BD94130MUF-M (新产品) [ROHM]

BD94130MUF-M is embedded 24-channel constant current drivers with 12bit PWM dimming and max 8-line switch controllers. This device can set LED constant current value by setting external ISET resistor. Communication with μ-controller via SPI is feasible.;
BD94130MUF-M (新产品)
型号: BD94130MUF-M (新产品)
厂家: ROHM    ROHM
描述:

BD94130MUF-M is embedded 24-channel constant current drivers with 12bit PWM dimming and max 8-line switch controllers. This device can set LED constant current value by setting external ISET resistor. Communication with μ-controller via SPI is feasible.

文件: 总77页 (文件大小:3056K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive LED Driver Series  
24-channel Constant Current Drivers and 8-  
line Switch Controllers Embedded Backlight  
LED Driver  
BD94130MUF-M BD94130EFV-M  
General Description  
Key Specification  
BD94130MUF-M/BD94130EFV-M are embedded 24-  
channel constant current drivers with 12bit PWM dimming  
and max 8-line switch controllers. This device can set  
LED constant current value by setting external ISET  
resistor. Communication with μ-controller via SPI is  
feasible.  
Power Supply Voltage Range:  
LEDCHn Pin Voltage (n = 1 to 24):  
Maximum LED Output Current:  
3.0 V to 5.5 V  
20 V  
80 mA  
Operating Temperature Range: -40 °C to +125 °C  
Features  
Package  
W (Typ) x D (Typ) x H (Max)  
8.0 mm x 8.0 mm x 1.0 mm  
18.5 mm x 9.5 mm x 1.0 mm  
AEC-Q100 Qualified(Note 1)  
(BD94130MUF-M)  
VQFN56FCV080  
(BD94130EFV-M)  
HTSSOP-B54  
Functional Safety Supportive Automotive Products  
Integrated 24-channel LED Constant Current Drivers  
Integrated 4/6/8-line Switch Controllers  
SPI Interface (Cascade Connection Feasible)  
12bit PWM Dimming  
LED Constant Current Setting by ISET Resistor  
Phase Shift Function  
6bit Dot Correct (50 % to 100 %)  
LED Open Detection and LED Short Detection  
Adjacent LEDCH Short Detection  
PGATE Short Protection  
VINSW Over Voltage Protection  
Slew Rate Control for PMOS Gate Driver  
Abnormality Output FAILB Pin  
VQFN56FCV080  
HTSSOP-B54  
(Note 1) Grade 1  
Application  
Cluster, Center Infotainment Display  
Other Automotive Backlights  
Typical Application Circuit  
DC/DC  
VCC  
VINSW  
BD94130MUF  
BD94130EFV  
VREG15  
ISET  
EN  
SW8  
PGATE8  
LSPSET  
FB  
SW2  
PGATE2  
PGATE1  
SUMFB  
SW1  
VIO  
LEDCELL  
LEDCELL  
L  
LEDCELL  
L  
SCSB  
SDI  
LEDCH24  
LEDCH23  
SCLK  
LEDCELL  
LEDCELL  
L  
LEDCELL  
L  
SDO  
MCU  
VSYNC  
HSYNC  
VIO  
LEDCELL  
LEDCELL  
L  
LEDCELL  
L  
FAILB  
LEDCH1  
TEST1  
TEST2  
GND  
LGND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
1/74  
BD94130MUF-M BD94130EFV-M  
Pin Configuration  
VQFN56FCV080 (TOP VIEW)  
HTSSOP-B54 (TOP VIEW)  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
(N.C.) 43  
LEDCH13 44  
LEDCH14 45  
LEDCH15 46  
LEDCH16 47  
LEDCH17 48  
28 (N.C.)  
27 LEDCH12  
26 LEDCH11  
25 LEDCH10  
24 LEDCH9  
23 LEDCH8  
22 LEDCH7  
21 LGND  
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28  
LEDCH18 49  
EXP-PAD  
LGND 50  
LEDCH19 51  
LEDCH20 52  
LEDCH21 53  
LEDCH22 54  
LEDCH23 55  
LEDCH24 56  
20 LEDCH6  
19 LEDCH5  
18 LEDCH4  
17 LEDCH3  
16 LEDCH2  
15 LEDCH1  
EXP-PAD  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
Pin Description  
VQFN56FCV080  
1
HTSSOP-B54  
48  
Pin Name  
Function  
SUMFB  
GND  
Control DCDC feedback voltage  
Common GND  
2
49  
50  
51  
53  
54  
1
3
EN  
Enable input pin  
4
VREG15  
VCC  
Output of 1.5 V voltage regulator for digital block  
Power supply pin  
6
7
FAILB  
Abnormal operation detection output pin  
VSYNC signal input pin  
8
VSYNC  
HSYNC  
VIO  
9
2
HSYNC signal input pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
3
Power supply pin for I/O  
4
SDO  
SPI data output pin  
5
SCLK  
SPI CLK input pin  
6
SDI  
SPI data input pin  
7
SCSB  
SPI device select setting pin  
Output constant current channel 1  
Output constant current channel 2  
Output constant current channel 3  
Output constant current channel 4  
Output constant current channel 5  
Output constant current channel 6  
Analog GND for constant current driver block  
Output constant current channel 7  
Output constant current channel 8  
Output constant current channel 9  
Output constant current channel 10  
8
LEDCH1  
LEDCH2  
LEDCH3  
LEDCH4  
LEDCH5  
LEDCH6  
LGND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
LEDCH7  
LEDCH8  
LEDCH9  
LEDCH10  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
2/74  
BD94130MUF-M BD94130EFV-M  
Pin Description – continued  
VQFN56FCV080  
26  
HTSSOP-B54  
19  
Pin Name  
Function  
Output constant current channel 11  
LEDCH11  
27  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
-
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
-
LEDCH12  
FB  
Output constant current channel 12  
Control external DCDC feedback voltage  
LED constant current setting pin  
ISET  
TEST1  
Test pin 1  
PGATE1  
PGATE2  
PGATE3  
PGATE4  
VINSW  
Gate control 1 of external PMOS FET  
Gate control 2 of external PMOS FET  
Gate control 3 of external PMOS FET  
Gate control 4 of external PMOS FET  
Power supply for gate controller block  
Gate control 5 of external PMOS FET  
Gate control 6 of external PMOS FET  
Gate control 7 of external PMOS FET  
Gate control 8 of external PMOS FET  
Test pin 2. Use this pin as an open pin.  
LED short protection voltage setting for external adjustable  
Output constant current channel 13  
Output constant current channel 14  
Output constant current channel 15  
Output constant current channel 16  
Output constant current channel 17  
Output constant current channel 18  
Analog GND for constant current driver block  
Output constant current channel 19  
Output constant current channel 20  
Output constant current channel 21  
Output constant current channel 22  
Output constant current channel 23  
Output constant current channel 24  
The EXP-PAD is connected to GND  
PGATE5  
PGATE6  
PGATE7  
PGATE8  
TEST2  
LSPSET  
LEDCH13  
LEDCH14  
LEDCH15  
LEDCH16  
LEDCH17  
LEDCH18  
LGND  
LEDCH19  
LEDCH20  
LEDCH21  
LEDCH22  
LEDCH23  
LEDCH24  
EXP-PAD  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
3/74  
BD94130MUF-M BD94130EFV-M  
Block Diagram  
VCC  
VINSW  
VREF  
EN  
VCCUVLO  
TSD  
VINSWOVP  
internal reference  
voltage  
EN  
VCCUVLO  
TSD  
EN  
Gate Controller  
VREG  
VINSW  
EN  
EN  
VCCUVLO  
TSD  
VREG15  
1.5 V  
VCCUVLO  
TSD  
VREG15UVL O  
PGATE8  
VINSW - 4.5 V  
PGATE Short  
Detection  
VREG15UVLO  
VREG15UVLO  
PGATE2  
PGATE1  
VIOUVLO  
VIOUVLO  
VIO  
Current Driver  
SCSB  
SDI  
PWM1・・・24  
Dot correct 1 ・・・192  
LEDCH24  
LEDCH23  
curent driver control  
EN  
VCCUVLO  
TSD  
SCLK  
SDO  
VREG15UVL O  
Digital  
LGND  
LED OPEN/SHORT  
Detection  
VSYNC  
HSYNC  
LEDCHn to LEDCHn  
Detection  
LGND  
・ ・ ・  
EN  
VCCUVLO  
VREG15UVL O  
FAILB  
-
-
LEDCH1  
ISET  
-
+
ERRREF  
LGND  
FB  
Soft Start  
FB control  
ISET  
OPEN/SHORT  
ISET  
Driver  
FB control  
EN  
VCCUVLO  
TSD  
VREG15UVLO  
SUMFB  
LSPSET  
GND  
TEST1 TEST2 LGND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
4/74  
BD94130MUF-M BD94130EFV-M  
Description of Blocks  
If there is no description, the mentioned values are typical value.  
The suffixes m of the symbol represent the number of gate control (m = 1 to 8), and the suffixes n represent the number of  
current driver (n = 1 to 24), respectively. For example, LEDCHn means LEDCH1, LEDCH2,,,LEDCH24. PGATEm means  
PGATE1, PGATE2,,,PGATE8. This expression is applicable to the whole of this datasheet.  
1. Power Supply (VCC)  
The VCC pin has UVLO function (VCCUVLO), and it starts operation at VCC ≥ 2.65 V (Typ) and stops operation at  
VCC ≤ 2.55 V (Typ). About the condition to release/detect VCC UVLO, refer to Table 53. Connect a ceramic capacitor  
(CVCC) to the VCC pin for stable operation. CVCC range is 1 µF to 22 µF and recommended value is 2.2 µF. If the CVCC  
is not connected, unstable operation might occur e.g. oscillation.  
2. Power Supply (VIO)  
It supplies power to FAILB, SCSB, SCLK, SDI, SDO, VSYNC, and HSYNC input / output from the VIO pin. Connect a  
ceramic capacitor (CVIO) to the VIO pin for stable operation. CVIO range is 1 µF to 4.7 µF and recommended value is  
2.2 µF. If the CVIO is not connected, unstable operation might occur e.g. oscillation.  
3. Power Supply (VINSW)  
It supplies power to the output of PGATE1 to PGATE8 from the VINSW pin. Connect a ceramic capacitor (CVINSW) to  
the VINSW pin to ensure stability of LED anode voltage. CVINSW range is 1 µF to 100 µF and recommended value is  
10 µF. If the CVINSW value is not enough, the LED output might become unstable e.g. flicker.  
4. Reference Voltage (VREG15)  
VREG15 block generates 1.5 V from VCC, and outputs 1.5 V to the VREG15 pin. It supplies this power (VVREG15) to  
the internal digital circuit. The VREG15 pin has UVLO function (VREG15UVLO), and it starts operation at VVREG15  
1.35 V (Typ) and stops operation at VVREG15 ≤ 1.30 V (Typ). It cannot be used to supply power to external components  
from this IC. About the condition to release/detect VREG15 UVLO, refer to Table 53. Connect a ceramic capacitor  
(CVREG15) to the VREG15 pin for phase margin. CVREG15 range is 1 µF to 4.7 µF and recommended value is 2.2 µF. If  
the CVREG15 is not connected, unstable operation might occur e.g. oscillation.  
5. Gate Controller  
PGATEm pins connect to the gate of external PMOS transistors and this block controls power source timing to LED  
array. Each PGATEm pin turns on in order from PGATE1 to PGATE8 in one period of VSYNC. The number of  
PGATEm’s ON in one period of VSYNC can be set by PWMFREQ register, refer to PWMFREQ register. PGATEm  
output HIGH level is VVINSW (Typ) and its LOW level is VVINSW – 4.5 V (Typ).  
6. Current Driver  
This device has integrated 24-channel constant current driver. Maximum LED current level ILEDMAX (<80 mA) of all  
channels is set by the external resistor RISET of the ISET pin. The dot corrected current ILEDCHn (50 % to 100 %) is set  
by the register IREVmn[5:0]. And the PWM dimming is set by the register DTYmn[11:0]. (m = 1 to 8, n = 1 to 24)  
VSYNC  
PGATE1  
PGATE2  
ILEDMAX: Maximum current level by RISET < 80 mA  
Dot Correnction (50 % to 100 %) by the register IREVmn[5:0]  
LEDCHn  
current  
ILEDCHn  
PWM dimming by the register DTYmn[11:0]  
Figure 1. LED Current Setting Method for Dimming  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
5/74  
BD94130MUF-M BD94130EFV-M  
6. Current Driver – continued  
(1) Output Current Setting  
ILEDMAX and ILEDCHn can be calculated by the following equation.  
Recommended ILEDMAX setting range is from 8.5 mA to 80 mA.  
1440푘  
퐿퐸퐷푀퐴푋  
=
[푚ꢁ]  
ꢀ푆퐸푇  
where RISET is the external resistor value of the ISET pin.  
(퐼푅ꢂ푉푚ꢃ[5: 0] + 64)  
퐿퐸퐷퐶퐻푛 = 퐼퐿퐸퐷푀퐴푋  
(2) Local PWM Dimming Control  
×
[푚ꢁ]  
127  
PWM dimming frequency and pulse width are set by SPI commands. Constant current driver can be controlled  
synchronized to the internal signal PWMn (n = 1 to 24) for each channel set by SPI.  
However, the constant current driver’s minimum pulse width is limited to 0.6 µs. For example, in Matrix application  
with HSYNC frequency 8 MHz, 12bit resolution is minimum 125 ns in 8-line controller. The controllable range is  
from 5 to 4095.  
The accurate average current of LEDCHn is expressed as follows, considering the deadtime of line controller.  
퐿퐸퐷_푎푣푒 = 퐼퐿퐸퐷퐶퐻푛 × ∑ (ꢄꢅ푌푚ꢃ + 1)/ (4,096 + 32 × 2푁푂푂ꢆ퐿퐴푃ꢇ + 32 × 2푁푂푂ꢆ퐿퐴푃ꢈ) × 8  
{
[푚ꢁ]  
}
ꢊꢋꢇ  
where NOOVLAP1 = 0 to 3, NOOVLAP2 = 0 to 3, MULSEL = 0  
(3) Delay Control  
This IC integrates 12bit global delay function and 12bit local (each channel) delay function. In case HSYNC  
frequency is 8 MHz, the shift rate (global) can be set by 1.0 µs steps in 8-line controller.  
If the length of the local delay and duty is more than the period, the remaining “ON” width is output at the next  
VSYNC period as shown on LEDCH24 of Figure 2. Refer to Delay Setting for details of this function.  
VSYNC  
global delay setting (GDLY)  
PGATE1  
PGATE2  
PGATE3  
PGATE4  
PGATE5  
PGATE6  
PGATE7  
PGATE8  
delay setting (DLY01)  
DTY101 DTY201 DTY301 DTY401 DTY501 DTY601 DTY701DTY801  
LEDCH1  
current  
delay setting (DLY02)  
DTY101 DTY201 DTY301 DTY401 DTY501 DTY601 DTY701DTY801  
LEDCH2  
current  
delay setting (DLY24)  
DTY101 DTY201 DTY301 DTY401 DTY501 DTY601DTY701 DTY801  
LEDCH24  
current  
Figure 2. Delay Control  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
6/74  
02.Dec.2022 Rev.002  
BD94130MUF-M BD94130EFV-M  
6. Current Driver - continued  
(4) LED Open Detection, LED Short Detection  
This IC has LED Open Detection and LED Short Detection.  
When LED Open/Short is detected and PWM = HIGH, it outputs FAILB = LOW and the status of LED Open/Short  
Detection is updated.  
LED Open Detection Voltage = VOPDET  
LED Short Detection Voltage = VSHDET  
(LED Short Detection Voltage can be set with SPI or the external resistor of the LSPSET pin. Refer to LEDSH  
resister)  
This IC can automatically detect or release Error condition (FAILB output, Error register) during PWMn = HIGH. The  
error condition is retained during PWMn = LOW.  
7. FB Control  
DC/DC output and LEDCHn voltage is controlled by the FB pin. If the minimum LEDCHn voltage is lower than the  
Feedback Reference Voltage, the FB sink current increases. If the minimum LEDCHn voltage is higher than the  
Feedback Reference Voltage, the FB sink current decreases.  
FB sink current is controlled by FBDAC[7:0]. The output is updated at the PGATE1 = ON in every VSYNC period  
indicated by Figure 4. The minimum step current is 0.78 μA (Typ) and maximum sink current is 200 μA (Typ). The  
