BD9S402MUF-C (新产品) [ROHM]

BD9S402MUF-C是一款内置低导通电阻功率MOSFET的同步整流降压型DC-DC转换器。可输出最大4A的电流。其开关频率高达2.2MHz,因此允许使用小型电感器。该产品采用电流模式控制,具有高速瞬态响应性能。另外,还内置有相位补偿电路,仅用很少的外置元器件即可构建应用产品。;
BD9S402MUF-C (新产品)
型号: BD9S402MUF-C (新产品)
厂家: ROHM    ROHM
描述:

BD9S402MUF-C是一款内置低导通电阻功率MOSFET的同步整流降压型DC-DC转换器。可输出最大4A的电流。其开关频率高达2.2MHz,因此允许使用小型电感器。该产品采用电流模式控制,具有高速瞬态响应性能。另外,还内置有相位补偿电路,仅用很少的外置元器件即可构建应用产品。

开关 DC-DC转换器 电感器
文件: 总41页 (文件大小:2226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nano Pulse ControlTM  
Datasheet  
2.7 V to 5.5 V Input, 4 A  
Single Synchronous Buck DC/DC Converter  
for Automotive  
BD9S402MUF-C  
General Description  
Key Specifications  
Input Voltage:  
BD9S402MUF-C is a synchronous buck DC/DC converter  
with built-in low ON resistor power MOSFETs. It can  
provide current up to 4 A. Small inductor is applicable due  
to high switching frequency of 2.2 MHz. It has fast transient  
response performance due to current mode control. It has  
a built-in phase compensation circuit. Applications can be  
created with a few external components.  
2.7 V to 5.5 V  
0.6 V to VPVIN x 0.75 V  
4 A (Max)  
Output Voltage Setting:  
Output Current:  
Switching Frequency:  
High Side FET ON Resistance:  
Low Side FET ON Resistance:  
Shutdown Circuit Current:  
Operating Temperature:  
2.2 MHz (Typ)  
60 mΩ (Typ)  
35 mΩ (Typ)  
0 μA (Typ)  
-40 °C to +125 °C  
Features  
QuiCurTM  
Package  
W (Typ) x D (Typ) x H (Max)  
3.0 mm x 3.0 mm x 1.0 mm  
Nano Pulse ControlTM  
VQFN16FV3030  
AEC-Q100 Qualified(Note 1)  
Functional Safety Supportive Automotive Products  
Single Synchronous Buck DC/DC Converter  
Adjustable Soft Start Function  
Output Discharge Function  
Power Good Output  
Under Voltage Lockout Protection (UVLO)  
Short Circuit Protection (SCP)  
Output Over Voltage Protection (OVP)  
Over Current Protection (OCP)  
Thermal Shutdown Protection (TSD)  
Wettable Flank QFN Package  
Enlarged View  
(Note 1) Grade 1  
VQFN16FV3030  
Wettable Flank Package  
Applications  
Automotive Equipment  
Other Electronic Equipment  
Typical Application Circuit  
VIN  
PVIN  
PGD  
SW  
AVIN  
GAIN  
VGAIN  
VEN  
CIN1  
CIN2  
VOUT  
EN  
SS  
L1  
COUT  
R1  
R2  
PGND  
AGND  
FB  
C3  
QuiCurTM, Nano Pulse ControlTM is a trademark or a registered trademark of ROHM Co., Ltd.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
1/38  
 
 
 
 
 
 
BD9S402MUF-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Description of Blocks ......................................................................................................................................................................5  
Absolute Maximum Ratings ............................................................................................................................................................6  
Thermal Resistance........................................................................................................................................................................6  
Recommended Operating Conditions.............................................................................................................................................6  
Electrical Characteristics.................................................................................................................................................................7  
Typical Performance Curves (Reference Data) ..............................................................................................................................9  
Function Explanations ..................................................................................................................................................................15  
1.  
2.  
3.  
4.  
5.  
6.  
Enable Control................................................................................................................................................................15  
Nano Pulse ControlTM.....................................................................................................................................................15  
Power Good Function.....................................................................................................................................................16  
Output Discharge Function.............................................................................................................................................16  
QuiCurTM.........................................................................................................................................................................16  
Error Amplifier Gain Switching Function .........................................................................................................................16  
Protection Function.......................................................................................................................................................................17  
1.  
2.  
3.  
4.  
5.  
Short Circuit Protection (SCP)........................................................................................................................................17  
Over Current Protection (OCP).......................................................................................................................................17  
Under Voltage Lock Out Protection (UVLO) ...................................................................................................................18  
Thermal Shutdown (TSD)...............................................................................................................................................18  
Over Voltage Protection (OVP).......................................................................................................................................18  
Selection of Components Externally Connected...........................................................................................................................19  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Application Example.......................................................................................................................................................19  
Switching Frequency ......................................................................................................................................................19  
Output Voltage Setting....................................................................................................................................................19  
Selection of Input Capacitor ...........................................................................................................................................20  
Selection of Output LC Filter ..........................................................................................................................................20  
Selection of Soft Start Capacitor ....................................................................................................................................21  
Input Voltage Startup......................................................................................................................................................22  
Application Characteristic Data (Reference Data) ........................................................................................................................23  
PCB Layout Design ......................................................................................................................................................................30  
Power Dissipation.........................................................................................................................................................................32  
I/O Equivalence Circuits................................................................................................................................................................33  
Operational Notes.........................................................................................................................................................................34  
Ordering Information.....................................................................................................................................................................36  
Marking Diagram ..........................................................................................................................................................................36  
Physical Dimension and Packing Information...............................................................................................................................37  
Revision History............................................................................................................................................................................38  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
2/38  
10.May.2022 Rev.001  
BD9S402MUF-C  
Pin Configuration  
(TOP VIEW)  
16  
15  
14  
13  
PVIN  
PVIN  
1
2
3
4
12 SW  
11 SW  
10 SW  
EXP-PAD  
PGND  
PGND  
9
SS  
5
6
7
8
Pin Descriptions  
Pin No.  
