(NORMAL Mode)  
OSC = ON, Ta= -40 °C to +125 °C  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
5/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Electrical Characteristics – continued  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b00,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
Operating Current 2_1  
(SLEEP Mode)  
IQVB4_1_1  
-
700  
1050  
μA  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= +25 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b00,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
Operating Current 2_2  
(SLEEP Mode)  
IQVB4_1_2  
IQVB4_2_1  
IQVB4_2_2  
IQVB4_3_1  
IQVB4_3_2  
IQVB4_4_1  
IQVB4_4_2  
-
-
-
-
-
-
-
700  
600  
600  
540  
540  
500  
500  
1250  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= -40 °C to +125 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b01,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
Operating Current 3_1  
(SLEEP Mode)  
900  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= +25 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b01,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
Operating Current 3_2  
(SLEEP Mode)  
1100  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= -40 °C to +125 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b10,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
Operating Current 4_1  
(SLEEP Mode)  
810  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= +25 °C  
SHDNB = H, MODE_SEL [1:0] = 2'b10,  
SLEEP_INTERVAL [1:0] = 2'b10,  
SLEEP_SAMPLING_TIME [1:0] = 2'b00,  
VREF15 = ON, VREF25 = Intermittent Operation  
AMP = Intermittent Operation,  
ΔΣADC = Intermittent Operation, OSC = ON,  
Ta= -40 °C to +125 °C  
SHDNB=H, MODE_SEL[1:0]=2'b10,  
SLEEP_INTERVAL[1:0]=2'b11,  
SLEEP_SAMPLING_TIME[1:0]=2'b00,  
VREF15=ON, VREF25=Intermittent Operation  
AMP=Intermittent Operation,  
ΔΣADC=Intermittent Operation, OSC = ON,  
Ta= +25 °C  
SHDNB=H, MODE_SEL[1:0]=2'b10,  
SLEEP_INTERVAL[1:0]=2'b11,  
SLEEP_SAMPLING_TIME[1:0]=2'b00,  
VREF15=ON, VREF25=Intermittent Operation  
AMP=Intermittent Operation,  
Operating Current 4_2  
(SLEEP Mode)  
1010  
Operating Current 5_1  
(SLEEP Mode)  
750  
Operating Current 5_2  
(SLEEP Mode)  
950  
ΔΣADC=Intermittent Operation, OSC = ON,  
Ta= -40 °C to +125 °C  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
6/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Electrical Characteristics – continued  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
AMP Block  
Analog Input Valtage Range 1  
Analog Input Valtage Range 2  
Analog Input Valtage Range 3  
VAIN1  
VAIN2  
-200  
-80  
-40  
-
-
-
-
-
+400  
+80  
+40  
1.5  
mV  
mV  
mV  
ms  
AMP_GAIN [1:0] = 2'b00(Gain = 5 V/V)  
AMP_GAIN [1:0] = 2'b01(Gain = 25 V/V)  
AMP_GAIN [1:0] = 2'b10(Gain = 25 V/V)  
VAIN3  
AMP_GAIN [1:0] = 2'b11(Gain = 51 V/V)  
Gain Setting Time  
tGAINSET  
ADC Block  
Resolution  
-
-
-
16  
bit  
ms  
ms  
ms  
ms  
V
MCIC_R [1:0] = 2'b00  
(Down sampling value = 32)  
MCIC_R [1:0] = 2'b01  
(Down sampling value = 128)  
MCIC_R [1:0] = 2'b10  
(Down sampling value = 256)  
MCIC_R [1:0] = 2'b11  
ADC Conversion Time 1  
ADC Conversion Time 2  
ADC Conversion Time 3  
ADC Conversion Time 4  
EXADIN Valtage Range  
tCONV1  
tCONV2  
tCONV3  
tCONV4  
VEXADIN  
0.20  
0.80  
1.60  
6.40  
0.5  
0.25  
1.00  
2.00  
8.00  
-
0.30  
1.20  
2.40  
9.60  
4.5  
(Down sampling value = 1024)  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
UVLO(VCC)  
VCC UVLO Detect Voltage  
VCC_UVLOD  
VCC_UVLOR  
2.700  
2.717  
2.800  
3.000  
2.900  
3.283  
V
V
VCC = Sweep down  
VCC = Sweep up  
VCC UVLO Release  
UVLO(VREF15)  
VREF15 UVLO Detect Voltage  
VREF15_UVLOD  
1.352  
1.380  
1.408  
V
VREF15 = Sweep down  
UVLO(VDD)  
VDD UVLO Detect Voltage  
VDD UVLO Release  
VDD_UVLOD  
VDD_UVLOR  
1.550  
1.650  
1.700  
1.800  
1.850  
1.950  
V
V
VDD = Sweep down  
VDD = Sweep up  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
7/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 5.0 V, VDD = 3.3 V)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
IO Interface  
SHDNB Input "H" Level  
V
VCCx0.7  
-
-
-
-
-
-
-
-
-
VCC+0.3  
V
V
IH_SHDNB  
SHDNB Input "L" Level  
V
-0.3  
-1  
0
+VCCx0.3  
+1  
IL_SHDNB  
SHDNB Input Leak Current  
INTB Output "L" Level Voltage1  
INTB Output "L" Level Voltage2  
INTB Output Off Leak Current  
ALARMB Output "L" Level Voltage1  
ALARMB Output "L" Level Voltage2  
IOFF_SHDNB  
μA  
V
VOL_INTB1  
VOL_INTB2  
0.4  
IO = 1 mA, Ta= +25 °C  
0
0.5  
V
IO = 1 mA, Ta= -40 °C to +125 °C  
INTB = 5.5 V  
IOLK_INTB  
-1  
0
+1  
μA  
V
VOL_ALARMB1  
VOL_ALARMB2  
IOLK_ALARMB  
0.4  
IO = 1 mA, Ta= +25 °C  
IO = 1 mA, Ta= -40 °C to +125 °C  
ALARMB = 5.5 V  
0
0.5  
V
ALARMB Output Off Leak Current  
-1  
+1  
μA  
SPI Bus Interface  
CSB, SDI, SCK Input "H" Level Voltage  
CSB, SDI, SCK Input "L" Level Voltage  
SDO Output "L" Level Voltage  
SDO Output "H" Level Voltage  
CSB, SDI, SCK Input Leak Current  
SDO Output Off Leak Current  
CSB-SCK Setup Time  
V
VDDx0.7  
-0.3  
0
-
-
VDD+0.3  
V
V
IH_SPI  
V
+VDDx0.3  
IL_SPI  
VOL_SDO  
VOH_SDO  
IOLK_SPI  
IOLK_SDO  
tCSS  
-
0.4  
V
IOL = 1 mA  
VDD-0.2  
-1  
-
VDD  
V
IOH = -100 μA  
0
0
-
+1  
μA  
μA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-1  
+1  
1000  
1000  
1000  
1000  
150  
150  
-
-
SCK-CSB Hold Time  
tCSH  
-
-
SCK "H" Pulse Width Time  
SCK "L" Pulse Width Time  
SCK-SDI Setup Time  
tWH  
-
-
tWL  
-
-
tDIS  
-
-
SCK-SDI Hold Time  
tDIH  
-
-
400  
-
SCK-SDO Delay Time  
tDOD  
-
CSB "H" Pulse Width Time  
tCS  
500  
-
tCSS  
tCS  
CSB  
SCK  
SDI  
tWH tWL  
tCSH  
tDIS  
tDIH  
tDOD  
SDO  
Figure 1. SPI Timing Chart  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
8/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Typical Performance Curve (Reference Data)  
20  
Gain5  
15  
10  
5
Gain25  
Gain51  
0
-5  
-10  
-15  
-20  
-50  
0
50  
100  
150  
Temperature []  
Figure 2. Output Offset vs Temperature  
(VCC = 5 V)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
9/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Description of Blocks  
1.  
Current Accumulator  
1.1  
Summary  
This product performs accumulation current operation (Coulomb count) by monitoring the battery charge/discharge current.  
The Coulomb count value obtained is used for battery state-of-charge estimation. It can obtain both the current accumulation  
level and the current value itself.  
1.1.1  
Features  
Reading current converted to voltage by an external resistor as a digital value  
Accumulation current counters which monitors the charge/discharge current value  
Independent monitoring of charge and discharge values  
Current value monitoring via SPI  
Fixed-interval average current read function (interval can be adjusted in 4 stages)  
Overwrite function of accumulated current data via SPI I/F  
1.1.2  
Composition  
The Current Accumulator block is comprised of 3 sub-blocks. (See figure 1-1)  
Differential op-amp (AMP)  
The AMP sub-block monitors the voltage converted by the external resistor RSNS at the INP and INN pins. The voltage  
difference between INP and INN is then amplified to a voltage suitable for the ΔΣADC input.  
Address 00h (AMP_GAIN [1:0]) can be used to adjust voltage amplification gain to 5 V/V, 25 V/V, or 51 V/V. Take note that  
the input voltage range changes with this gain setting.  
ΔΣADC  
The 16-bit ΔΣADC has an analog-to-digital conversion rate of 4 kHz using the standard setting.  
A digital filter determines the ADC’s output rate and frequency response. This filter has 4 settings, accessible through  
address 00h (MCIC_R [1:0]). Please set an appropriate value considering the influence of the current’s frequency response,  
agitation noise, and the like.  
Accumulator  
The accumulator operates by using the current value in digital form from the ΔΣADC output.  
Chapter 1.3 details the calculation function of the Accumulator, while Chapter 3 describes the interrupt function.  
VREF25  
VCC  
VCC  
VREF15  
VREF15  
INP  
INN  
+
-
RSNS  
ΔΣ  
ADC  
Accumulator  
VREF25  
C
B
A
Figure 1-1. Accumulation Current Block Diagram  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
10/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.2  
Register Structure  
Regarding resister structure for current measurement, refer to Figure 1-2.  
Measurement  
or Calcuration  
Measurement  
Current  
Current Detection  
Interrupt Threshold  
Voltage  
16bit  
OCURTHR1_DIR + OCURTHR1[14:0]  
OCURTHR2_DIR + OCURTHR2[14:0]  
OCURTHR3_DIR + OCURTHR3[14:0]  
18bit  
Possible to select the bit width  
of valid data (18 to 11 bit)  
from measured 18 bit data.  
(lower 0 to 7 bit can be masked)  
Mask Bit Select  
11-18b  
CCNTD_MASK[2:0]  
8bit  
8bit  
Current Value  
CURCD_DIR  
+ CURCD[14:0]  
Wake Up Current Detection  
WAKE_CURCD_TH[7:0]  
Relax State Detection  
REX_CURCD_TH[7:0]  
Discharge  
Accumulation  
Current  
Charge  
Accumulation  
Current  
Charge+Discharge  
Accumulation  
Current  
Accumulation Current Detection  
CC_BATCAP1_TH[23:0]  
CC_BATCAP2_TH[23:0]  
CC_BATCAP3_TH[23:0]  
CC_BATCAP4_TH[23:0]  
24bit  
Fixed Average Current  
AVE_CURCD_DIR  
+ AVE_CURCD[14:0]  
DIS_CCNTD[31:0]  
CHG_CCNTD[31:0]  
CC_CCNTD[31:0]  
Figure 1-2. Register Structure for Current Measurement  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
11/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.3  
Function Description  
Current Measurement  
1.3.1  
BD7220FV-C measures current by monitoring the difference in voltage between the ends of the external current sense  
resistor (RSNS) connected to the differential op-amp inputs INP and INN. The op-amp amplifies the differential input biased on  
2.5 V (VREF25) as a reference voltage. The amplified voltage is then used as input to the ΔΣADC. For example, for a  
difference of 100 mV between the INP and INN pins and a 5 V/V gain setting:  
2.5 [V] + 100 [mV] × 5 = 3.0 [V]  
In this calculation, 3.0 V is input to the ΔΣADC. (ADINP = 3.0 V, ADINM = 2.5 V, ΔV = 0.5 V)  
At shipment, the ΔΣADC input voltage is defined as ΔV = 4.5 V. (ADINP=0.25 V to 4.75 V)  
퐴: ΔΣ 퐼푛푝푢푡 퐿푆퐵 푉표푙푡푎푔푒 = 4.5 ÷ 2ꢀ6 ≈ ±ꢁ8.ꢁꢁ455 [µV]  
The CURCD register indicates the current value and is defined as [sign bit] + [15 bits] based on the computed LSB voltage.  
Table 1-1 shows current unit information for each gain setting.  
The LSB voltage input for the differential amplifier (Figure 1-1C) is the ΔΣADC input LSB voltage divided by the amplifier gain  
setting (Figure 1-1B). The current flowing through the sense resistor RSNS is calculated using the 1LSB voltage and the  
sense resistor value.  
The data in Table 1-1 is calculated with the assumption that RSNS = 0.2 mΩ. If, for example, RSNS = 0.1 mΩ, the current value  
(and, the measurement current range is same) in the table 1-1 is doubled.  
Table 1-1. Current Monitor Unit  
Available  
Measurement  
Current Range  
OPamp Input  
1LSB Current  
(@RSNS = 0.2 mΩ)  
[mA]  
ΔΣADC Input  
1LSB Voltage  
[μV]  
OPamp Input  
Voltage Range  
[mV]  
AMP_GAIN [1:0]  
Gain  
[times]  
1LSB Voltage  
(INP-INN)  
[μV]  
register  
(@RSNS = 0.2 mΩ)  
[A]  
2'b00  
2'b01, 2'b10  
2'b11  
5
68.66  
68.66  
68.66  
13.73  
2.75  
1.35  
68.66  
13.73  
6.73  
-200 to +400  
±80  
-1000 to +2000  
25  
51  
±400  
±200  
±40  
Op-amp input LSB voltage  
LSB current  
Current measurement range  
= ΔΣADC input LSB voltage ÷ gain setting value  
= Op-amp input LSB voltage ÷ external current sense resistance (RSNS  
= Op-amp input voltage range ÷ external current sense resistance (RSNS  
)
)
Figure 1-3 shows the structure of the CURCD register.  
The MSB indicates the direction of the current and shows a current value using the remaining 15 bits.  
Sign  
CURCD_H  
CURCD_L  
15 14  
8
7
0
Figure 1-3. CURCD Register  
When the current is 100 A, CURCD reads 1C71 [Hex] under the 25 V/V gain setting.  
100 [A] ÷ 13.7329 [mA] ≈ 7281.78 ≈ 7281 [DEC] = 1C71 [HEX]  
= 15’h1C71  
The lower bits that comprise the fractional value will be truncated.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
12/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.3.2  
Unit of Accumulation Current  
BD7220FV-C can calculate and output accumulation current value based on the measured current. To enable this function,  
please set the CCNTEN register (address 00h) = 1. (Refer to 1.3.1 Current Measurement) The accumulation current value  
can be found in the 32-bit register CC_CCNTD. The LSB and MSB values are computed as below. The accumulation current  
value is calculated with higher precision than the CC_CCNTD register’s LSB value.  
(
퐿푆퐵 푓표푟 푖푛푡푒푟푛푎푙 푎푐푐푢푚푢푙푎푡푖표푛 푐푢푟푟푒푛푡 = 푐푢푟푟푒푛푡 퐿푆퐵 × 퐴퐷 푐표푛푣푒푟푠푖표푛 푡푒푟푚 [s] ÷  
)
3ꢁ00  
−6  
(
)
푒푥. )퐺퐴퐼푁 = 5 ∶ ꢁ8.ꢁꢁ [mA] × 250 × 10 ÷ 3ꢁ00 ≈ 4.77 [nAh]  
퐿푆퐵 푓표푟 퐶퐶퐶퐶푁푇퐷푟푒푔푖푠푡푒푟 =  
푖푛푡푒푟푛푎푙 푎푐푐푢푚푢푙푎푡푖표푛 푐푢푟푟푒푛푡 퐿푆퐵 × 푖푛푡푒푟푛푎푙 푎푑푗푢푠푡푚푒푛푡(ꢁ푏푖푡푠)  
푒푥. )퐺퐴퐼푁 = 5 ∶ 4.77 [nAh] × 26 ≈ 0.3052 [µAh]  
푀푆퐵 푣푎푙푢푒 푓표푟 퐶퐶ꢂꢂꢃꢄꢅ푟푒푔푖푠푡푒푟 = 퐶퐶ꢂꢂꢃꢄꢅ푟푒푔푖푠푡푒푟 퐿푆퐵 × 2ꢆꢀ = ꢁ55.3ꢁ [Ah]  
Figure 1-4 shows structure of the CC_CCNTD register and approximate accumulation current.  
CC_CCNTD register  
for internal calclation  
CC_CCNTD_3  
81.92  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
31  
24 23  
5.12  
16 15  
20m  
8
7
0
655.4  
78μ  
4.9μ  
0.3μ  
4.7n  
[Ah]  
320m  
1.25m  
Figure 1-4. Structure of CC_CCNTD Register (CC_UNDIV=0)  
To cancel the variation of current LSB in each amplifier gain setting, the current value can be scaled and accumulated in  
CC_CCNTD register in the logic. This makes the LSB of accumulation current constant regardless of amplifier gain.  
For example, when current of 70 mA flows in RSNS, the CURCD register reading is 15’h0001 under a 5 V/V gain setting.  
Under a 25 V/V setting, CURCD reading is 15’h0005. At 25 V/V gain, not to accumulate 5 times larger from actual value, the  
logic accumulates the CURCD value divided by 5 to get the equivalent value at 5 V/V gain. At 51 V/V, the divisor is 10.2. The  
CC_UNDIV register (address 01h) allows the user to enable or disable CURCD value scaling. Using scaling (CC_UNDIV =  
“0”) introduces a small amount of error but allows the user to change three amplifier gain settings. Disabling scaling  
(CC_UNDIV = “1”) requires that the amplifier setting be fixed, but ensures that errors are not introduced. However, the  
accumulation current capacity changes depending on the gain setting. Comparing to the value of 5 V/V setting, it is 1/5 when  
the setting is 25 V/V, and 1/10.2 when the setting is 51 V/V. It is possible to write the value of accumulation current into  
CC_CCNTD resister. Please execute write operation after setting “0” to CCNTEN resister and current accumulating is  
disabled. When CCNTEN resister is “0”, update of accumulation current is discarded.  
Table 1-2. Unit of CC_CCNTD Register Accumulation (RSNS = 0.2 mΩ)  
AMP_GAIN [1:0]  
2'b00(5 V/V)  
CC_UNDIV = 0  
(Variable Gain)  
2'b01(25 V/V)  
2'b10(25 V/V)  
2'b11(51 V/V)  
UNIT  
CC_UNDIV = 1  
(Fixed Gain)  
2'b01(25 V/V)  
2'b10(25 V/V)  
0.95  
2'b00(5 V/V)  
2'b11(51 V/V)  
Internal Accumulation 1LSB  
CC_CCNTD_0 LSB  
CC_CCNTD_1 LSB  
CC_CCNTD_2 LSB  
CC_CCNTD_3 LSB  
CC_CCNTD_3 MSB  
Maximum Accumulation Current  
4.77  
0.3052  
78.125  
20.00  
5.12  
655.36  
1310.41  
0.47  
0.0299  
7.659  
1.96  
0.50  
64.25  
128.47  
[nAh]  
[μAh]  
[μAh]  
[mAh]  
[Ah]  
0.0610  
15.625  
4.00  
1.02  
131.07  
262.08  
[Ah]  
[Ah]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
13/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Unit of Accumulation Current – continued  
In addition, BD7220FV-C can accumulate charging accumulation current (via CHG_CCNTD) and discharging accumulation  
current (via DIS_CCNTD) separately. Please refer to Figure 1-5 and Figure 1-6 about the structure of CHG_CCNTD and  
DIS_CCNTD resister and their relationship with CC_CCNTD.  
CHG_CCNTD is shifted 2 bits to the left from CC_CCNTD. Accumulation scaling in internal logic for CHG_CCNTD and  
DIS_CCNTD is the same as in CC_CCNTD, so the unit of accumulation current is the same regardless of the amplifier gain  
setting. Thus, the value of LSB is greater, but CHG_CCNTD and DIS_CCNTD capacities are 4 times that of CC_CCNTD.  
The maximum battery capacity of CC_CCNTD is around 1310[Ah], so CHG_CCNTD and DIS_CCNTD can accumulate up to  
5240[Ah].  
CC_CCNTD_3  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
31  
24 23  
16 15  
8
7
0
CHG_CCNTD_3  
CHG_CCNTD_2  
CHG_CCNTD_1  
CHG_CCNTD_0  
31  
24 23  
16 15  
8
7
0
Figure 1-5. Relation between CC_CCNTD and CHG_CCNTD  
CC_CCNTD_3  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
31  
24 23  
16 15  
8
7
0
DIS_CCNTD_3  
DIS_CCNTD_2  
DIS_CCNTD_1  
DIS_CCNTD_0  
31  
24 23  
16 15  
8
7
0
Figure 1-6. Relation between CC_CCNTD and DIS_CCNTD  
COUNT  
VALUE  
Charge and Discharge Accumulation  
Charge Accumulation  
No Charge or  
DIscharge  
Discharge Accumulation  
Charge  
Discharge  
Charge  
No Charge  
or Discharge  
TIME  
Figure 1-7. Difference between charge accumulation current and charge/discharge accumulation current  
The values of CC_CCNTD, CHG_CCNTD and DIS_CCNTD can be cleared by writing “1” to their reset registers.  
Resetting is valid regardless of the CCNTEN setting. The reset register is automatically cleared to “0” after writing “1”.  
Table 1-3. CCNTD Registers and Reset Registers  
Register Name  
CC_CCNTD  
CHG_CCNTD  
Address  
Bit  
Bit Name  
Function  
Charge and discharge accumulation current  
Charge accumulation current only  
Discharge accumulation current only  
Reset CC_CCNTD  
17h to 1Ah [7] to [0] CC_CCNTD [31:0]  
1Bh to 1Eh [7] to [0] CHG_CCNTD [31:0]  
1Fh to 22h [7] to [0] DIS_CCNTD [31:0]  
DIS_CCNTD  
CC_TRG_RST_CMD  
CC_TRG_RST_CMD  
CC_TRG_RST_CMD  
02h  
02h  
02h  
[0]  
[1]  
[2]  
CCNTRST  
CHG_CCNTD_RST  
DIS_CCNTD_RST  
Reset CHG_CCNTD  
Reset DIS_CCNTD  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
14/65  
BD7220FV-C  
1.3.3  
Fixed-Interval Average Current  
BD7220FV-C can output average current at fixed intervals set using registers. Moving average is not used.  
The AVE_CURCD_DIR register denotes the current direction and the AVE_CURCD [14:0] register represents the current  
value. The fixed interval is determined by the ΔΣADC digital filter setting (address 00h: MCIC_R [1:0]), OSR setting (address  
01h: OSR [1:0]), and sampling time setting (address 01h: AVE_CURCD_COUNT [1:0]). Table 1-4 contains details regarding  
the fixed interval setting.  
For MCIC_R [1:0] = 2’b00, OSR [1:0] = 2’b00, and AVE_CURCD_COUNT [1:0] = 2’b10, ADC sampling time is 0.25 ms and  
the fixed interval is 0.25 ms x 64 = 16 ms.  
Table 1-4. Fixed interval setting (listed by OSR [1:0] setting)  
