BD86852MUF-C [ROHM]

BD86852MUF-C is a power management IC with primary buck converter (DC/DC1), secondary buck converters (DC/DC2 and DC/DC3), external linear regulator control block and the power-on reset function for CMOS sensor and image sensing power supply. Output voltage and sequence are selectable and applicable to various image sensor power supply. This device adopts small package VQFN24FV4040 which is optimal for camera module. In addition, this device has a pin that can be programmed to turn on/off the spread spectrum providing a lower noise regulated outputs.;
BD86852MUF-C
型号: BD86852MUF-C
厂家: ROHM    ROHM
描述:

BD86852MUF-C is a power management IC with primary buck converter (DC/DC1), secondary buck converters (DC/DC2 and DC/DC3), external linear regulator control block and the power-on reset function for CMOS sensor and image sensing power supply. Output voltage and sequence are selectable and applicable to various image sensor power supply. This device adopts small package VQFN24FV4040 which is optimal for camera module. In addition, this device has a pin that can be programmed to turn on/off the spread spectrum providing a lower noise regulated outputs.

文件: 总46页 (文件大小:2248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive Power Management IC  
PMIC for Automotive Camera  
BD86852MUF-C  
General Description  
Key Specifications  
BD86852MUF-C is a power management IC with primary  
buck converter (DC/DC1), secondary buck converters  
(DC/DC2 and DC/DC3), external linear regulator control  
block and the power-on reset function for CMOS sensor  
and image sensing power supply. Output voltage and  
sequence are selectable and applicable to various image  
sensor power supply.  
This device adopts small package VQFN24FV4040 which  
is optimal for camera module. In addition, this device has  
a pin that can be programmed to turn on/off the spread  
spectrum providing a lower noise regulated outputs.  
Power Supply Voltage Rating:  
Power Supply Voltage Range:  
Output Voltage:  
20 V (Max)  
4.0 V to 18 V  
VO1:  
VO2:  
VO3:  
3.3 V or 3.9 V (±2 %)  
1.1 V or 1.2 V (±2 %)  
1.8 V (±2 %)  
Output Current:  
VO1:  
2 A (Max)  
1 A (Max)  
1 A (Max)  
VO2:  
VO3:  
Switching Frequency:  
Stand-by Current:  
2.2 MHz (±200 kHz)  
0 μA (Typ)  
Operating Ambient Temperature Range:  
-40 °C to +125 °C  
Features  
AEC-Q100 Qualified(Note 1)  
Package  
VQFN24FV4040  
W (Typ) x D (Typ) x H (Max)  
4.0 mm x 4.0 mm x 1.0 mm  
Functional Safety Supportive Automotive Products  
Primary DC/DC (VO1)  
DC/DC with built-in FET  
High Efficiency with Synchronous Rectification  
Dual Secondary DC/DC (VO2, VO3)  
DC/DC with built-in FET  
High Efficiency with Synchronous Rectification  
Each Protection Function  
Spread Spectrum for EMC  
Fail Detection Pin (for each output)  
Selectable Output Voltage and Sequence  
VQFN24FV4040  
Wettable Flank Package  
(Note 1) Grade 1  
Applications  
ADAS  
Camera System (Automotive Camera and Security  
Camera) using CMOS Sensor  
Typical Application Circuit  
VCC  
VO2  
PVCC  
VCC  
VO1  
VS2  
SW2  
VO2  
EN  
PGND23  
SW3  
VO3  
VREG  
VS3  
VO3  
VO1  
BOOT1  
SW1  
EN_LDO  
FB_LDO  
VO4  
External  
LDO  
VO1  
PGND1  
VO1  
VO3  
RT  
SSCG  
PGOOD  
MODE2  
MODE1  
MODE0  
GND  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays.  
.www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
1/43  
 
 
 
 
 
 
BD86852MUF-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagrams...............................................................................................................................................................................4  
Description of Blocks ......................................................................................................................................................................6  
Absolute Maximum Ratings ..........................................................................................................................................................11  
Thermal Resistance......................................................................................................................................................................11  
Recommended Operating Conditions...........................................................................................................................................12  
Electrical Characteristics...............................................................................................................................................................12  
Typical Performance Curves.........................................................................................................................................................15  
Function Explanations ..................................................................................................................................................................19  
Application Examples ...................................................................................................................................................................24  
Power Loss...................................................................................................................................................................................37  
Operational Notes.........................................................................................................................................................................38  
Ordering Information.....................................................................................................................................................................41  
Marking Diagrams.........................................................................................................................................................................41  
Physical Dimension and Packing Information...............................................................................................................................42  
Revision History............................................................................................................................................................................43  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
2/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
 