Pin Name  
PVIN  
Function  
Power supply input pins that are used for the output stage of the switching regulator.  
Connect a ceramic capacitor of 10 μF as a recommended value. For details, see  
Selection of Components Externally Connected 4. Selection of Input Capacitor.  
1, 2  
3, 4  
5
PGND  
AGND  
FB  
Ground pins for the output stage of the switching regulator.  
Ground pin.  
VOUT feedback pin. Connect output voltage divider to this pin to set the output voltage.  
For the output voltage setting method, see Selection of Components Externally  
Connected 3. Output Voltage Setting.  
6
This pin is not connected to the chip. Use this as open. If this pin is used other than  
open and adjacent pins are expected to be shorted, confirm if there is any problem with  
the actual application.  
7
N.C.  
This pin switches the gain of the internal error amplifier of the device. When this pin is  
set to High, the device is in the fast load response mode, and when it is set to Low or  
open, the device is in the low output capacitance mode. For details, see Function  
Explanations 6. Error Amplifier Gain Switching Function.  
8
GAIN  
Pin for setting the Soft Start Time. The rise time of the output voltage can be set by  
connecting a capacitor to this pin. See Selection of Components Externally Connected  
6. Selection of Soft Start Capacitor for how to set the capacitance value.  
9
SS  
SW  
Switch pin. These pins are connected to the drain of the High Side FET and the Low  
Side FET.  
10, 11, 12  
This pin is not connected to the chip. Use this as open. If this pin is used other than  
open and adjacent pins are expected to be shorted, confirm if there is any problem with  
the actual application.  
Power Good pin, an open drain output. It is needs to be pulled up to the power supply  
with a resistor. See Function Explanations 3. Power Good Function for setting the  
resistance.  
13  
14  
15  
16  
-
N.C.  
PGD  
EN  
Device enable pin. Turning this pin Low forces, the device to enter the shutdown mode.  
Turning this pin High makes the device to start up.  
Power supply input pin for internal circuit. This pin is shorted to the PVIN pin. Connect  
a ceramic capacitor of 4700 pF as a recommended value.  
AVIN  
EXP-PAD  
A backside heat dissipation pad. Connecting to the internal PCB ground plane by using  
via provides excellent heat dissipation characteristics.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
3/38  
10.May.2022 Rev.001  
BD9S402MUF-C  
Block Diagram  
VIN  
VIN  
AVIN  
16  
PVIN  
1
2
Slope  
HOCP  
PVIN  
HSL  
SW  
EN  
15 VREF  
PWM  
Comparator  
Error  
Amplifier  
SS  
Soft  
9
Q
R
S
Start  
Driver  
Logic  
PGND  
PVIN  
SW  
OSC  
10  
11  
12  
3
VOUT  
FB  
6
AVIN  
UVLO  
SCP  
OVP  
TSD  
PGND  
AGND  
LOCP  
4
SW  
LSL  
Power  
Good  
5
14  
PGD  
8
GAIN  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
4/38  
BD9S402MUF-C  
Description of Blocks  
1. VREF  
The VREF block generates the internal reference voltage.  
2. UVLO (Under Voltage Lock Out)  
The UVLO block is for under voltage lockout protection. It shuts down the device when the VAVIN falls to 2.45 V (Typ) or  
lower. The threshold voltage has a hysteresis of 100 mV (Typ).  
3. SCP (Short Circuit Protection)  
This is the short circuit protection circuit. After Soft Start is judged to be completed, if the FB pin voltage falls to 0.42 V  
(Typ) or less and remain in that state for 1 ms (Typ), output MOSFETs turn OFF for 14 ms (Typ) and then restart the  
operation.  
4. OVP (Over Voltage Protection)  
This is the output over voltage protection circuit. When the FB pin voltage becomes VFB +8 % (Typ) or more, it turns the  
output MOSFETs OFF. After output voltage falls VFB +6 % (Typ) or less, the output MOSFETs return to normal operation.  
5. TSD (Thermal Shutdown)  
This is the thermal shutdown circuit. It shuts down the device when the junction temperature (Tj) reaches to 175 °C (Typ)  
or more. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation with  
hysteresis of 25 °C (Typ).  
6. HOCP (High Side Over Current Protection)  
This block detects the current flowing through the High Side FET and limits the current flowing at each cycle of switching  
frequency.  
7. LOCP (Low Side Over Current Protection)  
This block detects the current flowing through the Low Side FET and limits the current flowing at each cycle of switching  
frequency.  
8. Soft Start  
The Soft Start circuit slows down the rise of output voltage during startup, which allows the prevention of output voltage  
overshoot. The Soft Start Time can be specified by connecting a capacitor to the SS pin. See Selection of Components  
Externally Connected 6. Selection of Soft Start Capacitor for how to calculate the capacitance. A built-in Soft Start function  
is provided, and a Soft Start is initiated in tSS (Electrical Characteristics) when the SS pin is open.  
9. Error Amplifier  
This block is an error amplifier with a reference voltage of 0.6 V (Typ) and FB pin voltage as inputs, and the gain setting  
can be switched between High and Low on the GAIN pin.  
10.PWM Comparator  
The PWM Comparator block compares the output voltage of the Error Amplifier and the Slope signal to determine the  
output switching pulse duty.  
11.OSC (Oscillator)  
This block generates the oscillating frequency.  
12.Driver Logic  
This block controls switching operation and various protection functions.  