OSR [1:0] = 2'b00(32) or 2'b11(32)  
MCIC_R [1:0]  
2'b00(32) 2'b01(128) 2'b10(256) 2'b11(1024)  
ADC Conversion Time[ms]  
0.25  
1
2
8
Mearsurement  
Averaging Time[ms]  
Count  
4
16  
AVE_CURCD_COUNT [1:0] = 2'b00  
AVE_CURCD_COUNT [1:0] = 2'b01  
AVE_CURCD_COUNT [1:0] = 2'b10  
AVE_CURCD_COUNT [1:0] = 2'b11  
1
4
4
8
32  
128  
512  
1024  
16  
32  
64  
128  
16  
32  
64  
128  
128  
256  
(Note) "Averaging Time" = "ADC Conversion Time" x "Muasurement Count"  
OSR [1:0] = 2'b01(128)  
MCIC_R[1:0]  
2'b00(32) 2'b01(128) 2'b10(256) 2'b11(1024)  
ADC Conversion Time[ms]  
0.25  
0.25  
0.5  
2
Mearsurement  
Averaging Time[ms]  
Count  
4
16  
AVE_CURCD_COUNT [1:0] = 2'b00  
AVE_CURCD_COUNT [1:0] = 2'b01  
AVE_CURCD_COUNT [1:0] = 2'b10  
AVE_CURCD_COUNT [1:0] = 2'b11  
1
4
1
4
2
8
8
32  
128  
256  
64  
128  
16  
32  
16  
32  
32  
64  
(Note) "Averaging Time" = "ADC Conversion Time" x "Muasurement Count"  
OSR [1:0] = 2'b10(512)  
MCIC_R[1:0]  
2'b00(32) 2'b01(128) 2'b10(256) 2'b11(1024)  
ADC Conversion Time[ms]  
0.25  
0.25  
0.25  
0.5  
Mearsurement  
Averaging Time[ms]  
Count  
4
16  
AVE_CURCD_COUNT [1:0] = 2'b00  
AVE_CURCD_COUNT [1:0] = 2'b01  
AVE_CURCD_COUNT [1:0] = 2'b10  
AVE_CURCD_COUNT [1:0] = 2'b11  
1
4
1
4
1
4
2
8
32  
64  
64  
128  
16  
32  
16  
32  
16  
32  
(Note) "Averaging Time" = "ADC Conversion Time" x "Muasurement Count"  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
15/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.3.4  
Bit Mask Function of Accumulation Current  
The current measured by BD7220FV-C is 18 bits valid data and it is stored in the 16 bits CURCD register (see 1.3.1. Current  
Measurement).In the default setting, 16 bits’ width of current value same with CURCD register is accumulated to  
CC_CCNTD resister, CHG_CCNTD resister and DIS_CCNTD resister, and it can select to mask lower bits of current (fixing  
lower bits to “0” in accumulation) by setting CCNTD_MASK resister. With this bit mask function, it is possible to reduce the  
affection from noise in measuring minute current and accumulation.  
Note that this function fixing lower bits to “0” in accumulation. This means current is rounded down when sign is positive, and  
current is rounded up when sign is negative since it is expressed by two’s complement. And, complement by user’s MCU is  
recommended, because accumulation current has constant error following to mask lower bits of current. (see next page)  
Note that this function affects only the accumulation from CURCD to CC_CCNTD/CHG_CCNTD/DIS_CCNTD. This does not  
affect CURCD itself. CURCD does not have bit mask function and so always contains the full 16 bits of data.  
Fixed time average  
16bits Fixed  
CURCD_DIR  
AVE_CURCD_DIR  
+ AVE_CURCD[14:0]  
+ CURCD[14:0]  
18bits output from ΔΣADC  
ΔΣADC  
38bit  
32bit  
CC_CCNTD[31:0]  
CC_CCNTD(internal)  
+
+
+
CCNTD_MASK[2:0]  
38bit  
32bit  
CHG_CCNTD[31:0]  
0007bits Mask(11bits valid)1003bits Mask(15bits valid)  
0016bits Mask(12bits valid)1012bits Mask(16bits valid)  
0105bits Mask(13bits valid)1101bits Mask(17bits valid)  
0114bits Mask(14bits valid)111No Mask(18bits valid)  
CHG_CCNTD(Internal)  
38bit  
32bit  
DIS_CCNTD[31:0]  
DIS_CCNTD(Internal)  
Image of bits mask  
CURCD_H  
CURCD_L  
Accumulation with selectable bit width from 11bits to 18bits  
Sign  
15 14  
8
7
0
Selectable lower 8bits masking  
Example of Internal 18bits valid data  
Figure 1-8. Bit Mask Function of Accumulation Current  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
16/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.3.4  
Bit Mask Function of Accumulation Current - continued  
This is the example of CCNTD error complement with bit mask function.  
(1) Adding manual offset to CURCD  
In the case that measuring minute current value is less than ±1LSB of bit mask, positive sign current data becomes zero  
and negative sign current data becomes –LSB with bit mask function. Adding manual offset (OFST10: address0Bh) to  
shift CURCD only positive sign data, current data becomes zero and it saves unintended current accumulation with  
measuring minute current. But it needs CCNTD error complement, because this offset is added constantly.  
Figure 1-9. Image of Adding Manual Offset to CURCD  
(2) Adding error complement to CCNTD  
Below is the formula of CCNTD error complement for (1) CURCD manual offset and for increasing lower bits of bit mask  
function.  
Table 1-5. Formula of CCNTD Error Complement  
item  
Resistor  
Formula of Error Complement  
{ -OFST × (TC / AD_conversion_term) / internal_bits_adjustment } = { -OFST × 4000 / 26  
CC_CCNTD  
}
Complement of CURCD  
manual offset  
CHG_CCNTD { -OFST × (TC / AD_conversion_term) / internal_bits_adjustment } = { -OFST × 4000 / (26 / 22) }  
DIS_CCNTD { -OFST × (TC / AD_conversion_term) / internal_bits_adjustment } = { -OFST × 4000 / (26 / 22) }  
CC_CCNTD  
{ 2N-3 × (TC / AD_conversion_term) / internal_bits_adjustment } = { 2N-3 × 4000 / 26  
}
Complement of bit mask  
function  
CHG_CCNTD { 2N-3 × (TC / AD_conversion_term) / internal_bits_adjustment } = { 2N-3 × 4000 / (26 / 22) }  
DIS_CCNTD { 2N-3 × (TC / AD_conversion_term) / internal_bits_adjustment } = { 2N-3 × 4000 / (26 / 22) }  
(Note) OFST: Manual Offset Value, TC: CCNTD Read Term, N: Bit Mask Width  
(Note) Condition: N > 2, CC_UNDIV=1, CCNTD Read Term = 1 [s]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
17/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
1.3.5  
Setting of ΔΣADC Digital Filter  
The ΔΣADC digital filter can be set to one of four filter characteristics depending on the purpose. Using the wideband filter  
makes it possible to measure steep current changes. While this is not possible using the narrowband filter, using the  
narrowband filter helps suppress environmental noise.  
The characteristic of the Digital Filter is changed using MCIC_R register (address 00h MCIC_R [1:0]). Because the  
conversion time depends on the MCIC_R register setting, attention is necessary. (Refer to Table 1-6, Table 1-7)  
ADC sampling period (AD_SAMP)  
-Time to convert 1 sampling. The average current of this period is output to CURCD register, and accumulated to  
CC_CCNTD register.  
ADC conversion latency (AD_LATE) consists of the following wait times.  
-Transaction time from OFF to ON in intermittent action  
-Reshuffle time for EXADIN pin input voltage measurement action  
-After calibration, time to convert initial data from ΔΣADC startup condition  
During this period, it cannot output measurement current.  
Table 1-6. ADC Sampling Period [ms] (MCIC_R [1:0] / OSR [1:0])  
Address 01h  
Address 00h  
MCIC_R[1:0]  
OSR[1:0]  
2'b00(32)  
2'b11(32)  
2'b01(128) 2'b10(512)  
2'b11(1024)  
2'b10(256)  
2'b01(128)  
2'b00(32)  
8
2
1
2
0.5  
0.25  
0.25  
0.5  
0.25  
0.25  
0.25  
0.25  
Table 1-7. ADC Conversion Latency [ms] (MCIC_R [1:0] / OSR [1:0])  
Address 01h  
Address 00h  
MCIC_R [1:0]  
OSR [1:0]  
2'b00(32)  
2'b11(32)  
96.5  
2'b01(128) 2'b10(512)  
2'b11(1024)  
2'b10(256)  
2'b01(128)  
2'b00(32)  
24.5  
6.5  
3.5  
1.5  
6.5  
2.5  
1.5  
1.5  
24.5  
12.5  
3.5  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
18/65  
BD7220FV-C  
2.  
Operation Modes  
Features  
2.1  
Automatic power on by supplying input voltage (VCC)  
Recall of OTP memory automatically in power on sequence  
High accuracy of calculation and accumulation of current in the Normal mode  
Low current consumption thanks to intermittent operation of AMP and ΔΣADC in SLEEP mode  
(The timing of the intermittent operation and ON time duration can be set by register)  
Retention of internal registers in SSHDN mode  
SHDNB pin which can turn all blocks off (OFF state, data in internal registers are cleared)  
2.2  
Structure  
BD7220FV-C starts to operate as soon as input power is supplied.  
After the reference voltage turns on (WAKE), OTP settings (including calibration settings) are recalled. Then, BD7220FV-C  
becomes ready for SPI communication (IDLE). With finished recall from OTP, 1” is set to OTP_DL_FIN register. There are  
three other operating modes from the IDLE state. Using SPI commands, it is possible to freely change between these modes.  
After 0.3ms passed  
from WAKE to OTP  
transition  
NORMAL  
After 1.2ms passed  
from OFF to WAKE  
transition  
M
E
O
D
)
E
e
(SHDNB = L)  
or (VCC < 2.8V)  
or (VREF15 < 1.38V)  
The voltage is Typ value  
(OTP Down Load)  
t
_
o
S
N
(
E
L
M
"
O
=
1
"
D
0
1
"
0
=
_
"
(
L
S
E
N
o
"
E
H
S
_
1
L
l
=
t
=
e
a
E
=
E
D
(SHDNB = H)  
and (VCC > 3.0V)  
and (VREF15 > 1.43V)  
The voltage is Typ value  
"
)
n
L
0
1
N
g
I
i
B
O
F
_
s
"
A
l
(
M
T
N
a
L
S
n
r
o
D
_
C
t
_
P
e
e
t
)
n
S
I
T
O
O
L
WAKE  
OTP  
IDLE  
OFF  
SLEEP  
M
O
)
D
e
t
E
o
_
)
S
N
e
t
(
E
"
o
L
0
=
N
1
(
"
"
1
"
=
1
1
L
"
1
"
E
(
N
=
S
L
E
_
o
t
E
e
S
D
)
_
O
E
M
D
O
M
SSHDN  
MODE_SEL="10" (Note)  
(Note) VDD > 2.5V is required to input SPI commands.  
Figure 2-1. Operating Modes Transition Diagram  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
19/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Operating Modes Transition Diagram and Modes Structure - continued  
NORMAL mode (MODE_SEL [1:0] = “01”)  
AMP and ΔΣADC are ON in this mode. The current is measured and the value is accumulated continuously with high  
accuracy.  
SLEEP mode (MODE_SEL [1:0] = “10”)  
AMP, ΔΣADC and VREF25 operate intermittently and the current consumption is reduced. The current cannot be measured  
during off time but the accumulation error can be reduced by accumulating a certain fixed value during off time. Using the  
SLEEP_CC_SEL register, the fixed accumulation value can be set to:  
Average current measured during ON time  
Last measured current during ON time  
This mode is valid for systems when current do not change frequently. Please refer to the Figure 2-3 for the detailed  
operation timing.  
During intermittent operation, ON time to OFF time ratio in an intermittent period can be set through SLEEP_INTERVAL (03h  
CC_SET3 [3:2]), and the number of measurement times in ON time can be set through SLEEP_SAMPLING_TIME [1:0] (03h  
CC_SET3 [5:4]). Each register has 4 settings. Note that as the number of measurement times increase by setting  
SLEEP_SAMPLING_TIME register, ON time is extended proportionally.  
SSHDN mode (MODE_SEL [1:0] = “11”)  
Only VREF15, power supply for internal digital circuit, is ON. Internal register settings can be retained by VREF15. Current  
consumption of BD7220FV-C can be minimized in SSHDN as all blocks other than VREF15 are turned off.  
Table 2-1 describes which blocks are turned ON and OFF in each operating mode.  
Table 2-1. State of Blocks under each Operating Mode  
SHDNB  
(Pin)  
OSC  
SPI  
MODE  
MODE_SEL[1:0]  
VREF15 VREF25  
AMP  
ΔΣADC  
(8.192MHz) access  
OFF  
( VCC < 2.8V )  
OFF  
( SHDNB = L )  
WAKE  
(Reference Wake-up)  
OTP  
-
-
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
Invalid  
Invalid  
Invalid  
Invalid  
Valid  
-
L
-
H
H
H
H
H
H
-
ON  
(OTP Auto Loading)  
IDLE  
-
ON  
NORMAL  
SLEEP  
2'b01  
2'b10  
2'b11  
ON  
Valid  
Inter-  
mittent  
Inter-  
mittent  
Inter-  
mittent  
ON  
Valid  
SSHDN  
(Soft Shutdown)  
OFF  
OFF  
OFF  
OFF  
Valid  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
20/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
2.3  
Function Description  
2.3.1 NORMAL Mode  
BD7220FV-C enters NORMAL mode when MODE_SEL [1:0] (00h CC_SET1 [1:0]) is set to “01”. VREF25, AMP, ΔΣADC and  
OSC turn on and start current measurement when in Normal mode. The actual time for current measurement from writing to  
the register depends on INI_WAIT [1:0], MCIC_R [1:0] and OSR [1:0] settings.  
The INI_WAIT register configures the time delay for VREF25 and AMP startup. The lead time for initial data conversion after  
ΔΣADC turns on is set by the MCIC_R and OSR registers. Please refer to Table 1-6.  
When INI_WAIT [1:0] = 2’b00 (1.5 ms), MCIC_R [1:0] = 2’b00 (down sampling value = 32), and OSR [1:0] = 2’b00, the actual  
lead time to measure current is 5.0 ms.  
To enable the function for accumulating current, “1” needs to be written to CCNTEN. The current can be measured and  
CURCD register is updated even when the CCNTEN register value is “0”, but CC_CCNTD, CHG_CCNTD and DIS_CCNTD  
registers are not updated.  
VCC  
SHDNB  
VDD  
SHDNB reset voltage  
SHDNB>VCC*0.7  
Start to turn on at SHDNB reset  
VCC>3.00V (rise)  
BGR (Internal reference)  
VCC_UVLO (Internal signal)  
VREF15  
Internal Delay  
(Typ=300μs)  
VREF15>1.43V (rise)  
VREF15UVLO (Internal signal)  
LOGIC_RESET (Internal signal)  
OSC (Internal signal)  
Operating mode  
VDD_UVLO (Internal signal)  
Register setting  
LOGIC_RESET = VCC_UVLO VREF15_UVLO  
OTP  
NORMAL  
WAKE  
IDLE  
OFF  
Internal Delay  
(Typ=1.2ms)  
OTP Recall  
(Typ=300μs)  
VDD>1.80V (rise)  
Operating mode=IDLE state VDD_UVLO=H: SPI communication is valid  
Register  
setting  
SPI communication is invalid  
2'bXX  
2'b00  
2'b01  
MODE_SEL[1:0]  
CCNTEN (Internal signal)  
WAIT time  
CHG_TERM  
default=3.0ms+0.5ms  
INI_WAIT[1:0]  
def ault=1.5ms  
2.5V  
VREF25  
OFF  
ON  
AMP  
OFF  
Initial DATA conversion  
ON  
ADC  
0 (charge)  
1 (discharge)  
CURCD_DIR  
A
B
C
D
E
CURCD[14:0]  
+A  
+B  
+C  
-D  
-E  
CC_CCNTD[31:0]  
Figure 2-2. OFF to Normal Mode Power ON Sequence  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
21/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
2.3.2 SLEEP Mode  
The BD7220FV-C enters SLEEP mode when “10” is written to MODE_SEL [1:0] (00h CC_SET1 [1:0]). In SLEEP mode, the  
current consumption can be reduced since VREF25, AMP, and ΔΣADC operate intermittently. The timing of intermittent  
operation can be configured using the SLEEP_INTERVAL register. All available ratios of ON time to OFF time in intermittent  
operation are listed in Table 2-2.  
Table 2-2. Ratio of ON Time to OFF Time in Intermittent Operation in SLEEP Mode  
ON Time OFF Time  
SLEEP_INTERVAL [1:0]=2'b00  
SLEEP_INTERVAL [1:0]=2'b01  
SLEEP_INTERVAL [1:0]=2'b10  
SLEEP_INTERVAL [1:0]=2'b11  
Ratio when ON time is taken as '1'  
1
1
1
1
7
15  
31  
127  
The ON time during intermittent operation is calculated by the following formula:  
푂푁 푡푖푚푒 = 퐼푁퐼_푊퐴퐼푇 + 퐴퐷_퐿퐴푇퐸 + (퐴퐷퐶_푆퐴푀푃 × 푆퐿퐸퐸푃_푆퐴푀푃퐿퐼푁퐺_푇퐼푀퐸)  
INI_WAIT [1:0] (38h):  
This is the wait time for VREF25 and AMP startup. The wait time is configurable from 1.5 ms (default) to 12 ms.  
AD_LATE (ADC conversion latency):  
This is the wait time before outputting digital conversion value after a signal is input into the ADC. It is configured by the  
digital filter (MCIC_R) and OSR settings. For details, please refer to Table 1-6.  
AD_SAMP (ADC sampling period):  
This is the time required for one AD conversion. It is configured by the digital filter (MCIC_R) and OSR settings. For details,  
please refer to Table 1-5.  
SLEEP_SAMPLING_TIME [1:0] (03h):  
This register determines how many times current measurement is done during ON time of intermittent operation. The  
number is configured by the digital filter (MCIC_R) and OSR settings. For details, please refer to Table 2-3.  
<4 steps of settings>  
SLEEP_INTERVAL[1:0]  
ON timeOFF time = 1:7/1:15/1:31/1:127  
ON time  
ADC_SAMP  
・・・  
OFF time  
・・・・  
INI_WAIT + AD_LATE  
<4 settings>  
ADC sampling time depends on sampling period (ADC_SAMP) setting.  
ADC_SAMP 2ms --> 1 / 2 / 4 / 8 [times]  
ADC_SAMP < 2ms --> 1 / 16 / 32 / 64 [times]  
SLEEP_SAMPLING_TIME[1:0]  
Figure 2-3. Intermittent Operation in SLEEP Mode  
ON time and OFF time in default settings are calculated as following;  
(
)
푂푁 푡푖푚푒 = 1.5 [ms] + 3.5 [ms] + 250 [µs] × 1 푡푖푚푒 = 5.25 [ms]  
푂퐹퐹 푡푖푚푒 = 5.25 [ms] × 7 푡푖푚푒푠 = 3ꢁ.75 [ms]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
22/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
SLEEP Mode – continued  
Table 2-3. Measurement Count during Intermittent Operation (ON Time) in SLEEP Mode  
OSR[1:0] = 2'b00(32) or 2'b11(32)  
MCIC_R[1:0]  
2'b00(32)  
0.25  
2'b01(128)  
1
2'b10(256)  
2
2'b11(1024)  
8
ADC Conversion Time[ms]  
Measurement Count [times]  
SLEEP_SAMPLING_TIME[1:0] = 2'b00  
SLEEP_SAMPLING_TIME[1:0] = 2'b01  
SLEEP_SAMPLING_TIME[1:0] = 2'b10  
SLEEP_SAMPLING_TIME[1:0] = 2'b11  
1
1
1
2
4
8
1
2
4
8
16  
32  
64  
16  
32  
64  
OSR[1:0] = 2'b01(128)  
MCIC_R[1:0]  
2'b00(32)  
0.25  
2'b01(128)  
0.25  
2'b10(256)  
0.5  
2'b11(1024)  
2
ADC Conversion Time[ms]  
Measurement Count [times]  
SLEEP_SAMPLING_TIME[1:0] = 2'b00  
SLEEP_SAMPLING_TIME[1:0] = 2'b01  
SLEEP_SAMPLING_TIME[1:0] = 2'b10  
SLEEP_SAMPLING_TIME[1:0] = 2'b11  
1
1
1
1
2
4
8
16  
32  
64  
16  
32  
64  
16  
32  
64  
OSR[1:0] = 2'b10(512)  
MCIC_R[1:0]  
2'b00(32)  
0.25  
2'b01(128)  
0.25  
2'b10(256)  
0.25  
2'b11(1024)  
0.5  
ADC Conversion Time[ms]  
Measurement Count [times]  
SLEEP_SAMPLING_TIME[1:0] = 2'b00  
SLEEP_SAMPLING_TIME[1:0] = 2'b01  
SLEEP_SAMPLING_TIME[1:0] = 2'b10  
SLEEP_SAMPLING_TIME[1:0] = 2'b11  
1
1
1
1
16  
32  
64  
16  
32  
64  
16  
32  
64  
16  
32  
64  
In SLEEP mode, current measurement is enabled only during ON time. Current is never measured during OFF time  
(VREF25, APM, and ΔΣADC are OFF) but a fixed current value configured by the SLEEP_CC_SEL register is accumulated.  
The values of related registers are updated as below.  
CURCD:  
The current value measured just before turning off is retained. The register value is not updated.  
CC_CCNTD, CHG_CCNTD, DIS_CCNTD:  
The current value measured in ON time is accumulated during OFF time.  
Average value of current measured during ON time or the last value of ON time can be selected as the current value to be  
accumulated, using the SLEEP_CC_SEL register (03h CC_SET3 [6]).  
SLEEP_CC_SEL (03h):  
0: The last measured current during the previous ON time is accumulated during OFF time.  
1: Average current measured during ON time is accumulated during OFF time.  
Please don’t change the configuration of the registers related to ON time / OFF time setting (INI_WAIT, MCIC_R, OSR,  
SLEEP_SAMPLING_TIME, SLEEP_INTERVAL) and SLEEP_CC_SEL in SLEEP mode operating.  
Ratio of ON time and OFF time is  
configured using SLEEP_INTERVAL[1:0]  
OFF time  
ON time  
INI_WAIT+  
AD_LATE  
INI_WAIT+  
AD_LATE  
Measuring current  
Measuring current  
OFF  
OFF  
Measurement condition  
CURCD[14:0]  
・・・  
A
B
C
D
E
F
G
H
I
J
・・・  
ꢀ・・・  
・・  
Number of measurements during ON time is  
configured using SLEEP_SAMPLING_TIME[1:0]  
Z=(A+B+C+D+E+F+G+H)/8  
SLEEP_CC_SEL=1 ;  
(Accumulate average current)  
+Z  
+Z  
+Z  
+Z  
+H  
+Z  
+H  
+Z  
+H  
+I  
+I  
+J  
+J  
CC_CCNTD[31:0]  
CC_CCNTD[31:0]  
・・・  
・・  
・・  
SLEEP_CC_SEL=0 ;  
(Accumulate prev ious current)  
+H  
+H  
+H  
・・・  