BD86852MUF-C  
Pin Configuration  
(TOP VIEW)  
18  
17  
16  
15  
14  
13  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
PGOOD  
FB_LDO  
VO1  
SSCG  
RT  
EXP-PAD  
BOOT1  
SW1  
8
MODE2  
MODE1  
7
PGND1  
1
2
3
4
5
6
Pin Descriptions  
Pin No.  
Pin Name  
PVCC  
VCC  
Function  
Pin No.  
13  
Pin Name  
VO2  
Function  
1
2
3
Power supply for DC/DC1  
Power supply  
DC/DC2 output voltage feedback  
DC/DC2 switching output  
14  
SW2  
EN  
Enable control input  
15  
VS2  
Power supply for DC/DC2  
Power ground for DC/DC2 and  
DC/DC3  
4
GND  
Ground  
16  
PGND23  
5
6
7
8
9
VREG  
MODE0  
MODE1  
MODE2  
RT  
Internal regulator output  
Mode select 0(Note 1)  
17  
18  
19  
20  
21  
VS3  
SW3  
Power supply for DC/DC3  
DC/DC3 switching output  
Mode select 1(Note 1)  
VO3  
DC/DC3 output voltage feedback  
External LDO voltage feedback  
DC/DC1 output voltage feedback  
Mode select 2(Note 1)  
FB_LDO  
VO1  
Adjust switching frequency  
DC/DC1 high side driver supply  
pin  
10  
11  
12  
-
SSCG  
PGOOD  
EN_LDO  
-
SSCG setting(Note 2)  
22  
23  
24  
-
BOOT1  
SW1  
Power Good (Note 3)  
(N-channel open-drain)  
External LDO enable control  
output  
DC/DC1 switching output  
Power ground for DC/DC1  
PGND1  
EXP-PAD  
The EXP-PAD connect to GND,  
PGND1 and PGND23.  
-
(Note 1) Connect to the GND pin or the VREG pin.  
(Note 2) If not in use, connect to the GND pin.  
(Note 3) If not in use, open.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
3/43  
BD86852MUF-C  
Block Diagrams  
1. Top Block Diagram  
VCC  
UVLO_VCC  
UVLO  
EN1  
EN  
EN1  
VREG  
VREG  
CTL1  
UVLO_VREG  
UVLO  
TSD  
VREF2  
VS2  
TSD  
VREF1  
EN2  
VREF1  
VREF2  
EN2  
OSC  
(SSCG)  
CLK1  
CLK2  
CLK3  
SSCG  
RT  
UVLO  
UVLO_VS  
UVLO_VCC  
UVLO_VREG  
UVLO_VS  
VSOVP  
LVD1  
PGOOD  
VREG  
OVD1  
LVD2  
CTL1  
CTL2  
CTL3  
CONTROL  
LOGIC  
OVD2  
LVD3  
VS2  
OVD3  
OCP1  
EN_LDO  
CTL4  
OCP2  
OCP3  
VREG  
TSD  
LVD4  
OVD4  
FB_LDO  
LDO_CNT  
MODE0  
MODE1  
MODE2  
MODE<2:0>  
VO2  
VS2  
SW2  
PVCC  
BOOT1  
SW1  
CTL2  
LVD2  
OVD2  
CLK2  
DC/DC2  
MODE<2:0>  
OCPH2  
CTL1  
CLK1  
LVD1  
OVD1  
PGND23  
SW3  
PGND1  
VO1  
DC/DC1  
MODE<2:0>  
OCPH1  
CTL3  
CLK3  
LVD3  
OVD3  
VSOVP  
VS3  
VO3  
DC/DC3ꢀ  
MODE<2:0>  
OCPH3  
GND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
4/43  
BD86852MUF-C  
Block Diagrams – Continued  
2. DC/DC1 Block Diagram  
BOOT1  
SW1  
VREG  
BOOT1  
PVCC  
CUR_  
SENSE  
CLK1  
SLP  
+
VO1  
CLK1  
SS  
+
-
OCPH1  
MODE  
<2:0>  
VREF1  
BOOT1  
BOOT_CTL  
RST  
HS_CTL  
SW1  
PWM  
MODE  
<2:0>  
ERRAMP  
SW1  
CLK1  
DRV  
LOGIC  
CTL1  
VREG  
VS3  
VSOVP  
VREF2  
LS_CTL  
OCPN1  
VSOVP  
OVD1  
LVD1  
PGND1  
+
-
PGND1  
3. DC/DC2 and DC/DC3 Block Diagram (i = 2, 3)  
VSi  
CUR_  
CLKi  
SLP  
+
SENSE  
VOi  
CLKi  
SS  
+
-
OCPHi  
MODE  
<2:0>  
VREF1  
VSi  
RST  
HS_CTL  
PWM  
CLKi  
MODE  
<2:0>  
PGND23  
ERRAMP  
SWi  
DRV  
LOGIC  
CTLi  
VSi  
VSOVP  
VREF2  
LS_CTL  
OCPNi  
PGND23  
+
-
OVDi  
LVDi  
PGND23  
Dischage  
CTLi  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
5/43  
BD86852MUF-C  
Description of Blocks  
Internal Regulator (VREG) Block  
VREG is the linear regulator for PMIC use only (Do not use it for other purposes.).  
The VREG pin needs an appropriate external bypath capacitor. This is controlled by the EN1 internal signal.  
When the EN pin voltage is more than 2.6 V, the EN1 signal becomes high, and when it’s less than 0.8 V, the EN1 signal  
becomes low.  
VREG stops when the EN1 signal and the CTL1 internal signal are low.  
Reference Voltage (VREF1 and VREF2) Block  
Two independent reference voltages, one for the output voltage and the other for the voltage detections.  
Under Voltage Lock-Out Block for VCC (UVLO_VCC, UVLO_VREG and UVLO_VS)  
Input low-voltage detections for the VCC, VREG and VS2 pins.  
If any one of these input low-voltages are detected, the device goes into the UVLO state (See below for more details).  
UVLO_VCC and UVLO_VREG  
When UVLO is detected from these pins, all the outputs (VO1 to VO3 and EN_LDO) turn off immediately. And then,  
the PGOOD pin changes to low. Once the UVLO condition is removed, the device waits 200 µs (Typ) and starts VO1  
rail power-up.  
UVLO_VS  
When UVLO is detected from VS2 pins, the secondary outputs (VO2, VO3 and EN_LDO) turn off immediately. And  
then, the PGOOD pin changes to low. Once the UVLO condition is removed, VO2, VO3 and EN_LDO turn on by the  
normal sequence.  
Thermal Shutdown Protection (TSD) Block  
To prevent IC from causing thermal destruction and thermal runaway, the TSD operates when chip temperature reaches  
175 °C (Typ) or more. When TSD operates, all of the outputs (VO1 to VO3 and EN_LDO) turn off at the same time, and  
PGOOD changes low. IC resumes by sequence after chip temperature decreases to certain temperature.  
However, this thermal protection circuit is designed to protect IC itself from destruction. Do not exceed the chip temperature  
Tjmax = 150 °C.  
Oscillator (OSC) Block  
OSC generates clock for DC/DC1, 2, 3 and CONTROL block. The DC/DC1 operates in phase with the DC/DC3, and the  
DC/DC2 operates 180 degrees out of phase to reduce the input ripple current.  
Spread Spectrum Clock Generator (SSCG) Block  
OSC block built in spread spectrum clock generator (SSCG) function. Insert a capacitor of 3300 pF between SSCG pin  
and GND, it enables the spread-spectrum function. In this mode, the frequency is reduced by 5 % from the RT programmed  
center frequency and is modulated by ±3 % with 2.5 kHz modulation frequency.  
External LDO Controller (LDO_CNT) Block  
This IC outputs the control signal to External LDO from the EN_LDO pin. The power supply of the EN_LDO output buffer  
is VS2. When detection (LVD4 and OVD4) of external LDO output is necessary, short the external LDO output and FB_LDO.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
6/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Description of Blocks – continued  
Error Amplifier (ERRAMP) Block  
Error Amplifier with reference voltage and VO voltage divider input.  
Controls On Duty width of switching pulse by output of ERRAMP.  
Capacitor and resistor for phase compensation are fixed.  
Slope (SLP) Block  
The saw tooth wave generator for the duty modulation. The summation of the saw tooth waveform and the upper FET  
current information will be sent to PWM.  
Current Comparator (CUR_SENSE) Block  
The CUR_SENSE block outputs a waveform depending on the current of the inductance.  
Soft Start (SS) Block  
The SS block slows down the rise of output voltage during start-up. This reduces inrush current during start-up and the  
overshoot of the output. The soft start ramp is generated by CLK and digital-to-analog converter (DAC).  
PWM Comparator (PWM) Block  
The PWM block compares the output of ERRAMP with the synthetic waveform of SLP and CUR_SENSE, and adjusts duty  
for switching operation.  
Driver Logic (DRV LOGIC) Block and Driver (DRV) Block  
The DRV_LOGIC block control BOOT_CTL, HS_CTL and LS_CTL. The DRV blocks drive Power FET.  
Over Voltage Protection (VSOVP) Block at DC/DC1  
When the VS3 pin voltage exceeds the threshold of VSOVP, high side FET and low side FET turn off.  
Over Voltage Detection (OVD1, OVD2, OVD3 and OVD4)  
PGOOD is an open-drain output which pull-up resistor is required when usage.  
The VO1, VO2, VO3 and FB_LDO pins have the over voltage detection feature. Any one of these over voltage detection  
can make the PGOOD pin to pull low. Once the over voltage is removed, the PGOOD pin follows in 10 ms (Typ). This timer  
is dependent on the programmed operating frequency. The PGOOD pin is an open-drain pin and needs an external pull-  
up resistor.  
Lower Voltage Detection (LVD1, LVD2, LVD3 and LVD4)  
PGOOD is open-drain output which pull-up resistor is required when usage.  
The VO1, VO2, VO3 and FB_LDO pins have the lower voltage detection feature. Any one of these lower voltage detection  
can make the PGOOD pin to pull low. Once the lower voltage is removed, the PGOOD pin follows in 10 ms (Typ). This  
timer is dependent on the programmed operating frequency. The PGOOD pin is open-drain pins and need an external pull-  
up resistor.  
Over Current Protection (OCPH1, OCPH2, OCPH3, OCPN1, OCPN2 and OCPN3)  
The over current protection feature limits the FET current and successfully protects all the FETs from the permanent  
damage.  
This feature is intended for an accidental short only minimizing secondary disasters. In the application, the continuous  
usage of this feature is not allowed.  
OCPH1, OCPH2 and OCPH3  
When DC/DC1, DC/DC2 and DC/DC3 high-side FET peak current cross the threshold, the high-side FET turns off  
immediately and this protection limits high-side FET ON time. When ON time is limited, the current of output is limited  
and the voltage of output decreases.  
OCPN1, OCPN2, OCPN3 (The incoming/sink over current.)  
When DC/DC1, DC/DC2 and DC/DC3 low-side FET peak negative current cross the threshold, the low-side FET  
turns off immediately and this protection limits low-side FET ON time.  
Discharge Block at DC/DC2 and DC/DC3  
When DC/DC control internal signal CTL2 or CTL3 is low, discharge block works.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
7/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Description of Blocks – continued  
CONTROL LOGIC Block  
This block controls CTL1, CTL2, CTL3, and CTL4, ON/OFF sequence, PGOOD and each protection.  
When the EN2 internal signal is high and UVLO_VCC and UVLO_VREG are released, CONTROL_LOGIC block is active.  
When UVLO_VCC or UVLO_VREG is detected, CONTROL LOGIG Block will reset and initialize.  
Output voltage and the sequence are decided by the combination of MODE pin (MODE0, MODE1 and MODE2) logic.  
It is necessary to connect the MODE pins to VREG or GND. The following table is details of output voltage and ON/OFF  
sequences.  
Table 1. Mode Setting Description  
MODE Pin  
External  
LDO  
(VO4)  
(Note 1)  
Mode  
name  
DCDC1  
(VO1)  
DCDC2  
(VO2)  
DCDC3  
(VO3)  
ON Sequence  
OFF Sequence  
Protect  
2
L
1
L
0
L
DCDC2 -> DCDC3 -> EN_LDO  
EN_LDO -> DCDC3 -> DCDC2  
A-mode  
B-mode  
C-mode  
D-mode  
E-mode  
F-mode  
G-mode  
H-mode  
3.3 V  
3.3 V  
3.3 V  
3.9 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
1.2 V  
1.2 V  
1.2 V  
1.2 V  
1.1 V  
1.1 V  
1.2 V  
1.2 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
2.7 V  
2.8 V  
2.9 V  
3.3 V  
2.9 V  
2.9 V  
2.8 V  
2.8 V  
Self-Restart  
Self-Restart  
Self-Restart  
Self-Restart  
Self-Restart  
Timer-Latch  
Self-Restart  
Self-Restart  
EN_LDO -> DCDC3 -> DCDC2  
DCDC2 -> DCDC3 -> EN_LDO  
L
L
H
L
DCDC2 -> DCDC3 -> EN_LDO  
EN_LDO -> DCDC3 -> DCDC2  
L
H
H
L
DCDC2 -> DCDC3 -> EN_LDO  
EN_LDO -> DCDC3 -> DCDC2  
L
H
L
DCDC2 -> DCDC3 -> EN_LDO  
EN_LDO -> DCDC3 -> DCDC2  
H
H
H
H
DCDC2 -> DCDC3 -> EN_LDO  
EN_LDO -> DCDC3 -> DCDC2  
L
H
L
DCDC3 -> EN_LDO -> DCDC2  
DCDC2 -> EN_LDO -> DCDC3  
H
H
DCDC3 -> DCDC2 -> EN_LDO  
EN_LDO -> DCDC2 -> DCDC3  
H
(Note 1) L: GND short, H: VREG short  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
8/43  
 