13.Power Good  
When the FB pin voltage reaches VFB (0.6 V, Typ) within +6 % to -2 %, the built-in Nch MOSFET turns OFF and the PGD  
output turns High. There is a 2 % hysteresis on the threshold voltage, so the PGD output turns Low when the FB pin voltage  
reaches outside +8 % to -4 % of VFB.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
5/38  
BD9S402MUF-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Input Voltage  
VPVIN, VAVIN  
VEN  
-0.3 to +7.0  
-0.3 to VAVIN  
-0.3 to VAVIN  
-0.3 to +7.0  
-0.3 to VAVIN  
150  
V
V
EN Voltage  
GAIN Voltage  
VGAIN  
V
PGD Voltage  
VPGD  
V
FB, SS Voltage  
VFB, VSS  
Tjmax  
Tstg  
V
Maximum Junction Temperature  
°C  
Storage Temperature Range  
-55 to +150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
VQFN16FV3030  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
189.0  
23.0  
57.5  
10.0  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air)  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connect with the copper pattern of layers 1,2, and 4. The placement and dimensions obey a land pattern.  
Recommended Operating Conditions  
Parameter  
Input Voltage  
Symbol  
Min  
Max  
Unit  
VPVIN, VAVIN  
Ta  
2.7  
5.5  
V
°C  
A
Operating Temperature  
Output Current  
-40  
+125  
IOUT  
-
4
VPVIN x 0.75  
50  
Output Voltage Setting  
VOUT  
0.6(Note 1)  
V
SW Minimum ON Time  
tONMIN  
-
ns  
(Note 1) Although the output voltage is configurable at 0.6 V or more, it may be limited by the SW minimum ON pulse width. For the configurable range,  
refer to the Output Voltage Setting in Selection of Components Externally Connected.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
6/38  
 
BD9S402MUF-C  
Electrical Characteristics  
(Unless otherwise specified Ta = Tj = -40 °C to +125 °C, VAVIN = VPVIN = 5.0 V, VEN = 5.0 V, Typical value is Tj = +25 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
AVIN  
Shutdown Circuit Current  
Circuit Current  
ISDN  
ICC  
VUVLO1  
VUVLO2  
-
0
10  
μA VEN = 0 V, Tj = 25 °C  
VGAIN = 0 V, IOUT = 0 mA  
mA  
0.90  
1.80  
2.70  
Non-switching, Tj = 25 °C  
UVLO Detection Voltage  
UVLO Release Voltage  
UVLO Hysteresis Voltage  
ENABLE  
2.30  
2.40  
50  
2.45  
2.55  
100  
2.60  
2.70  
125  
V
V
VAVIN Falling  
VAVIN Rising  
VUVLO-HYS  
mV  
EN Input Voltage High  
EN Input Voltage Low  
EN Input Current  
GAIN  
VENH  
VENL  
IEN  
1.0  
GND  
2
-
-
VAVN  
0.4  
6
V
V
4
μA VEN = 5 V, Tj = 25 °C  
VAVIN  
1.0  
-
GAIN Input Voltage High  
VGAINH  
-
VAVIN  
V
GAIN Input Voltage Low  
GAIN Input Current  
Reference Voltage  
FB Pin Voltage  
VGAINL  
IGAIN  
GND  
6
-
0.8  
16  
V
11  
μA VGAIN = 5 V, Tj = 25 °C  
VFB  
IFB  
0.594  
-
0.600  
0
0.606  
0.1  
V
FB Input Current  
Soft Start  
μA VFB = 0.6 V  
EN Waiting Time  
Soft Start Time  
tWAIT  
tSS  
100  
0.75  
-1.4  
230  
1.00  
-1.0  
400  
1.25  
-0.6  
μs  
ms SS Pin OPEN  
μA  
SS Charge Current  
Switching Frequency  
Switching Frequency  
Power Good  
ISS  
fSW  
2.0  
2.2  
2.4  
MHz  
VFB  
x 0.94  
VFB  
x 0.96  
VFB  
x 1.06  
VFB  
x 1.04  
VFB  
x 0.96  
VFB  
x 0.98  
VFB  
x 1.08  
VFB  
x 1.06  
VFB  
x 0.97  
VFB  
x 0.99  
VFB  
x 1.09  
VFB  
x 1.07  
PGD Falling (Fault) Voltage  
PGD Rising (Good) Voltage  
PGD Rising (Fault) Voltage  
PGD Falling (Good) Voltage  
VPGDTH_FF  
VPGDTH_RG  
VPGDTH_RF  
VPGDTH_FG  
V
V
V
V
VFB Falling  
VFB Rising  
VFB Rising  
VFB Falling  
PGD Falling (Fault) Detection delay time  
PGD Rising (Fault) Detection delay time  
PGD Output Leakage Current  
PGD FET ON Resistance  
tPGDELFF  
tPGDELRF  
ILEAKPGD  
RPGD  
60  
60  
-
105  
105  
0
150  
150  
1
μs  
μs  
μA VPGD = 5 V, Tj = 25 °C  
Ω
20  
0.02  
50  
80  
PGD Output Low Level Voltage  
Switch MOSFET  
VPGDL  
0.05  
0.12  
V
IPGD = 1 mA  
30  
35  
20  
23  
60  
70  
35  
38  
100  
110  
60  
mΩ VPVIN = 5 V  
mΩ VPVIN = 3.3 V  
mΩ VPVIN = 5 V  
mΩ VPVIN = 3.3 V  
High Side FET ON Resistance  
Low Side FET ON Resistance  
RONH  
RONL  
ILEAKSWH  
ILEAKSWL  
63  
VPVIN = 5.5 V, VSW = 0 V  
High Side FET Leakage Current  
Low Side FET Leakage Current  
-
-
0
0
5
5
μA  
μA  
Tj = 25° C  
VPVIN = 5.5 V, VSW = 5.5 V  
Tj = 25 °C  
High Side FET Current Limit (Note 1)  
Low Side FET Current Limit (Note 1)  
IOCPH  
IOCPL  
RDIS  
4.6  
4.0  
30  
6.4  
5.4  
60  
8.2  
7.0  
A
A
Ω
SW Discharge Resistance  
100  
VEN = 0 V, Vsw = 3.3 V  
(Note 1) This is design value. Not production tested.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
7/38  
 
BD9S402MUF-C  
Electrical Characteristics – continued  
(Unless otherwise specified Ta = Tj = -40 °C to +125 °C, VAVIN = VPVIN = 5.0 V, VEN = 5.0 V, Typical value is Tj = +25 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
SCP, OVP  
Short Circuit Protection Detection  
Voltage  
Output Over Voltage Protection  
Detection Voltage  
VSCP  
VOVP  
0.34  
0.42  
0.50  
V
V
VFB Falling  
VFB Rising  
VFB  
x 1.06  
VFB  
x 1.08  
VFB  
x 1.09  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
8/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data)  
Unless otherwise specified VIN = VEN  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