Figure 2-4. Accumulation Current during OFF Time  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
23/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
2.3.3 SSHDN Mode  
BD7220FV-C enters SSHDN mode when “11” is written to MODE_SEL [1:0] (00h CC_SET1 [1:0]).  
In SSHDN mode, the minimum function blocks to retain register settings are turned on. For details, please refer to Table 2-1.  
The CURCD register which shows current value is reset to “0” but the CCNTD register which shows accumulation current  
keeps the value measured at the end.  
2.3.4 OFF State  
BD7220FV-C is turned off when the SHDNB pin is in “L” state.  
In OFF state, all blocks are turned off and the current consumption is at minimum. Note that register settings are cleared and  
OTP settings are recalled at next power on. The register value of calibration needs to be written again. (Refer to section  
4.2.1.)  
Finished to recall from OTP at restart from OFF state, “1” is set to OTP_DL_FIN register. The data set to OTP_DL_FIN  
register is latched and cleared by writing “1” to it. So, to clear OTP_DL_FIN register after startup and monitoring the register  
value regularly enables to detect unexpected reset of BD7220FV-C.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
3.  
Interrupts  
3.1  
Summary  
6 types of interrupt can be generated through the open-drain INTB pin. All interrupt settings can be masked or unmasked  
through the register settings.  
3.1.1  
Features  
4 types of threshold can be configured for interrupt by the accumulation current [CC_CCNTD]  
3 types of threshold can be configured for interrupt by the measured current [CURCD]  
Interrupt by the current the configured threshold or more  
Interrupt by detecting battery relaxation  
Interrupt by SPI CRC error detection  
Interrupt by completing the calibration  
3.1.2  
Structure  
BD7220FV-C can generate interrupt signals from multiple sources by asserting the INTB pin low. Each interrupt source has  
associated status register and enable register. The status register indicates the status of each interrupt source and the  
enable register allows to output the interruption to the external open drain pin “INTB”.  
Regardless of the setting of its enable register, status register corresponding to the source of interrupt is set “1” when  
detecting each interrupt source event. The status register is latched and is not cleared automatically even if released from  
the interrupt source. To clear the enable register, write “1” to the register. Only the enabled interrupt event can assert the  
INTB pin low and announcing the interrupt occurred.  
The INTB pin is kept asserted low until all enabled status registers are cleared when multiple interrupt sources occur. The  
INTB pin goes into Hi-z state when all enabled status registers are cleared. As “0” written in status registers is ignored, write  
“0” in other bits to clear only one interrupt source.  
After power on or restart from OFF state, all status registers are “0” (non-detected) and all enable registers are “0” (interrupt  
assertion to the INTB pin is disabled). To enable interrupt assertion, configure the interrupt function by SPI.  
Please refer to the Table 3-1 for more details about interrupt registers.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
25/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
3.2  
Register Descriptions  
The list of interrupt registers are as follows.  
Table 3-1. List of Interrupt Registers  
Register Map  
Enable Status/Clear  
Register  
Name  
Bit Name  
Function  
Address  
Address  
bit  
bit  
Detection of Charging Current Accumulation Value1  
(Threshold Setting)  
Detection of Discharging Current Accumulation Value1  
(Threshold Setting)  
Detection of Charging Current Accumulation Value2  
(Threshold Setting)  
Detection of Discharging Current Accumulation Value2  
(Threshold Setting)  
Detection of Charging Current Accumulation Value3  
(Threshold Setting)  
Detection of Discharging Current Accumulation Value3  
(Threshold Setting)  
Detection of Charging Current Accumulation Value4  
(Threshold Setting)  
Detection of Discharging Current Accumulation Value4  
(Threshold Setting)  
Alarm Output for Detection of Charging Current  
(ALARMB Terminal Output for OCUR1_DET)  
Alarm Output for Detection of Discharging Current  
(ALARMB Terminal Output for OCUR1_RES)  
Detection of Charging Current1  
(Threshold/Number of Detection Setting)  
Detection of Discharging Current1  
(Threshold/Number of Detection Setting)  
Detection of Charging Current2  
(Threshold/Number of Detection Setting)  
Detection of Discharging Current2  
(Threshold/Number of Detection Setting)  
Detection of Charging Current3  
(Threshold/Number of Detection Setting)  
Detection of Discharging Current3  
(Threshold/Number of Detection Setting)  
Detection of Over Wake-Up Current  
(Threshold/Number of Detection Setting)  
Detection of Under Wake-Up Current  
(Threshold/Number of Detection Setting)  
Detection of Relax State  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ1  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ2  
INT_REQ3  
INT_REQ3  
INT_REQ3  
INT_REQ3  
INT_REQ3  
CC_MON1_DET  
CC_MON1_RES  
CC_MON2_DET  
CC_MON2_RES  
CC_MON3_DET  
CC_MON3_RES  
CC_MON4_DET  
CC_MON4_RES  
ALARM_OCUR1_DET  
ALARM_OCUR1_RES  
OCUR1_DET  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
3Ah  
3Ah  
3Ah  
3Ah  
3Ah  
3Ah  
3Ah  
3Ah  
3Bh  
3Bh  
3Bh  
3Bh  
3Bh  
0
3Ch  
3Ch  
3Ch  
3Ch  
3Ch  
3Ch  
3Ch  
3Ch  
3Dh  
3Dh  
3Dh  
3Dh  
3Dh  
3Dh  
3Dh  
3Dh  
3Eh  
3Eh  
3Eh  
3Eh  
3Eh  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
4
6
1
2
3
4
5
6
7
2
3
2
3
4
5
6
7
0
1
2
4
6
OCUR1_RES  
OCUR2_DET  
OCUR2_RES  
OCUR3_DET  
OCUR3_RES  
WAKE_DET  
WAKE_RES  
REX_DET  
(Threshold/Time of Detection Setting)  
CRCERR_DET  
CALIB_FIN  
Detection of CRC Error  
Detection of Calibration Finish  
(Note) Inside () indicate configurable parameters  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
26/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
3.3  
Function Description  
Interrupt by Accumulation Current  
3.3.1  
Interrupt can be generated by detecting the configured threshold crossing to the accumulation current measurement  
(CC_CCNTD). 4 thresholds can be configured through CC_BATCAP#_TH (# = 1 to 4). CC_BATCAP#_TH are 24-bit  
registers those are compared to the upper 24 bits (out of 32) of CC_CCNTD.  
CC_CCNTD_3  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
31  
23  
24 23  
16 15  
16 15  
8
0
7
0
CC_BATCAP#_TH2  
CC_BATCAP#_TH1  
CC_BATCAP#_TH0  
8
7
Figure 3-1. Relationship between CC_CCNTD and CC_BAT_CAP_TH  
(When CC_UNDIV = 0: scaling in every gain setting is enabled)  
LSB of CC_BATCAP1_TH = 78.125 μAh  
MSB of CC_BATCAP1_TH = 655.36 Ah  
When CC_UNDIV=1: scaling in every gain setting is disabled and in that case LSB / MSB varies.  
For example, the threshold of the accumulation current is configured to 1Ah, register value is as below.  
1[Ah] / 78.125[µAh] = 12800 => 퐶퐶_퐵퐴푇퐶퐴푃1_푇퐻[23: 0] = 24′ℎ003200(24′푑12800)  
Please refer to section 1.3.2 for more details about CC_CCNTD.  
Table 3-2. The List of Accumulation Current and Threshold Registers  
Address  
Register Name  
Description  
17h to 1Ah  
CC_CCNTD [31:0]  
Accumulated Current Value  
Interrupt Threshold for Current Accumulation 1  
It is compared with the upper 24 bits [31:8] in CC_CCNTD [31:0] register.  
Interrupt Threshold for Current Accumulation 2  
It is compared with the upper 24 bits [31:8] in CC_CCNTD [31:0] register.  
Interrupt Threshold for Current Accumulation 3  
It is compared with the upper 24 bits [31:8] in CC_CCNTD [31:0] register.  
Interrupt Threshold for Current Accumulation 4  
23h to 25h  
26h to 28h  
29h to 2Bh  
2Ch to 2Eh  
CC_BATCAP1_TH [23:0]  
CC_BATCAP2_TH [23:0]  
CC_BATCAP3_TH [23:0]  
CC_BATCAP4_TH [23:0]  
It is compared with the upper 24 bits [31:8] in CC_CCNTD [31:0] register.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
27/65  
BD7220FV-C  
3.3.2  
Interrupt for Current Measurement  
Interrupt can be generated by detecting the configured threshold crossing for current measurement (CURCD). 3 thresholds  
can be configured through OCURTHR#_DIR (# = 1 to 3) and OCURTHR# (# = 1 to 3). OCURTHR# is a 15-bit register that is  
compared to the 15 bits of CURCD. OCURDUR# (# = 1 to 3) configures the number of consecutive detections required to  
generate the interrupt. For example, if set to 4 times, an interrupt is generated only after 4 consecutive detections. The  
counter starts over from 0 if enough time passes without reaching the set number of consecutive detections.  
Only specific to OCURTHR1, interrupts can also be notified through the dedicated ALARMB pin. Unlike interrupt notifications  
through INTB, the ALARMB interrupt source can be easily identified even without checking the status registers.  
Sign  
CURCD_H  
CURCD_L  
15 14  
8
8
7
7
0
0
Sign  
OCURTHR#_H  
OCURTHR#_L  
15 14  
Figure 3-2. Relationship of CURCD and OCURTHR  
Table 3-3. List of Current Detection Interrupt Setting Registers  
Address  
Register Name  
Description  
13h  
13h to 14h  
2Fh  
CURCD_DIR  
CURCD [14:0]  
Current Direction (0:charging 1:discharging)  
Measured Current Value  
OCURTHR1_DIR  
OCURTHR1 [14:0]  
OCURTHR2_DIR  
OCURTHR2 [14:0]  
OCURTHR3_DIR  
OCURTHR3 [14:0]  
OCURDUR1 [1:0]  
OCURDUR2 [1:0]  
OCURDUR3 [1:0]  
OCURTHR1 [14:0] Current Direction(0:charging 1:discharging)  
Interrupt Threshold for Current Measurment 1  
2Fh to 30h  
31h  
OCURTHR2 [14:0] Current Direction(0:charging 1:discharging)  
Interrupt Threshold for Current Measurment 2  
31h to 32h  
33h  
OCURTHR3 [14:0] Current Direction(0:charging 1:discharging)  
Interrupt Threshold for Current Measurment 3  
33h to 34h  
35h  
Crossing Detection Threshold for OCURTHR1 (00: 1 time, 01: 4 times, 10: 8 times, 11: 16 times)  
Crossing Detection Threshold for OCURTHR2 (00: 1 time, 01: 4 times, 10: 8 times, 11: 16 times)  
Crossing Detection Threshold for OCURTHR3 (00: 1 time, 01: 4 times, 10: 8 times, 11: 16 times)  
35h  
35h  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
28/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
3.3.3  
Interrupt by Battery Relaxation and Wakeup Current Detection  
Relaxation state Interrupt can be generated when a relaxation state of the battery is detected. The detection threshold can  
be configured through REX_CURCD_TH. REX_CURCD_TH is an 8-bit register and set to the lower 8 bits (out of 15) of  
CURCD. REX_CURCD_TH cannot be set the CURCD_DIR register indicate the sign of the current value. A Relax Timer  
starts counting up when REX_CURCD_TH is set to 100 mA and the value of CURCD is within -100 mA to +100 mA. The  
counter resets once the current increases higher than the threshold. REX_EN should be set to “1” to enable the Relax Timer.  
Writing “0” to the REX_EN stops the timer and resets the timer counter to “0”. Once the Relax Timer is expired and the  
counter needs to be reset, writing REX_EN = 1→0→1 is required. Relax timer detect time can be configured in 4 steps from  
30 min to 120 min through the REX_DUR register. Relaxation state interrupt is generated when relax timer is over the detect  
time.  
Wakeup current interrupt is generated when an occurrence of charge or discharge current toward the battery is detected.  
The detection threshold can be configured through WAKE_CURCD_TH an 8-bit register which is set to the lower 8 bits (out  
of 15) of CURCD. WAKE_CURCD_TH cannot be set the CURCD_DIR register indicate the sign of the current value. An  
interrupt is generated when WAKE_CURCD_TH is set to 100 mA and the value of CURCD is less than -100 mA or greater  
than +100 mA. The WAKE_COUNT register configures the number of consecutive detections required to generate the  
interrupt. For example, if set to 4 times, an interrupt is generated only after 4 consecutive detections are detected. The  
counter starts over from 0 if enough time passes without reaching the set number of consecutive detections.  
Current  
Charging  
REX_CURCD_TH  
direction  
0[A]  
Discharging  
direction  
REX_CURCD_TH  
REX_EN=1"→”0"→”1"  
Relaxation timer is valid  
when REX_EN=1"  
REX_EN  
OFF  
Relaxation timer  
COUNT  
OFF  
COUNT  
Count re-starts when  
Measurement current  
<REX_CURCD_TH  
OFF  
Count starts when current is  
within the current range  
configured by REX_CURCD_TH  
INTB  
Issue an interrupt  
When REX_DET_EN is valid  
Relaxation related signals  
REX_DET  
Retain Huntil interrupt is cleared  
Detect relaxation state after  
configured time passed being  
Relaxation state  
within configured current range is cleared  
MCU  
Current  
Charging  
direction  
WAKE_CURCD_TH  
WAKE_CURCD_TH  
0[A]  
Discharging  
direction  
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
Wake counter  
250us  
WAKE_RES turns to Hwhen  
current<WAKE_CURCD_TH  
during successive 4 times  
Wake related signals  
WAKE_DET turns to Hwhen  
current>WAKE_CURCD_TH  
during successive 4 times  
WAKE_DET  
WAKE_RES  
MCU  
Retain Huntil interrupt is cleared  
WAKE_RES turns to L”  
when interrupt is cleared  
WAKE_DET turns to L”  
when interrupt is cleared  
Figure 3-3. Relaxation State and Wake Up Current Detection Interrupt Timing Chart  
Table 3-4. List of Relaxation State / Wake Up Interrupt Setting Registers  
Address  
Register Name  
Description  
13h to 14h  
03h  
CURCD [14:0]  
REX_EN  
Measured Current Value  
Relax State Detection Timer Enable (0Timer OFF0 Clear)ꢀ1:Timer ON)  
35h  
REX_DUR [1:0]  
Relax State Detection Time (0030 minutes 0160 minutes1090 minutes11120 minutes)  
Relaxation State Detection Threshold  
It is compared with the lower 8bits[7:0] of the CURCD [14:0] register.  
Wake up Detection Threshold  
It is compared with the lower 8bits[7:0] of the CURCD [14:0] register.  
Number of Detection times for Wake up (001 time014 times108 times1116 times)  
36h  
REX_CURCD_TH [7:0]  
37h  
38h  
WAKE_CURCD_TH [7:0]  
WAKE_COUNT [1:0]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
29/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
3.3.4  
Interrupt for Detection of CRC Error  
The BD7220FV-C incorporates SPI interface.  
It is possible to add CRC code to the transmission and reception of SPI commands. Having CRC code or not is selectable by  
the leading EC bit of the data. For details, please refer to the section of 5.  
CRC error can trigger interrupt.  
In case of Data write:  
Please add a CRC bit to the command when it is transmitted from the MCU.  
When CRC error is detected at the time of the command reception, a CRC error triggers interrupt.  
Please write “1” to CRCERR_DET_EN register to produce an interrupt signal through INTB.  
In case of Data read:  
CRC bits cannot be added to a read command from the MCU.  
Please judge the CRC error on the MCU side as CRC bit is added to all transmitted and received data as a result of  
BD7220FV-C sending “read data” and “read command”.  
3.3.5  
Interrupt for Completion of Calibration  
The BD7220FV-C has two calibration modes. (For details, please refer to section 4.1.2.)  
When calibration is completed with mode 2, interrupt is triggered. Please write “1” to CALIB_FIN_EN register to produce an  
interrupt signal through INTB.  
Customer’s product shipment:  
It is assumed that the calibration is executed with the condition where the BD7220FV-C and external components are  
mounted in the process. Dispersion of external components can be considered when the calibration is executed with a  
mounted external current detection device such as a shunt resistor or current sensor.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
30/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
4.  
Calibration  
4.1  
Summary  
By communicating with SPI, BD7220FV-C can calibrate the variation of gain and offset. There are an auto calibration by SPI  
communication and a manual calibration by setting the calibration value into the registers. Because BD7220FV-C has a  
sequence circuit and a calculation circuit for calibration, it can output a calibration value automatically only by setting the input  
information and inputting a trigger signal. However, non-volatile memory is not built-in for this product. To be able to store  
values generated from automatic and manual calibration, it is necessary to use and maintain external memory.  
Figure 4-1 shows the flow chart of calibration.  
4.1.1  
Features  
Calibration in BD7220FV-C shipment process:  
The calibration values are kept in the built-in OTP and are downloaded automatically  
Calibration in customer’s product shipment:  
The calibration (gain and offset calibration) including the external current detection element in customer’s process  
Manual calibration enabled to set the calibration value externally  
4.1.2  
Structure  
BD7220FV-C can calibrate gain and offset error.  
The three available calibration modes are explained below.  
4.1.2.1  
Calibration Mode 1 (in BD7220FV-C shipment process)  
This calibration is carried out at the shipment of BD7220FV-C. Calibration is done with the internal regulator VREFCAL for  
calibration as a reference. An external capacitor at VREFCAL pin is not needed on customer’s product, so please make  
the pin open. The external current detection element (shunt resistor or current sensor) is not calibrated. Only the gain and  
offset error of the built in AMP and ΔΣADC are calibrated. The calibration values are kept in the built in OTP in  
BD7220FV-C, and are read back automatically at startup. Offset calibration is tuned to the 25 V/V AMP gain setting by  
default, so it is necessary to use Mode 2 and Mode 3 for 5 V/V and 51 V/V settings.  
4.1.2.2  
Calibration Mode 2 (in customer’s product process)  
Calibration mode 2 is the calibration used in the customer’s product shipment. This calibration includes the external  
current detection element.  
It is possible to measure a highly precise current by carrying out the calibration when the external current detection  
element (shunt resistor or current sensor) is connected. To carry out this calibration, it is necessary to force as much  
current as will be used in the actual application. Mode 2 or Mode 3 offset calibration is necessary when using an AMP gain  
of 5 V/V or 51 V/V. If measurement will be performed using multiple AMP gain settings, Mode 2 calibration needs to be  
performed on each setting to be used.  
BD7220FV-C outputs the calibration value after automatic operation. However, as BD7220FV-C does not have  
non-volatile memory, external memory is required to store the calibration values used. These values should be rewritten  
each time BD7220FV-C is reset.  
4.1.2.3  
Calibration Mode 3 (manual calibration)  