BD86852MUF-C  
Description of Blocks - continued  
CONTROL LOGIC Block (Protection of Self-Restart)  
When the EN pin is 0.8 V or less, IC is in the state of stand-by. In this state, the internal regulator and all outputs are off,  
and secondary DC/DC rails discharge function is active.  
The following table shows the relation of protection (Self-Restart).  
Table 2. Protection of Self-Restart  
Protection  
PGOOD  
Notice  
UVLO_VCC  
UVLO_VREG  
UVLO_VS  
TSD  
Low  
Low  
Low  
Low  
All output is off.  
All output is off.  
ALL  
VO2, VO3 and EN_LDO are off.  
All output is off.  
High side FET is off.  
Self-Restart after 10 ms.  
OCPH  
OCPN  
VSOVP  
Low(Note 1)  
-
Low side FET is off.  
High and Low sides FET are off.  
Self-Restart after 10 ms.  
DC/DC1  
(VO1)  
Low  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
LVD  
Low  
Low  
OVD  
High side FET is off.  
Self-Restart after 10 ms.  
OCPH  
OCPN  
LVD  
Low(Note 1)  
-
Low side FET is off.  
DC/DC2  
(VO2)  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
Low  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
OVD  
Low  
High side FET is off  
Self-Restart after 10 ms.  
OCPH  
OCPN  
LVD  
Low(Note 1)  
-
Low side FET is off.  
DC/DC3  
(VO3)  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
Low  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
When more than 10 ms, all output is off.  
Self-Restart after 10 ms.  
OVD  
LVD  
Low  
Low  
Low  
External  
LDO  
OVD  
(Note 1) When protection detection is more than 10 ms, PGOOD turn into low.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
9/43  
BD86852MUF-C  
Description of Blocks - continued  
CONTROL LOGIC Block (Protection of Timer-Latch)  
When the protection detection passes for 10 ms (Typ) or more, “Timer-Latch” works and all output turns off and PGOOD  
turns to low. The cancellation method of “Timer-Latch” is to activate either UVLO_VCC, UVLO_VREG or TSD, or to turn  
EN low.  
The following table shows the relation of protection (Timer-Latch).  
Table 3. Protection of Timer-Latch  
Protection  
PGOOD  
Low  
Notice  
All output is off.  
Release Timer-Latch  
UVLO_VCC  
All output is off.  
Release Timer-Latch  
UVLO_VREG  
UVLO_VS  
TSD  
Low  
Low  
Low  
ALL  
When protection detect 8 times, Timer-Latch works.  
All output is off.  
Release Timer-Latch  
High side FET is off.  
Timer-Latch after 10 ms.  
OCPH  
OCPN  
VSOVP  
Low(Note 1)  
-
Low side FET is off.  
DC/DC1  
(VO1)  
High and Low sides FET are off  
Timer-Latch after 10 ms.  
Low  
LVD  
Low  
Low  
Timer-Latch after 10 ms.  
Timer-Latch after 10 ms.  
OVD  
High side FET is off.  
Timer-Latch after 10 ms.  
OCPH  
Low(Note 1)  
DC/DC2  
(VO2)  
OCPN  
LVD  
-
Low side FET is off.  
Low  
Low  
Timer-Latch after 10 ms.  
Timer-Latch after 10 ms.  
OVD  
High side FET is off.  
Timer-Latch after 10 ms.  
OCPH  
Low(Note 1)  
DC/DC3  
(VO3)  
OCPN  
LVD  
-
Low side FET is off.  
Low  
Low  
Low  
Low  
Timer-Latch after 10 ms.  
OVD  
LVD  
Timer-Latch after 10 ms.  
Timer-Latch after 10 ms.  
External  
LDO  
OVD  
When more than 10 ms, Timer-Latch works.  
(Note 1) When protection detection is more than 10 ms, PGOOD turn into low.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
10/43  
BD86852MUF-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Power Supply Voltage(Note 1)  
EN Pin Voltage(Note 2)  
Power Supply Voltage(Note 1)  
VO Pin Voltage  
VVCC, VPVCC  
VEN  
-0.3 to +20  
-0.3 to +20  
-0.3 to +6  
-0.3 to +6  
-0.3 to +6  
-0.3 to +6  
V
V
V
V
V
V
VVS2, VVS3  
VVO1, VVO2, VVO3  
VFBLDO  
FB_LDO Pin Voltage  
PGOOD Pin Voltage  
VPGOOD  
VMODE0, VMODE1  
VMODE2  
,
MODE Pin Voltage  
-0.3 to +6  
V
Storage Temperature Range  
Tstg  
-55 to +150  
+150  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Do not exceed maximum junction temperature.  
(Note 2) The VCC and EN pin start-up is sequence free if it is within guaranteed operating voltage range.  
Thermal Resistance(Note 3)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 5)  
2s2p(Note 6)  
VQFN24FV4040  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
θJA  
111.6  
19  
39.9  
12  
°C/W  
°C/W  
ΨJT  
(Note 3) Based on JESD51-2A (Still-Air)  
(Note 4) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 5) Using a PCB board based on JESD51-3.  
(Note 6) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
Thermal Via(Note 7)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 7) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
11/43  
BD86852MUF-C  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
4.0(Note 2)  
3.2  
Typ  
6.0  
-
Max  
18.0  
4.0  
Unit  
V
Notice  
Power Supply Voltage(Note 1)  
Power Supply Voltage(Note 1)  
VVCC  
-
VS2 and VS3 must be  
short to VO1  
VVS2, VVS3  
V
Output Current(Note 1)  
Output Current(Note 1)  
Output Current(Note 1)  
Switching Frequency  
Operating Temperature  
IVO1  
IVO2  
IVO3  
fOSC  
Topr  
-
-
-
-
2
1
A
A
-
-
-
-
-
-
-
1
A
1.8  
-40  
2.2  
+25  
2.4  
+125  
MHz  
°C  
(Note 1) Do not exceed the maximum junction temperature rating.  
(Note 2) If differences between Power Supply Voltage of VCC and VO1 Output Voltage are small, VO1 Output Voltage may drop.  
Electrical Characteristics  
(Unless otherwise specified,  
Tj = -40 to +150 °C, VVCC = VPVCC = 4.0 V to 18.0 V, VVS2 = VVS3 = 3.2 V to 4.0 V, VEN = 4.0 V, VSSCG = 0 V)  
Parameter  
Stand-by Current1  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
ISTB1  
ISTB2  
-
-
0
-
10  
50  
μA  
μA  
Tj = 25 °C, VEN = 0 V  
Tj = 150 °C, VEN = 0 V  
Stand-by Current2  
VVCC = VPVCC = 6.0 V,  
VVO1, VVO2, VVO3 and  
VLDO_FB is setting voltage x  
1.1  
Operating Current  
ICC1  
-
3
6
mA  
VCC UVLO Operating Voltage  
VCC UVLO Hysteresis Voltage  
VREG Output Voltage  
VUVLOVCC_ON  
VUVLOVCC_HYS  
VREG  
3.30  
300  
-
3.45  
350  
4.9  
3.60  
400  
-
V
mV  
V
VCC pin voltage  
VCC pin voltage  
VCC = 5.0 V to 18 V  
VREG pin voltage  
VREG pin voltage  
VS2 pin voltage  
VS2 pin voltage  
VREG UVLO Operating Voltage  
VREG UVLO Release Voltage  
VS UVLO Operating Voltage  
VS UVLO Release Voltage  
Switching Frequency1  
VUVLOVREG_ON  
VUVLOVREG_OFF  
VUVLOVS_ON  
VUVLOVS_OFF  
fOSC1  
2.71  
-
2.98  
3.10  
2.65  
2.75  
2.2  
3.25  
3.44  
2.88  
3.05  
2.4  
V
V
2.42  
-
V
V
2.0  
MHz RRT = 27 kΩ, VSSCG = 0 V  
RRT = 27 kΩ  
MHz  
Switching Frequency2  
fOSC2  
1.8  
2.1  
fOSC1  
CSSC = 3300 pF  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
12/43  
BD86852MUF-C  
Electrical Characteristics - continued  
(Unless otherwise specified,  
Tj = -40 to +150 °C, VVCC = VPVCC = 4.0 V to 18.0 V, VVS2 = VVS3 = 3.2 V to 4.0 V, VEN = 4.0 V, VSSCG = 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
<CH1 Output, Primary DC/DC1>  
VO1 Output Voltage Accuracy  
VO1 Input Current  
VVO1  
-2.0  
4.0  
-
+2.0  
13.0  
%
-
IVO1_CUR  
7.3  
μA  
VVO1 = 3.9 V  
VO1  
x 0.73  
VO1  
x 0.80  
VO1  
x 0.87  
VO1 LVD Operating Voltage  
VO1 LVD Release Voltage  
VO1 OVD Operating Voltage  
VO1 OVD Release Voltage  
VLVD11  
VLVD12  
VOVD11  
VOVD12  
VO1 pin voltage  
VO1  
x 0.86  
-
-
VO1 pin voltage  
VO1 pin voltage  
VO1 pin voltage  
VO1  
x 1.10  
VO1  
x 1.20  
VO1  
x 1.30  
V
V
VO1  
x 1.15  
-
-
VS OVP Operating Voltage  
VS OVP Release Voltage  
VVSOVP_ON  
VVSOVP_OFF  
5.1  
5.5  
5.9  
V
V
VS3 pin voltage  
VS3 pin voltage  
4.95  
5.35  
5.75  
ISW1 = -20 mA  
5.0 V ≤ VVCC ≤ 18 V  
High Side FET ON Resistance 1  
Low Side FET ON Resistance 1  
High Side FET ON Resistance 2  
Low Side FET ON Resistance 2  
RONH_SW1_1  
RONL_SW1_1  
RONH_SW1_2  
RONL_SW1_2  
-
-
-
-
200  
200  
250  
250  
350  
350  
400  
400  
mΩ  
mΩ  
mΩ  
mΩ  
ISW1 = +20 mA  
5.0 V ≤ VVCC ≤ 18 V  
ISW1 = -20 mA  
4.0 V ≤ VVCC < 5.0 V  