10  
AVIN Current  
AVIN Current  
9
8
7
6
5
4
VIN = 5.0 V  
VIN = 5.0 V  
3
2
1
0
VIN = 3.3 V  
VIN = 3.3 V  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 1. Shutdown Circuit Current vs Temperature  
Figure 2. Circuit Current vs Temperature  
2.40  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
VIN = 5.0 V  
VIN = 5.0 V  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
VIN = 3.3 V  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 3. Switching Frequency vs Temperature  
Figure 4. SW Discharge Resistance vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
9/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data) – continued  
0.606  
0.604  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
-0.020  
VIN = 5.0 V  
0.602  
0.600  
0.598  
VIN = 3.3 V  
0.596  
0.594  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 5. FB Pin Voltage vs Temperature  
Figure 6. FB Input Current vs Temperature  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
20  
16  
12  
8
VIN = 5.0 V  
VGAIN = 5.0 V  
VGAINH_threshold  
4
VGAIN = 3.3 V  
VGAINL_threshold  
0
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 7. GAIN Input Voltage vs Temperature  
Figure 8. GAIN Input Current vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
10/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data) – continued  
-0.60  
-0.70  
-0.80  
-0.90  
-1.00  
-1.10  
-1.20  
-1.30  
-1.40  
1.25  
CSS = C3 = OPEN  
VIN = 5.0 V  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
VIN = 3.3 V  
VIN = 5.0 V  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 9. Soft Start Time vs Temperature  
Figure 10. SS Charge Current vs Temperature  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
110  
100  
90  
VIN = 3.3 V  
VIN = 3.3 V  
80  
70  
60  
VIN = 5.0 V  
VIN = 5.0 V  
50  
40  
30  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 11. High Side FET ON Resistance vs Temperature  
Figure 12. Low Side FET ON Resistance vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
11/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data) – continued  
0.66  
80  
70  
60  
50  
40  
30  
20  
Rising Fault  
VIN = 5.0 V  
VIN = 5.0 V  
0.64  
0.62  
0.60  
0.58  
0.56  
Falling Good  
Rising Good  
Falling Fault  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 13. PGD Threshold Voltage vs Temperature  
Figure 14. PGD FET ON Resistance vs Temperature  
2.70  
2.65  
400  
350  
300  
VUVLO2  
2.60  
2.55  
2.50  
2.45  
VIN = 5.0 V  
250  
200  
2.40  
VUVLO1  
VIN = 3.3 V  
150  
2.35  
2.30  
100  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 15. UVLO Voltage vs Temperature  
Figure 16. EN Waiting Time vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
12/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data) – continued  
1.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VIN = 5.0 V  
0.9  
VEN = 5.0 V  
VEN High threshold  
0.8  
0.7  
VEN Low threshold  
0.6  
VEN = 3.3 V  
0.5  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 17. EN Input Voltage vs Temperature  
Figure 18. EN Input Current vs Temperature  
8.2  
7.8  
7.4  
7.0  
6.6  
6.2  
5.8  
5.4  
5.0  
4.6  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75  
100 125  
Temperature [°C]  
Temperature [°C]  
Figure 19. High Side FET Current Limit  
vs Temperature  
Figure 20. Low Side FET Current Limit  
vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
13/38  
BD9S402MUF-C  
Typical Performance Curves (Reference Data) – continued  
0.660  
0.654  
0.648  
0.642  
0.636  
0.630  
0.540  
VIN = 5.0 V  
Release  
VIN = 5.0 V  
Detection  
Release  
0.480  
0.420  
Detection  
0.360  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Figure 21. Short Circuit Protection Detection Voltage  
vs Temperature  
Figure 22. Output Over Voltage Protection Detection Voltage  
vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
14/38  
BD9S402MUF-C  
Function Explanations  
1. Enable Control  
The device shutdown can be controlled by the voltage applied to the EN pin. When EN voltage VEN becomes  
VENH (1.0 V) or more, the internal circuit is activated, and the device starts up with Soft Start.  
The delay time tWAIT (230 µs, Typ) is implemented from the EN pin becoming High to VOUT starting up. When the SS pin  
is open, the device starts with the built-in Soft Start Time tSS (1.0 ms, Typ). When VEN becomes VENL (0.4 V) or less, the  
device is shutdown. During shutdown, the SW pin is pulled down with resistance RDIS (60 Ω, Typ) to discharge the  
output voltage.  
VIN  
0
t
t
t
VEN  
VENH  
VENL  
0
VOUT  
0
tSS  
tWAIT  
Figure 23. Enable ON/OFF Timing Chart  
2. Nano Pulse ControlTM  
Nano Pulse ControlTM is an original technology developed by ROHM Co., Ltd. It enables to control voltage stably, which  
is difficult in the conventional technology, even in a narrow SW ON time such as less than 50 ns at typical condition.  
Narrow SW ON Pulse enables direct convert of high input voltage to low output voltage. The output voltage VOUT = 0.8  
V or less can be output directly from the supply voltage VIN = 5.0 V at 2.2 MHz.  