This calibration is carried out manually by calculating the calibration value using MCUs or other methods.  
Mode 3 can be used to compensate gain or offset variations caused by the measurement environment, such as the  
temperature. The value to be set for gain calibration is calculated by following the equation written later. The value to set  
for offset calibration is calculated referring to Table 1-1. Mode 2 or Mode 3 offset calibration is needed when using the 5  
V/V and 51 V/V AMP gain settings, or for each gain setting used when measuring using multiple gain settings. However,  
as BD7220FV-C does not have non-volatile memory, external memory is required to store the calibration values used.  
These values should be rewritten each time BD7220FV-C is reset.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
31/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Calibration Mode 3 (manual calibration) – continued  
POWER ON  
POWER ON  
(RESET)  
(RESET)  
GAIN  
GAIN  
Setting  
NO  
Setting  
Charging direction current input  
Discharging direction current input  
YES  
GAIN10[17:0]  
GAIN10[17:0]  
by Auto Calculation  
by Auto Calculation  
Need OFFSET Settings  
after GAIN10 Setting  
0A current input  
YES  
OFFSET  
OFFSET  
Setting  
Setting  
OFST10[15:0]  
OFST10[15:0]  
By Auto Calculation  
By Auto Calculation  
NO  
If skip GAIN10&OFST10  
setting, calibration setting  
is valid only for the  
Internal block of IC.  
(Shunt resister or etc.  
are not calibrated)  
Write  
Write  
Need OFFSET&GAIN10 Setting  
by AMP_GAIN setting  
Nonvolatile  
Nonvolatile  
memory  
memory  
GAIN10=0x00  
GAIN10=0x00  
YES  
Other GAIN  
Setting  
Setting  
Other GAIN  
OFST10=0x00  
OFST10=0x00  
(Initialize)  
(Initialize)  
NO  
Measurement  
Measurement  
START  
START  
Re-write  
Re-write  
AMP_GAIN  
Change  
Change  
GAIN10&OFST10  
AMP_GAIN  
GAIN10&OFST10  
Setting  
Setting  
from Nonvolatile memory  
from Nonvolatile memory  
GAIN  
Re-Setting  
Re-Setting  
GAIN30[17:0]  
GAIN30[17:0]  
by MCU calculation  
by MCU calculation  
GAIN  
Need OFFSET Re-Settings  
after GAIN30 Setting  
Not 0A current input  
OFFSET  
OFFSET  
Re-Setting  
Setting  
Setting  
Method  
Method  
OFST10  
OFST10  
Re-Setting  
by MCU Calculation  
by MCU Calculation  
0A current input  
OFST10=0x00  
OFST10=0x00  
(Initialize)  
(Initialize)  
OFST10  
OFST10  
by Auto Calculation  
by Auto Calculation  
Measurement  
Measurement  
FINISH  
FINISH  
Figure 4-1. Flow Chart of Calibration  
High accuracy input is necessary  
for the high accuracy calibration.  
VREF25  
2.5V  
5V  
5V  
1.5V  
+
-
ADC_DATA  
ΔΣ  
ADC  
VREF25  
Calibration mode 1(in shipment process)  
Calibration mode 2(in customer’s product shipment including the external component)  
Calibration mode 3(manual calibration on the set)  
Figure 4-2. Calibration (Mode 1, Mode 2 and Mode 3)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
32/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
4.2  
Function Description  
Calibration Mode 2  
4.2.1  
At customer’s shipment, gain and offset error can be calibrated using Calibration Mode 2.  
The calibration is carried out while forcing a certain differential voltage across the INP and INN pins. Calibrating with an  
external current detection element (such as a shunt resistor) enables higher accuracy current measurement. Note that in  
Mode 2, Gain Calibration must be performed before Offset Calibration. The calibration values in the register are discarded  
when BD7220FV-C is reset, so please write these to external memory and rewrite when BD7220FV-C starts up.  
4.2.1.1  
Calibration Mode2: Gain Calibration  
Gain calibration is carried out by forcing voltage that correspond to 2 points of current value, one of charging current, PFS  
(current direction of INP voltage is positive); the other of discharging current, MFS (current direction of INP voltage is  
negative). Please set the data of differential voltage between PFS and MFS into the CALVIN_DIFF register. Please refer to  
Figure 4-3 for the relationship between PFS, MFS and CALVIN_DIFF registers. The current values in the figure are a 25  
V/V AMP gain setting and RSNS of 0.2 mΩ.  
output code  
ideal  
32767  
measured value  
(w/o calibration of mode 2)  
Force PFS  
0
Force MFS  
Setting range of CALVIN_DIFF  
Vin  
-32768  
-400A  
+400A  
Current  
Figure 4-3. Force Setting for Gain Calibration  
The flow of calibration is as follows.  
1. Setting CALVIN_DIFF register (Data of differential voltage between PFS and MFS)  
2. Forcing charging current PFS and executing calibration (writing “1” to CALIB_TRG register)  
3. Forcing discharging current MFS and executing calibration (writing “1” to CALIB_TRG register)  
Notice 1  
Please carry out the calibration for each gain if you will measure with changing amp gain settings. The value set to  
GAIN10 register is needed with each amp gain setting.  
Notice 2  
Calibrating discharge current before charge current results in a wrong calibration value, so the order of calibrating charge  
current before discharge current must be strictly followed. If the calibration order was not followed, please reset  
BD7220FV-C.  
The data of differential input voltage is set in CALVIN_DIFF [11:0] register.  
The value to set is determined by the value of the external shunt resistor RSNS and the amp gain setting as in the following  
equation. The differential current between PFS and MFS is over the possible setting range when calculated result is a  
negative value.  
(
)
⊿퐼 × 푅ꢇꢃꢇ × 퐴푀푃_퐺퐴퐼푁  
4.5  
퐶퐴퐿푉퐼푁_퐷퐼퐹퐹 푣푎푙푢푒 = {2ꢀꢆ ×  
ꢇꢃꢇ: 푟푒푠푖푠푡푎푛푐푒 표푓 푠ℎ푢푛푡 [Ω]  
} ꢈ 2ꢀꢉ  
Please refer to Table 4-1 for the possible setting range of CALVIN_DIFF for each amp gain setting.  
For an AMP gain of 25 V/V and RSNS of 0.2 mΩ, the range of CALVIN_DIFF is from 450 A to 800 A and the step is 109.86  
mA. Please force 225 A for PFS and -225 A for MFS when CALVIN_DIFF is 450 A.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
33/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Calibration Mode2: Gain Calibration - continued  
The minimum setting of differential current ΔIMIN between PFS and MFS is changed by the value of RSNS and gain setting.  
It is calculated with the following equation.  
⊿퐼ꢊꢋꢃ = 2.25 / (퐴푀푃_퐺퐴퐼푁 × 푅ꢇꢃꢇ  
)
ꢇꢃꢇ: 푟푒푠푖푠푡푎푛푐푒 표푓 푠ℎ푢푛푡 [Ω]  
Table 4-1. Unit of CALVIN_DIFF Register Setting Current  
AMP_GAIN = 5 times  
AMP_GAIN = 25 times  
AMP_GAIN = 51 times  
AMP Input  
Differential  
Current  
AMP Input  
Differential  
Current  
AMP Input  
Differential Current  
AMP Input  
Differential  
Voltage  
AMP Input  
UNIT Differential  
Voltage  
AMP Input  
UNIT Differential  
Voltage  
UNIT  
UNIT  
UNIT  
UNIT  
(RSNS = 0.2 mΩ)  
(RSNS = 0.2 mΩ)  
(RSNS = 0.2 mΩ)  
Minimum Setting  
Maximum Setting  
Step Width  
450.00  
599.96  
109.86  
mV  
mV  
μV  
2250.00  
2999.82  
549.32  
A
A
90.00  
160.00  
21.97  
mV  
mV  
μV  
450.00  
800.02  
109.86  
A
A
44.12  
80.01  
10.77  
mV  
mV  
μV  
220.59  
400.03  
53.85  
A
A
mA  
mA  
mA  
For example, considering an amp gain setting is 25 V/V, PFS = +300 A and MFS = -300 A, the differential current between  
PFS and MFS is 600 A. The differential current is within the possible setting range from 450 A to 800 A in Table 4-1, so it is  
possible to carry out calibration. If the differential current is outside the range, adjustment of input current is needed. The  
value to set to CALVIN_DIFF register is calculated as following.  
(
)
⊿퐼 × 푅ꢇꢃꢇ × 퐴푀푃_퐺퐴퐼푁  
4.5  
퐶퐴퐿푉퐼푁_퐷퐼퐹퐹 푣푎푙푢푒 = {2ꢀꢆ ×  
} ꢈ 2ꢀꢉ  
ꢇꢃꢇ: 푟푒푠푖푠푡푎푛푐푒 표푓 푠ℎ푢푛푡[Ω]  
퐶퐴퐿푉퐼푁_퐷퐼퐹퐹 = ꢌ2ꢀꢆ × (ꢁ00[A] × 0.2 × 10−ꢆ × 25) / 4.5ꢍ ꢈ 2ꢀꢉ = 13ꢁ5[DEC]  
= 555[HEX]  
Table 4-2 shows the flow of SPI communication in carrying out Gain Calibration.  
After setting the register configurations and input voltage between INP and INN, you can carry out the calibration by writing  
“1” to CALIB_TRG register. After writing “1” to CALIB_TRG, the value will automatically clear to “0”.  
To complete gain calibration, 2 times trigger input for charge and discharge is needed.  
Table 4-2. Calibration Mode 2: Flow of SPI Communication in Carrying Out Gain Calibration  
SPI  
Item  
Register  
Description  
INP-INN Input  
REG  
ADDR ADDR  
CONT  
R/W  
DATA  
CALVIN_DIFF_H = XXXX  
CALVIN_DIFF_L = XXXX  
Configuration of Diffrential Input Between  
INP and INN  
W
W
0Fh  
10h  
1Eh  
20h  
0Xh  
XXh  
Configure AMP_GAIN as Actual Use  
(For Higher Accurate Calibration, Configure  
MCIC_R Resister 2'b11 Regardless of Actual  
Use)  
Initial Configuration  
-
AMP_GAIN = XX  
MCIC_R = 11  
W
00h  
00h  
X0h  
GAIN_CAL_FS = 1,  
CALIB_MODE = 001  
Forcing Charge Current  
Configure CALIB_MODE  
Charge Configuration  
Charge Calibration  
W
W
W
04h  
02h  
04h  
08h  
04h  
08h  
09h  
20h  
01h  
Input Differential Voltage of Charge  
CALIB_TRG = 1  
Trigger Input to Start Calibration  
GAIN_CAL_FS = 0,  
CALIB_MODE = 001  
Forcing Discharge Current  
Configure CALIB_MODE  
Discharge Configuration  
Discharge Calibration  
Input Differential Voltage of Discharge  
-
CALIB_TRG = 1  
Trigger Input to Start Calibration  
W
R
R
R
02h  
05h  
06h  
07h  
04h  
0Bh  
0Dh  
0Fh  
20h  
read GAIN10_2  
-
-
-
Read Calibration Output in GAIN10  
Resister  
Read Calibration Output  
read GAIN10_1  
read GAIN10_0_GAIN30_2  
REG ADDR: Addresses in register map of BD7220FV-C  
CONT ADDR: The first 1 byte data in SPI communication  
Ex.1) Write REG ADDR = 0Fh → 8’b0000 1111 → 0(EC) + 6b’001111 + 0(Write) = 1Eh (EC Bit = 0, CRC is invalid)  
Ex.2) Read REG ADDR = 02h → 8’b0000 0010 → 0(EC) + 6’b000010 + 1(Read) = 05h (EC Bit = 0, CRC is invalid)  
*Calibration finishes (Detection of CALIB_FIN interrupt)  
You will know when calibration is finished by using the CALIB_FIN register for interrupt. CALIB_FIN turns to “1” when  
Mode 2 Calibration is completed, so please clear the CALIB_FIN register before carrying out calibration. To validate the  
interrupt of INTB pin, please write CALIB_FIN_EN register “1”.  
If you need to perform Mode 2 Gain Calibration again, please do so after resetting GAIN10, OFST10 and GAIN30  
registers to “0”.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
34/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
4.2.1.2  
Calibration Mode2: Offset Calibration  
Offset Calibration is carried out by input differential voltage without drawing current between the INP and INN pins. Write  
“1” to CALIB_TRG under forcing differential voltage and Offset Calibration is automatically carried out.  
The flow of calibration is only one step:  
1. After input differential voltage without drawing current between the INP and INN pins, and carry out calibration (Write  
“1” to CALIB_TRG)  
Notice 1  
Please carry out the calibration for each gain if you will measure with multiple amp gain settings.  
Table 4-3 shows the flow of SPI communication in carrying out Offset Calibration.  
Table 4-3. Calibration Mode 2: Flow of SPI Communication in Carrying Out Offset Calibration  
SPI  
Item  
Register  
Description  
INP-INN Input  
REG  
ADDR ADDR  
CONT  
R/W  
W
DATA  
X0h  
Configure AMP_GAIN as Actual Use  
(For Higher Accurate Calibration, Configure  
MCIC_R Resister 2'b11 Regardless of Actual  
Use)  
AMP_GAIN = XX  
MCICR = 11,  
00h  
00h  
Input Differntial Voltage  
at No Current Flow  
(INP and INN Shorted)  
Initial Configuration  
Offset Calibration  
CALIB_MODE = 010  
CALIB_TRG = 1  
read OFST10_H  
read OFST10_L  
Configure CALIB_MODE  
W
W
R
04h  
02h  
0Ah  
0Bh  
08h  
04h  
15h  
17h  
02h  
Trigger Input to Start Calibration  
20h  
-
-
Read Calibration Output in OFST10  
Read Caliration Output  
-
R
* The way of to check if calibration is finished is the same as in Gain Calibration.  
If you need to perform Mode 2 Offset Calibration again, please do so after resetting OFST10 to “0”.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
35/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
4.2.2  
Under typical usage conditions, gain and offset error can be calibrated using Calibration Mode 3.  
4.2.2.1 Calibration Mode 3: Manual Calibration  
Calibration Mode 3: Manual Calibration  
Manual gain calibration uses the GAIN30 and GAIN31 registers. GAIN30 register is for configuration of the calibration  
value. Writing in the value calculated from an equation written later, gain is calibrated. GAIN31 register is a read-only  
register for reading the gain calibration configuration contained in the IC. When in Calibration Mode 2, the IC automatically  
calculates the needed gain adjustment ratio and sets the calibration value, but in Mode 3, you can calibrate by setting the  
configuration of gain adjustment ratio from 0.8x to 1.2x by 0.006% step. Gain adjustment ratio is calculated with the forced  
current value of 2 points, IP and IM, the corresponds output value of CURCD, PD and MD, the value of the external shunt  
resistor RSNS and the amp gain setting in the following equation. Any combinations of current polarity are possible to be  
used, and not restricted to the combination of charge and discharge.  
퐼푃 ꢈ 퐼푀 × 푅ꢇꢃꢇ × 퐴푀푃_퐺퐴퐼푁 × (2ꢀꢎ ꢈ 1)  
)
(
퐺푎푖푛 푎푑푗푢푠푡푚푒푛푡 푟푎푡푖표 =  
ꢇꢃꢇ: 푟푒푠푖푠푡푎푛푐푒 표푓 푠ℎ푢푛푡[Ω]  
(푃퐷 ꢈ 푀퐷) × 2.25  
For example, considering an amp gain setting is x25 V/V, external shut resister value is 0.2 mΩ, forced current IP=+100 A  
and IM=-250 A, values of CURCD PD=7645 and MD=-19113, gain adjustment ratio is calculated as following.  
100 ꢈ (ꢈ250) × 0.2 × 10−ꢆ × 25 × (2ꢀꢎ ꢈ 1)  
퐺푎푖푛 푎푑푗푢푠푡푚푒푛푡 푟푎푡푖표 =  
= 0.95244  
7ꢁ54 ꢈ (ꢈ19113) × 2.25  
The value to set in GAIN30 register is calculated with the value of GAIN31 and the ratio of gain adjustment in the following  
equation. If the adjustment ratio is less than 1x, set the negative value as a 2’s complement representation.  
(
)ꢍ  
퐺퐴퐼푁30 푣푎푙푢푒 = 퐺퐴퐼푁31[DEC] × 퐺푎푖푛 푎푑푗푢푠푡푚푒푛푡 푟푎푡푖표 ꢈ 퐺퐴퐼푁31[DEC]  
For example, when GAIN31 register is 0xBD2C (48428[DEC]) and Gain Adjustment Ratio is 1.05x,  
퐺퐴퐼푁30 푣푎푙푢푒 = 48428[DEC] × 1.05 ꢈ 48428 = 2421[DEC] = 975[HEX]  
And in case of the adjustment ratio is less than 1x as above example, calculation is as following.  
퐺퐴퐼푁30 = 48428 × 0.95244 ꢈ 48428 = ꢈ2303[DEC] = 3퐹701[HEX]  
Notice 1  
Please write registers for manual gain calibration in IDLE state or SSHDN mode, and do not write when measuring  
current.  
Notice 2  
If you operate Mode 3 Gain Calibration again, please re-calculate the value to set after resetting GAIN30 register to “0”  
and reading the value of GAIN31 register.  
Notice 3  
The value of GAIN31 register changes depending on the configuration of amp gain. So, if you will measure with multiple  
AMP gain configurations, the value of GAIN30 register must be calculated for each gain configuration. Please read  
GAIN31 register again and re-calculate the value after resetting GAIN30 register when gain configuration is changed.  
Notice 4  
The value of GAIN31 register changes depending on the calibration value obtained from Mode 2 Calibration (and stored in  
GAIN10 register.) If Mode 2 Calibration is to be performed again, please read GAIN31 register and re-calculate the value  
after resetting GAIN30 register.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
36/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
4.2.2.2  
Calibration Mode 3: Manual Offset Calibration  
Manual Offset Calibration uses the OFST10 register. Writing OFST10 with the value added or subtracted corresponding to  
the amount of current you want to adjust, will calibrate the offset. To convert from current to adjust to register value, please  
refer to LSB current in Table 1-1. The value to set to OFST10 register is calculated with the original value of OFST10  
register and adjustment current as in the following equation.  
푂퐹푆푇10 푣푎푙푢푒  
(
)
= 표푟푖푔푖푛푎푙 푂퐹푆푇10 푟푒푔푖푠푡푒푟 푣푎푙푢푒[DEC] + (푎푑푗푢푠푡푚푒푛푡 푐푢푟푟푒푛푡[DEC])  
In the case that the original value of OFST10 register is 16’h012C (=16’d300), the external current sense resistance is 0.2  
mΩ, configuration of amp gain is 25 V/V, and adjust current is +5 A, LSB current is 13.73 mA. And the converted register  
value corresponding to the adjust current and setting value of OFST10 register is calculated as following.  
푎푑푗푢푠푡 푐푢푟푟푒푛푡[DEC] = 5[A] ÷ 13.73[mA] ≈ 3ꢁ4.17 ≈ 3ꢁ4[DEC]  
푂퐹푆푇10 푣푎푙푢푒[DEC] = 300[DEC] + 3ꢁ4[DEC] = ꢁꢁ4[DEC] = 298[HEX]  
Notice 1  
Please write registers for manual offset calibration in IDLE state or SSHDN mode, and do not write when measuring  
current.  
Notice 2  
If you operate Mode 3 Offset Calibration again, please overwrite OFST10 register with added/subtracted value  
corresponding to the additional adjust current.  
Notice 3  
When the configuration of amp gain is changed, please re-calculate OFST10 register value because of changing LSB  
current.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
37/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
5.  
SPI Interface  
5.1  
Summary  
BD7220FV-C is equipped with 500 kHz (Max) SPI interface. And also, it has the selectable (with/without) CRC code to  
improve the reliability of the communication (Mode 0 correspondence).  
5.1.1  
Features  
SPI Interface  
“Data write” carried out for every 1byte unit  
“Data read” carried out for every consecutive byte unit (setting number of bytes).  
Selectable with/without CRC cord (by the EC bit MSB of the control address)  
CRC polynomial: X8+X2+X+1  
5.1.2  
Constitution  
BD7220FV-C has SPI interface.  
Power supply of the SPI interface is the VDD pin.  
SPI interface is enabled by turning the CSB pin to “L” level. The IC takes in the MSB-first input data on the SDI pin  
synchronous to the rising edges of SCK clock. Output- data is supplied on the SDO pin in the MSB-first order synchronous to  
the falling edges of SCK clock. SPI interface is disabled with “H” level input on the CSB pin and returns to the initial state.  
The CSB pin should be fixed to “H” level every time after one data write/read operation is completed. (Regarding the data  
reading, consecutive read in byte is available.)  
CSB  
SCK  
SDI  
Hi-Z  
SDO  
Hi-Z  
Figure 5-1. SPI Timing Chart  
Configurations and controls can be done by reading/writing corresponding addresses in the control register. Write data is  
one-byte length, while read data length is specified in read commands. Set the RW bit to “0” for data write and “1” for data  
read. Also, set the EC bit to “1” if the CRC code for detecting a communication error is required or to 0” otherwise.  
7
6
5
4
3
2
1
0
"0"  
"1"  
without  
CRC  
with  
CRC  
Control register address  
EC  
RW  
EC  
RW  
write  
read  
Figure 5-2. Control Address Constitution  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
38/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
5.2  