ISW1 = +20 mA  
4.0 V ≤ VVCC < 5.0 V  
<CH2 Output, Secondary DC/DC2>  
VO2 Output Voltage Accuracy  
VO2 Input Current  
VVO2  
-2.0  
-
-
+2.0  
2.8  
%
IVO2_CUR  
1.8  
μA  
VVO2 = 1.2 V  
VO2  
x 0.73  
VO2  
x 0.80  
VO2  
x 0.87  
VO2 LVD Operating Voltage  
VO2 LVD Release Voltage  
VO2 OVD Operating Voltage  
VO2 OVD Release Voltage  
VLVD21  
VLVD22  
VOVD21  
VOVD22  
V
V
V
V
VO2 pin voltage  
VO2  
x 0.86  
-
-
VO2 pin voltage  
VO2 pin voltage  
VO2 pin voltage  
VO2  
x 1.1  
VO2  
x 1.2  
VO2  
x 1.3  
VO2  
x 1.15  
-
-
High Side FET ON Resistance  
Low Side FET ON Resistance  
VO2 Discharge Resistance  
RONH_SW2  
RONL_SW2  
RVO2DIS  
-
-
-
220  
190  
150  
390  
330  
400  
mΩ  
mΩ  
Ω
ISW2 = -20 mA  
ISW2 = +20 mA  
ISW2 = +1 mA  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
13/43  
BD86852MUF-C  
Electrical Characteristics - continued  
(Unless otherwise specified,  
Tj = -40 to +150 °C, VVCC = VPVCC = 4.0 V to 18.0 V, VVS2 = VVS3 = 3.2 V to 4.0 V, VEN = 4.0 V, VSSCG = 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
<CH3 Output, Secondary DC/DC3>  
VO3 Output Voltage Accuracy  
VO3 Input Current  
VVO3  
-2.0  
-
-
+2.0  
3.9  
%
IVO3_CUR  
2.5  
μA  
VVO3 = 1.8 V  
VO3  
x 0.73  
VO3  
x 0.80  
VO3  
x 0.87  
VO3 LVD Operating Voltage  
VO3 LVD Release Voltage  
VO3 OVD Operating Voltage  
VO3 OVD Release Voltage  
VLVD31  
VLVD32  
VOVD31  
VOVD32  
V
V
V
V
VO3 pin voltage  
VO3 pin voltage  
VO3 pin voltage  
VO3 pin voltage  
VO3  
x 0.86  
-
-
VO3  
x 1.1  
VO3  
x 1.2  
VO3  
x 1.3  
VO3  
x 1.15  
-
-
High Side FET ON Resistance  
Low Side FET ON Resistance  
VO3 Discharge Resistance  
RONH_SW3  
RONL_SW3  
RVO3DIS  
-
-
-
220  
190  
150  
390  
330  
400  
mΩ  
mΩ  
Ω
ISW3 = -20 mA  
ISW3 = +20 mA  
ISW3 = +1 mA  
<CH4 Operating, Secondary LDO_CNT>  
FB_LDO Input Current  
IFBLDO_CUR  
2.0  
4.4  
6.8  
μA  
V
VFB_LDO = 3.3 V  
VO4  
x 0.89  
VO4  
x 0.92  
VO4  
x 0.95  
VO4 LVD Operating Voltage  
VLVD41  
VLVD42  
VOVD41  
VOVD42  
FB_LDO pin voltage  
VO4  
x 0.94  
VO4 LVD Release Voltage  
VO4 OVD Operating Voltage  
VO4 OVD Release Voltage  
-
-
V
V
V
FB_LDO pin voltage  
FB_LDO pin voltage  
FB_LDO pin voltage  
VO4  
x 1.045  
VO4  
x 1.080  
VO4  
x 1.115  
VO4  
x 1.06  
-
-
<PGOOD Output>  
PGOOD Resistance  
PGOOD Delay Time  
<Others>  
RON_PG  
tPGOOD  
-
-
250  
Ω
IPGOOD = +1 mA  
fOSC2 = 2.1 MHz  
8.5  
10.0  
11.5  
ms  
EN1 Threshold Voltage  
EN2 Threshold Voltage  
EN Input Current  
VTH_EN1  
VTH_EN2  
0.8  
1.5  
5
1.7  
1.7  
25  
-
2.6  
2.6  
45  
V
V
For VREG  
For output  
IEN  
μA  
Ω
VEN = 5 V  
EN_LDO High Side Resistance  
EN_LDO Low Side Resistance  
RON1_ENLDO  
RON2_ENLDO  
-
200  
200  
IEN_LDO = -1 mA  
IEN_LDO = +1 mA  
-
-
Ω
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
14/43  
BD86852MUF-C  
Typical Performance Curves  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
6
5
4
3
2
1
0
Ta = -40  
Ta = +25 ℃  
Ta = +125 ℃  
Ta = -40 ℃  
Ta = +25 ℃  
Ta = +125 ℃  
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply Voltage : VVCC [V]  
Power Supply Voltage : VVCC [V]  
Figure 1. Stand-by Current vs Power Supply Voltage  
Figure 2. Operating Current vs Power Supply Voltage  
2.4  
2.35  
2.3  
3.36  
Ta = -40 ℃  
Ta = +25 ℃  
Ta = +125 ℃  
3.34  
3.32  
3.3  
2.25  
2.2  
2.15  
2.1  
3.28  
3.26  
3.24  
2.05  
2
0
0.5  
1
1.5  
2
-40 -25 -10 5 20 35 50 65 80 95 110125  
VO1 Output Current [A]  
Temperature []  
Figure 3. Switching Frequency1 vs Temperature  
(RRT = 27 kΩ, SSCG = GND)  
Figure 4. VO1 Output Voltage vs VO1 Output Current  
(VO1 Load Regulation)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
15/43  
BD86852MUF-C  
Typical Performance Curves – continued  
1.22  
1.83  
1.82  
1.81  
1.8  
Ta = -40 ℃  
Ta = +25 ℃  
Ta = +125 ℃  
Ta = -40 ℃  
Ta = +25 ℃  
Ta = +125 ℃  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.79  
1.78  
1.77  
1.185  
1.18  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
VO2 Output Current [A]  
VO3 Output Current [A]  
Figure 5. VO2 Output Voltage vs VO2 Output Current  
(VO2 Load Regulation)  
Figure 6. VO3 Output Voltage vs VO3 Output Current  
(VO3 Load Regulation)  
3.36  
100  
90  
80  
70  
60  
50  
40  
Ta = -40 ℃  
Ta = +25 ℃  
Ta = +125 ℃  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
30  
VCC = 5 V  
20  
10  
0
VCC = 6 V  
VCC = 9 V  
VCC = 12 V  
4
6
8
10  
12  
14  
16  
18  
0.01  
0.1  
VO1 Output Current [A]  
1
Power Supply Voltage : VVCC [V]  
Figure 7. VO1 Output Voltage vs Power Supply Voltage  
(VO1 Line Regulation)  
Figure 8. DC/DC1 Efficiency vs VO1 Output Current  
(VO1 = 3.3 V)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
16/43  
BD86852MUF-C  
Typical Performance Curves – continued  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
VCC = 5 V  
VS = 3.3 V  
VS = 3.9 V  
20  
10  
0
VCC = 6 V  
VCC = 9 V  
VCC = 12 V  
0.01  
0.1  
VO1 Output Current [A]  
1
0.01  
0.1  
VO2 Output Current [A]  
1
Figure 9. DC/DC1 Efficiency vs VO1 Output Current  
(VO1 = 3.9 V)  
Figure 10. DC/DC2 Efficiency vs VO2 Output Current  
(VO2 = 1.2 V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VS = 3.3 V  
VS = 3.9 V  
VS = 3.3 V  
VS = 3.9 V  
20  
20  
10  
10  
0
0
0.01  
0.1  
VO2 Output Current [A]  
1
0.01  
0.1  
VO3 Output Current [A]  
1
Figure 11. DC/DC2 Efficiency vs VO2 Output Current  
(VO2 = 1.1 V)  
Figure 12. DC/DC3 Efficiency vs VO3 Output Current  
(VO3 = 1.8 V)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
17/43  
BD86852MUF-C  
Typical Performance Curves – continued  
VO1 : 2 V/Div  
VO1 : 2 V/Div  
VO2 : 1 V/Div  
VO2 : 1 V/Div  
VO3 : 1 V/Div  
VO3 : 1 V/Div  
EN_LDO : 2 V/Div  
EN_LDO : 2 V/Div  
1 ms/Div  
1 ms/Div  
Figure 13. Start-up Waveform  
(A-MODE)  
Figure 14. Start-up Waveform  
(B-MODE)  
VO1 : 2 V/Div  
VO1 : 2 V/Div  
VO2 : 1 V/Div  
VO3 : 1 V/Div  
VO2 : 1 V/Div  
VO3 : 1 V/Div  
EN_LDO : 2 V/Div  
EN_LDO : 2 V/Div  
1 ms/Div  
1 ms/Div  
Figure 15. Start-up Waveform  
(G-MODE)  
Figure 16. Start-up Waveform  
(H-MODE)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
18/43  
BD86852MUF-C  
Function Explanations  
Timing Chart of Start and Stop using EN (A, C, D, E, F-mode)  
VCC  
VTH_EN 2  
VTH_EN 1  
EN  
VUVLOVREG_OFF  
VREG  
200 μs (Typ)  
SS1 finish  
4576 clk  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
Internal SS2 (DC/DC2)  
VO2 (DC/DC2)  
SS2 finish  
4576 clk  
VLVD22  
VLVD21  
VO2 discharge  
SS3 finish  
4576 clk  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
VLVD32  
VLVD31  
VO3 discharge  
EN_LDO  
VLVD42  
VLVD41  
VO4 (EXT_LDO) = FB_LDO  
tPG OOD = 10 ms  
PGOOD  
Figure 17. Output Timing Chart (EN Start-up and Stop)  
Output power up sequence  
1. EN high input -> Internal regulator (VREG) starts up -> VREG power good.  
2. VO1 (DC/DC1) starts up -> VO1 power good (VO1 > VLVD12), UVLO_VS is canceled and internal SS1 is up.  
3. VO2 (DC/DC2) starts up -> VO2 power good (VO2 > VLVD22), and internal SS2 is up.  
4. VO3 (DC/DC3) starts up -> VO3 power good (VO3 > VLVD32), and internal SS3 is up.  
5. EN_LDO is up -> VO4 (External LDO) power good (VO4 > VLVD42).  
6. Wait 10 ms (Typ) -> PGOOD is up (released). The “10 ms” time depends on fOSC2  
.
Output power down sequence  
1. EN low input -> PGOOD low and EN_LDO low -> VO4 (External LDO) falls.  
2. LVD4 power bad or 10 ms (Typ) after EN low input -> stop VO3 (DC/DC3) operation and start discharging VO3.  
3. LVD3 power bad or 10 ms (Typ) after VO3 discharge start -> stop VO2 (DC/DC2) operation and start  
discharging VO2.  
4. LVD2 power bad or 10 ms (Typ) after VO2 discharge start -> stop VO1 (DC/DC1) operation including the  
internal regulators (VREG).  