VIN = 5 V  
VSW  
(1 V/Div)  
VOUT = 0.8 V  
(1 V/Div)  
fSW = 2.2 MHz  
Figure 24. Switching Waveform (VIN = 5.0 V, VOUT = 0.8 V, IOUT = 1.0 A, fSW = 2.2 MHz)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
15/38  
BD9S402MUF-C  
Function Explanations – continued  
3. Power Good Function  
When the FB pin voltage becomes 0.6 V (Typ) within -2 %, the open drain output MOSFET of the PGD pin turns OFF  
and the PGD pin output becomes High by the pull-up resistor. When the FB pin voltage is out of 0.6 V (Typ) -4 % and  
the condition continues for tPGDELFF (105 μs, Typ), the PGD pin open drain MOSFET turns ON and the PGD pin is pulled  
down with an impedance of 60 Ω (Typ).When the FB pin voltage is out of 0.6 V (Typ) -4 % and the time until the voltage  
returns to within -2 % is shorter than tPGDELFF, the PGD state is maintained High.  
The Power Good Function also operates when output overvoltage is detected. If the FB pin voltage is outside the range  
of 0.6 V (Typ) +8 % and the condition continues for tPGDELRF (105 μs, Typ) time, the open drain output MOSFET of the  
PGD pin turns ON and the PGD pin is pulled down with an impedance of 60 Ω (Typ). When the FB pin voltage becomes  
within 0.6 V (Typ) +6 %, the open drain output MOSFET of the PGD pin turns OFF and the output becomes High. It is  
recommended that the PGD pin be pulled up to the power supply with a resistor from 2 kΩ to 100 kΩ or less.  
If the power good function is not used, connect the PGD pin to OPEN or GND.  
During shutdown, the PGD pin is pulled down if VAVIN is 1.2 V or more.  
VOUT  
-2 % (Typ)  
-4 % (Typ)  
PGD  
tPGDELFF  
t < tPGDELFF  
+8 % (Typ)  
+6 % (Typ)  
PGD  
tPGDELRF  
t < tPGDELRF  
Figure 25. Power Good Timing Chart  
4. Output Discharge Function  
When even one of the following conditions is satisfied, output is discharged with 50 Ω (Typ) resistance through the SW  
pin.  
VEN becomes 0.4 V or less  
VIN becomes 2.45 V (Typ) or less (UVLO)  
• VFB becomes 0.42 V (Typ) or less and remains there for 1 ms (Typ) (SCP)  
• VFB becomes 0.6 V (Typ) +8 % or more (OVP)  
Tj becomes 175 °C (Typ) or more (TSD)  
When all the above conditions are released, output discharge is stopped.  
5. QuiCurTM  
QuiCurTM is a combination of technologies that provides high-speed load response.  
This technology reduces the amount of output voltage change in response to transient changes in load current.  
It also reduces the capacitance of output capacitors required for power supply ICs, thereby reducing the number of  
components and the board mounting area.  
6. Error Amplifier Gain Switching Function  
The gain of the error amplifier in the device can be switched by the GAIN pin; connecting the GAIN pin to the AVIN pin  
sets the device in the fast load response mode, in which the error amplifier gain is set high, to suppress output voltage  
changes during load transients. At this time, connect an output capacitor COUT of 44 µF (Typ) or more.  
When the GAIN pin is connected to the AGND pin or left open, the error amplifier gain is set to low, and the mode  
becomes the low output capacitance mode that operates stably even when COUT is 22 µF (Typ). However, the output  
voltage change during load transients will be larger than in the fast load response mode. Do not switch the GAIN pin  
connection during operation.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
16/38  
 
BD9S402MUF-C  
Protection Function  
1.  
Short Circuit Protection (SCP)  
The Short Circuit Protection block compares the FB pin voltage with the internal reference voltage VREF. When the FB  
pin voltage has fallen to 0.42 V (Typ) or less and remained there for 1 ms (Typ), SCP stops the operation for 14 ms  
(Typ) and subsequently initiates a restart. This protection circuit is effective in preventing damage due to sudden and  
unexpected incidents. However, the device should not be used in applications characterized by continuous operation  
of the protection circuit (e.g. when a load that significantly exceeds the output current capability of the chip is connected  
at all times).  
Short Circuit  
Protection  
Short Circuit  
Protection Operation  
EN Pin  
FB Pin  
≤ 0.42 V (Typ)  
ON  
OFF  
OFF  
1.0 V or more  
0.4 V or less  
Enabled  
Disabled  
≥ 0.48 V (Typ)  
-
Soft Start  
VOUT  
SCP Delay Time  
1 ms (Typ)  
SCP Delay Time  
1 ms (Typ)  
0.6 V  
VSCP : 0.42 V (Typ)  
FB  
SCP OFF  
SW  
LOW  
IOCPH  
IOCPL  
Inductor Current  
(Output Load  
Current)  
Internal  
HICCUP  
Delay Signal  
14 ms (Typ)  
SCP Reset  
Figure 26. Short Circuit Protection (SCP) Timing Chart  
2. Over Current Protection (OCP)  
The Over Current Protection function limits the current flowing to the High Side FET and Low Side FET. When the  
current flowing to the High Side FET reaches IOCPH, the High Side FET is turned OFF and the peak current limit is  
applied. Next, when the Low Side FET is turned ON, the current flowing to the Low Side FET is monitored and if it is  
larger than IOCPL, the turn-on operation is skipped due to the current limit of the Low Side FET.  
As the Low Side FET ON state continues, the inductor current decreases, and when it becomes lOCPL or less, the current  
limit is released, and SW turns ON by the next set signal inside the device. This series of operations provides over  
current protection. This protection circuit is effective in preventing damage due to sudden and unexpected incidents.  
However, the device should not be used in applications characterized by continuous operation of the protection circuit  
(e.g. when a load that significantly exceeds the output current capability of the chip is connected at all times).  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
17/38  
BD9S402MUF-C  
Protection Function – continued  
3. Under Voltage Lock Out Protection (UVLO)  
It shuts down the device when the AVIN pin voltage falls to 2.45 V (Typ) or less.  