Function Description  
The below figures show the communication format of the data read/write with/without CRC  
5.2.1 Data Write Communication Format without CRC  
CSB  
SCK  
EC A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
Control Register  
Address  
Write Data  
for Write = 0”  
without  
CRC = 0”  
Figure 5-3. Data Write Communication Format without CRC  
5.2.2  
Data Read Communication Format without CRC  
CSB  
SCK  
SDI  
EC A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0  
Control Register  
Address  
Data Byte Length  
O7 O6 O5 O4  
O3 O2 O1 O0  
Hi-Z  
Hi-Z  
SDO  
without  
CRC = 0”  
for Read = 1”  
Read Data  
Figure 5-4. Data Read Communication Format without CRC  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
39/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
5.2.3  
Data Write Communication Format with CRC  
CSB  
SCK  
SDI  
EC A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0 C7 C6 C5 C4 C3 C2 C1 C0  
Control Register  
Address  
Write Data  
CRC Code  
with CRC = 1”  
for Write = 0”  
Figure 5-5. Data Write Communication Format with CRC  
If a communication with CRC is selected (EC = “1”), 1-byte CRC (Cyclic Redundancy Code) is generated according to an  
X8+X2+X+1 equation, and added at the end of each communication data. Set the CSB pin to “H” level to initialize CRC  
computation to the default FFh.  
Data write is performed on the specified control register only if the result from CRC computation matches the received CRC.  
Otherwise, data write is not performed. CRC error flag is set when CRC error is detected, and an interrupt signal is output to  
MCU from the INTB pin. Refer to the chapter 3 about detail interrupt explanation.  
5.2.4  
Data Read Communication Format with CRC  
CSB  
SCK  
SDI  
EC A5 A4 A3 A2 A1 A0 RW D7 D6 D5 D4 D3 D2 D1 D0  
Control Register  
Address  
Data Byte Length  
Hi-Z  
O7 O6 O5 O4 O3 O2 O1 O0 O7 O6 O5 O4 O3 O2 O1 O0 C7 C6 C5 C4 C3 C2 C1 C0  
Hi-Z  
SDO  
with CRC = 1”  
for Read = 1”  
Read Data  
CRC Code  
Figure 5-6. Data Read Communication Format with CRC  
The CRC computation is also performed for each transmitted/received data during data read operation and the result is  
appended at the end of the read data. The external MCU can detect any communication errors by comparing the CRC  
computation result and the received CRC. The CRC code is not included in the data byte length.  
The above figure is the example that the number of the read byte data is 2 bytes (data of read byte’s number : 02h).  
5.3  
Multi Bytes Data Reading  
The values of CURCD, AVE_CURCD, CC_CCNTD, CHG_CCNTD, DIS_CCNTD and EXADIN_VALUE registers are  
updated on current measurement and current accumulation and when EXADIN_TRG is triggered.  
Please start reading from MSB address regarding these registers. By reading MSB address of multiple bytes’ data, the value  
is retained in the internal buffer. This avoids updating the read data while reading over multiple address. Reading from LSB  
address may cause updating the data before finish reading all bytes.  
If an access to another address is performed before reach to LSB address, read start from MSB address again. In this case,  
the read data is the value at the time of starting to read MSB again.  
Ex.) CURCD Reading  
Correct order  
Incorrect order : address 14h CURCD_L  
: address 13h CURCD_H  
→ address 14h CURCD_L  
→ address 13h CURCD_H  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
40/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
6.  
EXADIN  
6.1  
Summary  
ΔΣADC in BD7220FV-C has an input channel selectable function. A current value is monitored through AMP in normal  
operation. It can also monitor the voltage of the outside EXADIN pin by a setting signal from SPI.  
It is possible to measure a value such as voltage of a battery or a thermistor by time sharing by this EXADIN function. (During  
the EXADIN pin measurement, it cannot measure a current value)  
6.1.1  
Features  
The EXADIN pin which can A-D convert the analog data besides current is available (EXADIN Input voltage range: 0.5 V to  
4.5 V)  
6.1.2  
Structure  
Figure 6-1 indicates the connection and structure of the EXADIN pin.  
AMPOUT  
ADINP  
Note)  
VREF25  
No current monitor during voltage  
monitor from EXADIN  
VCC  
VREF15  
VCC  
INP  
+
Current  
Sense  
INN  
ΔΣ  
ADC  
-
Voltage Monitor  
When EXADIN_TRG enter)  
EXADIN  
ADINM  
VREF25  
Figure 6-1. EXADIN Block Diagram  
6.2  
Function Description  
To monitor of the EXADIN pin voltage is carried out by writing in “1” to EXADIN_TRG register (address 02h  
CC_TRG_RST_CMD [3]). After “1” was written in, EXADIN_TRG becomes “0” automatically.  
2'b01NORMAL)  
MODE_SEL[1:0]  
AMP  
ON  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
First data conversion  
First data conversion  
ON  
ADC  
0(charge) 1(discharge)  
0(charge)  
1(discharge)  
CURCD_DIR  
CURCD[14:0]  
CC_CCNTD[31:0]  
Target to measure  
Wait time  
A
B
D
C (keep the last measured value during EXADIN measurement)  
+A  
-B  
+C  
-D  
Stop accumulation of CCNTD during EXADIN measurement  
current  
nothing  
voltage  
nothing  
current  
current  
INI_WAIT  
CHG_TERM  
INI_WAIT  
CHG_TERM  
-
-
EXADIN_TRG  
EXADIN_VALUE[15:0]  
Update the voltage measurement value  
Y
Z
Figure 6-2. EXADIN Monitor Timing Chart  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
41/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
7.  
Register Map  
Register  
Register  
Initial  
Value  
Access  
(R, R/W)  
address  
(dec)  
address  
(Hex)  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
CC_SET1  
AMP_GAIN[1:0]  
OSR[1:0]  
MCIC_R[1:0]  
-
CCNTEN  
MODE_SEL[1:0]  
80h  
05h  
00h  
01h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
40h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
1
CC_SET2  
CC_UNDIV  
AVE_CURCD_COUNT[1:0]  
CCNTD_MASK[2:0]  
CHG_CCNTD_RST  
-
2
CC_TRG_RST_CMD  
CC_SET3  
-
-
-
-
-
CALIB_TRG  
-
EXADIN_TRG  
DIS_CCNTD_RST  
CCNTRST  
REX_EN  
3
SLEEP_CC_SEL  
SLEEP_SAMPLING_TIME[1:0]  
SLEEP_INTERVAL[1:0]  
GAIN_CAL_FS  
4
ADC_CALIB  
-
-
-
-
-
-
CALIB_MODE[2:0]  
5
GAIN10_2  
GAIN10[17:14]  
6
GAIN10_1  
GAIN10[13:6]  
7
GAIN10_0_GAIN30_2  
GAIN30_1  
GAIN10[5:0]  
GAIN30[17:16]  
8
GAIN30[15:8]  
GAIN30[7:0]  
OFST10[15:8]  
OFST10[7:0]  
9
GAIN30_0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
OFST10_H  
OFST10_L  
GAIN31_2  
-
-
-
-
-
-
-
-
-
GAIN31[17:16]  
GAIN31_1  
GAIN31[15:8]  
GAIN31[7:0]  
R
GAIN31_0  
R
CALVIN_DIFF_H  
CALVIN_DIFF_L  
EXADIN_VALUE_H  
EXADIN_VALUE_L  
CURCD_H  
-
CALVIN_DIFF[11:8]  
R/W  
R/W  
R
CALVIN_DIFF[7:0]  
EXADIN_VALUE[15:8]  
EXADIN_VALUE[7:0]  
R
CURCD_DIR  
CURCD[14:8]  
R
CURCD_L  
CURCD[7:0]  
AVE_CURCD[14:8]  
AVE_CURCD[7:0]  
R
AVE_CURCD_H  
AVE_CURCD_L  
CC_CCNTD_3  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
CHG_CCNTD_3  
CHG_CCNTD_2  
CHG_CCNTD_1  
CHG_CCNTD_0  
DIS_CCNTD_3  
DIS_CCNTD_2  
DIS_CCNTD_1  
DIS_CCNTD_0  
CC_BATCAP1_TH_2  
CC_BATCAP1_TH_1  
CC_BATCAP1_TH_0  
CC_BATCAP2_TH_2  
CC_BATCAP2_TH_1  
CC_BATCAP2_TH_0  
CC_BATCAP3_TH_2  
CC_BATCAP3_TH_1  
CC_BATCAP3_TH_0  
CC_BATCAP4_TH_2  
CC_BATCAP4_TH_1  
CC_BATCAP4_TH_0  
OCURTHR1_H  
OCURTHR1_L  
OCURTHR2_H  
OCURTHR2_L  
OCURTHR3_H  
OCURTHR3_L  
CC_SET4  
AVE_CURCD_DIR  
R
R
CC_CCNTD[31:24]  
CC_CCNTD[23:16]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CC_CCNTD[15:8]  
CC_CCNTD[7:0]  
CHG_CCNTD[31:24]  
CHG_CCNTD[23:16]  
CHG_CCNTD[15:8]  
CHG_CCNTD[7:0]  
DIS_CCNTD[31:24]  
DIS_CCNTD[23:16]  
DIS_CCNTD[15:8]  
DIS_CCNTD[7:0]  
CC_BATCAP1_TH[23:16]  
CC_BATCAP1_TH[15:8]  
CC_BATCAP1_TH[7:0]  
CC_BATCAP2_TH[23:16]  
CC_BATCAP2_TH[15:8]  
CC_BATCAP2_TH[7:0]  
CC_BATCAP3_TH[23:16]  
CC_BATCAP3_TH[15:8]  
CC_BATCAP3_TH[7:0]  
CC_BATCAP4_TH[23:16]  
CC_BATCAP4_TH[15:8]  
CC_BATCAP4_TH[7:0]  
OCURTHR1_DIR  
OCURTHR2_DIR  
OCURTHR3_DIR  
OCURTHR1[14:8]  
OCURTHR1[7:0]  
OCURTHR2[14:8]  
OCURTHR2[7:0]  
OCURTHR3[14:8]  
OCURTHR3[7:0]  
REX_DUR[1:0]  
OCURDUR3[1:0]  
INI_WAIT[1:0]  
OCURDUR2[1:0]  
OCURDUR1[1:0]  
REX_CURCD_TH  
WAKE_CURCD_TH  
CC_SET5  
REX_CURCD_TH[7:0]  
WAKE_CURCD_TH[7:0]  
-
CC_MON4_RES_EN  
OCUR3_RES_EN  
-
-
-
-
WAKE_COUNT[1:0]  
CC_MON1_RES_EN CC_MON1_DET_EN  
ALARM_OCUR1_RES_ENALARM_OCUR1_DET_EN 00h  
INT_EN1  
CC_MON4_DET_EN  
OCUR3_DET_EN  
CALIB_FIN_EN  
CC_MON4_DET  
OCUR3_DET  
CALIB_FIN  
CC_MON3_RES_EN  
OCUR2_RES_EN  
-
CC_MON3_DET_EN  
OCUR2_DET_EN  
CRCERR_DET_EN  
CC_MON3_DET  
OCUR2_DET  
CRCERR_DET  
-
CC_MON2_RES_EN  
CC_MON2_DET_EN  
OCUR1_DET_EN  
REX_DET_EN  
CC_MON2_DET  
OCUR1_DET  
REX_DET  
INT_EN2  
OCUR1_RES_EN  
INT_EN3  
-
WAKE_RES_EN  
CC_MON1_RES  
-
WAKE_DET_EN  
CC_MON1_DET  
-
00h  
00h  
00h  
00h  
00h  
INT_REQ1  
CC_MON4_RES  
OCUR3_RES  
-
CC_MON3_RES  
OCUR2_RES  
OTP_DL_FIN  
-
CC_MON2_RES  
INT_REQ2  
OCUR1_RES  
INT_REQ3  
-
-
WAKE_RES  
WAKE_DET  
PAGE_SEL  
HOSC_ON  
-
-
PAGE_SEL[1:0]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
42/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 00h: CC_SET1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_SET1  
R/W  
R/W  
80h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
CCNTEN  
0
Bit1  
Bit0  
0
AMP_GAIN[1:0]  
MCIC_R[1:0]  
-
MODE_SEL[1:0]  
00h  
Initial Value  
1
0
0
Bit 7-6 : AMP_GAIN[1:0]  
00: 5 V/V  
Differential amplifier gain  
reshuffling register  
Depending on the measurement current range, it is necessary to choose an appropriate  
amplifier gain setting. Reference measurement current range when attaching  
a shunt resistance of 0.2 mΩ is as follows. (Refer to Table 1-1)  
-1000 A to +2000 A -> 5 V/V  
01: 25 V/V  
10: 25 V/V (default)  
11: 51 V/V  
±400 A -> 25 V/V  
±200 A -> 51 V/V  
Bit 5-4 : MCIC_R[1:0]  
00: 32 (default)  
01: 128  
Built-in digital filter of Δ Σ ADC  
(down sampling)  
Changing the sampling time and filter response of built-in digital filter for ADC.  
The parameters that change under the influence of MCIC_R are as follows.  
10: 256  
CURCD[14:0]  
11: 1024  
CURCD data are updated every ADC sampling time, based on Table 1-5.  
AVE_CURCD[14:0]  
AVE_CURCD data are updated every Average time, based on Table 1-4.  
CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0]  
According to Table 2-3, the number of measurements during SLEEP mode is changed by MCIC_R.  
CC_CCNTD, CHG_CCNTD, DIS_CCNTD data update is constant (250μs).  
Bit 2 :  
CCNTEN  
Enable Coulomb counter  
CCNTEN=1 enables current accumulation.  
0: Coulomb counter OFF (default)  
1: Coulomb counter ON  
Based on CURCD data (refer to section 1.3.1), current accumulation and  
output current accumulation data. (refer to section 1.3.2) Current accumulation data can read via SPI.  
There are 3 kinds of current accumulation data: CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0]  
CCNTEN=0 to disables current accumulation.  
When disabled, CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0] keep the last data written.  
When CCNTEN = 0, CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0] can overwrite  
by SPI command.  
Whether CCNTEN = 0 or 1, CC_CCNTD[31:0] is reset to “0” by CCNTRST=1.  
Whether CCNTEN = 0 or 1, CHG_CCNTD[31:0] is reset to “0” by CHG_CCNTD_RST=1.  
Whether CCNTEN = 0 or 1, DIS_CCNTD[31:0] is reset to “0” by DIS_CCNTD_RST=1.  
Bit 1-0 : MODE_SEL[1:0]  
00: (default) which does not shift  
Operation mode choice  
Operation mode can be changed from IDEL to any of three mode in left, NORMAL, SLEEP and SSHDN.  
In the NORMAL, SLEEP and SSHDN mode, transition is possible by SPI command freely.  
Operation mode is not changed by writing “00”. (Remaining current mode)  
01: NORMAL  
10: SLEEP  
11: SSHDN  
Address 01h: CC_SET2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_SET2  
R/W  
R/W  
05h  
Bit7  
0
Bit6  
0
Bit5  
CC_UNDIV  
0
Bit4  
Bit3  
Bit2  
1
Bit1  
Bit0  
1
OSR[1:0]  
AVE_CURCD_COUNT[1:0]  
CCNTD_MASK[2:0]  
0
01h  
Initial Value  
0
0
Bit 7-6 : OSR[1:0]  
00: 32(OSF=128kHz) (default)  
Over sampling rate setting  
OSF=Over Sampling Frequency  
Over sampling rate settings for built in Δ Σ ADC.  
The parameters to change under the influence of OSR are as follows.  
01: 128(OSF=512kHz)  
10: 512(OSF=2.048MHz)  
11: 32(OSF=128kHz)  
CURCD[14:0]  
CURCD data are updated every ADC sampling time of table 1-5.  
AVE_CURCD[14:0]  
AVE_CURCD data are updated every average time of table 1-4.  
CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0]  
According to setting of table 2-3, the Number of measurement during SLEEP mode  
is changed by MCIC_R setting. CC_CCNTD, CHG_CCNTD, DIS_CCNTD data update  
is constant in every 250 μs.  
Bit 5 :  
CC_UNDIV  
0: Enable (default)  
1: Disable  
Enable scaled accumulation  
To cancel the variation of LSB current in each gain setting, built-in calculation logic  
circuit can perform scaled calculation of current accumulation.  
So, LSB of current accumulation is constant regardless of gain setting.  
CC_UNDIV controls if this function is enabled.  
Under the configulation of CC_UNDIV = 0, scaled calculation, gain setting can  
be changed with small error.  
Under the configulation of CC_UNDIV = 1, not scaled caluclation, gain setting is  
fixed but there is no error caused by scaling.  
Note that, compare to the capacity at 5 V/V gain, the current accumulation capacity  
is reduced depending on setting of gain, 1/5 at 25 V/V and 1/10.2 at 51 V/V.  
( LSB of current accumulation is changed)  
Bit 4-3 : AVE_CURCD_COUNT[1:0]  
00: 4 times (default)  
01: 16 times  
Measurement count for average current  
calculation of a fixed time interval  
The current measurement value of each fixed time interval can be calculated as an average  
value. It is not a moving average.  
AVE_CURCD_COUNT sets the number of measurements to be averaged.  
Average is caluculated from accumulating the A-D converted data for the times  
configured in AVE_CURCD_COUNT.  
10: 64 times  
11: 128 times  
Fixed interval is configured with the setting of digital filter (address 00h:MCIC_R[1:0]),  
the setting of OSR(address 00h:OSR[1:0]), and the setting of measurement number  
(address 01h: AVE_CURCD_COUNT[1:0])  
Bit 2-0 : CCNTD_MASK[2:0]  
000: 7bits mask (effective 11bits)  
001: 6bits mask (effective 12bits)  
010: 5bits mask (effective 13bits)  
011: 4bits mask (effective 14bits)  
100: 3bits mask (effective 15bits)  
Bit mask function for current accumulation  
CCNTD_MASK sets the lower bit masked from the measurement current  
value during current accumulation. When masked, these bits are set to “0”.  
101: 2bits mask (effective 16bits) (default)  
110: 1bit mask (effective 17bits)  
111: 0bit mask (effective 18bits)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
43/65  
BD7220FV-C  
Address 02h: CC_TRG_RST_CMD Register (R/W)  
Address  
(Index)  
Register Name  
CC_TRG_RST_CMD  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
CALIB_TRG  
0
Bit4  
Bit3  
EXADIN_TRG  
0
Bit2  
Bit1  
Bit0  
CCNTRST  
0
DIS_CCNTD_RST CHG_CCNTD_RST  
-
-
-
02h  
0
0
0
0
0
Bit 5 :  
CALIB_TRG  
0: No trigger for calibration  
1: Calibration start trigger  
Calibration trigger  
After “1” is written, value returns to “0” automatically  
After “1” is written, value returns to “0” automatically  
Bit 3 :  
Bit 2 :  
Bit 1 :  
Bit 0 :  
EXADIN_TRG  
0: Current measurement  
1: Switch Δ Σ ADC input to EXADIN (EXADIN pin voltage reading)  
Δ Σ ADC input signal change trigger  
DIS_CCNTD_RST  
0: No Reset  
1: Reset DIS_CCNTD  
Discharge current accumulation  
(DIS_CCNTD) reset  
After “1” is written, value returns to “0” automatically  
After “1” is written, value returns to “0” automatically  
After “1” is written, value returns to “0” automatically  
CHG_CCNTD_RST  
0: No Reset  
1: Reset CHG_CCNTD  
Charge current accumulation  
(CHG_CCNTD) reset  
CCNTRST  
0: No Reset  
Current accumulation  
(CC_CCNTD) reset  
1: Reset CC_CCNTD  
Address 03h: CC_SET3 Register (R/W)  
Address  
(Index)  
Register Name  
CC_SET3  
R/W  
R/W  
01h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
REX_EN  
1
SLEEP_CC_SEL  
0
-
SLEEP_SAMPLING_TIME[1:0]  
SLEEP_INTERVAL[1:0]  
-
03h  
Initial Value  
0
0
0
0
0
0
Bit 6 :  
SLEEP_CC_SEL  
Current accumulation method in SLEEP mode, during the OFF period  
0: Accumulate the last current measurement taken during the ON period. (default)  
1: Accumulate the average of measurements taken during the ON period.  
Bit 5-4 : SLEEP_SAMPLING_TIME[1:0]  
Number of current accumulation when ON  
during SLEEP mode.  
The parameters that change under the influence of SLEEP_SAMPLING_TIME are  
as follows. CC_CCNTD[31:0], CHG_CCNTD[31:0], DIS_CCNTD[31:0]  
The number of current accumulations in SLEEP mode are decided as in Table 2-3.  
The current accumulation data update is constant for every 250μs.  
If ADC sampling period < 2 [ms]:  
00: 1 (default)  
01: 16  
10: 32  
11: 64  
If ADC sampling period 2 [ms]:  
00: 1 (default)  
01: 2  
10: 4  
11: 8  
Bit 3-2 : SLEEP_INTERVAL[1:0]  
00: ON/OFF=1:7 (default)  
01: ON/OFF=1:15  
ON/OFF time ratio during SLEEP mode  
10: ON/OFF=1:31  
11: ON/OFF=1:127  
Bit 0 :  
REX_EN  
0: RELAX timer OFF  
1: RELAX timer ON(default)  
Relax state detection timer enable  
When REX_EN=1, if CURCD[14:0](13h+14h) { 7'd0, REX_CURCD_TH[7:0](36h)},  
the relax timer starts.  
If REX_EN = 1 0 is set while the timer is counting, the timer counter is reset to 0.  
(Note that not keep the value but reset)  
If REX_EN= 0 → 1 again, start counting from value = 0.  
Address 04h: ADC_CALIB Register (R/W)  
Address  
(Index)  
Register Name  
ADC_CALIB  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
0
Bit1  
Bit0  
0
-
-
-
-
GAIN_CAL_FS  
0
CALIB_MODE[2:0]  
0
04h  
0
0
0
0
Bit 3 :  
GAIN_CAL_FS  
0: Negative full scale (MFS) direction  
1: Positive full scale (PFS) direction  
Input polarity for GAIN calibration  
Calibration mode setting  
Bit 2-0 : CALIB_MODE[2:0]  
000: Normal operation (default)  
*Do not use any of the “Reserved” modes. (011, 100, 101, 110, 111)  
001: Mode2 (GAIN)  
010: Mode2 (OFFSET)  
011: Reserved  
Calibration revision value may shift.  
100: Reserved  
101: Reserved  
110: Reserved  
111: Reserved  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
44/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 05h: GAIN10_2 Register (R/W)  
Address  
(Index)  
Register Name  
GAIN10_2  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
0
Bit2  
Bit1  
0
Bit0  
0
-
-
-
-
GAIN10[17:14]  
05h  
Initial Value  
0
0
0
0
0
Address 06h: GAIN10_1 Register (R/W)  
Address  
(Index)  
Register Name  
GAIN10_1  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
GAIN10[13:6]  
06h  
Initial Value  
Address 07h: GAIN10_0_GAIN30_2 Register (R/W)  
Address  
(Index)  
Register Name  
GAIN10_0_GAIN30_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