resistor network between this device and DC/DC should be set appropriately by considering the current ability.  
During the boot interval, the soft start function works. Please refer the register SSTIM[2:0] (Address 0x000: SRSST).  
Table 1. Feedback Reference Voltage  
Feedback  
LED Current  
Setting  
FBREF[2:0]  
Register  
Reference  
Voltage  
LEDCH.1....LEDCH24  
.....  
DC/DC VOUT  
8.5 mA  
to 20 mA  
20 mA  
to 30 mA  
30 mA  
to 40 mA  
40 mA  
to 60 mA  
60 mA  
to 80 mA  
Min  
Voltage  
Selector  
0x0  
0x1  
0.45 V  
0.53 V  
0.60 V  
0.75 V  
0.90 V  
1.5 V  
FB  
DC/DC  
FBDAC[7:0]  
FB Logic  
DC/DC FB  
0x2  
0x3  
0x4 to 0x7  
Figure 3. FB Control Block Diagram  
VSYNC  
PGATE1  
PGATE2  
PGATE8  
LEDCH1  
current  
LEDCH24  
current  
FBDAC[7:0]  
UP  
DOWN  
DOWN  
When even one LEDCHn pin is lower than the  
feedback reference voltage.  
When all LEDCHn pins are higer than the feedback  
reference voltage.  
Figure 4. FB Control Timing  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
7/74  
BD94130MUF-M BD94130EFV-M  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VCC  
Rating  
-0.3 to +7  
Unit  
V
Power Supply Voltage Range 1  
Power Supply Voltage Range 2  
Power Supply Voltage Range 3  
VREG15 Pin Voltage Range  
VVIO  
-0.3 to +4  
V
VVINSW  
-0.3 to +20  
V
VVREG15  
-0.3 to +1.65  
-0.3 to +20  
V
LEDCHn Pin Voltage Range  
VLEDCHn  
V
PGATEm Pin Voltage Range  
FAILB, ISET Pin Voltage Range  
FB, TEST2 Pin Voltage Range  
EN, LSPSET, TEST1 Pin Voltage Range  
VPGATEm  
-0.3 to VVINSW+0.3 ≤ +20  
-0.3 to +7  
V
VFAILB, VISET  
VFB, VTEST2  
VEN, VLSPSET, VTEST1  
V
-0.3 to +20  
V
-0.3 to VCC+0.3  
V
SCSB, SCLK, SDI, SDO, VSYNC, HSYNC,  
SUMFB Pin Voltage Range  
VSCSB, VSCLK, VSDI, VSDO  
VVSYNC, VHSYNC, VSUMFB  
,
-0.3 to VVIO+0.3 ≤ +4  
V
Maximum Junction Temperature  
Storage Temperature Range  
Maximum LED Output Current  
Tjmax  
Tstg  
150  
°C  
°C  
-55 to +150  
85(Note 1)(Note 2)  
ILEDCHn  
mA  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Wide VF variation of LED increases loss at the driver, which results in rise in package temperature. Therefore, the board needs to be designed with  
attention paid to heat radiation.  
(Note 2) This current value is per 1ch. It needs be used within a range not exceeding power dissipation.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN56FCV080  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
72.7  
4.0  
24.3  
3.0  
°C/W  
°C/W  
ΨJT  
HTSSOP-B54  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
55.8  
4.0  
20.6  
2.0  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connect with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
8/74  
BD94130MUF-M BD94130EFV-M  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
Operating Temperature  
Topr  
VCC  
-40  
3.0  
1.6  
3
-
5.0  
-
+125  
5.5  
3.5  
20  
°C  
V
Power Supply Voltage 1  
V
Power Supply Voltage 2  
VVIO  
VVINSW  
Power Supply Voltage 3  
-
V
1.0  
1.0  
1
2.2  
2.2  
10  
-
22.0  
4.7  
100  
16  
μF  
μF  
μF  
V
VCC Pin Connection Capacitance  
VIO Pin Connection Capacitance  
VINSW Pin Connection Capacitance  
CVCC  
CVIO  
CVINSW  
0
FB Pin Operation Voltage  
VFB  
VREG15 Pin Connection Capacitance  
CVREG15  
1.0  
18  
-
2.2  
-
4.7  
170  
20  
μF  
kΩ  
MHz  
%
ISET Resistance  
RISET  
HSYNC Frequency  
fHSYNC  
-
HSYNC Duty  
fHSYNCDUTY  
fVSYNC1  
40  
-
60  
VSYNC Frequency  
(8-line switch controller)  
VSYNC Frequency  
(6-line switch controller)  
VSYNC Frequency  
(4-line switch controller)  
MULSEL = 0x0  
PWMFREQ = 0  
MULSEL = 0x2  
PWMFREQ = 0  
MULSEL = 0x1  
PWMFREQ = 0  
50  
50  
50  
-
-
-
500  
750  
Hz  
Hz  
Hz  
fVSYNC2  
1000  
fVSYNC3  
tVSYNCMIN  
tPWMMIN  
VSYNC Minimum Pulse Width  
50  
0.6  
8.5  
8.5  
0
-
-
-
-
-
-
-
-
μs  
μs  
PWM Minimum Pulse Width  
LED Output Current 1  
-
ILEDMAX1  
ILEDMAX2  
CLEDCH  
70.0  
80.0  
0.1  
1.8  
500  
mA  
mA  
μF  
V
3.0 V ≤ VCC < 5.5 V  
LED Output Current 2  
3.5 V ≤ VCC < 5.5 V  
(Note 1)  
LEDCHn Pin Connection Capacitance  
LSPSET Pin Voltage  
VLSPSETDET  
RFAILB  
0.5  
LSHEXT = 1  
FAILB Pin Pull Up Resistance  
10  
kΩ  
(Note 1) CLEDCH affects the transient response of LEDCHn pin. Please check the LED current waveform of the narrow PWM duty, the time margin of the LED  
short detection, the short check of the adjacent LEDCHn pin, the pull up charge. Please refer the register ERRMASK (0x003), PRCEN (0x005), LEDSH  
(0x006), LSHEXE (0x006)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
9/74  
02.Dec.2022 Rev.002  
BD94130MUF-M BD94130EFV-M  
Electrical Characteristics  
(Unless otherwise specified VCC = 3.0 V to 5.5 V, VVINSW = 10 V, VVIO = 1.8 V, Ta = -40 °C to +125 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
[Device Overview]  
EN = LOW  
VCC Circuit Current 1  
VCC Circuit Current 2  
ICCVCC1  
-
-
0
20  
μA  
HSYNC = LOW  
All Current driver OFF  
VSYNC = 240 Hz  
HSYNC = 7,987,200 Hz  
MULSEL = 0  
ICCVCC2  
10.5  
18.0  
mA  
Duty = 50 %  
VINSW Circuit Current 1  
VINSW Circuit Current 2  
ICCVINSW1  
ICCVINSW2  
-
-
35  
60  
μA  
μA  
EN = LOW  
EN = HIGH,  
PGATEm = HIGH  
220  
400  
SCSB = HIGH,  
VIO Circuit Current  
ICCVIO  
-
0
5
μA  
SDI = SCLK = VSYNC =  
HSYNC = LOW, EN = LOW  
[VREG15 Block]  
VREG15 Pin Output Voltage  
[PROTECT LOGIC Block]  
VCCUVLO Detection Voltage  
VCCUVLO Release Voltage  
VCCUVLO Hysteresis Voltage  
VIOUVLO Detection Voltage  
VIOUVLO Release Voltage  
VIOUVLO Hysteresis Voltage  
VREG15UVLO Detection Voltage  
LED Open Detection Voltage  
VVREG15  
1.400  
1.470  
1.540  
V
IVREG15 = 0 mA  
VVCCUVLO1  
VVCCUVLO2  
VVCCUHYS  
VVIOUVLO1  
VVIOUVLO2  
VVIOUHYS  
2.40  
-
2.55  
2.65  
100  
1.41  
1.46  
50  
2.70  
-
V
V
VCC = SWEEP DOWN  
50  
200  
1.51  
-
mV  
V
1.31  
-
VVIO = SWEEP DOWN  
V
30  
90  
mV  
V
VVREG15UVLO  
VOPDET  
1.22  
0.05  
1.30  
0.15  
1.38  
0.25  
VVREG15 = SWEEP DOWN  
V
VLEDCHn = SWEEP DOWN  
VLEDCHn = SWEEP UP  
LEDSH[1:0] = 0x0  
VLEDCHn = SWEEP UP  
LEDSH[1:0] = 0x1  
VLEDCHn = SWEEP UP  
LEDSH[1:0] = 0x2  
VLEDCHn = SWEEP UP  
LEDSH[1:0] = 0x3  
VLSPSET = 0.8 V  
LED Short Detection Voltage 1  
LED Short Detection Voltage 2  
LED Short Detection Voltage 3  
LED Short Detection Voltage 4  
VSHDET1  
VSHDET2  
VSHDET3  
VSHDET4  
2.6  
5.6  
3.0  
6.0  
3.4  
6.4  
V
V
V
V
8.6  
9.0  
9.4  
11.6  
12.0  
12.4  
LED Short Detection Voltage 5  
LSPSET Pin Leak Current  
VLSPSETDET  
ILSPSETLEAK  
RISETSP  
7.6  
8.0  
0
8.4  
1
V
LSHEXT = 1  
-
-
μA  
kΩ  
VLSPSET = 0.8 V  
ISET Pin GND Short Detection  
Resistance  
-
16  
ISET Pin Open Detection  
Resistance  
RISETOPEN  
340  
-
-
kΩ  
VINSW Over Voltage Detection 1  
VINSW Over Voltage Detection 2  
VINSW Over Voltage Detection 3  
VINSW Over Voltage Detection 4  
VVINSWOVP1  
VVINSWOVP2  
VVINSWOVP3  
VVINSWOVP4  
7.5  
8.0  
8.5  
V
V
V
V
VINSWOVPREF[1:0] = 0x0  
VINSWOVPREF[1:0] = 0x1  
VINSWOVPREF[1:0] = 0x2  
VINSWOVPREF[1:0] = 0x3  
11.4  
15.2  
17.1  
12.0  
16.0  
18.0  
12.6  
16.8  
18.9  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
10/74  
BD94130MUF-M BD94130EFV-M  
Electrical Characteristics – continued  
(Unless otherwise specified VCC = 3.0 V to 5.5 V, VVINSW = 10 V, VVIO = 1.8 V, Ta = -40 °C to +125 °C)  
Parameter  
[Constant Current Driver Block]  
ISET Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
VISET  
1.38  
-
1.50  
4.5  
1.62  
9.0  
V
LEDCHn Pin ON Resistance  
RLEDCHn  
Ω
ISET resistor = 48 kΩ  
PWM = 100 %  
ISET resistor = 48 kΩ  
PWM = 100 %  
ISET resistor = 48 kΩ  
PWM = 100 %  
LED Output Current  
ILEDCHn  
ΔILEDCHn  
ΔILEDC1  
-
30  
-
-
mA  
%
LED Output Current Error  
-6  
-6  
+6  
+6  
LED Constant Current Error1  
(channel to channel)(Note 1)  
-
%
LED = OFF  
ILEDCHn = -100 μA  
3.5 V ≤ VINSW  
VINSW-1.4 VINSW-1.2 VINSW-1.0  
Pull Up Voltage  
VPULLUP  
V
[Feedback Control Block]  
Feedback Reference Voltage 1  
Feedback Reference Voltage 2  
Feedback Reference Voltage 3  
Feedback Reference Voltage 4  
Feedback Reference Voltage 5  
VFB1  
VFB2  
VFB3  
VFB4  
VFB5  
0.36  
0.44  
0.50  
0.64  
0.78  
0.45  
0.53  
0.60  
0.75  
0.90  
0.54  
0.62  
0.70  
0.86  
1.02  
V
V
V
V
V
FBREF[2:0] = 0x0  
FBREF[2:0] = 0x1  
FBREF[2:0] = 0x2  
FBREF[2:0] = 0x3  
FBREF[2:0] = 0x4 to 0x7  
FBDAC[7:0] = 0xFF  
VFB = 2.0 V  
FB Maximum Sink Current  
IFBMAX  
170  
200  
230  
μA  
VLEDCHn = 0.5 V  
FB OFF Current  
IFBOFF  
RFB  
RSUMFBL  
RSUMFBH  
-
0
1
μA  
kΩ  
Ω
VLEDCHn = 1.2 V, EN = LOW  
FB ON Resistance  
-
5.5  
160  
100  
9.0  
290  
150  
SUMFB ON Resistance  
SUMFB Pull-up Resistance to VIO  
[Gate Controller Block]  
PGATEm PMOS ON Resistance  
10  
50  
IFAILB = +1 mA  
kΩ  
RPONR  
10  
50  
40  
130  
200  
Ω
Ω
IPGATEm = -1 mA to -5 mA  
IPGATEm = +1 mA to +5 mA  
PGSRCNT[1:0] = 0x0  
IPGATEm = +10 μA to +500 μA  
PGSRCNT[1:0] = 0x1  
IPGATEm = +10 μA to +120 μA  
PGSRCNT[1:0] = 0x2  
IPGATEm = +1 μA to +12 μA  
PGSRCNT[1:0] = 0x3  
PGATEm NMOS ON Resistance 1  
PGATEm NMOS ON Resistance 2  
PGATEm NMOS ON Resistance 3  
PGATEm NMOS ON Resistance 4  
RNONR1  
100  
RNONR2  
RNONR3  
1.0  
5
1.4  
10  
2.5  
15  
200  
-
kΩ  
kΩ  
kΩ  
V
RNONR4  
50  
100  
PGATEm to VSINSW Short  
Detection Voltage 1  
PGATEm to GND Short Detection  
Voltage 1  
PGATEm to VSINSW Short  
Detection Voltage 2  
VINSW-2.2 VINSW-1.5  
VPGATEVIN1  
VPGATEGND1  
VPGATEVIN2  
VINSW = 10 V  
VINSW = 10 V  
VINSW = 3.5 V  
VINSW-2.5 VINSW-0.8  
VINSW-1.3 VINSW-1.0  
-
V
-
V
PGATEm to GND Short Detection  
Voltage 2  
VINSW-1.3 VINSW-0.8  
VPGATEGND2  
VLGATEm  
-
V
V
VINSW = 3.5 V  
VINSW = 10 V  
PGATEm LOW Level  
3.8  
5.6  
7.4  
[LOGIC Input Block (SCSB, SCLK, SDI, VSYNC, HSYNC)]  
0.75  
×VVIO  
VVIO  
+0.2  
0.2  
Input HIGH Voltage  
Input LOW Voltage  
VINH  
VINL  
IIN  
-
-
V
V
-0.2  
×VVIO  
VVIO = 3.3 V  
LOGIC Pins Input Current  
-
0
1
µA  
LOGIC Input = 3.3 V  
(Note 1)  
ΔILEDC1 = (ILEDn / ILED_AVE - 1) x 100  
ILEDn is either pin of LED1 to LED24 current.  
ILED_AVE is the average current of LED1 to LED24.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
11/74  
BD94130MUF-M BD94130EFV-M  
Electrical Characteristics – continued  
(Unless otherwise specified VCC = 3.0 V to 5.5 V, VVINSW = 10 V, VVIO = 1.8 V, Ta = -40 °C to +125 °C)  
[Input Pin (EN)]  
Input Pin HIGH Voltage  
Input Pin LOW Voltage  
Pin Input Current  
VENH  
VENL  
IEN  
1.6  
-0.2  
-
-
-
VCC  
+0.4  
60  
V
V
33  
µA  
VEN = 3.3 V  
[Input Pin (TEST1)] Typical Condition  
Input Pin HIGH Voltage  
Input Pin LOW Voltage  
[LOGIC Output Block (SDO)]  
Output HIGH Voltage  
VTEST1H  
VTEST1L  
1.6  
-
-
VCC  
V
V
-0.2  
+0.4  
VVIO  
-0.2  
VVIO  
0.2  
VOUTH  
VOUTL  
-
-
V
V
IOL = -1 mA  
IOL = +1 mA  
Output LOW Voltage  
-
[FAILB Output Block]  
FAILB Pin ON Resistance  
RFAILB  
10  
110  
230  
Ω
IFAILB = +1 mA  
VFAILB = 5.0 V  
FAILB Pin Leak Current  
ILEAKFAILB  
-
0
1
µA  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
12/74  
BD94130MUF-M BD94130EFV-M  
Application Example  
DC/DC  
VCC  
VINSW  
BD94130MUF  
BD94130EFV  
VREG15  
ISET  
EN  
SW8  
PGATE8  
LSPSET  
FB  
SW2  
PGATE2  
PGATE1  
SUMFB  
SW1  
VIO  
LEDCELL  
L  
LEDCELL  
LEDCELL  
L  
SCSB  
SDI  
LEDCH24  
LEDCH23  
SCLK  
LEDCELL  
L  
LEDCELL  
LEDCELL  
L  
SDO  
MCU  
VSYNC  
HSYNC  
VIO  
LEDCELL  
L  
LEDCELL  
LEDCELL  
L  
FAILB  
LEDCH1  
TEST1  
TEST2  
GND  
LGND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
13/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block  
1. Serial Interface and AC Electrical Characteristics  
Serial Peripheral Interface (SPI) controls the IC with SCSB, SCLK, SDI, and SDO signals.  
Start the SPI communication with the initial value of SCSB is HIGH, and that of SCLK and SDI is LOW.  
When using several devices, connect the SDO pin to the SDI pin of the next device to make cascade connection. SDO signal  
outputs the SDI input after 16 SCLK pulses. Example of the N address write is shown in the following.  
The initial value of SDO is LOW, until it is used to output the signal.  
SCSB  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th  
SCLK  
SDI  
・・・・・・・・・・  
・・・・・・・・・・  
・・・・・・・・・・  
DT DT DT DT DT DT DT DT  
DT DT  
DT DT DT DT DT  
DA DA DA DA DA DA  
[5] [4] [3] [2] [1] [0]  
ND ND ND  
ND ND ND ND ND ND  
RA RA RA RA RA RA RA RA RA  
DT  
RW  
B
S
0
0
0
0
[12] [11] [10] [9]  
[7] [6]  
[4] [3] [2] [1] [0]  
[8] [7] [6] [5] [4] [3]  
[2] [1] [0]  
[8] [7] [6] [5] [4] [3] [2] [1] [0] [15] [14] [13]  
[8]  
[5]  
Data[15:0]  
16bits  
RegAddr[8:0]  
16bits  
DevAddr[5:0]  
NumOfData[8:0]  
16bits  
16bits  
ND ND ND ND ND ND  
[5] [4] [3] [2] [1] [0]  
ND ND ND  
RA RA RA RA RA RA RA RA RA  
DT  
[8] [7] [6] [5] [4] [3] [2] [1] [0] [15]  
DA DA DA DA DA DA  
[5] [4] [3] [2] [1] [0]  
0
0
0
RW  
B
S
SDO  
[8] [7] [6]  
・・・・・・・・・・  
・・・・・・・・・・  
B:  
S:  
RW:  
DA[5:0]:  
ND[8:0]:  
RA[8:0]:  
DT[15:0]:  
Broadcast  
Single  
Read / Write  
Device Address  
Number Of Data  
Register Address  
Data  
DT DT DT DT DT DT DT DT DT DT  
[10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]  
DT  
・・・・・・・・・・  
Data[15:0]  
DT  
DT  
[0] [15]  
DT DT DT DT DT DT DT DT DT  
[9] [8] [7] [6] [5] [4] [3] [2] [1]  
・・・・・・・・・・  
Figure 5. SPI Protocol (Write)  
SCSB  
SCLK  
SDI  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th  
・・・・・・・・・・  
・・・・・・・・・・  
・・・・・・・・・・  
ND ND ND  
[8] [7] [6]  
ND ND ND ND ND ND  
[5] [4] [3] [2] [1] [0]  
RA RA RA RA RA RA RA RA RA  
[8] [7] [6] [5] [4] [3] [2] [1] [0]  
DA DA DA DA DA DA  
[5] [4] [3] [2] [1] [0]  
RW  
B
S
0
0
0
0
0
DevAddr[5:0]  
NumOfData[8:0]  
RegAddr[8:0]  
Data[15:0]  
16bits  
16bits  
16bits  
16bits  
ND ND ND  
ND ND ND ND ND ND  
RA RA RA RA RA RA RA RA RA  
RD  
[8] [7] [6] [5] [4] [3] [2] [1] [0] [15]  
DA DA DA DA DA DA  
[5] [4] [3] [2] [1] [0]  
0
0
0
RW  
B
S
SDO  