The threshold voltage has a hysteresis of 100 mV (Typ).  
VAVIN  
VUVLO-HYS  
VUVLO1  
VUVLO2  
0 V  
tWAIT  
VOUT  
Soft Start  
FB  
SW  
Normal operation  
UVLO  
Normal operation  
Figure 27. Under Voltage Lock Out Protection (UVLO) Timing Chart  
4. Thermal Shutdown (TSD)  
This is the thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the  
IC’s maximum junction temperature rating. However, if the rating is exceeded for a continued period and the junction  
temperature (Tj) rises to 175 °C (Typ), the TSD circuit activates and the output MOSFETs turn OFF. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates  
in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit  
be used in a set design or for any purpose other than protecting the IC from heat damage.  
5. Over Voltage Protection (OVP)  
The device incorporates an over voltage protection circuit to minimize the output voltage overshoot when recovering  
from fast load transients or output fault conditions. If the FB pin voltage becomes Output Over Voltage Protection  
Detection Voltage VFB + 8% or more, the MOSFETs on the output stage are turned OFF to prevent the increase in the  
output voltage. After detection, switching operation is resumed if the output decreases, the over voltage state is  
released. Output Over Voltage Protection Detection Voltage and Release Voltage have a hysteresis of 2 %.  
VOUT  
VFB +8 %  
hys  
OVP Release  
Threshold  
FB  
SW  
Internal OVP  
Signal  
Figure 28. Over Voltage Protection (OVP) Timing Chart  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
18/38  
BD9S402MUF-C  
Selection of Components Externally Connected  
Necessary parameters in designing the power supply are as follows:  
Table 1. Application Specification  
Parameter  
Input Voltage  
Symbol  
VIN  
Example Value  
5.0 V  
Output Voltage  
VOUT  
1.2 V  
Switching Frequency  
Output Capacitor  
Soft Start setting time  
Maximum Output Current  
fSW  
2.2 MHz (Typ)  
44 μF  
6.0 ms (Typ)  
4 A  
COUT  
tSS_EXT  
IOUTMAX  
1. Application Example  
R4  
VIN  
PVIN  
AVIN  
PGD  
PGD  
CIN1  
CIN2  
Enable  
VAVIN  
EN  
SW  
FB  
VOUT  
L1  
R100  
R1  
GAIN  
SS  
COUT1  
COUT2  
C4  
PGND  
AGND  
R2  
C3  
Figure 29. Application Circuit  
2. Switching Frequency  
The switching frequency fSW is fixed at 2.2 MHz (Typ) inside the IC.  
3. Output Voltage Setting  
The output voltage value can be set by the feedback resistance ratio. It is recommended to use the resistor values  
shown in Table 2 for each output voltage setting.  
푅 +푅  
1
푂푈푇  
=
2 × 0.6 [V]  
2
VOUT  
C4  
R1  
R2  
FB  
SW Minimum ON Time that BD9S402MUF-C can output  
stably in the entire load range is 50 ns.  
Use this value to calculate the input and output conditions  
that satisfy the following equation.  
0.6 V (Typ)  
푂푈푇  
[ ]  
50 ns ≤  
푉 × 푓  
퐼푁  
푆푊  
Figure 30. Feedback Resistor Circuit  
Table 2. Configuration Resistors and Capacitor  
C4  
Output Voltage VOUT  
R1  
R2  
47 pF  
47 pF  
47 pF  
47 pF  
47 pF  
33 pF  
33 pF  
0.8 V  
0.9 V  
1.0 V  
1.2 V  
1.5 V  
1.8 V  
3.3 V  
13 kΩ  
15 kΩ  
22 kΩ  
47 kΩ  
15 kΩ  
30 kΩ  
68 kΩ  
39 kΩ  
30 kΩ  
33 kΩ  
47 kΩ  
10 kΩ  
15 kΩ  
15 kΩ  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
19/38  
 
 
BD9S402MUF-C  
Selection of Components Externally Connected – continued  
4. Selection of Input Capacitor  
The input capacitor requires a large capacitance value for CIN1 and a small capacitance value for CIN2. Use ceramic  
capacitor for these capacitors. CIN1 is used to suppress the ripple noise, and CIN2 is used to suppress the switching  
noise. These ceramic capacitors are effective by being placed as close as possible to the PVIN pin and the AVIN pin.  
The capacitance value of CIN1 should be 4.7 μF or more. In addition, the voltage rating has to be more than twice the  
typical input voltage. Set the capacitance value so that it does not fall to its minimum required value against the  
capacitor value variances, temperature characteristics, DC bias characteristics, aging characteristics, etc. Use  
components which are comparatively same with the components used in “Application Characteristic Data (Reference  
Data)”. A nominal 4700 pF is recommended for the CIN2 capacitance value. Moreover, factors like the PCB layout and  
the position of the capacitor may lead to IC malfunction. Refer to “PCB layout Design”.  
5. Selection of Output LC Filter  
The inductor in the DC/DC converter supplies a continuous current to the load and functions as a filter to smooth the  
output voltage. When a large inductor is selected, the Inductor ripple current ΔIL and the output ripple voltage ΔVP-P are  
reduced. It is the trade-off between the size and the cost of the inductor. Select a nominal inductance value between  
0.33 μH and 0.68 μH.  
VIN  
IL  
Inductor Rated Current > IOUTMAX +  IL/2  
 IL  
L
VOUT  
Driver  
Maximum Output Current IOUTMAX  
COUT  
t
Figure 31. Waveform of Current through Inductor  
Figure 32. Output LC Filter Circuit  
Inductor ripple current ΔIL can be represented by the following equation.  