PGOOD operation is dependent on LVD1 to 4 conditions. The “10 ms” time depends on fOSC2.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
19/43  
BD86852MUF-C  
Function Explanations – continued  
Timing Chart of Start and Stop using VCC ULVO (A, C, D, E, F-mode)  
VUVLOVCC_ON  
VTH_EN 2  
VUVLOVCC_ON + VUVLOVCC_HYS  
VTH_EN 1  
VCC = EN  
VREG  
200 μs (Typ)  
SS1 finish  
4576 clk  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
SS2 finish  
4576 clk  
Internal SS2 (DC/DC2)  
VLVD22  
VO2 (DC/DC2)  
VO2 discharge  
SS3 finish  
4576 clk  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
VLVD32  
VO3 discharge  
EN_LDO  
VLVD42  
VO4 (EXT_LDO) = FB_LDO  
tPG OOD = 10 ms  
PGOOD  
Figure 18 .Timing Chart (using VCC UVLO)  
Output power up sequence  
1. VCC (EN) reaches its UVLO threshold -> Internal regulator (VREG) starts up -> VREG power good.  
2. VO1 (DC/DC1) starts up -> VO1 power good (VO1 > VLVD12), UVLO_VS is canceled and internal SS1 is up.  
3. VO2 (DC/DC2) starts up -> VO2 power good (VO2 > VLVD22), and internal SS2 is up.  
4. VO3 (DC/DC3) starts up -> VO3 power good (VO3 > VLVD32), and internal SS3 is up.  
5. EN_LDO is up -> VO4 (External LDO) power good (VO4 > VLVD42).  
6. Wait 10 ms (Typ) -> PGOOD is up (released). The “10 ms” time depends on fOSC2  
7. PGOOD operation is dependent on conditions of LVD1 to 4.  
.
Output power down sequence  
1. VCC (EN) falls and crosses its falling UVLO threshold  
2. PGOOD becomes low and stops operation of all outputs (VO1 to VO4) including the internal regulator (VREG).  
3. Start discharging VO2 and VO3.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
20/43  
BD86852MUF-C  
Function Explanations – continued  
Timing Chart of Start and Stop using EN (B-mode)  
VCC  
VTH_EN 2  
VTH_EN 1  
EN  
VUVLOVREG_OFF  
VREG  
200 μs (Typ)  
SS1 finish  
4576 clk  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
Internal SS2 (DC/DC2)  
VO2 (DC/DC2)  
SS2 finish  
4576 clk  
VLVD22  
VLVD21  
VO2 discharge  
SS3 finish  
4576 clk  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
VLVD31  
VLVD32  
VO3 discharge  
EN_LDO  
VLVD41  
VLVD42  
VO4 (EXT_LDO) = FB_LDO  
tPG OOD = 10 ms  
PGOOD  
Figure 19. Output Timing Chart (EN Start-up and Stop)  
Output power up sequence  
1. EN high input -> Internal regulator (VREG) starts up -> VREG power good.  
2. VO1 (DC/DC1) starts up -> VO1 power good (VO1 > VLVD12), UVLO_VS is canceled and internal SS1 is up.  
3. EN_LDO is up -> VO4 (External LDO) power good (VO4 > VLVD42).  
4. VO3 (DC/DC3) starts up -> VO3 power good (VO3 > VLVD32), and internal SS3 is up.  
5. VO2 (DC/DC2) starts up -> VO2 power good (VO2 > VLVD22), and internal SS2 is up.  
6. Wait 10 ms (Typ) -> PGOOD is up (released). The “10 ms” time depends on fOSC2  
.
Output power down sequence  
1. EN low input -> PGOOD low -> stop VO2 (DC/DC2) operation and discharging VO2.  
2. LVD2 power bad or 10 ms (Typ) after VO2 discharge start -> stop VO3 (DC/DC3) operation and start  
discharging VO3.  
3. LVD3 power bad or 10 ms (Typ) after VO3 discharge start -> VO4 (External LDO) falls.  
4. LVD4 power bad or 10 ms (Typ) after EN_LDO low -> stop VO1 (DC/DC1) operation including the internal  
regulators (VREG).  
PGOOD operation is dependent on LVD1 to 4 conditions. The “10 ms” time depends on fOSC2.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
21/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Function Explanations – continued  
Timing Chart of Start and Stop using EN (G-mode)  
VCC  
VTH_EN 2  
VTH_EN 1  
EN  
VUVLOVREG_OFF  
VREG  
200 μs (Typ)  
SS1 finish  
4576 clk  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
Internal SS2 (DC/DC2)  
VO2 (DC/DC2)  
SS2 finish  
4576 clk  
VLVD22  
VLVD21  
VO2 discharge  
SS3 finish  
4576 clk  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
VLVD31  
VLVD32  
VO3 discharge  
EN_LDO  
VLVD42  
VLVD41  
VO4 (EXT_LDO) = FB_LDO  
tPG OOD = 10 ms  
PGOOD  
Figure 20. Output Timing Chart (EN Start-up and Stop)  
Output power up sequence  
1. EN high input -> Internal regulator (VREG) starts up -> VREG power good.  
2. VO1 (DC/DC1) starts up -> VO1 power good (VO1 > VLVD12), UVLO_VS is canceled and internal SS1 is up.  
3. VO3 (DC/DC3) starts up -> VO3 power good (VO3 > VLVD32), and internal SS3 is up.  
4. EN_LDO is up -> VO4 (External LDO) power good (VO4 > VLVD42).  
5. VO2 (DC/DC2) starts up -> VO2 power good (VO2 > VLVD22), and internal SS2 is up.  
6. Wait 10 ms (Typ) -> PGOOD is up (released). The “10 ms” time depends on fOSC2  
.
Output power down sequence  
1. EN low input -> PGOOD low -> stop VO2 (DC/DC2) operation and discharging VO2.  
2. LVD2 power bad or 10 ms (Typ) after VO2 discharge start -> VO4 (External LDO) falls.  
3. LVD4 power bad or 10 ms (Typ) after EN_LDO low -> stop VO3 (DC/DC3) operation and start discharging VO3.  
4. LVD3 power bad or 10 ms (Typ) after VO3 discharge start -> stop VO1 (DC/DC1) operation including the  
internal regulators (VREG).  
PGOOD operation is dependent on LVD1 to 4 conditions. The “10 ms” time depends on fOSC2.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
22/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Function Explanations – continued  
Timing Chart of Start and Stop using EN (H-mode)  
VCC  
VTH_EN 2  
VTH_EN 1  
EN  
VUVLOVREG_OFF  
VREG  
200 μs (Typ)  
SS1 high  
4576clk (Typ)  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
Internal SS2 (DC/DC2)  
VO2 (DC/DC2)  
SS2 high  
4576clk (Typ)  
VLVD21  
VLVD22  
VO2 discharge  
SS3 high  
4576clk (Typ)  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
VLVD31  
VO3 discharge  
VLVD32  
EN_LDO  
VLVD42  
VLVD41  
VO4 (EXT_LDO) = FB_LDO  
tPG OOD = 10 ms (Typ)  
PGOOD  
Figure 21. Output Timing Chart (EN Start-up and Stop)  
Output power up sequence  
1. EN high input -> Internal regulator (VREG) starts up -> VREG power good.  
2. VO1 (DC/DC1) starts up -> VO1 power good (VO1 > VLVD12), UVLO_VS is canceled and internal SS1 is up.  
3. VO3 (DC/DC3) starts up -> VO3 power good (VO3 > VLVD32), and internal SS3 is up.  
4. VO2 (DC/DC2) starts up -> VO2 power good (VO2 > VLVD22), and internal SS2 is up.  
5. EN_LDO is up -> VO4 (External LDO) power good (VO4 > VLVD42).  
6. Wait 10 ms (Typ) -> PGOOD is up (released). The “10 ms” time depends on fOSC2  
.
Output power down sequence  
1. EN low input -> PGOOD low and EN_LDO low -> VO4 (External LDO) falls.  
2. LVD4 power bad or 10 ms (Typ) after EN low input -> stop VO2 (DC/DC2) operation and start discharging VO2.  
3. LVD2 power bad or 10 ms (Typ) after VO2 discharge start -> stop VO3 (DC/DC3) operation and start  
discharging VO3.  
4. LVD3 power bad or 10 ms (Typ) after VO3 discharge start -> stop VO1 (DC/DC1) operation including the  
internal regulators (VREG).  
PGOOD operation is dependent on LVD1 to 4 conditions. The “10 ms” time depends on fOSC2.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
23/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Application Examples  
1. Caution on PCB Layout  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN 23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN 1  
C5  
CIN 0  
Figure 22.Circuits Example  
I.  
II.  
Connect line in bold as short as possible with wide pattern.  
Place input capacitor CIN0, CIN1, CIN23 and C5 close to IC as much as possible.  
Especially distance between CIN0 and IC must be connected in top layer not through via.  
III. Place CSSC and RRT near IC as much as possible.  
IV. Sense line of VO1, VO2, VO3 and FB_LDO must be placed far from L1, L2 and L3 as much as possible.  
V. Connect all GND pin (GND, PGND1 and PGND23) and EXP-PAD as short as possible in top layer.  
VI. Connect EXP-PAD directly to the GND pin.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
24/43  
 