Bit0  
0
GAIN10[5:0]  
GAIN30[17:16]  
07h  
0
0
GAIN10[17:0]  
Mode 2 gain calibration value  
Register data is cleared on reset (SHDNB=L or VCC UVLO).  
Please keep register data in nonvolatile memory on the system and rewrite  
after IC restarts.  
Address 08h: GAIN30_1 Register (R/W)  
Address  
(Index)  
Register Name  
GAIN30_1  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
GAIN30[15:8]  
08h  
Initial Value  
Address 09h: GAIN30_0 Register (R/W)  
Address  
(Index)  
Register Name  
GAIN30_0  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
GAIN30[7:0]  
09h  
Initial Value  
GAIN30[17:0]  
Mode 3 gain calibration value  
Register data is cleared on reset (SHDNB=L or VCC UVLO).  
Please keep register data in nonvolatile memory on the system and rewrite  
after IC restarts.  
Address 0Ah: OFST10_H Register (R/W)  
Address  
(Index)  
Register Name  
OFST10_H  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
OFST10[15:8]  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
0Ah  
0
Address 0Bh: OFST10_L Register (R/W)  
Address  
(Index)  
Register Name  
OFST10_L  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
OFST10[7:0]  
0Bh  
Initial Value  
OFST10[15:0]  
Mode 2 offset calibration value  
Register data is cleared on reset (SHDNB=L or VCC UVLO).  
Please keep register data in nonvolatile memory on the system and rewrite  
after IC restarts.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
45/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 0Ch: GAIN31_2 Register (R)  
Address  
(Index)  
Register Name  
GAIN31_2  
R/W  
R
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
Bit0  
0
-
GAIN31[17:16]  
0Ch  
Initial Value  
00h  
0
Address 0Dh: GAIN31_1 Register (R)  
Address  
(Index)  
Register Name  
GAIN31_1  
R/W  
R
Bit7  
0
Bit6  
1
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
GAIN31[15:8]  
0Dh  
Initial Value  
40h  
Address 0Eh: GAIN31_0 Register (R)  
Address  
(Index)  
Register Name  
GAIN31_0  
R/W  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
R
GAIN31[7:0]  
0Eh  
Initial Value  
00h  
GAIN31[17:0]  
Register for the GAIN30 operation  
(GAIN30 is register for the manual setting)  
Address 0Fh: CALVIN_DIFF_H Register (R/W)  
Address  
(Index)  
Register Name  
CALVIN_DIFF_H  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
0
Bit2  
Bit1  
0
Bit0  
0
-
-
-
-
CALVIN_DIFF[11:8]  
0Fh  
0
0
0
0
0
Bit2  
0
Address 10h: CALVIN_DIFF_L Register (R/W)  
Address  
(Index)  
Register Name  
CALVIN_DIFF_L  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit1  
0
Bit0  
0
CALVIN_DIFF[7:0]  
10h  
0
0
0
CALVIN_DIFF[11:0]  
Mode 2 calibration setting register  
Input differential voltage information between INP and INN for GAIN calibration  
Address 11h: EXADIN_VALUE_H Register (R)  
Address  
(Index)  
Register Name  
EXADIN_VALUE_H  
Initial Value  
R/W  
R
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
EXADIN_VALUE[15:8]  
11h  
00h  
0
0
0
Address 12h: EXADIN_VALUE_L Register (R)  
Address  
(Index)  
Register Name  
EXADIN_VALUE_L  
Initial Value  
R/W  
R
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
EXADIN_VALUE[7:0]  
12h  
00h  
0
0
0
EXADIN_VALUE[15:0]  
Measurement value of EXADIN input  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
46/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 13h: CURCD_H Register (R)  
Address  
(Index)  
Register Name  
CURCD_H  
R/W  
Bit7  
CURCD_DIR  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
CURCD[14:8]  
0
Bit2  
0
Bit1  
0
Bit0  
0
R
13h  
Initial Value  
00h  
Bit 7:  
CURCD_DIR  
0: Charge  
Current direction bit  
(INP pin voltage > INN pin voltage)  
1: Discharge  
(INP pin voltage < INN pin voltage)  
Address 14h: CURCD_L Register (R)  
Address  
(Index)  
Register Name  
CURCD_L  
R/W  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
R
CURCD[7:0]  
14h  
Initial Value  
00h  
0
0
CURCD[14:0]  
Current value  
LSB unit of CURCD depending on the gain setting is described in Chapter 1.3.1.  
The reference level when attaching an external 0.2 mΩ resistance is as follows.  
(see Table 1-1)  
5 V/V gain: LSB current 68.66 mA  
25 V/V gain: LSB current 13.73 mA  
51 V/V gain: LSB current 6.73 mA  
ex.) When a 1,000 mA current flows, the register level is as follows.  
5 V/V gain: 1000/LSB current 1000/68.6614 => CURCD=15'h000E  
25 V/V gain: 1000/LSB current 1000/13.7372 => CURCD=15'h0048  
51 V/V gain: 1000/LSB current 1000/6.73148 => CURCD=15'h0094  
Address 15h: AVE_CURCD_H Register (R)  
Address  
(Index)  
Register Name  
AVE_CURCD_H  
Initial Value  
R/W  
R
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
AVE_CURCD_DIR  
0
AVE_CURCD[14:8]  
0
15h  
00h  
Bit 7:  
AVE_CURCD_DIR  
0: Charge  
Average current direction bit  
(INP pin voltage > INN pin voltage)  
1: Discharge  
(INP pin voltage <INN pin voltage)  
Address 16h: AVE_CURCD_L Register (R)  
Address  
(Index)  
Register Name  
AVE_CURCD_L  
Initial Value  
R/W  
R
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
AVE_CURCD[7:0]  
16h  
00h  
0
0
AVE_CURCD[14:0]  
Average Current value  
Number of averaging is set in AVE_CURCD_COUNT(01h)  
LSB unit of CURCD depending on the gain setting is described in Chapter 1.3.1.  
The reference level when attaching an external 0.2 mΩ resistance is as follows.  
(see Table 1-1)  
5 V/V gain: LSB current 68.66 mA  
25 V/V gain: LSB current 13.73 mA  
51 V/V gain: LSB current 6.73 mA  
ex.) When a 1,000 mA current flows, the register level is as follows.  
5 V/V gain: 1000/LSB current 1000/68.6614 => CURCD=15'h000E  
25 V/V gain: 1000/LSB current 1000/13.7372 => CURCD=15'h0048  
51 V/V gain: 1000/LSB current 1000/6.73148 => CURCD=15'h0094  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
47/65  
BD7220FV-C  
Address 17h: CC_CCNTD_3 Register (R/W)  
Address  
(Index)  
Register Name  
CC_CCNTD_3  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
CC_CCNTD[31:24]  
17h  
0
Address 18h: CC_CCNTD_2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_CCNTD_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_CCNTD[23:16]  
18h  
0
Address 19h: CC_CCNTD_1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_CCNTD_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
CC_CCNTD[15:8]  
19h  
0
Address 1Ah: CC_CCNTD_0 Register (R/W)  
Address  
(Index)  
Register Name  
CC_CCNTD_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_CCNTD[7:0]  
1Ah  
0
CC_CCNTD[31:0]  
Current Accumulation register  
LSB unit of CC_CCNTD depending on the gain setting is described in Chapter 1.3.2.  
The reference level when attaching an external 0.2 mΩ resistance and  
CC_UNDIV=0 is as follows.  
LSB level 0.3052 μAh  
MSB level = 655.36 Ah  
When CC_UNDIV=1, the current accumulation unit varies depending on setting  
of AMP_GAIN. (see table 1-2)  
Address 1Bh: CHG_CCNTD_3 Register (R/W)  
Address  
(Index)  
Register Name  
CHG_CCNTD_3  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CHG_CCNTD[31:24]  
1Bh  
0
0
0
Address 1Ch: CHG_CCNTD_2 Register (R/W)  
Address  
(Index)  
Register Name  
CHG_CCNTD_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CHG_CCNTD[23:16]  
1Ch  
0
0
0
Address 1Dh: CHG_CCNTD_1 Register (R/W)  
Address  
(Index)  
Register Name  
CHG_CCNTD_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CHG_CCNTD[15:8]  
1Dh  
0
0
0
Address 1Eh: CHG_CCNTD_0 Register (R/W)  
Address  
(Index)  
Register Name  
CHG_CCNTD_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
CHG_CCNTD[7:0]  
1Eh  
0
0
CHG_CCNTD[31:0]  
Charge Current Accumulation register  
see Chapter 1.3.2  
CC_CCNTD_3  
CC_CCNTD_2  
16 15  
CC_CCNTD_1  
CC_CCNTD_0  
31  
24 23  
8
7
0
CHG_CCNTD_3  
CHG_CCNTD_2  
CHG_CCNTD_1  
CHG_CCNTD_0  
31  
24 23  
16 15  
8
7
0
LSB of CHG_CCNTD is equivalent to bit[2] of CC_CCNTD.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
48/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 1Fh: DIS_CCNTD_3 Register (R/W)  
Address  
(Index)  
Register Name  
DIS_CCNTD_3  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
DIS_CCNTD[31:24]  
1Fh  
0
0
Address 20h: DIS_CCNTD_2 Register (R/W)  
Address  
(Index)  
Register Name  
DIS_CCNTD_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
DIS_CCNTD[23:16]  
20h  
0
0
Address 21h: DIS_CCNTD_1 Register (R/W)  
Address  
(Index)  
Register Name  
DIS_CCNTD_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
DIS_CCNTD[15:8]  
21h  
0
Address 22h: DIS_CCNTD_0 Register (R/W)  
Address  
(Index)  
Register Name  
DIS_CCNTD_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
DIS_CCNTD[7:0]  
22h  
0
0
DIS_CCNTD[31:0]  
Discharge Current Accumulation register  
see chapter 1.3.2  
CC_CCNTD_3  
CC_CCNTD_2  
16 15  
CC_CCNTD_1  
CC_CCNTD_0  
31  
24 23  
8
7
0
DIS_CCNTD_3  
DIS_CCNTD_2  
DIS_CCNTD_1  
DIS_CCNTD_0  
31  
24 23  
16 15  
8
7
0
LSB of DIS_CCNTD is equivalent to bit[2] of CC_CCNTD.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
49/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 23h: CC_BATCAP1_TH_2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP1_TH_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP1_TH[23:16]  
23h  
0
0
0
Address 24h: CC_BATCAP1_TH_1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP1_TH_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP1_TH[15:8]  
24h  
0
0
0
Address 25h: CC_BATCAP1_TH_0 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP1_TH_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
CC_BATCAP1_TH[7:0]  
25h  
0
0
0
0
0
0
7
CC_CCNTD_3  
CC_CCNTD_2  
CC_CCNTD_1  
CC_CCNTD_0  
CC_BATCAP1_TH[23:0]  
Threshold of current  
accumulation detection1  
31  
23  
24 23  
16 15  
8
0
0
CC_BATCAP#_TH2  
CC_BATCAP#_TH1  
CC_BATCAP#_TH0  
16 15  
8
7
For higher 24bit of CC_CCNTD, set the detection of current accumulation threshold.  
(The setting method is the same for CC_BATCAP1 to 4_TH)  
LSB level of CC_BATCAP1_TH and the MSB levels are as follows  
(when CC_UNDIV=0)  
LSB level =78.125 μAh  
MSB level =655.36 Ah  
The LSB value and MSB value of CC_CCNTD are as follows. (Refer to section 1.3.2)  
LSB level 0.3052 μAh  
MSB level =655.36 Ah  
ex.) To set the detection threshold of current accumulation to 1Ah,  
the register values are as follows.  
1[Ah]/78.125[μAh]=12800 => CC_BATCAP1_TH[23:0]=24'h003200(24'd12800)  
The threshold range is as follows.  
Thresholding range =78.125 μAh to 1310.72 Ah  
When CC_UNDIV=1, unit of current accumulation varies depending on setting of  
AMP_GAIN. (see Table 1-2)  
Address 26h: CC_BATCAP2_TH_2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP2_TH_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP2_TH[23:16]  
26h  
0
0
0
Address 27h: CC_BATCAP2_TH_1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP2_TH_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP2_TH[15:8]  
27h  
0
0
0
Address 28h: CC_BATCAP2_TH_0 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP2_TH_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP2_TH[7:0]  
28h  
0
0
0
CC_BATCAP2_TH[23:0]:  
Threshold of current accumulation detection2  
Refer to CC_BATCAP1_TH for the setting  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
50/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 29h: CC_BATCAP3_TH_2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP3_TH_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP3_TH[23:16]  
29h  
0
0
0
Address 2Ah: CC_BATCAP3_TH_1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP3_TH_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP3_TH[15:8]  
2Ah  
0
0
0
Address 2Bh: CC_BATCAP3_TH_0 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP3_TH_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP3_TH[7:0]  
2Bh  
0
0
0
CC_BATCAP3_TH[23:0]  
Threshold of current accumulation detection3  
Refer to CC_BATCAP1_TH for the setting  
Address 2Ch: CC_BATCAP4_TH_2 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP4_TH_2  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP4_TH[23:16]  
2Ch  
0
0
0
Address 2Dh: CC_BATCAP4_TH_1 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP4_TH_1  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP4_TH[15:8]  
2Dh  
0
0
0
Address 2Eh: CC_BATCAP4_TH_0 Register (R/W)  
Address  
(Index)  
Register Name  
CC_BATCAP4_TH_0  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
CC_BATCAP4_TH[7:0]  
2Eh  
0
0
0
CC_BATCAP4_TH[23:0]  
Threshold of current accumulation detection4  
Refer to CC_BATCAP1_TH for the setting  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
51/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 2Fh: OCURTHR1_H Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR1_H  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR1_DIR  
0
OCURTHR1[14:8]  
0
2Fh  
Bit 7:  
OCURTHR1_DIR:  
0: Charge  
Current direction setting of OCURTHR1  
(INP pin voltage > INN pin voltage)  
1: Discharge  
(INP pin voltage <INN pin voltage)  
Address 30h: OCURTHR1_L Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR1_L  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR1[7:0]  
30h  
0
OCURTHR1[14:0]:  
Threshold of measurement current detection1  
LSB unit of CURCD depending on the gain setting is described in Chapter 1.3.1.  
The reference level when attaching an external 0.2mΩ resistance is as follows.  
(Refer to table 1-1)  
5 V/V gain: LSB electric current level 68.66 mA  
25 V/V gain: LSB electric current level 13.73 mA  
51 V/V gain: LSB electric current level 6.73 mA  
Sign  
CURCD_H  
CURCD_L  
0
15 14  
8
8
7
Sign  
OCURTHR#_H  
OCURTHR#_L  
0
ex.) When a current value of 1,000mA flows, the register level is as follows.  
OCCURTHR1_DIR = 0 and  
15 14  
7
5 V/V gain: 1000/LSB current 1000/68.6614 => OCURTHR1=15'h000E  
25 V/V gain: 1000/LSB current 1000/13.7372 => OCURTHR1=15'h0048  
51 V/V gain: 1000/LSB current 1000/6.73148 => OCURTHR1=15'h0094  
The thresholding ranges are as follows.  
5 V/V gain: Thresholding range -1000 A to +2000 A  
25 V/V gain: Thresholding range -400A to +400 A  
51 V/V gain: Thresholding range -200 A to +200 A  
Threshold range is different from measurement current range.  
When OCURTHR1_DIR = 0, detection of charging direction of measurement  
current interrupt be set. An interrupt occurs when:  
OCUR1_DET_EN (3Ah) = 1 and  
CURCD (13h + 14h) > OCURTHR1 (2Fh + 30h) and  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
OCUR1_RES_EN (3Ah) = 1 and  
CURCD (13h + 14h) OCURTHR1 (2Fh + 30h) and  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
When OCURTHR1_DIR = 1, detection of discharging direction of measurement  
current interrupt be set.An interrupt occurs when:  
OCUR1_DET_EN (3Ah) = 1 and  
CURCD (13h + 14h) > OCURTHR1 (2Fh + 30h) and  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
OCUR1_RES_EN (3Ah) = 1 and  
CURCD (13h + 14h) OCURTHR1 (2Fh + 30h) and  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
Address 31h: OCURTHR2_H Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR2_H  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR2_DIR  
0
OCURTHR2[14:8]  
0
31h  
Bit 7:  
OCURTHR2_DIR  
0: Charge  
Current direction setting of OCURTHR2  
(INP pin voltage > INN pin voltage)  
1: Discharge  
(INP pin voltage <INN pin voltage)  
Address 32h: OCURTHR2_L Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR2_L  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR2[7:0]  
32h  
0
OCURTHR2[14:0]  
Threshold of measurement current detection2  
Refer to OCURTHR1 for the setting  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
52/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 33h: OCURTHR3_H Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR3_H  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR3_DIR  
0
OCURTHR3[14:8]  
0
33h  
Bit 7:  
OCURTHR3_DIR  
0: Charge  
Current direction setting of OCURTHR3  
(INP pin voltage > INN pin voltage)  
1: Discharge  
(INP pin voltage <INN pin voltage)  
Address 34h: OCURTHR3_L Register (R/W)  
Address  
(Index)  
Register Name  
OCURTHR3_L  
Initial Value  
R/W  
R/W  
00h  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
OCURTHR3[7:0]  
34h  
0
OCURTHR3[14:0]  
Threshold of measurement current detection3  
Refer to OCURTHR1 for the setting  
Address 35h: CC_SET4 Register (R/W)  
Address  
(Index)  
Register Name  
CC_SET4  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
Bit4  
0
Bit3  
0
Bit2  
Bit1  
Bit0  
0
REX_DUR[1:0]  
OCURDUR3[1:0]  
OCURDUR2[1:0]  
OCURDUR1[1:0]  
35h  
Initial Value  
0
0
0
0
Bit 7-6:  
Bit 5-4:  
Bit 3-2:  
Bit 1-0:  
REX_DUR[1:0]  
00:30 minutes(default)  
01:60 minutes  
10:90 minutes  
11:120 minutes  
Relaxation state detection time  
Refer to REX_CURCD_TH for the relaxation state detection setting  
OCURDUR3[1:0]  
00:1 time(default)  
01:4 times  
10:8 times  
11:16 times  
Count for detection of measurement current  
Count for detection of measurement current  
Count for detection of measurement current  
ex. If CURDUR3 = 4 times, when detect over or under current value 4times,  
interrupt occurs.  
Refer to OCURTHR1, OCUR1_DET_EN, OCUR1_RES_EN  
OCURDUR2[1:0]  
00:1 time(default)  
01:4 times  
10:8 times  
11:16 times  
ex. If CURDUR2 = 4 times, when detect over or under current value 4times,  
interrupt occurs.  
Refer to OCURTHR1, OCUR1_DET_EN, OCUR1_RES_EN  
OCURDUR1[1:0]  
00:1 time(default)  
01:4 times  
ex. If CURDUR1 = 4 times, when detect over or under current value 4times,  
interrupt occurs.  
Refer to OCURTHR1, OCUR1_DET_EN, OCUR1_RES_EN  
10:8 times  
11:16 times  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
53/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 36h: REX_CURCD_TH Register (R/W)  
Address  
(Index)  
Register Name  
REX_CURCD_TH  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
REX_CURCD_TH[7:0]  
36h  
0
0
0
REX_CURCD_TH[7:0]  
Threshold of the relaxation state detection  
measurement current  
Refer to REX_EN about relax timer setting  
(Relaxation timer is enable when REX_EN=1)  
REX_CURCD_TH can be set in the lower 8 bits of CURCD. (unsigned 8 bits expression)  
Sign  
15 14  
CURCD_H  
CURCD_L  
0
LSB unit of CURCD depending on the gain setting is described in Chapter 1.3.1.  
The reference level when attaching an external 0.2mΩ resistance is as follows.  
(Refer to Table 1-1)  
5 V/V gain: LSB current 68.66 mA  
25 V/V gain: LSB current 13.73 mA  
8
7
7
REX_CURCD_TH  
0
51 V/V gain: LSB current 6.73 mA  
ex.) When a 1,000mA current flows, the register level is as follows.  
5 V/V gain: 1000/LSB current 1000/68.66 14 => REX_CURCD_TH=15'h000E  
25 V/V gain: 1000/LSB current 1000/13.73 72 => REX_CURCD_TH=15'h0048  
51 V/V gain: 1000/LSB current 1000/6.73 148 => REX_CURCD_TH=15'h0094  
The threshold ranges are as follows.  
5 V/V gain: Threshold range 0 to 17.51 A  
25 V/V gain: Threshold range 0 to 3.50 A  
51 V/V gain: Threshold range 0 to 1.72 A  