[8] [7] [6] [5] [4] [3]  
[2] [1] [0]  
・・・・・・・・・・  
・・・・・・・・・・  
B:  
S:  
RW:  
DA[5:0]:  
ND[8:0]:  
RA[8:0]:  
RD[15:0]:  
Broadcast  
Single  
Read / Write  
Device Address  
Number Of Data  
Register Address  
Read Data  
・・・・・・・・・・  
RD RD RD RD RD RD RD RD  
RD RD  
RD  
RD  
[0]  
・・・・・・・・・・  
[15] [14] [13] [12]  
[6] [5] [4] [3] [2] [1] [0]  
Figure 6. SPI Protocol (Read)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
14/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block – continued  
2. SPI AC Timing  
VSYNC  
tSCSBVS  
tSCSBVH  
tSCSBHP  
SCSB  
High Vth  
Low Vth  
fSCLK  
tSCSBS  
tSCSBH  
SCLK  
tSDIH tSDIS tSDIH tSDIS  
SDI  
tSDOD  
tSDOD  
SDO  
High Vth  
Low Vth  
SPI Recommended Operation Condition  
(Unless otherwise specified Ta = -40 °C to +125 °C, VVIO = 1.8 V, VCC = 3.0 V to 5.5 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCLK Frequency  
fSCLK  
fSCLKDUTY  
tSDIS  
0.1  
45  
-
-
-
-
-
-
-
-
-
-
-
20  
55  
-
MHz  
%
SCLK Duty  
SDI Input Setup Time  
10  
ns  
SDI Input Hold Time  
tSDIH  
10  
-
ns  
SCSB Input Setup Time  
tSCSBS  
100  
100  
-
-
ns  
SCSB Input Hold Time  
tSCSBH  
tSDOD  
-
ns  
SDO Output Delay Time  
40  
-
ns  
SCSB HIGH Pulse Width  
SCSB Setup Time for VSYNC  
SCSB Hold Time for VSYNC  
Cascade Connection Number  
(Note) Do not input VSYNC pulse during SCSB = LOW  
tSCSBHP  
tSCSBVS  
tSCSBVH  
NCASCADE  
1000  
10  
ns  
-
μs  
10  
-
μs  
-
20  
pcs  
(Output load capacitance: 15 pF)  
The maximum frequency of the HSYNC and VSYNC is described in the previous section “Recommended Operating Conditions”.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
15/74  
02.Dec.2022 Rev.002  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block – continued  
3. SPI Connection  
(1) Cascade Connection  
Each device can be controlled by connecting the SCLK and the SCSB pins to all devices in parallel, and by connecting  
each SDO to the SDI of the next device in series. The maximum number of devices that can be cascaded is 20.  
Device #1  
Device #2  
Device #20 (maximum)  
BD94130EFV  
MCU  
BD94130EFV  
BD94130EFV  
SDI  
SDO  
SDI  
SDO  
SDI  
SDO  
MOSI  
SCSB  
SCSB  
SCLK  
SCSB  
SCLK  
SCLK  
CS  
CLK  
MISO  
Figure 7. Image of Cascade Connection  
(2) Individual Connection  
Each device can be controlled by connecting the SCLK and the SDI pins to all devices in parallel, and by connecting  
each SCSB.  
Device #1  
MCU  
MOSI  
BD94130EFV  
SDI SDO  
SCSB  
CS1  
SCLK  
MISO1  
Device #2  
BD94130EFV  
SDI SDO  
SCSB  
CS2  
SCLK  
MISO2  
Device #20 (maximum)  
BD94130EFV  
SDI SDO  
SCSB  
CS20  
CLK  
SCLK  
MISO20  
Figure 8. Image of Individual Connection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
16/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block – continued  
4. SPI Data Flow  
MCU Write and Read flow is shown as follow. This IC has 4 timing schemes for updating the analog control data.  
Type 1 (immediately):  
Type 2 (VSYNC):  
Type 3 (VSYNC+GDLY):  
Type 4 (PWM):  
Data is updated after SPI access.  
Data is updated after SPI access and VSYNC rising edge.  
Data is updated after SPI access and VSYNC rising edge and GDLY.  
Data is updated after SPI access and VSYNC rising edge and PWM timing.  
So there is mismatch between Read data and Control data.  
Immediately  
Register  
VSYNC  
VSYNC + GDLY  
PWM  
SPI write  
A
(LEDENL, etc)  
Control  
data  
B
(GDLY,etc)  
MCU  
Analog  
Circuit  
SPI read  
Control  
data  
C
(DLYn)  
buffer  
Control  
data  
D
buffer1  
buffer2  
(DTYCNTmn)  
(n = 1 to 24)  
(m = 1 to 8)  
Figure 9. SPI Data Flow  
Available to access register for next frame  
SPI  
VSYNC  
Type 1  
PWMFREQ  
Type 2  
GDLY  
(register)  
update at next VSYNC  
GDLY  
(Control data)  
Type 3  
DLYn  
(register)  
update at next VSYNC  
GDLY  
DLYn  
(buffer)  
update at next PWM output  
DLYn  
(Control data)  
Type 4  
DTYCNTmn  
(register)  
update at next VSYNC  
update at next PWM output  
DLYn  
DTYCNTmn  
(buffer1)  
DTYCNTmn  
(buffer2)  
DTYCNTmn  
(Control data)  
PGATE1  
DTYCNTmn  
LEDCHn  
Figure 10. SPI Data Flow Timing  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
17/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block – continued  
5. SPI Protocol  
(1) Device Address  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
B
S
0
DevAddr[5:0]  
Value  
Bit  
Parameter  
Broadcast  
B = 1: All devices receive the data  
(Write only / No Read)  
B = 0: Write / Read to the Device that assigned by DevAddr[5:0]  
S = 1: 1 address Write / Read mode  
S = 0: Block Write / Read mode  
B
S
Single  
0x00: Write the same data to the same RegAddr[8:0] of all devices  
(provided, B = 1)  
0x01 to 0x14: Device Address  
0x3F: Write the different data to the same RegAddr[8:0] of all devices  
(provided, B = 1)  
Device  
Address  
DevAddr[5:0]  
DevAddr[5:0] of each device is calculated by counting the number of byte of 0x0000 data after the fall-edge of SCSB.  
When the received DevAddr[5:0] matches with the calculated DevAddr[5:0] of the device, Write/Read function occurs.  
When the received DevAddr[5:0] does not match the calculated DevAddr[5:0] of the device, the data is not received and is  
output to SDO. Refer to each protocol for the details.  
(2) Number of Transferred Byte when Block Write/Read  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
NumOfData[8:0]  
Bit  
Parameter  
Number of transferred data  
Transferred byte number = NumOfData[8:0]  
Value  
NumOfData[8:0]  
0x002 to 0x16B  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
18/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
When S = 0 (Block Write / Read) of DevAddr[5:0], set the number of transferred byte (NumOfData) after DevAddr[5:0].  
When S = 1, it skip this packet. (“Device Address” -> “Register Address” -> ….)  
Please access this IC using the settings as shown in Table 2 and Table 3.  
Table 2. Access Table for Write (RW = 0)  
SPI Setting  
Access to Devices  
For All Device  
Acceptable  
For Single  
Device  
(Note)  
B
0
S
0
1
0
1
DevAddr[5:0]  
NumOfData[8:0]  
0x002 to 0x147  
Same  
Different  
Data  
Data  
0x00  
0x01 to 0x14  
0x15 to 0x3F  
0x00  
0x01 to 0x14  
0x15 to 0x3F  
0x00  
0x01 to 0x3E  
0x3F  
0x00  
0x01 to 0x3E  
0x3F  
-
O
-
-
O
-
-
-
-
-
-
-
-
-
-
-
O
-
-
-
-
-
-
-
-
-
X
O
X
X
O
X
O
X
O
O
X
O
Not sending  
this data  
0x002 to 0x147  
-
O
-
O
-
1
Not sending  
this data  
-
-
-
-
O
(Note) X: This setting is not acceptable. Do not set this condition  
Table 3. Access Table for Read (RW = 1)  
SPI Setting  
Access to Devices  
For All Device  
Acceptable  
For Single  
Device  
(Note)  
B
0
1
S
0
DevAddr[5:0]  
NumOfData[8:0]  
0x002 to 0x16B  
Same  
Different  
Data  
Data  
0x00  
0x01 to 0x14  
0x15 to 0x3F  
0x00  
0x01 to 0x14  
0x15 to 0x3F  
0x00  
-
O
-
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
O
X
X
O
X
X
X
X
Not sending  
this data  
1
0 / 1  
0x01 to 0x3E  
0x3F  
0x002 to 0x16B  
(Note) X: This setting is not acceptable. Do not set this condition.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
19/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(3) Register Address  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
RW  
0
RegAddr[8:0]  
Bit  
Parameter  
Value  
RW = 0: Write the registers  
RW = 1: Read the registers  
0x000 to 0x16B  
RW  
Read / Write  
RegAddr[8:0]  
Register Address  
(4) Data  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Data[15:0]  
Bit  
Data[15:0]  
Parameter  
Data  
Value  
0x0000 to 0xFFFF  
(5) Single Device, 1 Address Write (Write to Device #1)  
B =  
0:  
Target device receives the data  
S =  
1:  
Single  
DevAddr[5:0] =  
NumOfData[8:0] = -:  
RW =  
RegAddr[8:0] =  
0x01:  
Target device address  
1 address access  
Write  
0:  
0x002:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
B
S
DevAddr[5:0] RW  
RegAddr[8:0]  
0 1  
0x00  
0x01  
0
0x00  
0x002  
Data1[15:0]  
SDI  
SDO  
0x0000  
0 1  
0x00  
0x01  
0
0x00  
0x002  
Ex) Detail of Timing Chart  
SCSB  
SCLK  
RegAddr[8:0]  
B
S
DevAddr[5:0]  
Data1[15:0]  
RW  
SDI  
16bit shift every Device  
SDO  
Device #1  
Register  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002 Data1  
0x001  
0x000  
Figure 11. SPI Protocol for 1 Address Write to Device #1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
20/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(6) Single Device, 1 Address Write (Write to Device #3)  
B =  
S =  
0:  
1:  
Target device receives the data  
Single  
DevAddr[5:0] =  
NumOfData[8:0] = -:  
RW =  
RegAddr[8:0] =  
0x03:  
Target device address  
1 address access  
Write  
0:  
0x002:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
DevAddr[5:0] of each device is calculated by counting the number of byte of 0x00 data after the falling-edge of SCSB.  
DevAddr[5:0] = (Number of byte of 0x00 data) + 1  
SCSB  
SCLK  
BS  
DevAddr[5:0] RW  
0x03 0x00  
RegAddr[8:0]  
0x002  
01 0x00  
0
Data1[15:0]  
0x0000  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
01 0x00  
0x03  
0
0x00  
0x002  
Data1[15:0]  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
01 0x00  
0x03  
0
0x00  
0x002  
0x03  
Data1[15:0]  
0x0000  
0x0000  
01 0x00  
0
0x00  
0x002  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002 Data1  
0x001  
0x000  
Figure 12. SPI Protocol for 1 Address Write to Device #3  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
21/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(7) Single Device, N Address Write (Write to the consecutive register of Device #1)  
B =  
S =  
0:  
0:  
Target device receives the data  
Single  
DevAddr[5:0] =  
NumOfData[8:0] = 0x003:  
RW =  
0x01:  
Target device address  
3 address access  
Write  
0:  
RegAddr[8:0] =  
0x002:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], NumOfData[8:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0]  
0x01  
NumOfData[8:0] RW  
RegAddr[8:0]  
0x002  
00 0x00  
0x00  
0x003  
0
0x00  
Data1[15:0]  
Data2[15:0]  
Data1[15:0]  
Data3[15:0]  
Data2[15:0]  
Data1[15:0]  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
00 0x00  
0x01  
0x00  
0x003  
0
0x00  
0x002  
0x003  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
00 0x00  
0x01  
0x00  
0
0x00  
0x002  
0x003  
0x0000  
0x0000  
00 0x00  
0x01  
0x00  
0
0x00  
0x002  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
Data3  
0x003 Data2  
0x002 Data1  
0x001  
0x000  
Figure 13. SPI Protocol for N Address Write to Device #1  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
22/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(8) All Devices, Different 1 Address Write (Write the same 2 bytes data to the same RegAddr[8:0] of all devices)  
B =  
S =  
1:  
1:  
All devices receive data  
Single  
DevAddr[5:0] =  
NumOfData[8:0] = -:  
RW =  
RegAddr[8:0] =  
0x3F:  
All devices receive different data  
1 address access  
Write  
0:  
0x002:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0] RW  
RegAddr[8:0]  
11 0x00  
0x3F  
0
0x00  
0x002  
Data1[15:0]  
Data2[15:0]  
Data1[15:0]  
Data3[15:0]  
Data2[15:0]  
0x0000  
Data3[15:0]  
Data2[15:0]  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
11 0x00  
0x3F  
0
0x00  
0x002  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
11 0x00  
0x3F  
0
0x00  
0x002  
0x3F  
Data1[15:0]  
Data3[15:0]  
Data2[15:0]  
0x0000  
0x0000  
11 0x00  
0
0x00  
0x002  
Data1[15:0]  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x006  
0x005  
0x004  
0x003  
0x007  
0x006  
0x005  
0x004  
0x003  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002 Data1  
0x001  
0x002 Data2  
0x001  
0x002 Data3  
0x001  
0x000  
0x000  
0x000  
Figure 14. SPI Protocol for 1 Address Distinct Data Write to All Devices  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
23/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(9) All Devices, Same 1 Address Write (Write the same 2 bytes data to the same RegAddr[8:0] of all devices)  
B =  
1:  
All devices receive data  
S =  
1:  
Single  
DevAddr[5:0] =  
RW =  
0x00:  
0:  
All devices receive the same data  
Write  
NumOfData[8:0] = -:  
RegAddr[8:0] = 0x002:  
1 address access  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0] RW  
0x00 0x00  
RegAddr[8:0]  
0x002  
11 0x00  
0
Data1[7:0]  
0x0000  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
11 0x00  
0x00  
0
0x00  
0x002  
Data1[7:0]  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
11 0x00  
0x00  
0
0x00  
0x002  
0x00  
Data1[7:0]  
0x0000  
0x0000  
11 0x00  
0
0x00  
0x002  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x007  
0x006  
0x005  
0x004  
0x003  
0x007  
0x006  
0x005  
0x004  
0x003  
0x006  
0x005  
0x004  
0x003  
0x002 Data1  
0x001  
0x002 Data1  
0x001  
0x002 Data1  
0x001  
0x000  
0x000  
0x000  
Figure 15. SPI Protocol for 1 Address Distinct Data Write to All Devices  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
24/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(10) All Devices, Different N Address Write (Write the different N x 2 bytes data to the same RegAddr[8:0] of all  
devices)  
B =  
1:  
All devices receive data  
S =  
0:  
Multi  
DevAddr[5:0] =  
0x3F:  
All devices receive different data  
NumOfData[8:0] = 0x002:  
2 address access  
Write  
RW =  
0:  
RegAddr[8:0] =  
0x002:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], NumOfData[8:0], RegAddr[8:0], and Data[15:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0]  
0x3F  
NumOfData[8:0] RW  
RegAddr[8:0]  
0x002  
10 0x00  
0x00  
0x002  
0
0x00  
Data1[15:0]  
Data2[15:0]  
Data1[15:0]  
Data3[15:0]  
Data2[15:0]  
Data1[15:0]  
Data4[15:0]  
Data3[15:0]  
Data2[15:0]  
Data5[15:0]  
Data4[15:0]  
Data3[15:0]  
Data6[15:0]  
Data5[15:0]  
Data4[15:0]  
0x0000  
Data6[15:0]  