BD86852MUF-C  
1. Caution on PCB Layout – continued  
Top Layer  
2nd Layer  
Bottom Layer  
3rd Layer  
Figure 23. Recommendation Layout Pattern  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
25/43  
BD86852MUF-C  
Application Examples – continued  
2. Selection of Components Externally Connected  
2.1 Selection of the Inductor L (L1, L2 and L3)  
When the switching regulator supplies current continuously to the load, the LC filter is necessary to smooth the output  
voltage. The inductor ripple current ΔIL that flows to the inductor becomes small when an inductor with a large  
inductance value is selected. Consequently, the voltage of the output ripple also becomes small.  
Refer to "Circuit Example" for the recommended inductors.  
Maximum ΔIL is shown in the following equation.  
(ꢀ퐶퐶ꢁ푀퐴푋) ꢂ × ꢀ푂  
[A]  
∆퐼퐿  
=
ꢃ × ꢀ퐶퐶ꢁ푀퐴푋) × 푓  
푆푊  
Where:  
VVCC(MAX) is the maximum input voltage. DC/DC1 is PVCC, DC/DC2 is VS2, and DC/DC3 is VS3.  
fSW is switching frequency.  
L is the value of inductor.  
It contributes to the miniaturization of the application if the inductance value is small. The disadvantages are the  
increase in the voltage of output ripple. It contributes to the small voltage of the output ripple if the inductance value  
is large. The disadvantages are the increase in the size of inductor.  
The maximum output electric current is limited to the overcurrent protection working current as shown in the following  
equation.  
∆퐼퐿  
[A]  
표 푀퐴푋 = 퐼  
+
)
푆푊 푀퐴푋  
)
2
Where:  
IO(MAX) is the maximum output current.  
ISW(MAX) is the maximum SW load current.  
2.2 Selection of the Output Capacitor CO (CO1, CO2, CO3  
)
The voltage of output ripple ΔVPP is shown in the following equation.  
1
푃푃 = ∆퐼× ꢄ푅퐸푆ꢅ  
+
[V]  
8 × ꢆ× 푓  
푆푊  
Where:  
RESR is the equivalent series resistance of output capacitor.  
CO is the value of output capacitor.  
ΔVPP can be reduced by using a capacitor with a small ESR. The ceramic capacitor is the best option that meets  
this requirement. Confirm frequency characteristic of ESR from the datasheet of the manufacturer, and consider ESR  
value to be low in the switching frequency being used. It is necessary to consider the ceramic capacitor, because the  
DC biasing characteristic is remarkable. By selecting these high voltage ratings, it is possible to reduce the influence  
of DC bias characteristics.  
Refer to "Circuit Example" for the recommended output capacitors.  
These capacitors are rated in ripple current. The RMS values of the ripple current that can be obtained in the following  
equation must not exceed the ratings ripple current.  
∆퐼퐿  
[A]  
ꢁ  
ꢅ푀푆  
=
)
12  
Where :  
RESR is the equivalent series resistance of output capacitor.  
CO is the value of output capacitor.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
26/43  
BD86852MUF-C  
2. Selection of Components Externally Connected – continued  
2.3 Selection of the Output Capacitor C5  
A ceramic capacitor is needed for the internal regulator VREG pin. Moreover, in order to maintain good temperature  
characteristics, the one with the X7R characteristic or better is recommended. The voltage rating is recommended to  
3 times or more the output voltage. Refer to "Circuit Example" for the recommended output capacitor.  
2.4 Selection of Input Capacitor CIN (CIN0, CIN1, CIN23  
)
The input capacitor is usually required for two types of decoupling capacitors, the CIN and the bulk capacitors. Ceramic  
capacitors are effective by being placed as close as possible to the VCC (PVCC, VS2 and VS3) pin and the GND  
(PGND1 and PGND23) pin. Voltage rating is recommended to 1.2 times or more the maximum input voltage.  
Refer to "Circuit Example" for the recommended input capacitors. Also, the IC might not function properly when the  
PCB layout or the position of the capacitor is not good. Refer to “Caution on PCB Layout”.  
The bulk capacitor is an option. The bulk capacitor prevents the decrease in the line voltage and serves a backup  
power supply to keep the input potential constant. The RMS value of the input ripple electric current is obtained in  
the following equation. In that case, consider not to exceed the rated ripple current of the capacitor. The RMS value  
of the input ripple electric current is obtained in the following equation.  
ꢀ푂  
ꢀ푂  
∆퐼ꢉ  
12  
× {퐼× ꢄ1 −  
ꢇ +  
}
[A]  
ꢀ퐶퐶 ꢅ푀푆  
=
)
ꢀ퐶퐶  
ꢀ퐶퐶  
Where:  
IVCC(RMS) is the RMS value of the input ripple electric current.  
VVCC is the input voltage. DC/DC1 is PVCC, DC/DC2 is VS2, and DC/DC3 is VS3.  
VVO is the output voltage. DC/DC1 is VO1, DC/DC2 is VO2, and DC/DC3 is VO3.  
2.5 Selection of Capacitor CB1  
The CB1 is the capacitor between the BOOT1 pin and the SW1 pin for bootstrapping. The voltage of the CB1 and  
SW1 is same as VREG. The recommended capacitor type is a ceramic capacitor. The CB1 must be set to 47 nF.  
Moreover, the X7R or better capacitor is recommended.  
2.6 Selection of Resistor at the EN Pin  
The EN pin node potentially have unexpected short to VCC or GND on the assumption of accidental foreign objects  
that physically shorts pin-to-pin. The resistor in series to the EN pin can minimize the fatal damage for the external  
components. If the destructive damage is expected by the external components, use the resistor in series to the EN  
pin to limit the current. The resistance is 20 kΩ or less.  
VCC  
CIN  
CIN0  
EN  
Figure 24. EN Pin Resistance  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
27/43  
BD86852MUF-C  
2. Selection of Components Externally Connected – continued  
2.7 Selection of SSCG Pin Capacitor  
The SSCG pin must be short to GND, if the spread spectrum feature is not used. The capacitor (CSSC) is  
necessary to SSCG pin, if the spread spectrum feature is used. Use 3300 pF for fm_SSCG = 2.5 kHz (Typ)  
modulation. (No other options)  
VTH_SSCG = 1.7V (Typ)  
fm_sscg =2.5kHz (Typ)  
VSSCG  
Figure 25. SSCG pin function  
2.8 Selection of Resistor at RT Pin  
Switching frequency depends on resistor value connected to the RT pin. RT resister must be set to 27 kΩ. The  
resistor tolerance must be ±1 % or less. (No other options)  
2.9 Selection of External LDO  
External LDO (IC1) recommends BUxxJA2MNVX-C a miniature package. Please select external LDO by referring to  
“Mode Setting Description”. If output current of VO4 exceed the following table value, adjust VO1 voltage to secure  
input/output voltage differences, or selecting LDO with better drop out voltage characteristic is recommended.  
Please refer Application circuit example (Using the VO1 resistance) for the method to adjust VO1 voltage.  
External LDO  
VO1 Voltage (typ.)  
3.3 V  
VO4 Voltage (typ.)  
2.8 V  
VO4 output current  
≤ 120 mA  
BU28JA2MNVX-C  
BU29JA2MNVX-C  
BU33JA2MNVX-C  
3.3 V  
3.9 V  
2.9 V  
3.3 V  
≤ 90 mA  
≤ 140 mA  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
28/43  
BD86852MUF-C  
Application Examples – continued  
3. Circuit Example  
3.1 Parts Functional Description  
Item  
IC1  
RRT  
RPG  
L1  
Note  
Item  
CSSC  
CIN1  
CO1  
Note  
External LDO  
Setting to spread spectrum ratio  
VO1 input capacitor  
Setting to switching frequency resistor  
PGOOD pull-up resistor  
VO1 output coil  
VO1 output capacitor  
CB1  
VO1 boot strap capacitor  
VO2 and VO3 input (VO1 output)  
capacitor  
L2  
VO2 output coil  
CIN23  
L3  
CIN0  
C5  
VO3 output coil  
CO2  
CO3  
-
VO2 output capacitor  
VCC input capacitor  
VREG output capacitor  
VO3 output capacitor  
-
3.2 Circuit Diagram  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN 23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
VO3  
EN_LDO  
RPG  
11  
10  
9
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN 1  
C5  
CIN 0  
Figure 26. Application Circuits Example  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
29/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.3  
Component Coefficient (No.1)  
Case1 (Light load model)  
Output Current  
-
≤ 0.3 A (Note 1)  
≤ 0.25 A  
≤ 0.25 A  
Case2 (Light load model)  
Output Current  
-
≤ 0.3 A (Note 1)  
≤ 0.25 A  
≤ 0.25A  
VVCC  
VO1  
VO2  
VO3  
4.0 V to 18 V  
3.3 V  
VVCC  
VO1  
VO2  
VO3  
5.0 V to 18 V  
3.9 V  
1.1 V or 1.2 V  
1.8 V  
1.2 V  
1.8 V  
(Note 1) Include VO2, VO3 and VO4 current.  
(Note 1) Include VO2, VO3 and VO4 current.  
Value  
Item  
UNIT  
Parts No.  
Size  
Maker  
Min  
Max  
Typ  
(Note 1)  
(Note 2)  
IC  
IC1  
-
-
-
-
-
-
-
BD86852MUF-C  
BUxxJA2MNVX-C  
4.0 mm x 4.0 mm  
1.0 mm x 1.0 mm  
1005  
-
ROHM  
RRT  
RPG  
CIN0  
C5  
26.4  
9
27.0  
10  
27.6  
11  
kΩ  
kΩ  
µF  
µF  
µF  
pF  
µF  
nF  
µF  
µF  
µF  
µH  
µH  
µH  
MCR01MZPF2702  
MCR01MZPJ103  
1005  
0.05  
0.5  
2.0  
2300  
5
0.10  
1.0  
4.7  
3300  
10  
0.15  
3.3  
15.0  
4400  
21  
CGA2B3X7R1E104K  
CGA3E1X7R1C105K  
CGA4J1X7R1E475K  
CGA2B2X7R1H332K  
CGA4J1X7R0J106K  
CGA2B2X7R1C473K  
CGA4J3X7R1C225K  
CGA4J1X7R0J106K  
CGA4J1X7R0J106K  
MLD2016S3R3MTD25  
TFM201610ALMA1R5M  
TFM201610ALMA1R5M  
1005  
1608  
CIN1  
CSSC  
2012  
1005  
(Note 3)  
CO1  
CB1  
2012  
22  
1.2  
5
47  
70  
1005  
TDK  
(Note 3)  
CIN23  
2.2  
10  
6.0  
35  
2012  
CO2  
CO3  
L1  
2012  
5
10  
35  
2012  
(Note 4)  
-
3.3  
1.5  
1.5  
4.2  
3.0  
3.0  
2016  
(Note 5)  
(Note 5)  
L2  
-
-
2016  
L3  
2016  
(Note 1) Consider tolerance, temperature characteristic and DC bias properties not to become less than the minimum  
(Note 2) Consider tolerance and temperature characteristic not to become bigger than the maximum.  
(Note 3) Total capacity attached to VO1 node must not exceed 40 uF.  
(Note 4) Choose an inductor of 3.3 µH (Typ). It must not become less than 2.0 µH including tolerance, temperature characteristic and DC  
superposition characteristics.  
(Note 5) Choose an inductor of 1.5 µH (Typ) or 2.2 µH (Typ). It must not become less than 1.0 µH including tolerance, temperature characteristic  
and DC superposition characteristics.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
30/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.4  
Component Coefficient (No.2)  
Case3 (Middle load model)  