An interrupt occurs when:  
REX_DET_EN(3Bh) = 1 and  
CURCD[14:0] (13h + 14h) { 7'd0, REX_CURCD_TH[7:0] (36h) } and  
Relaxation state detection time over the setting by REX_DUR[1:0](35h)  
Address 37h: WAKE_CURCD_TH Register (R/W)  
Address  
(Index)  
Register Name  
WAKE_CURCD_TH  
Initial Value  
R/W  
R/W  
00h  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
Bit3  
Bit2  
0
Bit1  
0
Bit0  
0
WAKE_CURCD_TH[7:0]  
37h  
0
0
0
WAKE_CURCD_TH[7:0]  
CURCD_H  
Threshold of wake-up current detection  
WAKE_CURCD_TH can be set in the lower 8 bits of CURCD. (unsigned 8 bits expression)  
LSB unit of CURCD depending on the gain setting is described in Chapter 1.3.1.  
The reference level when attaching an external 0.2 mΩ resistance is as follows.  
(Refer to Table 1-1)  
5 V/V gain: LSB current 68.66 mA  
25 V/V gain: LSB current 13.73 mA  
Sign  
15 14  
CURCD_L  
0
8
7
7
WAKE_CURCD_TH  
51 V/V gain: LSB current 6.73 mA  
0
ex.) When a 1,000 mA current flows, the register level is as follows.  
5 V/V gain: 1000/LSB current 1000/68.6614 => WAKE_CURCD_TH=15'h000E  
25 V/V gain: 1000/LSB current 1000/13.7372 => WAKE_CURCD_TH=15'h0048  
51 V/V gain: 1000/LSB current 1000/6.73148 => WAKE_CURCD_TH=15'h0094  
The threshold ranges are as follows.  
5V/V gain: Threshold range 0 to 17.51A  
25V/V gain: Threshold range 0 to 3.50A  
51V/V gain: Threshold range 0 to 1.72A  
The WAKE_RES interrupt occurs when:  
WAKE_RES_EN(3Bh) = 1 and  
CURCD[14:0] (13h + 14h) { 7'd0, WAKE_CURCD_TH[7:0] (37h) } and  
Wake up current detection over the setting by WAKE_COUNT[1:0](38h)  
The WAKE_DET interrupt occurs when:  
WAKE_DET_EN(3Bh) = 1 and  
CURCD[14:0] (13h + 14h) > { 7'd0, WAKE_CURCD_TH[7:0] (37h) } and  
Wake up current detection over the setting by WAKE_COUNT[1:0](38h)  
Address 38h: CC_SET5 Register (R/W)  
Address  
(Index)  
Register Name  
CC_SET5  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
Bit0  
-
-
INI_WAIT[1:0]  
-
WAKE_COUNT[1:0]  
38h  
Initial Value  
0
0
0
0
Bit 5-4 : INI_WAIT[1:0]  
00: 1.5ms(default)  
Initial wait time setting  
The INI_WAIT register sets initial wait time for start of VREF25 and AMP  
01: 3.0ms  
10: 6.0ms  
11: 12.0ms  
Bit 1-0 : WAKE_COUNT[1:0]  
00: 1 time(default)  
01: 4 times  
Wake up current detection count  
Refer to WAKE_CURCD_TH for the wake up current detection setting  
10: 8times  
11: 16times  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
54/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Address 39h: INT_EN1 Register (R/W)  
Address  
(Index)  
Register Name  
INT_EN1  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
CC_MON4_RES CC_MON4_DET CC_MON3_RES CC_MON3_DET CC_MON2_RES CC_MON2_DET CC_MON1_RES CC_MON1_DET  
_EN  
0
_EN  
0
_EN  
0
_EN  
0
_EN  
0
_EN  
0
_EN  
0
_EN  
0
39h  
Initial Value  
Bit 7 :  
CC_MON4_RES_EN  
CC_MON4_DET_EN  
CC_MON3_RES_EN  
CC_MON3_DET_EN  
CC_MON2_RES_EN  
CC_MON2_DET_EN  
CC_MON1_RES_EN  
CC_MON1_DET_EN  
Interrupt Enable :  
Detection of discharging direction  
current accumulation value4  
1: Enable0: Disable  
CC_MON4_RES_EN=1: CC_MON4_RES=1 -> INTB=L,CC_MON4_RES=0 -> INTB=Hi-z  
CC_MON4_RES_EN=0: INTB=Hi-z (regardless of CC_MON4_RES)  
Bit 6 :  
Bit 5 :  
Bit 4 :  
Bit 3 :  
Bit 2 :  
Bit 1 :  
Bit 0 :  
Interrupt Enable :  
Detection of charging direction  
current accumulation value4  
1: Enable0: Disable  
CC_MON4_DET_EN=1: CC_MON4_DET=1 -> INTB=L, CC_MON4_DET=0 -> INTB=Hi-z  
CC_MON4_DET_EN=0: INTB=Hi-z (regardless of CC_MON4_DET)  
Interrupt Enable :  
Detection of discharging direction  
current accumulation value3  
1: Enable0: Disable  
CC_MON3_RES_EN=1: CC_MON3_RES=1 -> INTB=L,CC_MON3_RES=0 -> INTB=Hi-z  
CC_MON3_RES_EN=0: INTB=Hi-z (regardless of CC_MON3_RES)  
Interrupt Enable :  
Detection of charging direction  
current accumulation value3  
1: Enable0: Disable  
CC_MON3_DET_EN=1: CC_MON3_DET=1 -> INTB=L,CC_MON3_DET=0 -> INTB=Hi-z  
CC_MON3_DET_EN=0: INTB=Hi-z (regardless of CC_MON3_DET)  
Interrupt Enable :  
Detection of discharging direction  
current accumulation value2  
1: Enable0: Disable  
CC_MON2_RES_EN=1: CC_MON2_RES=1 -> INTB=L, CC_MON2_RES=0 -> INTB=Hi-z  
CC_MON2_RES_EN=0: INTB=Hi-z (regardless of CC_MON2_RES)  
Interrupt Enable :  
Detection of charging direction  
current accumulation value2  
1: Enable0: Disable  
CC_MON2_DET_EN=1: CC_MON2_DET=1 -> INTB=L, CC_MON2_DET=0 -> INTB=Hi-z  
CC_MON2_DET_EN=0: INTB=Hi-z (regardless of CC_MON2_DET)  
Interrupt Enable :  
Detection of discharging direction  
current accumulation value1  
1: Enable0: Disable  
CC_MON1_RES_EN=1: CC_MON1_RES=1 -> INTB=L, CC_MON1_RES=0 -> INTB=Hi-z  
CC_MON1_RES_EN=0: INTB=Hi-z (regardless of CC_MON1_RES)  
Interrupt Enable :  
1: Enable0: Disable  
Detection of charging direction  
current accumulation value1  
CC_MON1_DET_EN=1: CC_MON1_DET=1 -> INTB=L, CC_MON1_DET=0 -> INTB=Hi-z  
CC_MON1_DET_EN=0: INTB=Hi-z (regardless of CC_MON1_DET)  
Address 3Ah: INT_EN2 Register (R/W)  
Address  
(Index)  
Register Name  
INT_EN2  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
ALARM_OCUR1 ALARM_OCUR1  
OCUR3_RES_EN OCUR3_DET_EN OCUR2_RES_EN OCUR2_DET_EN OCUR1_RES_EN OCUR1_DET_EN  
_RES_EN  
0
_DET_EN  
0
3Ah  
Initial Value  
0
0
0
0
0
0
Bit 7 :  
OCUR3_RES_EN  
Interrupt Enable :  
1: Enable0: Disable  
Detection of discharging direction  
current measurement value3  
OCUR3_RES_EN=1: OCUR3_RES=1 -> INTB=L, OCUR3_RES=0 -> INTB=Hi-z  
OCUR3_RES_EN=0: INTB=Hi-z (regardless of OCUR3_RES)  
Bit 6 :  
Bit 5 :  
Bit 4 :  
Bit 3 :  
Bit 2 :  
Bit 1 :  
OCUR3_DET_EN  
OCUR2_RES_EN  
OCUR2_DET_EN  
OCUR1_RES_EN  
OCUR1_DET_EN  
ALARM_OCUR1_RES_EN  
Interrupt Enable :  
Detection of charging direction  
current measurement value3  
1: Enable0: Disable  
OCUR3_DET_EN=1: OCUR3_DET=1 -> INTB=L, OCUR3_DET=0 -> INTB=Hi-z  
OCUR3_DET_EN=0: INTB=Hi-z (regardless of OCUR3_DET)  
Interrupt Enable :  
Detection of discharging direction  
current measurement value2  
1: Enable0: Disable  
OCUR2_RES_EN=1: OCUR2_RES=1 -> INTB=L, OCUR2_RES=0 -> INTB=Hi-z  
OCUR2_RES_EN=0: INTB=Hi-z (regardless of OCUR2_RES)  
Interrupt Enable :  
Detection of charging direction  
current measurement value2  
1: Enable0: Disable  
OCUR2_DET_EN=1: OCUR2_DET=1 -> INTB=L, OCUR2_DET=0 -> INTB=Hi-z  
OCUR2_DET_EN=0: INTB=Hi-z (regardless of OCUR2_DET)  
Interrupt Enable :  
Detection of discharging direction  
current measurement value1  
1: Enable0: Disable  
OCUR1_RES_EN=1: OCUR1_RES=1 -> INTB=L, OCUR1_RES=0 -> INTB=Hi-z  
OCUR1_RES_EN=0: INTB=Hi-z (regardless of OCUR1_RES)  
Interrupt Enable :  
Detection of charging direction  
current measurement value1  
1: Enable0: Disable  
OCUR1_DET_EN=1: OCUR1_DET=1 -> INTB=L, OCUR1_DET=0 -> INTB=Hi-z  
OCUR1_DET_EN=0: INTB=Hi-z (regardless of OCUR1_DET)  
Alarm output Enable :  
1: Enable0: Disable  
Alarm detection of discharging direction  
current measurement value1  
ALARM_OCUR1_RES_EN=1:  
OCUR1_RES=1 -> ALARMB=L, OCUR1_RES=0 -> ALARMB=Hi-z  
ALARM_OCUR1_RES_EN=0: ALRMB=Hi-z (regardless of OCUR1_RES)  
Bit 0 :  
ALARM_OCUR1_DET_EN  
Alarm output Enable :  
1: Enable0: Disable  
Alarm detection of charging direction  
current measurement value1  
ALARM_OCUR1_DET_EN=1:  
OCUR1_DET=1 -> ALARMB=L, OCUR1_DET=0 -> ALARMB=Hi-z  
ALARM_OCUR1_DET_EN=0: ALRMB=Hi-z (regardless of OCUR1_DET)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
55/65  
BD7220FV-C  
Address 3Bh: INT_EN3 Register (R/W)  
Address  
(Index)  
Register Name  
INT_EN3  
R/W  
R/W  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
CRCERR_DET_EN  
0
-
CALIB_FIN_EN  
0
-
-
REX_DET_EN WAKE_RES_EN WAKE_DET_EN  
3Bh  
Initial Value  
0
0
0
0
0
0
Bit 6 :  
CALIB_FIN_EN  
Interrupt Enable :  
1: Enable0: Disable  
Detection of calibration finish  
CALIB_FIN_EN=1: CALIB_FIN=1 -> INTB=L, CALIB_FIN=0 -> INTB =Hi-z  
CALIB_FIN_EN=0: INTB=Hi-z (regardless of CALIB_FIN)  
Bit 5 :  
Bit 4 :  
Bit 2 :  
Reserved  
When writing this register, "0" must be written  
CRCERR_DET_EN  
REX_DET_EN  
Interrupt Enable :  
Detection of CRC Error  
1: Enable0: Disable  
CRCERR_DET_EN=1: CRCERR_DET=1 -> INTB=L, CRCERR_DET=0 -> INTB=Hi-z  
CRCERR_DET_EN=0: INTB=Hi-z (regardless of CRCERR_DET)  
Interrupt Enable :  
1: Enable0: Disable  
Detection of Relax state  
REX_DET_EN=1: REX_DET=1 -> INTB=L, REX_DET=0 -> INTB=Hi-z  
REX_DET_EN=0: INTB=Hi-z (regardless of REX_DET)  
Bit 1 :  
Bit 0 :  
WAKE_RES_EN  
WAKE_DET_EN  
Interrupt Enable :  
Detection of under wake-up current measurement  
1: Enable0: Disable  
WAKE_RES_EN=1: WAKE_RES=1 -> INTB=L, WAKE_RES=0-> INTB=Hi-z  
WAKE_RES_EN=0: INTB=Hi-z (regardless of WAKE_RES)  
Interrupt Enable :  
1: Enable0: Disable  
Detection of over wake-up current measurement  
WAKE_DET_EN=1: WAKE_DET=1 -> INTB=L, WAKE_DET=0 -> INTB=Hi-z  
WAKE_DET_EN=0: INTB=Hi-z (regardless of WAKE_DET)  
Address 3Ch: INT_REQ1 Register (R/W)  
Address  
(Index)  
Register Name  
INT_REQ1  
R/W  
R/W CC_MON4_RES CC_MON4_DET CC_MON3_RES CC_MON3_DET CC_MON2_RES CC_MON2_DET CC_MON1_RES CC_MON1_DET  
00h  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
3Ch  
Initial Value  
0
0
0
0
0
0
0
0
Bit 7 :  
CC_MON4_RES  
Read:  
Interrupt Status for Detection of  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
discharging direction current accumulation value4  
CC_CCNTD[31:8](17h+18h+19h+1A) CC_BATCAP4_TH[24:0](2Ch+2Dh+2Eh)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
Bit 6 :  
Bit 5 :  
Bit 4 :  
Bit 3 :  
Bit 2 :  
Bit 1 :  
Bit 0 :  
CC_MON4_DET  
CC_MON3_RES  
CC_MON3_DET  
CC_MON2_RES  
CC_MON2_DET  
CC_MON1_RES  
CC_MON1_DET  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) CC_BATCAP4_TH[24:0](2Ch+2Dh+2Eh)  
Interrupt Status for Detection of  
charging direction current accumulation value4  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) CC_BATCAP3_TH[24:0](29h+2Ah+2Bh)  
Interrupt Status for Detection of  
discharging direction current accumulation value3  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) > CC_BATCAP3_TH[24:0](29h+2Ah+2Bh)  
Interrupt Status for Detection of  
charging direction current accumulation value3  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) CC_BATCAP2_TH[24:0](26h+27h+28h)  
Interrupt Status for Detection of  
discharging direction current accumulation value2  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) > CC_BATCAP2_TH[24:0](26h+27h+28h)  
Interrupt Status for Detection of  
charging direction current accumulation value2  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) CC_BATCAP1_TH[24:0](23h+24h+25h)  
Interrupt Status for Detection of  
discharging direction current accumulation value1  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Interrupt Status for Detection of  
charging direction current accumulation value1  
Bit is set to “1” when detect below condition  
CC_CCNTD[31:8](17h+18h+19h+1A) > CC_BATCAP1_TH[24:0](23h+24h+25h)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
56/65  
BD7220FV-C  
Address 3Dh: INT_REQ2 Register (R/W)  
Address  
(Index)  
Register Name  
INT_REQ2  
R/W  
R/W  
00h  
Bit7  
OCUR3_RES  
0
Bit6  
OCUR3_DET  
0
Bit5  
OCUR2_RES  
0
Bit4  
OCUR2_DET  
0
Bit3  
OCUR1_RES  
0
Bit2  
OCUR1_DET  
0
Bit1  
Bit0  
-
-
3Dh  
Initial Value  
0
0
Bit 7 :  
OCUR3_RES  
Read:  
Interrupt Status for Detection of  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
discharging direction current measurement3  
CURCD_DIR+CURCD(13h+14h) OCURTHR3_DIR+OCURTHR3(33h+34h) and  
over the consecutive detection setting by OCURDUR3[1:0](35h)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
Bit 6 :  
Bit 5 :  
Bit 4 :  
Bit 3 :  
Bit 2 :  
OCUR3_DET  
OCUR2_RES  
OCUR2_DET  
OCUR1_RES  
OCUR1_DET  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CURCD_DIR+CURCD(13h+14h) > OCURTHR3_DIR+OCURTHR3(33h+34h) and  
over the consecutive detection setting by OCURDUR3[1:0](35h)  
Interrupt Status for Detection of  
charging direction current measurement3  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CURCD_DIR+CURCD(13h+14h) OCURTHR2_DIR+OCURTHR2(31h+32h) and  
over the consecutive detection setting by OCURDUR2[1:0](35h)  
Interrupt Status for Detection of  
discharging direction current measurement2  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CURCD_DIR+CURCD(13h+14h) > OCURTHR2_DIR+OCURTHR2(31h+32h) and  
over the consecutive detection setting by OCURDUR2[1:0](35h)  
Interrupt Status for Detection of  
charging direction current measurement2  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CURCD_DIR+CURCD(13h+14h) OCURTHR1_DIR+OCURTHR1(2Fh+30h)  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
Interrupt Status for Detection of  
discharging direction current measurement1  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Read:  
1: Event occurred 0: No event  
Interrupt Status for Detection of  
charging direction current measurement1  
Bit is set to “1” when detect below condition  
CURCD_DIR+CURCD(13h+14h) > OCURTHR1_DIR+OCURTHR1(2Fh+30h) and  
over the consecutive detection setting by OCURDUR1[1:0](35h)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
57/65  
BD7220FV-C  
Address 3Eh: INT_REQ3 Register (R/W)  
Address  
(Index)  
Register Name  
INT_REQ3  
R/W  
R/W  
00h  
Bit7  
Bit6  
CALIB_FIN  
0
Bit5  
Bit4  
Bit3  
Bit2  
REX_DET  
0
Bit1  
WAKE_RES  
0
Bit0  
WAKE_DET  
0
-
OTP_DL_FIN CRCERR_DET  
-
3Eh  
Initial Value  
0
0
0
0
Bit 7:  
Reserved  
Bit 6 :  
CALIB_FIN  
Read:  
1: Event occurred 0: No event  
Interrupt Status for calibration finish  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
Bit 5 :  
Bit 4 :  
Bit 2 :  
OTP_DL_FIN  
CRCERR_DET  
REX_DET  
Read:  
1: Event occurred 0: No event  
1: Clear 0: Not Clear  
Status for OTP data download finish  
Write:  
Interrupt status clear  
Read:  
1: Event occurred 0: No event  
1: Clear 0: Not Clear  
Interrupt status for CRC Error  
Write:  
Interrupt status clear  
Read:  
1: Event occurred 0: No event  
Interrupt status for Relax state  
Bit is set to “1” when detect below condition  
CURCD[14:0](13h+14h) { 7'd0, REX_CURCD_TH[7:0](36h) } and  
after detection time setting by REX_DUR[1:0](35h)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
Bit 1 :  
WAKE_RES  
WAKE_DET  
Read:  
1: Event occurred 0: No event  
Bit is set to “1” when detect below condition  
CURCD[14:0](13h+14h) { 7'd0, WAKE_CURCD_TH[7:0](37h) } and  
over the consecutive detection setting by WAKE_COUNT[1:0](38h)  
Interrupt status for Detection of  
under wake-up current  
Write:  
Interrupt status clear  
1: Clear 0: Not Clear  
Bit 0 :  
Read:  
1: Event occurred 0: No event  
Interrupt status for Detection of  
over wake-up current  
Bit is set to “1” when detect below condition  
CURCD[14:0](13h+14h) > { 7'd0, WAKE_CURCD_TH[7:0](37h) } and  
over the consecutive detection setting by WAKE_COUNT[1:0](38h)  
Write:  
1: Clear 0: Not Clear  
Interrupt status clear  
Address 3Fh: PAGE_SEL Register (R/W)  
Address  
(Index)  
Register Name  
PAGE_SEL  
Initial Value  
R/W  
R/W  
00h  
Bit7  
HOSC_ON  
0
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0
Bit0  
-
-
-
-
-
Reserved  
3Fh  
0
0
0
0
0
0
Bit 7 :  
HOSC_ON  
Built-in OSC force enable  
Force Built-in OSC to turn on when HOSC_ON=1.  
0: Built-in OSC normal operation (default)  
1: Built-in OSC turns ON by force  
Before transitioning from SSHDN mode to another mode, set HOSC_ON = 1  
and the built-in OSC will turn ON.  
When HOSC_ON=0, built-in OSC operate normally.  
The built-in OSC will turn on in WAKE, OTP, IDLE, NORMAL, SLEEP modes.  
(Refer to Table 2-1)  
Bit 1-0:  
Reserved[1:0]  
When writing this register, always write “00” to these bits.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
58/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
I/O Equivalence Circuit  
VCC  
VDD  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VREF15  
VREF25  
VREFCAL  
SHDNB  
EXADIN  
CSB  
SDI  
SCK  
VDD  
VCC  
VCC  
to ΔΣADC  
GND  
GND  
GND  
GND  
GND  
GND  
INTB  
ALARMB  
ADINP  
ADINM  
SDO  
VCC  
VCC  
VCC  
VDD  
VCC  
INN  
VREF25  
to AMP  
AMP  
OUT  
GND  
to AMP  
DGND  
GND  
GND  
GND  
GND  
INP  
VCC  
VDD  
INN  
AMPOUT  
GND  
DGND  
Figure 7. I/O Equivalence Circuit  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
59/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Layout  
Optimum performance of this product cannot be achieved without taking the circuit board layout into consideration.  
The following points are important.  
(1) Place CREF15 as close as possible to the VREF15 pin and GND.  
(2) Place CVDD as close as possible to the VDD pin and GND.  
(3) Place COUT as close as possible to the AMPOUT pin and GND.  
(4) Place CINP as close as possible to the INP pin and GND.  
(5) Place CINN as close as possible to the INN pin and GND.  
(6) Place CREF25 as close as possible to the VREF25 pin and GND.  
(7) Place CVCC as close as possible to the VCC pin and GND.  
(8) Place CREFC as close as possible to the VREFCAL pin and GND.  
(9) Connect the ADINP pin and the AMPOUT pin as close as possible.  
(10) Connect the ADINM pin and the VREF25 pin as close as possible.  
(11) Draw a line the INP pin and the INN pin as equal as possible.  
(12) Draw a ground line as thick as possible for the low impedance.  
(2)  
(6)  
(1)  
(7)  
(8)  
(3)  
(12)  
(4)  
(5)  
(9)  
(10)  
(11)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
60/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Except for pins the output and the input of which were designed to go below ground, ensure that no pins are at a  
voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
8.  
9.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
61/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Operational Notes -continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 8. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
62/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Ordering Information  
B D 7  
2
2
0
F
V
-
C E 2  
Part Number  
Package  
FV: SSOP-B20  
Product rank  
C: for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
7 2 2 0 F V  
Pin 1 Mark  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
24.Sep.2020 Rev.002  
63/65  
BD7220FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B20  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
64/65  
24.Sep.2020 Rev.002  
BD7220FV-C  
Revision History  
Revision  
Number  
Date  
Description  
17. Dec. 2019  
001  
New Release  
Page.16, Page.17 Bit Mask Function of Accumulation Current  
Corrected Figure 1-8 typo of “image of bits mask” and updated Figure 1-8.  
Add explanatory text.  
24. Sep. 2020  
002  
Add explanatory of example for CCNTD error complement.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0Q2Q0AH00600-1-2  
65/65  
24.Sep.2020 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD723