Data5[15:0]  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
10 0x00  
0x3F  
0x00  
0x002  
0
0x00  
0x002  
0x002  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
10 0x00  
0x3F  
0x00  
0
0x00  
0x002  
0x002  
Data6[15:0]  
0x0000  
0x0000  
10 0x00  
0x3F  
0x00  
0
0x00  
0x002  
Data1[15:0]  
Data2[15:0]  
Data3[15:0]  
Data4[15:0]  
Data5[15:0]  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x003 Data2  
0x002 Data1  
0x001  
0x003 Data4  
0x002 Data3  
0x001  
0x003 Data6  
0x002 Data5  
0x001  
0x000  
0x000  
0x000  
Figure 16. SPI Protocol for N Address Distinct Data Write to All Devices  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
25/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(11) All Devices, Same N Address Write (Write the same N x 2 bytes data to the same RegAddr[8:0] of all devices)  
B =  
1:  
All devices receive data  
S =  
0:  
Multi  
DevAddr[5:0] =  
0x00:  
All devices receive the same data  
NumOfData[8:0] = 0x003:  
3 address access  
Write  
RW =  
0:  
RegAddr[8:0] =  
0x002:  
Address  
SDI:  
SDO:  
Transfer in the order of DevAddr[5:0], NumOfData[8:0], RegAddr[8:0], and Data[15:0].  
Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0]  
0x00  
NumOfData[8:0] RW  
RegAddr[8:0]  
0x002  
10 0x00  
0x00  
0x003  
0
0x00  
Data1[15:0]  
Data2[15:0]  
Data1[15:0]  
Data3[15:0]  
Data2[15:0]  
Data1[15:0]  
0x0000  
Data3[15:0]  
Data2[15:0]  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
10 0x00  
0x00  
0x00  
0x003  
0
0x00  
0x002  
0x003  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
10 0x00  
0x00  
0x00  
0
0x00  
0x002  
0x003  
Data3[15:0]  
0x0000  
0x0000  
10 0x00  
0x00  
0x00  
0
0x00  
0x002  
Data1[15:0]  
Data2[15:0]  
Device #3 SDO  
Device #1  
Device #2  
Register  
Device #3  
Register  
Register  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
Data3  
Data3  
Data3  
0x003 Data2  
0x002 Data1  
0x001  
0x003 Data2  
0x002 Data1  
0x001  
0x003 Data2  
0x002 Data1  
0x001  
0x000  
0x000  
0x000  
Figure 17. SPI Protocol for N Address Same Data Write to All Devices  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
26/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(12) Single Device, 1 Address Read (Read the 2 bytes data from Device #2)  
B =  
S =  
0:  
1:  
Target device receive the data  
Single  
DevAddr[5:0] =  
NumOfData[8:0] = -:  
RW =  
RegAddr[8:0] =  
0x02:  
Target device address  
1 address access  
Read  
1:  
0x003:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0] and RegAddr[8:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0] RW  
RegAddr[8:0]  
01 0x00  
0x02  
1
0x00  
0x003  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
01 0x00  
0x02  
1
0x00  
0x003  
Read Data[15:0]  
Data1[15:0]  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
01 0x00  
0x02  
1
0x00  
0x003  
0x02  
0x0000  
0x0000  
0x0000  
01 0x00  
1
0x00  
0x003  
Data1[15:0]  
Device #3 SDO  
Device #1  
Register  
Device #2  
Register  
Device #3  
Register  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x003 Data1  
0x002  
0x001  
0x000  
Figure 18. SPI Protocol for 1 Address Read from Device #2  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
27/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(13) Single Device, N Address Read (Read the N x 2 bytes data from Device #2)  
B =  
S =  
0:  
0:  
Target device receives the data  
Multi  
DevAddr[5:0] =  
NumOfData[8:0] = 0x002:  
RW =  
0x02:  
Target device address  
2 address access  
Read  
1:  
RegAddr[8:0] =  
0x003:  
Address  
SDI:  
Transfer in the order of DevAddr[5:0], NumOfData[8:0], and RegAddr[8:0].  
SDO: Output the transferred data to the next device after SDI input by 2 bytes.  
SCSB  
SCLK  
BS  
DevAddr[5:0]  
0x02  
NumOfData[8:0] RW  
RegAddr[8:0]  
0x003  
00 0x00  
0x00  
0x002  
1
0x00  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Device #1 SDI  
Device #1 SDO  
(Device #2 SDI)  
0x0000  
00 0x00  
0x02  
0x00  
0x002  
1
0x00  
0x003  
0x002  
Read Data[15:0]  
Data1[15:0]  
Device #2 SDO  
(Device #3 SDI)  
0x0000  
0x0000  
0x0000  
00 0x00  
0x02  
0x00  
1
0x00  
0x003  
0x002  
Data2[15:0]  
0x0000  
0x0000  
00 0x00  
0x02  
0x00  
1
0x00  
0x003  
Data1[15:0]  
Data2[15:0]  
Device #3 SDO  
Device #1  
Device #2  
Register  
Device #3  
Register  
Register  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
0x007  
0x006  
0x005  
0x004  
0x007  
0x006  
0x005  
0x004  
0x003  
0x002  
0x001  
0x000  
Data2  
0x003 Data1  
0x002  
0x001  
0x000  
Figure 19. SPI Protocol for N Address Read from Device #2  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
28/74  
BD94130MUF-M BD94130EFV-M  
5. SPI Protocol – continued  
(14) Example (Write the data to Device #1 and Device #2)  
Example of byte transfer for 2 devices in Cascade Connection.  
Table 4. Byte transfer  
B, S, DevAddr[5:0]  
RW, NumOfData[8:0]  
RegAddr[8:0]  
2 bytes  
2 bytes  
2 bytes  
Transfer setting  
(2 bytes x 24 channels) x 8  
Data  
Data for the duty setting of Duty matrix switch x 2 devices  
= 768 bytes  
Dummy byte  
for multi device transfer  
SUM  
2 bytes  
776 bytes  
DevAddr[5:0]  
0x00  
0x3F  
NumOfData[8:0]  
RegAddr[8:0]  
48 bytes : LEDCH1 to LEDCH24 data for PGATE1 of Device #1  
device #1  
device #1  
device #1  
device #1  
DTYCNT101  
10  
0
0x00  
Number of  
0x0C0 0 0x00 0x010  
DTYCNT102  
DTYCNT123  
DTYCNT124  
RegAddr of  
transferred byte  
for each device  
DTYCNT101  
Dummy byte  
0x0000  
48 bytes : LEDCH1 to LEDCH24 data for PGATE8 of Device #2  
device #2  
device #2  
device #2  
DTYCNT801  
device #2  
DTYCNT823  
DTYCNT824  
DTYCNT802  
Figure 20. Transfer Byte Number for Multi Access  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
29/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block - continued  
6. Register Map  
Address  
0x000  
0x001  
0x002  
0x003  
0x005  
0x006  
0x007  
0x008  
0x009  
0x00A  
0x00B  
0x00C  
0x010  
0x011  
to  
Register Name  
SRSST  
TURNONWAIT  
SSMASK  
ERRMASK  
SYSCONFIG 1  
SYSCONFIG 2  
SYSCONFIG 3  
SYSCONFIG 4  
LEDENL  
LEDENM  
LEDENU  
GDLY  
DTYCNT101  
DTYCNT102  
to  
Description  
Software reset and soft start time  
Wait time after turn on  
Soft start mask time  
Error output mask time  
System config 1  
System config 2  
System config 3  
System config 4  
Enable of LEDCH1 to LEDCH8  
Enable of LEDCH9 to LEDCH16  
Enable of LEDCH17 to LEDCH24  
Global delay for all channel  
PWM duty setting of LEDCH1 for PGATE1  
Section  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
Here  
PWM duty setting of LEDCH2 for PGATE1  
to  
-
DTYCNT823  
DTYCNT824  
DLY01  
PWM duty setting of LEDCH23 for PGATE8  
PWM duty setting of LEDCH24 for PGATE8  
Delay setting of LEDCH1  
Delay setting of LEDCH2  
to  
0x0CD  
0x0CF  
0x0D0  
0x0D1  
to  
-
Here  
DLY02  
to  
-
DLY23  
DLY24  
IREV10102  
IREV10304  
to  
Delay setting of LEDCH23  
Delay setting of LEDCH24  
Current revision of LEDCH1 and LEDCH2 for PGATE1  
Current revision of LEDCH3 and LEDCH4 for PGATE1  
0x0E6  
0x0E7  
0x0E8  
0x0E9  
to  
-
Here  
to  
-
IREV82122  
Current revision of LEDCH21 and LEDCH22 for PGATE8  
0x146  
0x147  
0x148  
0x149  
0x14A  
to  
IREV82324  
ERLSH1L  
ERLSH1H  
ERLSH2L  
to  
Current revision of LEDCH23 and LEDCH24 for PGATE8  
Error status of LED1 to LED16 short detection for PGATE1  
Error status of LED17 to LED24 short detection for PGATE1  
Error status of LED1 to LED16 short detection for PGATE2  
to  
-
Here  
Here  
-
ERLSH7H  
Error status of LED17 to LED24 short detection for PGATE7  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
to  
ERLSH8L  
ERLSH8H  
ERLOP1L  
ERLOP1H  
ERLOP2L  
to  
Error status of LED1 to LED16 short detection for PGATE8  
Error status of LED17 to LED24 short detection for PGATE8  
Error status of LED1 to LED16 open detection for PGATE1  
Error status of LED17 to LED24 open detection for PGATE1  
Error status of LED1 to LED16 open detection for PGATE2  
to  
-
-
Here  
Here  
-
ERLOP7H  
Error status of LED17 to LED24 open detection for PGATE7  
0x165  
0x166  
0x167  
0x168  
0x169  
0x16A  
0x16B  
ERLOP8L  
ERLOP8H  
EROTHER  
ERLEDL  
ERLEDH  
ERPGSH  
Error status of LED1 to LED16 open detection for PGATE8  
Error status of LED17 to LED24 open detection for PGATE8  
Other error status  
Adjacent LEDCH1 to LEDCH16 short detection  
Adjacent LEDCH17 to LEDCH24 short detection  
PGATE VIN/GND short detection  
-
-
Here  
Here  
Here  
Here  
As for the register update timing, there are 4 kinds of timing as following.  
Type 1. Updated to the newest data immediately when the data is written.  
Type 2. Updated to the newest data at the next VSYNC. (Rising edge trigger, after the data is written.)  
Type 3. Updated to the newest data at the next VSYNC and GDLY.  
Type 4. Updated to the newest data at the next PWM timing. (Rising edge trigger of VSYNC, then rising edge trigger of  
PWM after the data is written.)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
30/74  
BD94130MUF-M BD94130EFV-M  
Functions of Logic Block – continued  
7. Description of Registers  
The writing register annotated “-” is not valid.  
Address 0x000: SRSST  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
0
Bit[5]  
SSTIM[2:0]  
1
Bit[4]  
Bit[3]  
-
0
Bit[2]  
-
0
Bit[1]  
-
0
Bit[0]  
SWRST  
0
1
[Read / Write] Initial value: 0x0030 Update: Immediately  
The register data is updated immediately when the new data is written.  
SWRST is Write-only register.  
Bit[6:4] SSTIM  
SSTIM[2:0] is the register for setting the soft start time. It sets how the FBDAC[7:0] code changes with HSYNC.  
Table 5. Soft Start Time / 1 count  
SSTIM[2:0]  
Count Up Time  
128 HSYNC  
256 HSYNC  
512 HSYNC  
1024 HSYNC  
2048 HSYNC  
4096 HSYNC  
6144 HSYNC  
8192 HSYNC  
0
1
2
3
4
5
6
7
Bit[0] SWRST  
SWRST is available when HSYNC is available, because this function uses HSYNC clock.  
If SWRST = 1 is written, wait for more than 10 HSYNC pulses before accessing other registers.  
Table 6. Software Reset  
SWRST  
Software Reset  
Normal  
Reset (return to ‘0’ automatically)  
0
1
Address 0x001: TURNONWAIT  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
TURNONWAIT[7:0]  
0
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
0
1
0
0
[Read / Write] Initial value: 0x0004 Update: VSYNC  
The register data is updated at the next VSYNC signal rising edge after the data is written.  
The mask time of PWM output is set by counting the number of VSYNC pulses.  
This register value is updated at the 3rd VSYNC pulse after reset is released (UVLO, SWRST). If this register needs to be  
updated, update this register before the 3rd VSYNC pulse. Write data higher than 0x04.  
푇푈ꢌ푁푂푁푊퐴ꢀ푇 = ꢅꢍ푅ꢎꢏꢎꢐꢁ퐼ꢅ[7: 0]/푓  
[푠]  
(Except for waiting time until 1st VSYNC pulse)  
ꢆ푆ꢑ푁퐶  
Table 7. Maximum Turn on Wait Time  
fVSYNC[Hz]  
60  
120  
2,125  
240  
480  
Maximum TURNONWAIT Time [ms]  
4,250  
1,062.5  
531.3  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
31/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x002: SSMASK  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
1
Bit[4]  
SSMASK[7:0]  
1
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
1
1
0
0
[Read / Write] Initial value: 0x003C Update: VSYNC  
The register data is updated at the next VSYNC signal rising edge after the data is written. Set the value higher than 0x02.  
The mask time of ERROR detection is set by counting the number of VSYNC pulses after TURNONWAIT time.  
푆푆푀퐴푆퐾 = ꢒꢒꢓꢁꢒꢔ[7: 0]/푓  
[푠]  
after TURNONWAIT time  
(Except for waiting time until 1st VSYNC pulse)  
ꢆ푆ꢑ푁퐶  
Table 8. Maximum Soft Start Mask Time  
fVSYNC[Hz]  
60  
120  
240  
480  
Maximum SSMASK Time [ms]  
4,250  
2,125  
1,062.5  
531.3  
Address 0x003: ERRMASK  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
1
Bit[4]  
ERRMASK[7:0]  
0
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
1
0
0
1
[Read / Write] Initial value: 0x0029 Update: VSYNC  
The register data is updated at the next VSYNC signal rising edge after the data is written.  
Range: over 0x03 (Set for 0x00 to 0x02 also lead to 0x03, register value = writing value)  
ERROR mask time is set by counting the number of HSYNC pulses.  
퐸ꢌꢌ푀퐴푆퐾 = ꢂ푅푅ꢓꢁꢒꢔ[7:0]/푓  
[푠]  
퐻푆ꢑ푁퐶  
If the capacitance of LEDCHn pin CLEDCH is connected, the transient response is affected. Please set the value  
considering the time margin of LED short detection.  
(Example) ERRMASK = 3: mask 3 or 4 clock (PWMn = HIGH and error signal)  
It reset ERRMASK counter when PWMn = LOW. Refer to HSYNC equation about the relationship between HSYNC  
frequency and VSYNC frequency.  
Table 9. Maximum Error Mask Time  
fHSYNC[Hz]  
1,996,800  
127.7  
3,993,600  
63.8  
7,987,200 15,974,400  
31.9 15.9  
Maximum ERRMASK Time [μs]  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
32/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x005: SYSCONFIG1  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
-
0
Bit[10]  
Bit[9]  
MULSEL[1:0]  
0
Bit[8]  
0
-
0
-
0
-
0
-
0
-
0
Bit No.  
Name  
Initial value  
Bit[7]  
PGSRCNT[1:0]  
0
Bit[6]  
0
Bit[5]  
-
0
Bit[4]  
-
0
Bit[3]  
-
0
Bit[2]  
-
0
Bit[1]  
PRCEN  
0
Bit[0]  
PRCSEL  
0
[Read / Write] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the new data is written.  
Bit[9:8] MULSEL[1:0]  
Line Switch Controller setting of external PMOS gate. Refer to PWM Delay and ON Duty setting procedure each  
dimming mode. As for the HSYNC frequency for MULSEL, Refer to the register PWMFREQ. This register  
prohibits changing the setting during dimming.  
Table 10. Line Switch Controller of External PMOS Gate  
MULSEL[1:0]  
Line Switch Controller  
8-line switch controller  
4-line switch controller  
6-line switch controller  
6-line switch controller  
0x0  