Output Current  
-
≤ 1.0 A(Note 1)  
Case4 (Middle load model)  
Output Current  
-
≤ 1.0 A(Note 1)  
VVCC  
VO1  
VO2  
VO3  
4.5 V to 18 V  
3.3 V  
VVCC  
VO1  
VO2  
VO3  
5.5 V to 18 V  
3.9 V  
1.1 V or 1.2 V  
1.8 V  
≤ 0.7 A  
1.2 V  
≤ 0.7 A  
≤ 0.5 A  
1.8 V  
≤ 0.5 A  
(Note 1) Include VO2, VO3 and VO4 current.  
(Note 1) Include VO2, VO3 and VO4 current.  
Case5 (Heavy load model)  
Output Current  
Case6 (Heavy load model)  
Output Current  
VVCC  
VO1  
VO2  
VO3  
5.0 V to 18 V  
3.3 V  
-
VVCC  
VO1  
VO2  
VO3  
6.0 V to 18 V  
3.9 V  
-
≤ 2.0 A(Note 1)  
≤ 1.0 A  
≤ 1.0 A  
≤ 2.0 A(Note 1)  
≤ 1.0 A  
≤ 1.0 A  
1.1 V or 1.2 V  
1.2 V  
1.8 V  
1.8 V  
(Note 1) Include VO2, VO3 and VO4 current.  
(Note 1) Include VO2, VO3 and VO4 current.  
Value  
Item  
UNIT  
Parts No.  
Size  
Maker  
Min  
Max  
Typ  
(Note 1)  
(Note 2)  
IC  
IC1  
-
-
-
-
-
-
-
BD86852MUF-C  
BUxxJA2MNVX-C  
4.0 mm x 4.0 mm  
1.0 mm x 1.0 mm  
1005  
-
ROHM  
RRT  
RPG  
CIN0  
C5  
26.4  
9
27.0  
10  
27.6  
11  
kΩ  
kΩ  
µF  
µF  
µF  
pF  
µF  
nF  
µF  
µF  
µF  
µH  
µH  
µH  
MCR01MZPF2702  
MCR01MZPJ103  
1005  
0.05  
0.5  
2.0  
2300  
5
0.10  
1.0  
4.7  
3300  
10  
0.15  
3.3  
15.0  
4400  
21  
CGA2B3X7R1E104K  
CGA3E1X7R1C105K  
CGA4J1X7R1E475K  
CGA2B2X7R1H332K  
CGA4J1X7R0J106K  
CGA2B2X7R1C473K  
CGA4J3X7R1C225K  
CGA4J1X7R0J106K  
CGA4J1X7R0J106K  
TFM252012ALMA3R3M  
TFM201610ALMA1R5M  
TFM201610ALMA1R5M  
1005  
1608  
CIN1  
CSSC  
2012  
1005  
(Note 3)  
CO1  
CB1  
2012  
22  
1.2  
5
47  
70  
1005  
TDK  
(Note 3)  
CIN23  
2.2  
10  
6.0  
35  
2012  
CO2  
CO3  
L1  
2012  
5
10  
35  
2012  
(Note 4)  
-
3.3  
1.5  
1.5  
4.2  
3.0  
3.0  
2520  
(Note 5)  
(Note 5)  
L2  
-
-
2016  
L3  
2016  
(Note 1) Consider tolerance, temperature characteristic and DC bias properties not to become less than the minimum  
(Note 2) Consider tolerance and temperature characteristic not to become bigger than the maximum.  
(Note 3) Total capacity attached to VO1 node must not exceed 40 uF.  
(Note 4) Choose an inductor of 3.3 µH (Typ). It must not become less than 2.0 µH including tolerance, temperature characteristic and DC  
superposition characteristics.  
(Note 5) Choose an inductor of 1.5 µH (Typ) or 2.2 µH (Typ). It must not become less than 1.0 µH including tolerance, temperature characteristic  
and DC superposition characteristics.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
31/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.5 Application Circuit Example (FB_LDO and EN_LDO Not Connect)  
When FB_LDO and EN_LDO are not connected to external LDO, connect FB_LDO to EN_LDO.  
In this case, LVD and OVD of VO4 are not detected. And sequence of VO4 cannot be controlled.  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN 23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN 1  
C5  
CIN 0  
Figure 27. Application Circuit Example (FB_LDO and EN_LDO not connect)  
3.6 Application Circuit Example (FB_LDO Not Connect)  
When FB_LDO is not connected to external LDO, connect FB_LDO to EN_LDO.  
In this case, LVD and OVD of VO4 are not detected.  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN 23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN 1  
C5  
CIN 0  
Figure 28. Application Circuit Example (FB_LDO not connect)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
32/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.7 Application Circuit Example (EN_LDO Not Connect)  
When EN_LDO is not connected to external LDO, open EN_LDO pin.  
In this case, sequence of VO4 cannot be controlled.  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN 23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN 1  
C5  
CIN 0  
Figure 29. Application Circuit Example (EN_LDO not connect)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
33/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.8  
Application Circuit Example (Using the EN Resistance)  
When VCC input voltage is high enough, by using resistance division resistance (REN1, REN2) of VCC, it's possible to  
turn off the output voltage in turn without externally controlling the EN pin.  
VO4  
VO1  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1  
L2  
L3  
CIN23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
CSSC  
EXP-PAD  
RRT  
BOOT1  
SW1  
CB1  
VO1  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN1  
C5  
REN1  
REN2  
CIN0  
Figure 30. Application Circuit Example (Using the EN resistance)  
It is necessary to make VEN more than VTH_EN1 at power up sequence, and less than VTH_EN2 before VUVLOVCC turns  
ON at power down sequence.  
Please choose REN1, REN2 to satisfy the following expressions.  
(ꢀ퐶퐶ꢁ푀ꢊ푁) × 푅퐸푁ꢉ − 푅퐸푁ꢋ × 푅퐸푁ꢉ × 퐼퐸푁ꢁ푀퐴푋)  
퐸푁  
=
푇퐻_퐸푁ꢋꢁ푀퐴푋)  
퐸푁ꢋ + 푅퐸푁ꢉ  
(푈ꢀ퐿푂ꢀ퐶퐶_푂푁ꢁ푀퐴푋) × 푅퐸푁ꢉ − 푅퐸푁ꢋ × 푅퐸푁ꢉ × 퐼퐸푁ꢁ푀ꢊ푁)  
퐸푁  
=
푇퐻_퐸푁ꢉꢁ푀ꢊ푁)  
퐸푁ꢋ + 푅퐸푁ꢉ  
Where:  
VVCC(MIN) is the minimum input voltage.  
IEN(MAX): 45 µA  
VTH_EN1(MAX): 2.6 V  
VUVLOVCC_ON(MAX): 3.6 V  
IEN(MIN): 5 µA  
VTH_EN2(MIN): 1.5 V  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
34/43  
BD86852MUF-C  
3.8  
Application Circuit Example (Using the EN Resistance) - continued  
It is necessary that each output voltage is OFF before VUVLOVCC turns ON to make outputs sequentially OFF.  
Discharge time after each output turns OFF to LVD starts can be calculated by the following expressions.  
퐿ꢀ퐷푖  
= − 푂푖 × 푅ꢀ푂푖퐷ꢊ푆 // 푅퐿푂퐴퐷푖 × lnꢁ  
)
푂푖  
Li  
VOi  
SWi  
RVOiDIS  
COi  
RLOADi  
Figure 31. Discharge Resister  
Where:  
RVOiDIS: Discharge resistor (DCDC2, DCDC3)  
VLVDi: LVD Operating Voltage  
RLOADi: Load resistor  
Co: Output capacitor  
Vo: Output Voltage  
DCR of Li is not considered  
VCC  
VUVLOVCC_ON  
VTH_EN2  
EN  
VTH_EN1  
VUVLOVREG_OFF  
VREG  
200 μs (Typ)  
SS1 finish  
4576 clk  
Internal SS1 (DC/DC1)  
VLVD12  
VUVLOVS_OFF  
VO1 (DC/DC1) = VS2, VS3, VS4  
Internal SS2 (DC/DC2)  
VO2 (DC/DC2)  
SS2 finish  
4576 clk  
t2:VO2 Discharge Time  
VLVD22  
VLVD21  
SS3 finish  
4576 clk  
Internal SS3 (DC/DC3)  
VO3 (DC/DC3)  
t3:VO3 Discharge Time  
VLVD32  
VLVD31  
EN_LDO  
VO4 Discharge Time  
VLVD42  
VLVD41  
VO4 (EXT_LDO) = FB_LDO  
tPGOOD = 10 ms  
PGOOD  
Figure 32. Output Timing Chart (Using the EN Resistance)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
35/43  
BD86852MUF-C  
3. Circuit Example - continued  
3.9  
Application Circuit Example (Using the VO1 Resistance)  
It's possible to adjust input voltage of DCDC2, DCDC3 and Ext LDO (VVO1_adj) by the following dividing resistance  
(RVO1A, RVO1B).  
)
ꢀ푂ꢋ퐴 + 푅ꢀ푂ꢋ퐵  
ꢀ푂ꢋ_푎푑푗  
=
× ꢁꢀ푂ꢋ + 푅ꢀ푂ꢋ퐴 × 퐼ꢀ푂ꢋ_퐶푈ꢅ)  
ꢀ푂ꢋ퐵  
Where:  
RVO1A: Please select resistance value less than 5 kΩ.  
I VO1_CUR: VO1 Input current  
Please choose RVO1A and RVO1B so that VVO1_adj does not exceed 4.0 V.  
VO4  
VO1_adj  
VO3  
VO2  
IC1  
CO3  
CO2  
VO1_adj  
L2  
L3  
CIN23  
18  
17  
16  
15  
14  
13  
VO3  
19  
20  
21  
22  
23  
24  
12  
11  
10  
9
VO3  
EN_LDO  
RPG  
FB_LDO  
VO1  
PGOOD  
SSCG  
RT  
RVO1B  
CSSC  
EXP-PAD  
RRT  
RVO1A  
BOOT1  
SW1  
CB1  
VO1_adj  
8
MODE2  
MODE1  
L1  
CO1  
7
PGND1  
1
2
3
4
5
6
CIN1  
C5  
CIN0  
Figure 33. Application Circuit Example (Using the VO1 Resistance)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
36/43  
BD86852MUF-C  
Power Loss  
Use good margin to keep the Ta and Tj operating range in the thermal design below.  
Do not exceed the temperature specification of Ta and Tj at any time by design.  
1. Ambient temperature Ta < 125 °C  
2. Chip junction temperature Tj < 150 °C  
Chip junction temperature Tj can be estimated by the following two ways.  
I. Estimate Tj based on the package top center temperature Tt in actual usage.  
ꢌꢍ = ꢌ푡 + 휓퐽푇 × ꢎ  
II. Estimate Tj based on the ambient temperature Ta.  
ꢌꢍ = ꢌꢏ + 휃ꢍꢏ × ꢎ  
Power dissipation W of the IC is calculated by the following equation.  
ꢎ = 퐼퐶퐶 × 퐶퐶 + ꢎ + ꢎ + ꢎ  
3
Where:  
ICC is circuit current.  
VCC is input voltage.  
W1 is power dissipation of DC/DC1.  
W2 is power dissipation of DC/DC2.  
W3 is power dissipation of DC/DC3.  
Power loss of DC/DC W1 to W3  
I. Loss of Tr  
ꢌ × 푉 × × 푓  
푟푒푞  
II. Loss of High Side FET ON resistance  
푂푁퐻 × 퐼푂  
×
III. Loss of Tf  
ꢌ × 푉 × × 푓  
푟푒푞  
IV. Loss of body diode  
× 퐼× 2 × 푂퐹퐹 × 푓  
푟푒푞  
(When using external SBD, loss will not be included in IC.)  
푂푁퐿 × 퐼× ꢓꢀ ꢔꢀ− 2 × 푡푂퐹퐹 × 푓 ꢕ  
V. Loss of Low Side FET ON resistance  
푟푒푞  
Where:  
VS is input voltage.  
VO is output voltage.  
IO is output current.  
Tr/Tf is the rising/falling time of the switching voltage transition.  
Freq is oscillation frequency.  
RONH is RON of high side FET.  
RONL is RON of low side FET.  
VF is body diode of low side FET.  
tOFF is dead time.  
VS  
SW wave form  
GND  
Figure 34. Power Loss of DC/DC  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
37/43  
BD86852MUF-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
38/43  
BD86852MUF-C  
Operational Notes – continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 35. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
39/43  
BD86852MUF-C  
Operational Notes – continued  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
15. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
(Note) “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
TSZ02201-0A3A0AP00520-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
40/43  
TSZ22111 • 15 • 001  
03.Mar.2020 Rev.001  
BD86852MUF-C  
Ordering Information  
B D 8  
6
8
5
2 M U F -  
CE 2  
Package  
Packaging and forming specification  
MUF: VQFN24FV4040 C: for Automotive  
E2: Embossed tape and reel  
Marking Diagrams  
VQFN24FV4040 (TOP VIEW)  
Part Number Marking  
8 6 8 5 2  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
41/43  
BD86852MUF-C  
Physical Dimension and Packing Information  
Package Name  
VQFN24FV4040  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
42/43  
BD86852MUF-C  
Revision History  
Date  
Revision  
001  
Changes  
03.Mar.2020  
New Release  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0A3A0AP00520-1-2  
03.Mar.2020 Rev.001  
43/43  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD868A0MUF-C