(
)
×
∆ꢀ= 푂푈푇 × 푉 푂푈푇  
= 88ꢈ [mA]  
퐼푁  
ꢃꢄ  
×ꢅ ×퐿  
ꢆꢇ  
1
where  
푂푈푇  
ꢁ  
is the 5.0 V  
is the 1.2 V  
is the 0.47 µH  
퐼푁  
푆푊  
is the 2.2 MHz (Switching Frequency)  
The rated current of the inductor must be larger than the sum of the maximum output current and 1/2 of the inductor  
ripple current ΔIL.  
Table 3. List of Inductors  
Inductance  
[μH]  
DCR  
[mΩ]  
4.2  
ITEMP  
[A]  
W x L x H  
[mm]  
Manufacturer  
Inductor Series  
14.2  
5.1 x 5.3 x 3.0  
TDK  
TDK  
SPM5030VT  
SPM5030VT  
SPM5030VT  
TFM252012ALMA  
TFM252012ALMA  
ETQP3M  
0.33  
5.4  
7.4  
12.9  
10.7  
7.8  
5.1 x 5.3 x 3.0  
5.1 x 5.3 x 3.0  
2.5 x 2.0 x 1.2  
2.5 x 2.0 x 1.2  
5.5 x 5.0 x 3.0  
5.5 x 5.0 x 3.0  
4.0 x 4.0 x 2.1  
0.47  
0.68  
0.33  
0.47  
0.47  
0.68  
0.47  
TDK  
13.0  
19.0  
5.8  
TDK  
6.5  
TDK  
Panasonic  
Panasonic  
Coilcraft  
11.6  
10.2  
19.7  
7.6  
ETQP3M  
4.2  
XGL4020  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
20/38  
BD9S402MUF-C  
5.  
Selection of Output LC Filter – continued  
The output capacitor COUT affects the output ripple voltage characteristics. COUT satisfy the required ripple voltage  
characteristics. The output ripple voltage can be represented by the following equation.  
푅푃퐿 = ∆ꢀ× ꢊꢋ퐸푆푅 ꢍ×퐶  
[V]  
ꢆꢇ  
×ꢅ  
ꢎꢏꢐ  
where  
퐸푆푅  
is the Equivalent Series Resistance of the output capacitor.  
푅푃퐿 = 0.88ꢈ × ꢊꢒ0 × ꢒ0ꢓ3 ꢍ×44×ꢔ.ꢔꢑ = 9.96 [mV]  
where  
푂푈푇  
퐸푆푅  
is the 44 µF  
is the 10 mΩ  
Next, the required capacitance value of the output capacitor COUT varies depending on the GAIN pin setting. 44 µF  
(Typ) or more is recommended for COUT when the GAIN pin is set to High. When the GAIN pin is set Low or open, the  
device can operate in low output capacitance mode with a COUT of 22 µF (Typ) or more. In consideration of variation,  
temperature characteristics, DC bias characteristics, aging characteristics, etc., use components equivalent to those  
listed in Application Characteristics Data (Reference Data).  
If the total value of all capacitors connected to VOUT is large, the inrush current at startup may cause the over current  
protection to operate and the output may not start. In this case, set the Soft Start time to satisfy the following equation.  
See 6. Selection of Soft Start Capacitor for how to set the Soft Start time.  
×퐶  
ꢎꢏꢐ(ꢐꢎꢐ퐴ꢖ)  
ꢎꢏꢐ  
푆푆_퐸푋푇  
>
[s]  
(퐼  
ꢓ퐼  
)
ꢎꢗꢘ퐻(푀ꢃꢄ) ꢆꢇꢆꢐ퐴ꢙꢐ(푀퐴ꢚ)  
where:  
푆푆_퐸푋푇  
is the Soft Start setting time [s]  
푂푈푇(푇푂푇ꢛ퐿)  
푆푊푆푇ꢛ푅푇(ꢜꢛ푋)  
푂퐶푃ꢝ(ꢜ퐼푁)  
푂푈푇  
is the total value of all capacitors connected to VOUT [F]  
is the maximum value of output load current expected at startup [A]  
is the minimum value of OCP SW current 4.6 A (Min)  
is the output voltage [V]  
In case of large changing input voltage and output current, select the capacitance accordingly by verifying that the  
actual application setup meets the required specification.  
6. Selection of Soft Start Capacitor  
Turning the EN pin High activates the Soft Start function. This causes the output voltage to rise gradually while the  
current at startup is placed under control. This allows the prevention of output voltage overshoot and inrush current.  
The rise time tSS_EXT depends on the value of the capacitor connected to the SS pin. The capacitance value should be  
set in the range between 3300 pF and 0.1 μF.  
VEN  
(
)
퐶 ×ꢂ  
퐹퐵  
VENH  
VENL  
푆푆_퐸푋푇  
=
[s]  
ꢆꢆ  
0
t
where  
푆푆_퐸푋푇  
3  
ꢟꢠ  
is the Soft Start setting time  
VOUT  
is the Capacitor connected to the SS pin  
is the FB pin Voltage 0.6 V (Typ)  
is the SS Charge Current 1.0 µA (Typ)  
푆푆  
0
t
tSS_EXT  
With C3 = 0.01 μF  
tWAIT  
230 µs (Typ)  
(
)
ꢡ.ꢡꢁ×ꢡ.ꢢ  
푆푆_퐸푋푇  
=
= 6.0 [ms]  
Figure 33. Soft Start Timing chart  
ꢁ.ꢡ  
Turning the EN pin High without connecting capacitor to the SS pin and keeping the SS pin either OPEN condition or  
10 kΩ to 100 kΩ pull up condition to power source, the output rises in tSS = 1.0 ms (Typ).  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
21/38  
 
BD9S402MUF-C  
Selection of Components Externally Connected – continued  
7. Input Voltage Startup  
VIN  
VIN x 0.75 VOUT  
VOUT  
UVLO release  
Figure 34. Input Voltage Startup Time  
The Soft Start function starts up the device according to the specified Soft Start time. After UVLO is released, the  
voltage range that can be output during the Soft Start operation is 75 % or less of the input voltage. Note that the  
condition of input voltage and output voltage during the startup with Soft Start should satisfy the following expression.  