0x1  
0x2  
0x3  
Bit[7:6] PGSRCNT[1:0]  
Fall Slew Rate Control of external PMOS gate.  
Table 11. Fall Slew Rate of External PMOS Gate  
PGSRCNT[1:0]  
Slew Rate  
0x0  
0x1  
0x2  
0x3  
100 Ω pull down  
1.4 kΩ pull down  
10 kΩ pull down  
100 kΩ pull down  
Bit[1] PRCEN  
According to setting of PRCSEL, pull up charge ‘VINSW – 1.2 V’ to the LEDCHn pin.  
Table 12. Pull up charge Enable Setting  
PRCEN  
Pull up charge Enable Setting  
Pull up charge disable  
0
1
Pull up charge enable  
(Note) It is necessary to be careful about reverse pressure resistance.  
Bit[0] PRCSEL  
Pull up charge period setting of the LEDCHn pin.  
Table 13. Pull up charge Period  
Pull up charge Period Setting  
PRCSEL  
0
1
Pull up charge during PWM OFF  
Pull up charge during all PGATE OFF  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
33/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x006: SYSCONFIG2  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
LSHEXE  
0
Bit[12]  
0
Bit[11]  
FBREF[2:0]  
0
Bit[10]  
0
Bit[9]  
Bit[8]  
1
-
0
-
0
SMPTIM[1:0]  
0
Bit[1]  
0
Bit No.  
Name  
Initial value  
Bit[7]  
PWMFREQ[1:0]  
0
Bit[6]  
0
Bit[5]  
-
0
Bit[4]  
LSHEXT  
0
Bit[3]  
LOPEN  
0
Bit[2]  
LSHEN  
0
Bit[0]  
LEDSH[1:0]  
0
[Read / Write] Initial value: 0x0100 Update: Immediately  
The register data is updated immediately when the new data is written.  
This register should be set before PWM dimming. Do not change this register value during dimming.  
Bit[13] LSHEXE  
Short check sequence of adjacent LEDCHn pin is executed after TURNONWAIT time if LSHEXE = 1 is written  
before TURNONWAIT time.  
Table 14. Short Check of Adjacent LEDCHn Pin  
LSHEXE  
Short Check Execution  
0
1
No operation  
Execute short check sequence (return to ‘0’ automatically)  
Bit[12:10] FBREF  
Feedback reference voltage of FB control block.  
Table 15. Error Reference of FB Control Block  
Feedback Reference  
Voltage  
FBREF[2:0]  
0x0  
0x1  
0x2  
0x3  
other  
0.45 V  
0.53 V  
0.60 V  
0.75 V  
0.90 V  
Bit[9:8] SMPTIM  
The LED channel voltage sampling timing, after PWMn goes from LOW to HIGH. It is necessary to set PWM  
duty register more than 8 at the dimming.  
Table 16. Sampling Time  
LED Channel Voltage  
SMPTIM[1:0]  
Sampling Time  
0x0  
0x1  
0x2  
0x3  
8 HSYNC  
16 HSYNC  
32 HSYNC  
64 HSYNC  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
34/74  
BD94130MUF-M BD94130EFV-M  
Address 0x006: SYSCONFIG2 – continued  
Bit[7:6] PWMFREQ (Please update this register until the 4th VSYNC pulse from RESET release.)  
The register PWMFREQ defines the number of times PWM turns on during a VSYNC pulse. So the proper HSYNC  
pulse number is almost proportional to the PWMFREQ. More specifically, considering the NOOVLAP1 and  
NOOVLAP2 timing, which is the deadtime of PMOSm (m = 1 to 8), the necessary HSYNC pulse number is  
expressed by the following equation.  
= 푓  
× (4096 + ꢕ + 푏) × 푐 × 2(푃푊푀퐹ꢌ퐸푄[ꢇ:ꢖ])  
ꢆ푆ꢑ푁퐶  
퐻푆ꢑ푁퐶  
NOOVLAP1 register 0: a = 32, 1: a = 64, 2: a = 128, 3: a = 256  
NOOVLAP2 register 0: b = 32, 1: b = 64, 2: b = 128, 3: b = 256  
MULSEL register 0: c = 8, 1: c = 4, 2: c = 6, 3: c = 6  
The ratio fHSYNC/fVSYNC is noted in the Table 17. Here is the example of the register MULSEL = 0 (the case c = 8 is  
substituted in the above formula)  
Table 17. The example of the ratio fHSYNC/fVSYNC (the register MULSEL = 0)  
NOOVLAP2  
PWMFREQ[1:0] NOOVLAP1  
0
1
2
3
33,280  
33,536  
34,048  
35,072  
66,560  
67,072  
68,096  
70,144  
133,120  
134,144  
136,192  
140,288  
266,240  
268,288  
272,384  
280,576  
33,536  
33,792  
34,304  
35,328  
67,072  
67,584  
68,608  
70,656  
134,144  
135,168  
137,216  
141,312  
268,288  
270,336  
274,432  
282,624  
34,048  
34,304  
34,816  
35,840  
68,096  
68,608  
69,632  
71,680  
136,192  
137,216  
139,264  
143,360  
272,384  
274,432  
278,528  
286,720  
35,072  
35,328  
35,840  
36,864  
70,144  
70,656  
71,680  
73,728  
140,288  
141,312  
143,360  
147,456  
280,576  
282,624  
286,720  
294,912  
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
The example of HSYNC pulse number is shown as VSYNC is 60 Hz, 120 Hz, 240 Hz and 480 Hz.  
The maximum HSYNC frequency is 20 MHz. (Refer to frequency range of electric characteristics)  
Table 18. HSYNC Frequency and PWM Frequency (NOOVLAP1 = NOOVLAP2 = 0, MULSEL = 0) (Example)  
VSYNC Frequency [Hz]  
PWMFREQ [1:0]  
60  
60  
120  
120  
240  
480  
480  
15,974,400  
240  
0
1
2
3
1,996,800  
120  
3,993,600  
240  
7,987,200  
480  
960  
-
1,920  
-
3,840  
-
3,993,600  
240  
7,987,200  
480  
15,974,400  
960  
7,987,200  
480  
15,974,400  
15,974,400  
960  
-
1,920  
-
-
(Note) Upper: PWM frequency Lower: HSYNC frequency “-“ is not acceptable to set this value in PWMFREQ register  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
35/74  
BD94130MUF-M BD94130EFV-M  
Address 0x006: SYSCONFIG2 – continued  
Bit[4] LSHEXT  
External pin or internal register setting for LED short protection voltage.  
Table 19. Setting for LED Short Protection Voltage  
LSHEXT  
Setting for LED Short Protection  
Internal register LEDSH[1:0] setting  
External LSPSET pin setting  
0
1
As LSHEXT = 0, please connect the LSPSET pin to GND.  
As LSHEXT = 1, please set the LED short protection voltage VLSPSETDET by the following equation.  
= 10 × 푉  
퐿푆푃푆퐸푇  
퐿푆푃푆퐸푇퐷퐸푇  
Where VLSPSET is the LSPSET pin voltage (0.5 V to 1.8 V)  
Bit[3] LOPEN  
This register enables/disables LED Open Error detection.  
Table 20. Enable Setting for LED Open Error Detection of LEDCHn  
LOPEN  
Enable Setting  
0
1
LED Open Error detection is not available  
LED Open Error detection is available  
Bit[2] LSHEN  
This register enables/disables LED Short Error detection.  
Table 21. Enable Setting for LED Short Error Detection of LEDCHn  
LSHEN  
Enable Setting  
0
1
LED Short Error detection is not available  
LED Short Error detection is available  
Bit[1:0] LEDSH[1:0]  
This register controls the detection voltage for LED Short Error.  
Table 22. LED Short Error Detection Voltage Setting  
LEDSH[1:0]  
Detection Voltage[V]  
0
1
2
3
3.0 V  
6.0 V  
9.0 V  
12.0 V  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
36/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x007: SYSCONFIG3  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
VINSW  
OVPEN  
0
Bit[9]  
Bit[8]  
-
-
-
-
-
VINSWOVPREF[1:0]  
Initial value  
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
NOOVLAP1[1:0]  
0
Bit[6]  
0
Bit[5]  
NOOVLAP2[1:0]  
0
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
ERRCLR  
0
Bit[0]  
ERRLAT  
0
AUTOCLR AUTOOFF  
0
0
0
[Read / Write] Initial value: 0x0000 Update: Immediately or VSYNC  
The data in registers (VINSWOVPEN, VINSWOVPREF, AUTOCLR, AUTOOFF and ERRCLR) are updated immediately when  
the new data is written.  
The data in registers (NOOVLAP1, NOOVLAP2, ERRLAT) are updated at the next VSYNC signal rising edge after the data  
is written. The data in registers (NOOVLAP1, NOOVLAP2) should be set before PWM dimming.  
AUTOCLR and ERRCLR are Write-only registers.  
Bit[10] VINSWOVPEN  
This register enables/disables Over Voltage Detection of the VINSW pin.  
Table 23. Enable Setting for Over Voltage Detection of the VINSW pin  
VINSWOVPEN  
Enable Setting  
0
1
VINSW Over Voltage detection is not available  
VINSW Over Voltage detection is available  
Bit[9:8] VINSWOVPREF[1:0]  
Detection voltage for over voltage of the VINSW pin.  
Table 24. Detection Voltage Setting of the VINSW pin  
VINSWOVPREF[1:0]  
Detection Voltage[V]  
8.0 V  
0
1
2
3
12.0 V  
16.0 V  
18.0 V  
Bit[7:6] NOOVLAP1 (Update this register until 4th VSYNC pulse from RESET release.)  
None overlap time setting 1. Refer to None overlap function.  
As for the HSYNC frequency for NOOVLAP1, please refer to the register PWMFREQ.  
Table 25. None Overlap Time Setting1  
NOOVLAP1[1:0]  
None Overlap Time Setting 1  
32 HSYNC  
0
1
2
3
64 HSYNC  
128 HSYNC  
256 HSYNC  
Bit[5:4] NOOVLAP2 (Update this register until 4th VSYNC pulse from RESET release.)  
None overlap time setting 2. Refer to None overlap function.  
As for the HSYNC frequency for NOOVLAP2, please refer to the register PWMFREQ.  
Table 26. None Overlap Time Setting2  
NOOVLAP2[1:0]  
None Overlap Time Setting 2  
32 HSYNC  
0
1
2
3
64 HSYNC  
128 HSYNC  
256 HSYNC  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
37/74  
BD94130MUF-M BD94130EFV-M  
Address 0x007: SYSCONFIG3 – continued  
Bit[3] AUTOCLR  
AUTOCLR is available in AUTOOFF = 1 setting.  
Table 27. AUTOOFF Condition  
AUTOOFF Condition  
AUTOCLR  
0
No Operation  
AUTOOFF condition in LEDCHn output is released  
(return to ‘0’ automatically)  
1
Bit[2] AUTOOFF  
Control ON/OFF condition in LEDCHn output. AUTOOFF condition is latched until released by UVLO or  
AUTOCLR.  
Table 28. ON/OFF Condition of LEDCHn Output  
AUTOOFF  
ON/OFF Condition  
0
1
LEDCHn does not turn OFF automatically after error is detected  
LEDCHn turn OFF automatically after error is detected  
Bit[1] ERRCLR  
ERRCLR is available in ERRLAT = 1 setting.  
Table 29. Clear Error Register  
Clear Error Register  
ERRCLR  
0
No Operation  
Clear error register and return Hi-z in FAILB output when ERRLAT = 1  
(returns to ‘0’ automatically)  
1
Bit[0] ERRLAT  
Control error register and FAILB output when error is detected.  
Table 30. Error Detection Function  
ERRLAT  
Error Detection Function  
0
1
Error register and FAILB output return to initial condition when error is released  
Error register and FAILB output is retained until ERRCLR = 1 is written  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
38/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x008: SYSCONFIG4  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
0
Bit[5]  
DACUP[2:0]  
0
Bit[4]  
Bit[3]  
DACDN[1:0]  
0
Bit[2]  
Bit[1]  
-
0
Bit[0]  
MSMODE  
0
1
0
[Read / Write] Initial value: 0x0010 Update: Immediately  
The register data is updated immediately when the new data is written.  
Bit[6:4] DACUP[2:0]  
DACUP[2:0] is register for setting the FB DAC's count up step after soft start.  
Table 31. FB DAC Code Count Up Step  
FB DAC Code Count  
DACUP[2:0]  
Up Step  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
Bit[3:2] DACDN[1:0]  
DACDN[1:0] is register for setting the FB DAC's count down step after soft start.  
Table 32. FB DAC Code Count Down Step  
FB DAC Code Count  
DACDN[1:0]  
Down Step  
0
1
2
3
-1  
-2  
-3  
-4  
Bit[0] MSMODE  
MSMODE is register for setting of FB DAC’s controller mode or target mode.  
Table 33. FB DAC Mode Setting  
MSMODE  
FB DAC Mode Setting  
Controller mode  
Target mode  
0
1
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
39/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x009: LEDENL  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
1
Bit[6]  
1
Bit[5]  
1
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
LEDEN[7:0]  
1
1
1
1
1
[Read / Write] Initial value: 0x00FF Update: Immediately  
Address 0x00A: LEDENM  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
1
Bit[6]  
1
Bit[5]  
1
Bit[4]  
LEDEN[15:8]  
1
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
1
1
1
1
[Read / Write] Initial value: 0x00FF Update: Immediately  
Address 0x00B: LEDENU  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
Initial value  
0
0
0
0
0
0
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
1
Bit[6]  
1
Bit[5]  
1
Bit[4]  
LEDEN[23:16]  
1
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
1
1
1
1
[Read / Write] Initial value: 0x00FF Update: Immediately  
The register data is updated immediately when the new data is written.  
These registers (0x009, 0x00A, 0x00B) enable or disable each LED channel. If ‘0’ is set in LEDEN[n-1] (n = 1 to 24), the  
channel n is not available. LEDCHn current is turned off, and the status of LED Open/Short Detection and FAILB output are  
not affected by LEDCHn since disabled channels do not detect LED Open/Short Error.  
Table 34. LEDCHn Enable Setting  
LEDCHn current control,  
LEDEN[n-1]  
LED Open/Short Detection,  
FAILB output for LEDCHn  
0
1
Disable  
Enable  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
40/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x00C: GDLY  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
0
Bit[8]  
0
-
0
-
0
-
0
-
0
GDLY[11:8]  
0
Bit[3]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
Bit[1]  
0
Bit[0]  
0
GDLY[7:0]  
0
[Read / Write] Initial value: 0x0000 Update: VSYNC  
GDLY is the delay time counted from VSYNC rising edge to PGATE1 fall-edge.  
The register data is updated at the next VSYNC signal rising edge after the data is written.  
MULSEL register 0: c = 8, 1: c = 4, 2: c = 6, 3: c = 6  
Table 35. Global Delay Setting  
GDLY[11:0]  
GDLY Total Clock Number (clock width @HSYNC)  
0x000  
0x001  
0x002  
0x003  
to  
0xFFC  
0xFFD  
0xFFE  
0xFFF  
NGDLYa = 5 clock to 6 clock from rise-edge of VSYNC  
NGDLYa + 1 x c x 2(PWMFREQ[1:0])  
NGDLYa + 2 x c x 2(PWMFREQ[1:0])  
NGDLYa + 3 x c x 2(PWMFREQ[1:0])  
to  
NGDLYa + 4092 x c x 2(PWMFREQ[1:0])  
NGDLYa + 4093 x c x 2(PWMFREQ[1:0])  
NGDLYa + 4094 x c x 2(PWMFREQ[1:0])  
NGDLYa + 4095 x c x 2(PWMFREQ[1:0])  
(Note) This count starts from VSYNC rising edge.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
41/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x010: DTYCNT101  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
0
Bit[8]  
0
-
0
-
0
-
0
-
0
DTY101[11:8]  
0
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
DTY101[7:0]  
0
Bit[3]  
0
Bit[2]  
0
Bit[1]  
0
Bit[0]  
0
[Read / Write] Initial value: 0x0000 Update: PWM  
The register data is updated at the next PWM signal rising edge after the data is written.  
Table 36. PWM Duty Setting  
DTYmn[11:0]  
LED Pulse Width  
0x000  
0x001  
0x002  
0x003  
0x004  