PMIC BD868XXMUF-C系列产品内置有一次侧DC-DC、两个二次侧DC-DC、CMOS传感器用的二次侧线性稳压器和图像传感电源。该系列IC采用小型封装VQFN20FV3535,非常适用于需要小型电路板的摄像头模块。另外,该系列产品还具有展频功能,可提供更低噪声的稳压输出。
ROHM

BD868B0MUF-C (开发中)

PMIC BD868XXMUF-C系列产品内置有一次侧DC-DC、两个二次侧DC-DC、CMOS传感器用的二次侧线性稳压器和图像传感电源。该系列IC采用小型封装VQFN20FV3535,非常适用于需要小型电路板的摄像头模块。另外,该系列产品还具有展频功能,可提供更低噪声的稳压输出。
ROHM

BD868C0MUF-C

PMIC BD868XXMUF-C系列产品内置有一次侧DC-DC、两个二次侧DC-DC、CMOS传感器用的二次侧线性稳压器和图像传感电源。该系列IC采用小型封装VQFN20FV3535,非常适用于需要小型电路板的摄像头模块。另外,该系列产品还具有展频功能,可提供更低噪声的稳压输出。
ROHM

BD868C1MUF-C

PMIC BD868XXMUF-C系列产品内置有一次侧DC-DC、两个二次侧DC-DC、CMOS传感器用的二次侧线性稳压器和图像传感电源。该系列IC采用小型封装VQFN20FV3535,非常适用于需要小型电路板的摄像头模块。另外,该系列产品还具有展频功能,可提供更低噪声的稳压输出。
ROHM

BD868D0MUF-C

PMIC BD868XXMUF-C系列产品内置有一次侧DC-DC、两个二次侧DC-DC、CMOS传感器用的二次侧线性稳压器和图像传感电源。该系列IC采用小型封装VQFN20FV3535,非常适用于需要小型电路板的摄像头模块。另外,该系列产品还具有展频功能,可提供更低噪声的稳压输出。
ROHM

BD87007FJ

BD87007FJ是用于二次侧输出端的同步整流型控制器。内置低功耗高精度分流稳压器,可减少待机功耗。另外,在连续模式工作时,无需输入一次侧的开关同步信号即可工作,更加节省空间。工作电源电压宽达2.7V~32.0V,可支持各种输出的应用。另外,采用高耐压120V(Max)工艺,可直接监测漏极电压。
ROHM

BD875

NPN SILICON PLANAR DARLINGTON TRANSISTORS
INFINEON

BD8751BH

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 12MHz, MOS, CDIP40
INTEL

BD87524FV-LB (开发中)

This is the product guarantees long time support in industrial market. And it is suitable for usage of industrial applications. BD87524FV-LB is input/output Rail-to-Rail CMOS operational amplifier. An operating voltage range is wide with 4V to 15V. This operational amplifier is the most suitable for industrial requirements such as sensor amplifier, battery-powered equipment and so on because it has features of high output drive. Furthermore, they have the advantage of EMI tolerance. It makes easier replacing with conventional products or simpler designing EMI.
ROHM

BD87554YFV-C

BD87554YFV-C是一款输入输出轨到轨CMOS运算放大器。具有工作电压范围宽(4V~15V)、输出驱动能力出色等特点,适用于传感器放大器、引擎控制单元、EPS、ABS等各种车载应用。
ROHM

BD87581YG-C

BD87581YG-C是输入输出Rail-to-Rail的CMOS运算放大器。具有宽动作电压范围4V~14V、以及高转换速率、低输入偏置电流等特点,尤其适用于传感器放大器、发动机控制单元、EPS、ABS等所有车载用途。并且,EMI耐受力具有优势,便于替换现有产品以及进行EMI设计。
ROHM

BD87582YFVM-C

BD87582YFVM-C是输入输出轨到轨的CMOS运算放大器。具有4V~14V的大动作电压范围、以及高转换速率、低输入偏置电流等特点,尤其适用于传感器放大器、发动机控制单元、EPS、ABS等各种车载用途。并且,EMI耐受力具有优势,便于替换现有产品以及进行EMI设计。
ROHM