isc Silicon NPN Power Transistor
ISC

BD724

isc Silicon PNP Power Transistor
ISC

BD725

isc Silicon NPN Power Transistor
ISC

BD725L05G-C (新产品)

BD725L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,电流消耗为6µA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。
ROHM

BD726

isc Silicon PNP Power Transistor
ISC

BD7280YG-C (新产品)

BD7280YG-C is an Input/Output Rail-to-Rail single CMOS operational amplifier. It features high slew rate, low noise and low input bias current. It is suitable for automotive requirements such as engine control unit, electric power steering, anti-lock braking system, sensor amplifier, and so on. Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD7281YG-C (新产品)

BD7281YG-C是一款输入输出轨到轨单电路CMOS运算放大器。具有高压摆率、低噪声和低输入偏置电流等特点,因此可用于引擎控制单元、EPS、ABS和传感器放大器等各类车载应用。另外,电路采用了即使输出电容为1nF也不会振荡的电路形式,因此在设计应用产品时无需担心输出电容引起的振荡。什么是Nano Cap™?Nano Cap™是ROHM自有的一种电源技术,利用该技术,即使输出电容低至nF级也能进行稳定控制。
ROHM

BD7282FVM-LB (开发中)

This is the product guarantees long time support in Industrial market. This product are Rail-to-Rail Input/Output monolithic ICs integrated dual or quad independent CMOS Op-Amps on a single chip. These features high slew rate, low noise and low input bias current. It is suitable for equipment operating from battery power and using sensors that an amplifier.Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD7284F-LB (开发中)

This is the product guarantees long time support in Industrial market. This product are Rail-to-Rail Input/Output monolithic ICs integrated dual or quad independent CMOS Op-Amps on a single chip. These features high slew rate, low noise and low input bias current. It is suitable for equipment operating from battery power and using sensors that an amplifier.Furthermore, this circuit type does not oscillate even with a capacitance of 1 nF. Set design is possible without worrying about oscillation due to output capacitance.What is Nano Cap™?Nano Cap™ is a combination of technologies which allow stable operation even if output capacitance is connected with the range of nF unit.
ROHM

BD730L05G-C (新产品)

BD730L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,静态电流为28μA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。
ROHM

BD733

Silicon NPN Power Transistor
ISC

BD733L05G-C (新产品)

BD733L05G-C是消耗电流很低的线性稳压器,非常适用于直接连接电池的车载系统。本IC的耐压为45V,输出电流为50mA,静态电流为28μA(Typ),输出电压精度为±2%。另外,本IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。输出的相位补偿电容可使用低ESR的陶瓷电容器。
ROHM