to  
0 HSYNC clock width  
1 HSYNC clock width  
2 HSYNC clock width  
3 HSYNC clock width  
4 HSYNC clock width  
to  
0xFFC  
0xFFD  
0xFFE  
0xFFF  
4,092 HSYNC clock width  
4,093 HSYNC clock width  
4,094 HSYNC clock width  
4,095 HSYNC clock width  
Address 0x011 to 0x0CF: DTYCNT102 to DTYCNT824  
These registers are used to set the PWM pulse width. The setting procedure is the same as that for LEDCH1 with Address  
set to 0x010.  
Address  
Description  
0x010 to 0x027  
0x028 to 0x03F  
0x040 to 0x057  
0x058 to 0x06F  
0x070 to 0x087  
0x088 to 0x09F  
0x0A0 to 0x0B7  
0x0B8 to 0x0CF  
PWM duty register for PGATE1  
PWM duty register for PGATE2  
PWM duty register for PGATE3  
PWM duty register for PGATE4  
PWM duty register for PGATE5  
PWM duty register for PGATE6  
PWM duty register for PGATE7  
PWM duty register for PGATE8  
Address 0x0D0: DLY01  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
0
Bit[8]  
0
-
0
-
0
-
0
-
0
DLY01[11:8]  
0
Bit[3]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
Bit[1]  
0
Bit[0]  
0
DLY01[7:0]  
0
[Read / Write] Initial value: 0x0000 Update: VSYNC+GDLY  
The register data is updated at the next VSYNC+GDLY timing after the data is written.  
DLY01 is the delay time which starts to count after NOOVLAP2.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
42/74  
BD94130MUF-M BD94130EFV-M  
Address 0x0D0: DLY01 (PWM Delay setting register) – continued  
Table 37. Delay Setting of PWM Output  
DLY01[11:0]  
DLY01 Total Clock Number (clock width @HSYNC)  
0x000  
0x001  
0x002  
0x003  
to  
0
1
2
3
to  
0xFFC  
0xFFD  
0xFFE  
0xFFF  
4092  
4093  
4094  
4095  
(Note) This count starts from NOOVLAP2 finish point.  
Address 0x0D1 to 0x0E7: DLY02 to DLY24  
These registers are used to set the delay width of PWM for LEDCH2 to LEDCH24. The setting procedure is the same as that  
for LEDCH1 with address set to 0x0D0.  
Address 0x0E8: IREV10102  
Bit No  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
1
Bit[9]  
1
Bit[8]  
1
-
0
-
0
IREV102[5:0]  
1
Bit[5]  
1
1
Bit[4]  
1
1
Bit[3]  
1
Bit No  
Name  
Initial value  
Bit[7]  
-
0
Bit[6]  
-
0
Bit[2]  
Bit[1]  
1
Bit[0]  
1
IREV101[5:0]  
1
[Read / Write] Initial value: 0x3F3F Update: immediately  
IREV101 is used with current revision of LEDCH1 of PGATE1 from 50 % to 100 %.  
IREV102 is used with current revision of LEDCH2 of PGATE1 from 50 % to 100 %.  
IREV register prohibit changing the setting during dimming.  
These LED current registers should be updated before LED turns on. The dynamic update during the dimming may affect to  
the DCDC feedback.  
Table 38. Current Revision Setting of LEDCHn  
IREV101[5:0]  
Current Revision Setting  
0x3F  
0x3E  
0x3D  
0x3C  
to  
ILEDDC x 100 %  
ILEDDC x 99.2 %  
ILEDDC x 98.4 %  
ILEDDC x 97.6 %  
to  
0x03  
0x02  
0x01  
0x00  
ILEDDC x 52.8 %  
ILEDDC x 52.0 %  
ILEDDC x 51.2 %  
ILEDDC x 50.4 %  
[
]
(퐼푅ꢂ푉 5: 0 + 64)  
ꢊ푛  
퐿퐸퐷퐴퐿퐿 = 퐼퐿퐸퐷퐷퐶  
Address 0x0E9 to 0x147: IREVmn  
×
[푚ꢁ]  
127  
This register is used to make setting of current revision for LEDCH3 to LEDCH24 of PGATE1 and LEDCH1 to LEDCH24 of  
PGATE2 to PGATE8. The setting procedure is the same as that for LEDCH1 of PGATE1 with address set to 0x0E8.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
43/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x148: ERLSH1L  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
ERLSH1 [15:8]  
Bit[11]  
0
Bit[10]  
Bit[9]  
0
Bit[8]  
0
0
Bit[7]  
0
0
Bit[6]  
0
0
Bit[5]  
0
0
Bit[4]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[3]  
Bit[1]  
0
Bit[0]  
0
ERLSH1 [7:0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
Address 0x149: ERLSH1H  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Initial value  
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
ERLSH1 [23:16]  
0
Bit[3]  
0
Bit[2]  
0
Bit[1]  
0
Bit[0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the data is written.  
These registers (0x148, 0x149) correspond to the status of LED Short Detection of PGATE1 of LED1 to LED24.  
Table 39. Status of LED Short Detection  
ERLSH1[n-1]  
Status  
Normal  
0
1
Detected LED Short Error(Note 1)  
(Note 1) ERRLAT = 0: ERLSHm[n-1] (m = 1 to 8, n = 1 to 24) turns 0, if LED Short Error is released or LEDEN[n-1] = 0 is set or LSHEN = 0 is set.  
ERRLAT = 1: ERLSHm[n-1] turns 0, if ERRCLR = 1 is set.  
Address 0x14A to 0x157: ERLSHm[n-1]  
These registers (0x14A to 0x157) correspond to the status of LED Short Detection of PGATE2 to PGATE8 of LED1 to  
LED24. The setting procedure is the same as that for LED1 to LED24 of PGATE1 with address set to 0x148 and 0x149.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
44/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x158: ERLOP1L  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
0
Bit[10]  
Bit[9]  
0
Bit[8]  
0
ERLOP1[15:8]  
0
Bit[7]  
0
0
Bit[6]  
0
0
Bit[5]  
0
0
Bit[4]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[3]  
Bit[1]  
0
Bit[0]  
0
ERLOP1[7:0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
Address 0x159: ERLOP1H  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Initial value  
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
ERLOP1[23:16]  
0
Bit[3]  
0
Bit[2]  
0
Bit[1]  
0
Bit[0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the data is written.  
These registers (0x158, 0x159) correspond to the status of LED Open Detection of PGATE1 of LED1 to LED24.  
Table 40. Status of LED Open Detection  
ERLOP1 [n-1]  
Status  
Normal  
0
1
Detected LED Open Error(Note 2)  
(Note 2) ERRLAT = 0: ERLOPm[n-1] (m = 1 to 8, n = 1 to 24) turns 0,if LED Open Error is released or LEDEN[n-1] = 0 is set or LOPEN = 0 is set.  
ERRLAT = 1: ERLOPm[n-1] turns 0, if ERRCLR = 1 is set.  
Address 0x15A to 0x167: ERLOPm[n-1]  
These registers (0x15A to 0x167) correspond to the status of LED Short Detection of PGATE2 to PGATE8 of LED1 to  
LED24. The setting procedure is the same as that for LED1 to LED24 of PGATE1 with Address set to 0x158 and 0x159.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
45/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x168: EROTHER  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Initial value  
Bit No.  
Name  
Bit[7]  
Bit[6]  
Bit[5]  
EXENG  
0
Bit[4]  
EXEOK  
0
Bit[3]  
ERISET  
OPEN  
0
Bit[2]  
ERISET  
OCP  
0
Bit[1]  
Bit[0]  
ERVINSW  
OVP  
-
-
-
0
0
0
0
Initial value  
[Read] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the new data is written.  
Bit[5]: EXENG  
EXENG register correspond to the status that short check sequence of adjacent LEDCHn is not executed.  
Table 41. Status of Short Check Sequence NG  
EXENG  
Status  
Normal  
0
1
Short check sequence of adjacent LEDCHn is not executed  
Bit[4]: EXEOK  
EXEOK register correspond to the status that short check sequence of adjacent LEDCHn is executed.  
Table 42. Status of Short Check Sequence OK  
EXEOK  
Status  
Normal  
0
1
Short check sequence of adjacent LEDCHn is executed  
Bit[3]: ERISETOPEN  
ERISETOPEN register correspond to the status of ISET Open Detection.  
Table 43. Status of ISET Open Detection  
ERISETOPEN  
Status  
Normal  
0
1
Detected ISET Open Error(Note 3)  
Bit[2]: ERISETOCP  
ERISETOCP register correspond to the status of ISET Over Current Detection.  
Table 44. Status of ISET Over Current Detection  
ERISETOCP  
Status  
Normal  
0
1
Detected ISET Over Current Error(Note 3)  
Bit[0]: ERVINSWOVP  
ERVINSWOVP register correspond to the status of VINSW Over Voltage Detection.  
Table 45. Status of VINSW Over Voltage Detection  
ERVINSWOVP  
Status  
Normal  
0
1
Detected VINSW Over Voltage Error(Note 3)  
(Note 3) ERRLAT = 0: ERISETOPEN, ERISETOCP and ERVINSWOVP turns 0, if error condition is released. ERRLAT = 1: ERISETOPEN, ERISETOCP  
and ERVINSWOVP turns 0, if ERRCLR = 1 is set.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
46/74  
BD94130MUF-M BD94130EFV-M  
7. Description of Registers – continued  
Address 0x169: ERLEDL  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
0
Bit[10]  
Bit[9]  
0
Bit[8]  
0
ERLED[15:8]  
0
Bit[7]  
0
0
Bit[6]  
0
0
Bit[5]  
0
0
Bit[4]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[3]  
Bit[1]  
0
Bit[0]  
0
ERLED[7:0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
Address 0x16A: ERLEDH  
Bit No.  
Name  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
-
Bit[8]  
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Initial value  
Bit No.  
Name  
Initial value  
Bit[7]  
0
Bit[6]  
0
Bit[5]  
0
Bit[4]  
ERLED[23:16]  
0
Bit[3]  
0
Bit[2]  
0
Bit[1]  
0
Bit[0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the data is written.  
These registers (0x169, 0x16A) correspond to the status of Short Detection of adjacent LEDCHn.  
Table 46. Status of Short Detection of Adjacent LEDCHn  
ERLED[n-1]  
(n = 1 to 24))  
Status  
0
1
Normal  
Detected Short Detection Error of Adjacent LEDCHn(Note 4)  
Address 0x16B: ERPGSH  
Bit No.  
Name  
Initial value  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
ERPGVINSH[7:0]  
Bit[11]  
Bit[10]  
Bit[9]  
0
Bit[8]  
0
0
Bit[7]  
0
0
Bit[6]  
0
0
Bit[5]  
0
0
0
Bit[3]  
0
0
Bit[2]  
0
Bit No.  
Name  
Initial value  
Bit[4]  
ERPGGSH[7:0]  
0
Bit[1]  
0
Bit[0]  
0
[Read] Initial value: 0x0000 Update: Immediately  
The register data is updated immediately when the data is written.  
Bit[15:8]: ERPGVINSH[7:0]  
This register correspond to the status of Short Detection between the PGATEm pin and the VINSW pin.  
Table 47. Status of Short Detection between the PGATEm pin and the VINSW pin  
ERPGVINSH[m-1]  
(m = 1 to 8)  
Status  
0
1
Normal  
Detected Short Error to the VINSW pin(Note 4)  
Bit[7:0]: ERPGGSH[7:0]  
This register correspond to the status of Short Detection between the PGATEm pin and the GND.  
Table 48. Status of Short Detection between the PGATEm pin and GND  
ERPGGSH[m-1]  
(m = 1 to 8)  
Status  
0
1
Normal  
Detected Short Error to GND(Note 4)  
(Note 4) ERLED[n-1], ERPGVINSH[m-1] and ERPGGSH[m-1] turn 0, if ERRCLR = 1 is set.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
47/74  
BD94130MUF-M BD94130EFV-M  
Application Circuit Diagram  
1. The Example of Basic Application  
DC/DC  
VCC  
VINSW  
BD94130MUF  
BD94130EFV  
VREG15  
ISET  
EN  
SW8  
PGATE8  
LSPSET  
FB  
SW2  
PGATE2  
PGATE1  
SUMFB  
SW1  
VIO  
LEDCELL  
LEDCELL  
LEDCELL  
SCSB  
SDI  
LEDCH24  
LEDCH23  
SCLK  
LEDCELL  
LEDCELL  
LEDCELL  
SDO  
MCU  
VSYNC  
HSYNC  
VIO  
LEDCELL  
LEDCELL  
LEDCELL  
FAILB  
LEDCH1  
TEST1  
TEST2  
GND  
LGND  
2. The Plural BD94130 Usage (the common SPI and the common DCDC)  
DC/DC  
VCC  
VINSW  
BD94130MUF  
BD94130EFV  
VREG15  
ISET  
EN  
EN  
SW8  
PGATE8  
LSPSET  
FB  
SW2  
PGATE2  
PGATE1  
SUMFB  
SW1  
VIO  
SCSB  
SDI  
LEDCELL  
LEDCELL  
LEDCELL  
SCSB  
SDI  
LEDCH24  
LEDCH23  
SCLK  
SCLK  
SDO  
LEDCELL  
LEDCELL  
LEDCELL  
SDO  
MCU  
VSYNC  
HSYNC  
VSYNC  
HSYNC  
VIO  
LEDCELL  
LEDCELL  
LEDCELL  
FAILB  
FAILB  
LEDCH1  
TEST1  
TEST2  
GND  
LGND  
VCC  
VINSW  
BD94130MUF  
BD94130EFV  
VREG15  
ISET  
EN  
SW8  
PGATE8  
LSPSET  
FB  
SW2  
PGATE2  
PGATE1  
SUMFB  
SW1  
VIO  
LEDCELL  
LEDCELL  
LEDCELL  
SCSB  
SDI  
LEDCH24  
LEDCH23  
SCLK  
L
E
D
CE  
L
L
L
E
D
CE  
L
L
LEDCELL
SDO  
VSYNC  
HSYNC  
L
E
D
CE  
L
L
L
E
D
CE  
L
L
LEDCELL
FAILB  
LEDCH1  
TEST1  
TEST2  
GND  
LGND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
48/74  
BD94130MUF-M BD94130EFV-M  
Timing Chart  
1. Boot Sequence  
(1) SPI Command Mode  
VCCUVLO  
VCCUVLO  
VCC  
[9]  
[1]  
VINSW  
[2]  
[8]  
VIOUVLO  
VIO  
VIOUVLO  
EN  
[3]  
[7]  
VREG15UVLO  
VREG15  
VREG15UVLO  
RESET= VCCUVLO or VIOUVLO or EN or VREG15UVLO or Register  
RESET (internal)  
VSYNC  
HSYNC  
[4]  
[5]  
[6]  
SPI  
PGATE1  
PGATE2  
PGATE8  
LEDCHn current  
status  
TURNONWAIT  
OFF  
dimming  
OFF  
output disable  
output disable  
Enlarged view  
Enlarged view  
Enlarged view  
Initial setting  
Duty setting  
SPI  
OFF setting  
SPI  
SPI  
Register SRSST  
TURNONWAIT  
LEDENL  
Register DTYCNTmn  
Register LEDENL  
LEDENM  
LEDENM  
LEDENU  
GDLY  
SSMASK  
ERRMASK  
LEDENU  
SYSCONFIG1  
SYSCONFIG2  
SYSCONFIG3  
SYSCONFIG4  
DTYCNTmn  
DLYn  
IREVmn  
Figure 21. The Boot Sequence for SPI Command Mode  
Turn ON Sequence  
[1] Power on VCC and VCCUVLO is released. And power on VINSW.  
[2] Power on VIO and VIOUVLO is released.  
[3] After the EN pin is H, VREG15 turn on. The signal RESET is expressed by the following equation. After RESET  
is released, the registers can be accessed.  
RESET = VCCULVO or VIOUVLO or EN or VREG15UVLO or Register  
[4] Set the initial registers until 4th VSYNC period from RESET release. 4th VSYNC period is adjustable by the  
register TURNONWAIT[7:0]. During the state TURNONWAIT, the IC keeps LEDs off.  
[5] The duty register DTYCNTmn are updated in every VSYNC period for dimming.  
Turn OFF Sequence  
[6] Set the register LEDENL, LEDENM and LEDENU registers to 0.  
[7] VREG15 turn off after the EN pin is L. The registers cannot be accessed during RESET = L.  
[8] Power off VIO and VIOUVLO is detected.  
[9] Power off VINSW and VCC.  
The first turn on and the last turn off are VCC. And the order of the VIO, EN can be exchanged.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
49/74  
BD94130MUF-M BD94130EFV-M  
1. Boot Sequence – continued  
(2) PWM Direct Control Mode (without SPI command)  
VCCUVLO  
VCCUVLO  
VCC  
[9]  
[1]  
VINSW  
[2]  
[8]  
VIOUVLO  
VIO  
VIOUVLO  
[7]  
EN  
[3]  
VREG15UVLO  
VREG15  
VREG15UVLO  
RESET= VCCUVLO or VIOUVLO or EN or VREG15UVLO or Register  
RESET (internal)  
TEST1  
[4]  
[5]  
[6]  
VSYNC  
HSYNC  
Low  
High  
Low  
Low  
SCSB  
SCLK  
SDI  
LEDCHn current  
TURNONMASK  
counter  
0x00  
1
2
3
4
0xFF  
PGATE1  
PGATE2  
PGATE8  
TURNONWAIT  
status  
OFF  
dimming  
OFF  
output disable  
Figure 22. The boot Sequence for PWM Direct Control Mode  
Turn ON Sequence  
[1] Power on VCC and VCCUVLO is released. And power on VINSW.  
[2] Power on VIO and VIOUVLO is released.  
[3] After the EN pin is H, VREG15 turn on. The signal RESET is expressed by the following equation. After RESET  
is released, the VSYNC signal becomes valid. And the TEST1 pin must be H.  
RESET = VCCULVO or VIOUVLO or EN or VREG15UVLO or Register  
[4] Until 4th VSYNC period from RESET release, the IC keeps LEDs off, as TURNONWAIT.  
[5] Input PWM pulse to VSYNC for dimming. VSYNC signal can control LED current directly. PGATEm are all on.  
Turn OFF Sequence  
[6] Stop PWM dimming pulse input to VSYNC.  
[7] VREG15 turn off after the EN pin is L.  
[8] Power off VIO and VIOUVLO is detected.  
[9] Power off VINSW and VCC.  
The first turn on and the last turn off are VCC. And the order of the VIO, EN can be exchanged.  
About PWM Direct Control Mode  
If 8 HSYNC clocks counts, PWM Direct Control Mode is shifted to SPI Command Mode.  
Even if error is detected, LED keeps ON, and FAILB signal is still HIGH.  
RESET (internal)  
HSYNC  
BITCNT[3:0]  
(internal signal)  
0
1
2
3
4
5
6
7
8
0
operating mode  
PWM Direct Control  
SPI Command Mode  
PWM Direct Control  
Figure 23. SPI Command Mode / PWM Direct Control Mode  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
50/74  
BD94130MUF-M BD94130EFV-M  
Timing Chart – continued  
2. Matrix Operation and PWM Dimming Setting  
(1) Matrix Operation Setting (the line number of gate controller)  
The register MULSEL[1:0] controls the number of active PGATE as shown in Figure 24. The unused PGATE5 to PGATE8  
asserts always OFF. The selectable gate number is 4, 6, and 8. The necessary HSYNC clock number is depend on the  
register MULSEL[1:0].  
8 Line Gate controller (MULSEL[1:0] = 0x0)  
4 Line Gate Controller (MULSEL[1:0] = 0x1)  
VSYNC  
VSYNC  
GDLY  
GDLY  
PGATE1  
PGATE1  
PGATE2  
PGATE3  
PGATE2  
PGATE3  
PGATE4  
PGATE5  
PGATE4  
PGATE5  
PGATE6  
PGATE7  
PGATE6  
PGATE7  
PGATE8  
PGATE8  
No delay  
No delay  
LEDCH1  
current  
DLY02  
LEDCH1  
current  
DLY02  
LEDCH2  
current  
LEDCH2  
current  
DLY24  
DLY24  
LEDCH24  
current  
LEDCH24  
current  
Figure 24. Dimming Mode  
(2) Matrix Operation Setting (PWM frequency)  
The register PWMFREQ[1:0] controls the repeated number of active PGATE for VSYNC period. The figure 25 show the  
example of the one repeat and two repeats. The selectable repeated number is 1, 2, 4, and 8. The necessary HSYNC  
clock number is depend on the register PWMFREQ[1:0].  
PWMFREQ = 0 LEDCHn output frequency = VSYNC×1  
PWMFREQ = 1 LEDCHn output frequency = VSYNC×2  
VSYNC  
HSYNC  
VSYNC  
HSYNC  
PGATE1  
PGATE1  
PGATE2  
PGATE2  
PGATE7  
PGATE8  
PGATE7  
PGATE8  
LEDCH1  
current  
LEDCH1  
current  
Figure 25. PWMFREQ vs LEDCHn output  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
51/74  
BD94130MUF-M BD94130EFV-M  
2. Matrix Operation and PWM Dimming Setting – continued  
(3) PWM Delay Setting  
There are 2 kinds of delay setting.  
The register GDLY set the interval from VSYNC to PGATE1, and the GDLY delay affects all PGATEm accordingly.  
The register DLYn (n = 1 to 24) set the interval from PGATE = ON to the current rising of LEDCHn. (That interval is  
expressed NOOVLAP2 + DLYn in detail.)  
By shifting the starting timing of each LED current, the transient response of the total current is averaged.  
NOOVLAP1  
NOOVLAP2  
the interval PGATE1 = off is omitted  
VSYNC  
PGATE1  
PGATE2  
GDLY  
PGATE8  
DLY01  
DLY01  
LEDCH1  
current  
LEDCH1 PWM = 100 % interval  
DLY24  
DLY24  
LEDCH24  
current  
LEDCH24 PWM = 100 % interval  
Figure 26. PWM delay setting  
Figure 26 shows the delay setting over 1 PGATE in 8 Line Gate Controller. The setting in the figure is 75 % Duty and  
50 % Delay for LEDCH1.  
If the LED current is finished within the single period of PGATE = ON, the delay setting of DTYmn is expressed as  
following.  
0 ≤ ꢄꢗ푌 < 4095  
ꢄꢅꢊ푛 + ꢄꢗ푌 ≤ 4095  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
52/74  
BD94130MUF-M BD94130EFV-M  
2. Matrix Operation and PWM Dimming Setting – continued  
(4) PWM Duty Setting  
VCC  
VIO  
present VSYNC period  
next VSYNC period  
VSYNC  
HSYNC  
SCSB  
SPI  
[1]  
status  
dimming  
DTYmn  
(register)  
[2]  
[3]  
[4]  
DTYmn  
(buffer1)  
DTYmn  
(buffer2)  
DTYmn  
(control data)  
GLDY  
DLY1  
PGATE1  
PGATE2  
PGATE8  
DTYmn is reflected.  
LEDCHn  
current  
Enlarged view  
duty setting  
SPI  
DTYmn  
Register  
Figure 27. Dimming Sequence for Normal Operation  
[1] The register DTYmn access is finished within the present VSYNC period to reflect in the next VSYNC period. If that  
access is not finished by the VSYNC, the register is not reflected correctly.  
[2] Buffer1 data is updated at VSYNC timing.  
[3] Buffer2 data is updated at VSYNC+GDLY timing.  
[4] Control data (DTYmn) is updated after the delay setting DLYn in the next VSYNC period, DTYmn is reflected to the  
LEDCHn current.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
53/74  
BD94130MUF-M BD94130EFV-M  
Timing Chart – continued  
3. None Overlap Function  
None overlap time between PMOSm can be adjustable by the register NOOVLAP1, NOOVLAP2.  
NOOVLAP1 is the interval from PMOSm = OFF to PMOS(m+1) = ON. This is set longer than the PMOS off delay not to  
cause PMOS = ON simultaneously.  
NOOVLAP2 is the interval from PMOS = ON to the beginning of LEDCHn current. This is set longer than the PMOS on  
delay.  
These register adjustable such as 32 clock, 64 clock, 128 clock, 256 clock by HSYNC.  
The necessary clock of HSYNC is changed accordingly. Please refer the section of Description of PWMFREQ[1:0] (Address  
0x006).  
(Example) NOOVLAP1 = 0, NOOVLAP2 = 0 (DTY101, DTY201 = 0xFFF, DLY1 = 0)  
none overlap time (total 64 clock)  
1st 2nd 3rd  
63th64th 65th  
HSYNC  
PMOS OFF delay  
PGATE1  
NOOVLAP1  
NOOVLAP2  
0
0
0
PGCNT[9:0]  
1
30 31 32 33  
62 62 63 64 65  
(Note 1)  
NOOVLAP1 setting  
NOOVLAP2 setting  
PMOS ON delay  
PGATE2  
LEDCH1 current  
(Note 1) Internal signal for counting PGATE ON timing and LEDCH1 current ON timing.  
Figure 28. PGATE1, PGATE2 None Overlap Timing  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
54/74  
BD94130MUF-M BD94130EFV-M  
Timing Chart – continued  
4. PWM Behavior at Close VSYNC Intervals  
In this section, PWM dimming behavior is shown if HSYNC is not equal to ideal frequency.  
The ideal frequency of HSYNC is 33280 times of VSYNC below example.  
(1) HSYNC Frequency less than Ideal Frequency  
Example: Delay = 0, Duty = 75 %, PWMFREQ = 0, NOOVLAP1 = NOOVLAP2 = 0, MULSEL = 0  
HSYNC = 33280 × VSYNC  
HSYNC < 33280 × VSYNC  
VSYNC  
HSYNC  
[1]  
[2]  
MAIN  
COUNTER  
PGATE1  
PGATE2  
PGATE7  
PGATE8  
PWMn  
PGATE8 width is proper  
PGATE8 and PWMn width is short  
Figure 29. HSYNC Frequency Less than Ideal Frequency  
The main counter is reset at the rising edge of VSYNC. The main counter starts counting up by HSYNC and proceed  
the line control from PGATE1 to PGATE8.  
[1] As HSYNC is equal to the ideal frequency, the main counter reaches the full value 33280. The ON interval of  
PGATE8 and PWMn are proper.  
[2] As HSYNC is smaller than the ideal frequency, the main counter does not reach the full value. The ON interval of  
PGATE8 and PWMn are short.  
(2) HSYNC Frequency more than Ideal Frequency  
Example: Delay = 0, Duty = 50 %, PWMFREQ = 0, NOOVLAP1 = NOOVLAP2 = 0, MULSEL = 0  
HSYNC = 33280 × VSYNC  
HSYNC > 33280 × VSYNC  
VSYNC  
HSYNC  
[1]  
MAIN  
COUNTER  
PGATE1  
PGATE2  
PGATE8  
PWMn  
blank interval  
Figure 30. HSYNC Frequency More than Ideal Frequency  
[1] As HSYNC is more than the ideal frequency, the main counter continues the full value 33280 without reset. In this  
blank interval after PGATE8 = OFF, all LEDs turn off. The ON interval of PGATE8 and PWMn are almost proper,  
but all LEDs brightness is LOW.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
55/74  
BD94130MUF-M BD94130EFV-M  
Timing Chart – continued  
5. ERROR Detection and Release  
The following are the internal signals on the timing chart:  
PWM_OH[1]  
PWM signal for channel 2 control  
LOPDET_IL[n-1]  
LSHDET_IL[n-1]  
VINSWOVP_IL  
ISETOCP_IL  
ISETOPEN_IL  
PGGSH_IL[m-1]  
SSEND  
R_LOPDET, R_LSHDET, R_VSYNC  
ERR_MASKCNTmn  
R_SSCNT  
LED Open Error signal (HIGH: normal, LOW: error)  
LED Short Error signal (HIGH: normal, LOW: error)  
VINSW pin Over Voltage Error signal (HIGH: normal, LOW: error)  
ISET pin Over Current Error signal (HIGH: normal, LOW: error)  
ISET pin OPEN Error signal (HIGH: normal, LOW: error)  
PGATEm Comparator signal  
Soft start mask signal (HIGH: normal, LOW: mask)  
retiming signal  
error mask counter for PGATEm  
counter for soft start  
(m = 1 to 8, n = 1 to 24)  
(1) LED Open Detection  
LED Open Error is detected after ERRMASK, and LED Open Error is released as shown in Figure 31.  
Here ERRMASK[7:0] = 0x03  
If PWM_OH[n-1] is shorter than ERR_MSKCNTmn[7:0], the LED OPEN is not detected.  
VSYNC  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
"Low"  
HSYNC  
PGATE1  
"Low"  
"High"  
"Low"  
"High"  
PGATE2  
"High"  
PGATE8  
PGATE8  
"High"  
PWM_OH[1]  
PWM_OH[1]  
LOPDET_IL[1]  
R_LOPDET[1]  
SSEND  
"High"  
"High"  
"High"  
LOPDET_IL[1]  
R_LOPDET[1]  
mask  
mask  
2clock delay  
(synchronize)  
"High"  
SSEND  
ERRMASK register  
0x03  
0x00  
0x00  
ERRMASK register  
0x03  
0x00  
0x00  
ERR_MSKCNT102[7:0]  
ERR_MSKCNT102[7:0]  
0x01 0x02 0x03 0x00  
0x01 0x02 0x03  
0x00  
ERR_MSKCNT202[7:0]  
ERR_MSKCNT202[7:0]  
ERR_MSKCNT802[7:0]  
ERR_MSKCNT802[7:0]  
0x00  
0x00  
ERLOP1[23:0]  
ERLOP2[23:0]  
ERLOP1[23:0]  
0x000002  
0x000000  
0x000000  
0x000002  
0x000000  
ERLOP2[23:0]  
0x000000  
ERLOP8[23:0]  
FAILB  
ERLOP8[23:0]  
0x000000  
0x000000  
FAILB  
Figure 31. LED Open Detection and Release  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
56/74  
BD94130MUF-M BD94130EFV-M  
(1) LED Open Detection - continued  
[Case: LED Open Error signal is LOW width  
While PWM_OH[1] = HIGH and LOPDET_IL[1] = LOW with SSEND = HIGH (Soft Start end), if ERR_MSKCNT does not  
counts up until the ERRMASK, FAILB remains HIGH.  
In the same condition, if ERR_MSKCNT counts up until the ERRMASK, FAILB asserts LOW.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
1st  
2nd 3rd  
1st  
2nd 3rd  
4th  
1st  
2nd 3rd  
4th  
"Low"  
"Low"  
"High"  
"High"  
"High"  
"High"  
PGATE8  
PGATE8  
"High"  
"High"  
PWM_OH[1]  
PWM_OH[1]  
LOPDET_IL[1]  
LOPDET_IL[1]  
mask  
mask (3 to 4 clock)  
R_LOPDET[1]  
2clock delay  
(synchronize)  
R_LOPDET[1]  
SSEND  
"High"  
0x03  
0x00  
0x00  
SSEND  
"High"  
0x03  
0x00  
0x00  
ERRMASK register  
ERR_MSKCNT102[7:0]  
ERR_MSKCNT202[7:0]  
ERRMASK register  
ERR_MSKCNT102[7:0]  
ERR_MSKCNT202[7:0]  
0x01 0x02 0x03 0x00  
0x01 0x02 0x03 0x00 0x01 0x02 0x03  
0x00  
ERR_MSKCNT802[7:0]  
0x00  
ERR_MSKCNT802[7:0]  
0x00  
ERLOP1[23:0]  
ERLOP1[23:0]  
0x000002  
0x000000  
0x000000  
0x000000  
0x000000  
ERLOP2[23:0]  
ERLOP2[23:0]  
0x000000  
ERLOP8[23:0]  
ERLOP8[23:0]  
0x000000  
0x000000  
FAILB  
"High"  
FAILB  
Figure 32. LED Open Detection (the error signal is LOW width)  
(2) LED Short Detection  
(Example) ERRMASK[7:0] = 0x03  
LED Short Error is detected after ERRMASK, and LED Short Error is released as shown in Figure 33.  
If the capacitance of LEDCHn pin CLEDCH is connected, the transient response is affected. Please set the ERRMASK  
value considering the time margin of LED short detection.  
"High"  
"Low"  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
"Low"  
"High"  
"Low"  
"High"  
"High"  
"High"  
PGATE8  
PGATE8  
PWM_OH[1]  
PWM_OH[1]  
"High"  
"High"  
"High"  
0x03  
LSHDET_IL[1]  
R_LSHDET[1]  
SSEND  
LSHDET_IL[1]  
R_LSHDET[1]  
SSEND  
mask  
mask  
2clock delay  
(synchronize)  
"High"  
0x03  
0x00  
0x00  
ERRMASK register  
ERR_MSKCNT102[7:0]  
ERR_MSKCNT202[7:0]  
ERRMASK register  
ERR_MSKCNT102[7:0]  
ERR_MSKCNT202[7:0]  
0x01 0x02 0x03  
0x00  
0x00  
0x01 0x02 0x03  
0x00  
0x00  
0x00  
0x00  
ERR_MSKCNT802[7:0]  
ERLSH1[23:0]  
ERR_MSKCNT802[7:0]  
ERLSH1[23:0]  
0x000000  
0x000000  
0x000002  
0x000002  
0x000000  
0x000000  
ERLSH2[23:0]  
ERLSH2[23:0]  
0x000000  
0x000000  
ERLSH8[23:0]  
FAILB  
ERLSH8[23:0]  
FAILB  
Figure 33. LED Short Detection and Release  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
57/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release - continued  
(3) VINSW Over Voltage Detection  
(Example) VINSWOVPEN = 1, ERRLAT = 0  
VINSW Over Voltage is detected after SSEND, and VINSW Over Voltage Error is released as shown in Figure 34.  
LEDCHn output is not turned off by VINSW Over Voltage Error.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE8  
PWM_OH[1]  
SSEND  
"High"  
VINSWOVP_IL  
ERVINSWOVP  
FAILB  
Figure 34. VINSW Over Voltage Detection  
(4) ISET Over Current Detection  
(Example) ERRLAT = 0  
ISET Over Current is detected after SSEND, and ISET Over Current Error is released as shown in Figure 35.  
LEDCHn output is turned off by ISET Over Current Error.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE8  
PWM_OH[1]  
SSEND  
"High"  
ISETOCP_IL  
ERISETOCP  
FAILB  
Figure 35. ISET Over Current Detection  
(5) ISET Open Detection  
(Example) ERRLAT = 0  
ISET Open is detected after SSEND, and ISET Open Error is released as shown in Figure 36.  
LEDCHn output is not turned off by ISET Open Error.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE8  
PWM_OH[1]  
SSEND  
"High"  
ISETOPEN_IL  
ERISETOPEN  
FAILB  
Figure 36. ISET Open Detection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
58/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release – continued  
(6) Short PGATEm to VINSW Detection  
(Example) MULSEL = 0  
Short PGATEm to VINSW is detected the timing that PGATEm goes from LOW to HIGH during dimming mode.  
Detected PGATEm becomes Hi-z output. Short Error can release by ERRCLR.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
short PGATE3 to VINSW  
Hi-z  
PGATE3  
PGATE4  
PGATE5  
PGATE6  
PGATE7  
PGATE8  
PWM_OH[1]  
PGGSH_IL[7:0]  
ERPGVINSH[7:0]  
FAILB  
0xFE  
0xFD  
0xFB 0xFF  
0xF7  
0xEF  
0x04  
0xDF  
0xBF  
0x7F  
0xFE  
0xFF  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Figure 37. Short PGATEm to VINSW Detection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
59/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release – continued  
(7) Short PGATEm to GND Detection  
(Example) MULSEL = 0  
Short PGATEm to GND is detected the timing that PGATEm goes from HIGH to LOW during dimming mode. Detected  
PGATEm becomes Hi-z output. Short Error can release by ERRCLR.  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE3  
Hi-z  
PGATE4  
short PGATE4 to GND  
PGATE5  
PGATE6  
PGATE7  
PGATE8  
PWM_OH[1]  
PGGSH_IL[7:0]  
ERPGVINSH[7:0]  
FAILB  
0xFE  
0xFD  
0xFB 0xF3  
0xF7  
0xF7  
0xE7  
0x08  
0xD7  
0xB7  
0x77  
0xF5  
0xFF  
0x00  
0xFF  
0xF7  
0xF7  
0xF7  
0xF7  
0xF7  
0xF7  
Figure 38. Short PGATEm to GND Detection  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
60/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release – continued  
(8) Short Check Detection of Adjacent LEDCHn  
The short check sequence of adjacent the LEDCHn pin is executed at the end of TURNONWAIT interval, if the register  
LSHEXE = 1 is written by the end of TURNONWAIT interval, where EXEOK status is HIGH. If LSHEXE = 1 is written  
after TURNONWAIT interval, the short check sequence is not executed and the register EXENG = 1.  
The short check result can be read from the register ERLED[23:0]. Example both ERLED[5] and ERLED[6] is HIGH,  
the LEDCH6 pin and the LEDCH7 pin can be judged as short pin.  
internal reset  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE8  
PWM_OH[1]  
LSHEXE  
LSHEXE = 1 is written  
by the end of TURNONWAIT  
EXEOK  
TURNONWAIT  
short check  
0x000060  
dimming  
ERLED[23:0]  
0x000000  
Status  
FAILB  
OFF  
output disable  
TURNONWAIT  
Figure 39. Short Check Detection of Adjacent LEDCHn  
(9) Soft-start Masking Function  
LED Open Error cannot be detected during Soft Start (SSEND = LOW). Soft start counter counts up every VSYNC  
period until the SSMASK setting (SSEND = HIGH) as shown Figure 40 below. LED Open Error can be detected when  
SSEND = HIGH. It is also the same when LED Short Error is detected.  
Time of mask = (TURNONWAIT register + SSMASK register) x VSYNC  
(Example) SSMASK = 0x3C  
internal reset  
VSYNC  
HSYNC  
PGATE1  
PGATE2  
PGATE8  
output mask  
LEDCH1  
LOPDET_IL[0]  
TURNONWAIT 0x00 0x01 0x02 0x03 0x04 0xFF  
0xFF  
SSMASK[7:0]  
R_SSCNT[7:0]  
0x3C  
0x00  
0x00  
0x01 0x02  
0x3A 0x3B 0x3C  
0xFF  
SSEND  
FAILB  
mask  
released "soft start mask"  
Figure 40. Setting for Soft Start Mask  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
61/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release – continued  
(10) Error Sequence for the Register AUTOOFF  
AUTOOFF set the abnormal LED = OFF automatically.  
(Case) the register ERRLAT = 0 and AUTOOFF = 1  
VSYNC  
PGATE1  
PGATE2  
PGATE8  
[2]  
[5]  
LEDCH1(PGATE1) = OFF automatically  
AUTOOFF is cleared  
LEDCH1  
current  
LEDCH24  
current  
[4]  
[6]  
SPI  
Error LEDCH1(PGATE1)  
[3]  
[1]  
External  
condition  
normal  
normal  
AUTOOFF(register)  
ERRLAT(register)  
AUTOCLR(register)  
ERRCLR(register)  
"High"  
"Low"  
"Low"  
"Low"  
ERLSH1(register) 0x000000  
LEDEN[23:0](register)  
FAILB  
0x000001  
0xFFFFFF  
0x000000  
[7]  
Enlarged view  
Enlarged view  
SPI  
register Read:  
ERLSHmn  
ERLOPmn  
SPI  
register Write:  
AUTOCLR  
Figure 41. Error Sequence for the register AUTOOFF = 1  
[1] If LED Short Error is detected, FAILB asserts LOW.  
[2] LEDCH1 output is turned off automatically. (Only target timing (PGATE1))  
[3] The external condition turns to normal. The LEDCH1 = OFF continues, and FAILB keeps LOW.  
[4] By reading the register ERLSHmn, ERLOPmn, the abnormal LED component can be distinguished.  
[5] Once LEDCH1(PGATE1) is off automatically, IC does not judge the LED Short Error status. The LED keeps off.  
[6] The register AUTOCLR = 1 is written, The automatical off status is cleared.  
[7] IC judges LED Short Error. As the external condition is normal, LED turns on and ERLSH1 = 0x000000 and FAILB  
= HIGH.  
(Case) the register ERRLAT = 0 and AUTOOFF = 0  
[2] When the abnormal is detected, LED does not turn off automatically.  
[3] If the abnormal state is released, LED turn on again.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
62/74  
BD94130MUF-M BD94130EFV-M  
5. ERROR Detection and Release – continued  
(11) Error Sequence for the Register ERRLAT  
ERRLAT keeps the abnormal state as latch state, even if that is released.  
(Case) the register ERRLAT = 1 and AUTOOFF = 0  
VSYNC  
PGATE1  
PGATE2  
PGATE8  
LEDCH1  
current  
[2]  
[5]  
LEDCH24  
current  
[4]  
[6]  
SPI  
[1]  
[3]  
External  
condition  
normal  
normal  
Error LEDCH1(PGATE1)  
AUTOOFF(register)  
ERRLAT(register)  
AUTOCLR(register)  
ERRCLR(register)  
ERLSH1(register)  
LEDEN[23:0] (register)  
FAILB  
"Low"  
"High"  
"Low"  
"Low"  
0x000000  
0x000001  
0xFFFFFF  
0x000000  
Enlarged view  
Enlarged view  
SPI  
register Read:  
ERLOPmn  
ERLSHmn  
SPI  
register Write:  
AUTOCLR  
Figure 42. Error Sequence for the register ERRLAT = 1  
[1] If LED Short Error is detected, FAILB asserts LOW.  
[2] LEDCH1 output is still turned on, because AUTOOFF is 0.  
[3] The external condition turns to normal. The register ERLSH1 keeps 0x000001 and FAILB asserts LOW.  
[4] By reading the register ERLSHmn, ERLOPmn, the abnormal LED component can be distinguished.  
[5] LEDCH1 output is still turned on, because AUTOOFF is 0.  
[6] The register ERRCLR = 1 is written, The register ERLSH1 is cleared to 0x000000 and FAILB asserts HIGH.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
63/74  
BD94130MUF-M BD94130EFV-M  
Condition for Protections  
Table 49. Protection Table 1  
LED OPEN  
LED SHORT  
ERRLAT = 0 ERRLAT = 1  
ERRLAT = 0  
ERRLAT = 1  
Pin  
LEDCHn in every PGATEm  
LEDEN[n-1] = 1 and DTYmn > 0 and  
LSHEN = 1 and LEDCHn ON and  
LEDEN[n-1] = 1 and DTYmn > 0 and  
LOPEN = 1 and LEDCHn ON and  
VLEDCHn ≤ 0.15 V  
Detection  
Condition  
Protection  
VLEDCHn ≥ VSHDET  
Release  
Condition  
Error Enable  
SSMASK  
ERRMASK  
ERRLAT  
AUTOOFF  
Error  
Register  
FAILB(Note 1)  
Clear  
Condition  
AUTOOFF  
= 0  
LEDEN[n-1] = 0 or LSHEN = 0 or  
LEDCHn ON and VLEDCHn < VSHDET  
LEDEN[n-1] = 0 or LOPEN = 0 or  
LEDCHn ON and VLEDCHn > 0.15 V  
LOPEN  
LSHEN  
O
O
O
O
O
O
O
O
Error  
Setting  
ERLOP[n-1]  
LOW  
ERLSH[n-1]  
LOW  
Error  
Flag  
Protection released  
OFF by LEDEN[n-1] = 0(Note 2)  
OFF automatically  
ERRCLR = 1  
Protection released  
ERRCLR = 1  
OFF by LEDEN[n-1] = 0(Note 2)  
Error  
Channel  
AUTOOFF  
= 1  
OFF automatically  
‘O’: It has the function.  
(Note 1) When the IC detects VCCUVLO or VREG15UVLO or TSD or EN, it cannot detect other protection.  
(Note 2) Write LEDEN[n-1] = 0 when the error channel is turned off.  
(Note) m = 1 to 8, n = 1 to 24  
Table 50. Protection Table 2  
ISET OCP  
ISET OPEN  
ERRLAT = 0 ERRLAT = 1  
ERRLAT = 0  
ERRLAT = 1  
Pin  
ISET  
Detection  
Condition  
Release  
Condition  
Error Enable  
SSMASK  
ERRMASK  
ERRLAT  
AUTOOFF  
Error  
Register  
FAILB(Note 1)  
Clear  
Condition  
AUTOOFF  
= 0  
RISETSP ≤ max 16 kΩ  
RISETOPEN ≥ min 340 kΩ  
RISETOPEN < min 340 kΩ  
Protection  
RISETSP > max 16 kΩ  
-
O
-
O
-
-
O
-
O
-
Error  
Setting  
ERISETOCP  
LOW  
ERISETOPEN  
LOW  
Error  
Flag  
Protection released  
ERRCLR = 1  
Protection released  
ERRCLR = 1  
-
-
-
Error  
Channel  
AUTOOFF  
= 1  
-
‘-’: It does not have the function.  
(Note 1) When the IC detects VCCUVLO or VREG15UVLO or TSD or EN, it cannot detect other protection.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
64/74  
BD94130MUF-M BD94130EFV-M  
Condition for Protections – continued  
Table 51. Protection Table 3  
PGATEm to VINSW SHORT  
PGATEm to GND SHORT  
Pin  
PGATEm  
Detection  
Condition  
Release  
Condition  
Error Enable  
SSMASK  
ERRMASK  
ERRLAT  
AUTOOFF  
Error  
Register  
FAILB(Note 1)  
Clear  
Condition  
AUTOOFF  
= 0  
PGATEm Fall edge and  
VPGATEm ≤ VINSW-2.5 V  
PGATEm Rise edge and  
VPGATEm > VINSW-1.5 V  
Protection  
ERRCLR = 1  
ERRCLR = 1  
-
-
-
-
-
-
-
-
-
-
Error  
Setting  
ERPGVINSH[m-1]  
LOW  
ERPGGSH[m-1]  
LOW  
Error  
Flag  
ERRCLR = 1  
ERRCLR = 1  
-
-
-
Error  
Channel  
AUTOOFF  
= 1  
-
‘-’: It does not have the function.  
(Note 1) When the IC detects VCCUVLO or VREG15UVLO or TSD or EN, it cannot detect other protection.  
(Note) m = 1 to 8  
Table 52. Protection Table 4  
VINSW OVP  
Short of Adjacent LEDCHn  
LEDCHn  
ERRLAT = 0  
ERRLAT = 1  
Pin  
VINSW  
VVINSW  
LSHEXE = 1 before TURNONWAIT time  
and  
Detection  
Condition  
Protection  
> VVINSWOVPREF  
LEDCHn OFF and VLEDCHn < VSHDET during  
short check sequence  
Release  
Condition  
Error Enable  
SSMASK  
ERRMASK  
ERRLAT  
AUTOOFF  
Error  
Register  
FAILB(Note 1)  
Clear  
Condition  
AUTOOFF  
= 0  
VVINSW  
≤ VVINSWOVPREF × 0.9  
VINSWOVPEN  
ERRCLR = 1  
-
-
-
-
-
O
-
O
-
Error  
Setting  
ERVINSWOVP  
LOW  
ERLED[n-1]  
LOW  
Error  
Flag  
Protection released  
ERRCLR = 1  
ERRCLR = 1  
-
-
-
Error  
Channel  
AUTOOFF  
= 1  
-
‘-’: It does not have the function.  
(Note 1) When the IC detects VCCUVLO or VREG15UVLO or TSD or EN, it cannot detect other protection.  
(Note) n = 1 to 24  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
65/74  
BD94130MUF-M BD94130EFV-M  
Condition for Protections – continued  
Table 53. Protection Table 5  
VCCUVLO  
VREG15UVLO  
VIOUVLO  
VIO  
Pin  
VCC  
VREG15  
Detection  
Condition  
VCC  
≤ 2.55 V  
VVREG15  
≤ 1.3 V  
VVIO  
≤ 1.41 V  
Protection  
Release  
Condition  
VCC  
≥ 2.65 V  
VVREG15  
≥ 1.35 V  
VVIO  
≥ 1.46 V  
Error Enable  
SSMASK  
ERRMASK  
ERRLAT  
AUTOOFF  
Error Register  
FAILB(Note 1)  
Clear Condition  
AUTOOFF  
= 0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Error Setting  
Error  
Flag  
-
-
-
-
-
Error Channel  
AUTOOFF  
= 1  
-
‘-’: It does not have the function.  
(Note 1) When the IC detects VCCUVLO or VREG15UVLO or TSD or EN, it cannot detect other protection.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
66/74  
BD94130MUF-M BD94130EFV-M  
I/O Equivalence Circuit  
VCC  
FB  
EN  
VCC  
FB  
VCC  
EN  
10k  
GND  
100k  
5k  
GND  
GND  
GND  
GND / LGND  
VREG15  
ISET  
VCC  
VCC  
VCC  
GND  
VREG15  
70k  
330k  
GND  
1k  
1k  
LGND  
ISET  
GND  
10k  
GND  
GND  
HSYNC / VSYNC / SCSB / SDI / SCLK  
VIO  
SDO  
VIO  
VIO  
VIO  
HSYNC  
VSYNC  
SCSB  
SDI  
SDO  
1k  
SCLK  
GND  
GND  
GND  
GND  
FAILB  
LEDCH1 to LEDCH24  
PGATE1 to PGATE8 / VINSW  
VINSW  
LEDCH1  
to  
LEDCH24  
GND  
GND  
PGATE1  
to  
PGATE8  
10k  
FAILB  
1M  
LGND  
GND GND  
LGND  
GND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
67/74  
BD94130MUF-M BD94130EFV-M  
I/O Equivalence Circuit – continued  
SUMFB  
TEST1  
TEST2  
VIO  
VCC  
VIO  
10k  
10k  
TEST2  
1k  
TEST1  
1k  
SUMFB  
GND  
GND  
GND  
GND  
GND  
LSPSET  
20k  
LSPSET  
GND  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
68/74  
BD94130MUF-M BD94130EFV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
69/74  
02.Dec.2022 Rev.002  
BD94130MUF-M BD94130EFV-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 43. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
70/74  
02.Dec.2022 Rev.002  
BD94130MUF-M BD94130EFV-M  
Ordering Information  
B D 9  
4
1
3
0
x
x
x
-
ME2  
Package  
Product Rank  
MUF: VQFN56FCV080  
EFV: HTSSOP-B54  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
HTSSOP-B54 (TOP VIEW)  
VQFN56FCV080 (TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
D 9 4 1 3 0  
D 9 4 1 3 0  
Pin 1 Mark  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
71/74  
BD94130MUF-M BD94130EFV-M  
Physical Dimension and Packing Information  
Package Name  
VQFN56FCV080  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
72/74  
BD94130MUF-M BD94130EFV-M  
Physical Dimension and Packing Information - continued  
Package Name  
HTSSOP-B54  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
73/74  
BD94130MUF-M BD94130EFV-M  
Revision History  
Data  
Revision  
Changes  
17.Aug.2022  
001  
New release  
(1) Page 39  
Modified description of MSMODE register.  
(2) Page 49, 50  
Added VINSW pin to the timing chart.  
02.Dec.2022  
002  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V1V0B200030-1-2  
02.Dec.2022 Rev.002  
74/74  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9413F

1ch Boost up type White LED Driver for large LCD
ROHM

BD9413F-E2

1ch Boost up type White LED Driver for large LCD
ROHM

BD9415FS-E2

LED Driver
ROHM

BD9415FS-GE2

LED Driver, 48-Segment, PDSO32, SSOP-32
ROHM

BD9416F-E2

LED Driver,
ROHM

BD9416F-GE2

LED Driver,
ROHM

BD9416FS

BD9416FS是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD9416FS内置了可向光源(LED串联连接的阵列)提供适当电压的DCDC转换器。BD9416FS中内置了应对异常状态的几种保护功能。过电压保护(OVP: Over Voltage Protection)、过电流检测(OCP: Over Current Limit Protection of DCDC)、LED 过流保护(LEDOCP: LEDOver Current Protection)、过升压保护(FBMAX: Over Boost Protection)等。因此,可在更宽的输出电压条件及负载条件下使用。
ROHM

BD9416FS-E2

LED Driver,
ROHM

BD941F

SILICON EPITAXIAL BASE POWER TRANSISTORS
NXP

BD941F

isc Silicon NPN Power Transistor
ISC

BD941F

Silicon NPN Power Transistors
SAVANTIC

BD942

isc Silicon PNP Power Transistor
ISC