ꢎꢏꢐ  
푉 ≥  
퐼푁  
[V]  
ꢡ.7ꢣ  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
22/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data)  
Measurement Circuit  
R4  
VIN  
PVIN  
PGD  
SW  
PGD  
AVIN  
CIN1  
CIN2  
Enable  
VAVIN  
EN  
VOUT  
L1  
R100  
R1  
GAIN  
SS  
COUT1  
COUT2  
C4  
PGND  
FB  
AGND  
R2  
C3  
Figure 35. Measurement Schematic  
Table 4. List of Components for the fast load response mode (Note 1) (GAIN = High)  
NO  
L1  
Package  
-
Parameter  
0.47 μH  
Part Name  
SPM5030VT-R47M-D  
GCM31CR70J226KE26  
GCM31CR70J226KE26  
GCM21BR71A106KE21  
GCM155R71E472KA37  
-
Type  
Inductor  
Manufacture  
TDK  
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
3216  
2012  
1005  
-
22 μF, X7R, 6.3 V  
22 μF, X7R, 6.3 V  
10 μF, X7R, 10 V  
4700 pF, X7R, 25 V  
SHORT  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
-
Murata  
Murata  
Murata  
Murata  
-
(Note 2)  
1005  
1005  
1005  
OPEN  
1005  
-
Depending on VOUT  
Depending on VOUT  
MCR01MZPF Series  
MCR01MZPF Series  
MCR01MZPF Series  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
-
ROHM  
ROHM  
ROHM  
-
(Note 2)  
R2  
R4  
100 kΩ, 1 %, 1/16 W  
-
C3  
(Note 2)  
C4  
Depending on VOUT  
High  
GCM155R71E Series  
-
Ceramic Capacitor  
-
Murata  
-
GAIN  
Table 5. List of Components for the low output capacitance mode (Note 1) (GAIN = Low)  
NO  
L1  
Package  
-
Parameter  
0.47 μH  
Part Name  
SPM5030VT-R47M-D  
GCM31CR70J226KE26  
-
Type  
Manufacture  
Inductor  
TDK  
Murata  
-
COUT1  
COUT2  
CIN1  
CIN2  
R100  
R1  
3216  
OPEN  
2012  
1005  
-
22 μF, X7R, 6.3 V  
-
Ceramic Capacitor  
-
10 μF, X7R, 10 V  
4700 pF, X7R, 25 V  
SHORT  
GCM21BR71A106KE21  
GCM155R71E472KA37  
-
Ceramic Capacitor  
Murata  
Murata  
-
Ceramic Capacitor  
-
Chip Resistor  
Chip Resistor  
Chip Resistor  
-
(Note 2)  
1005  
1005  
1005  
OPEN  
1005  
-
Depending on VOUT  
Depending on VOUT  
MCR01MZPF Series  
MCR01MZPF Series  
MCR01MZPF Series  
-
ROHM  
ROHM  
ROHM  
-
(Note 2)  
R2  
R4  
100 kΩ, 1 %, 1/16 W  
-
C3  
(Note 2)  
C4  
Depending on VOUT  
Low  
GCM155R71E Series  
-
Ceramic Capacitor  
-
Murata  
-
GAIN  
(Note 1) For more information on each mode, see Function explanations 6. Error Amplifier Gain Switching Function.  
(Note 2) For the part parameters, see Selection of Components Externally Connected 3. Output Voltage Setting.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
23/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5.0 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 3.3 V  
0.0  
1.0  
2.0  
3.0  
4.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current IOUT [A]  
Output Current IOUT [A]  
Figure 36. Efficiency vs Output Current  
(VOUT = 1.0 V)  
Figure 37. Efficiency vs Output Current  
(VOUT = 1.2 V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5.0 V  
VIN = 5.0 V  
VIN = 3.3 V  
0.0  
1.0  
2.0  
3.0  
4.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current IOUT [A]  
Output Current IOUT [A]  
Figure 38. Efficiency vs Output Current  
(VOUT = 1.8 V)  
Figure 39. Efficiency vs Output Current  
(VOUT = 3.3 V)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
24/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
1.212  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
VIN = 5.0 V  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 3.3 V  
0.0  
1.0  
2.0  
3.0  
4.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current IOUT [A]  
Output Current IOUT [A]  
Figure 40. Output Voltage vs Output Current  
(VOUT = 1.0 V)  
Figure 41. Output Voltage vs Output Current  
(VOUT = 1.2 V)  
1.818  
1.812  
1.806  
1.800  
1.794  
1.788  
1.782  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
VIN = 5.0 V  
VIN = 5.0 V  
VIN = 3.3 V  
0.0  
1.0  
2.0  
3.0  
4.0  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current IOUT [A]  
Output Current IOUT [A]  
Figure 42. Output Voltage vs Output Current  
(VOUT = 1.8 V)  
Figure 43. Output Voltage vs Output Current  
(VOUT = 3.3 V)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
25/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
VIN = 5.0 V  
GAIN = Low  
VIN = 5.0 V  
GAIN = High  
40  
40  
20  
45  
20  
45  
0
0
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Gain  
Phase  
Phase  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency [kHz]  
Frequency [kHz]  
Figure 44. Frequency Characteristics  
(VOUT = 1.0 V, GAIN = High, IOUT = 2 A)  
Figure 45. Frequency Characteristics  
(VOUT = 1.0 V, GAIN = Low, IOUT = 2 A)  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
VIN = 5.0 V  
GAIN = Low  
VIN = 5.0 V  
GAIN = High  
40  
40  
20  
45  
20  
45  
0
0
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Gain  
Phase  
Phase  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency [kHz]  
Frequency [kHz]  
Figure 46. Frequency Characteristics  
(VOUT = 1.2 V, GAIN = High, IOUT = 2 A)  
Figure 47. Frequency Characteristics  
(VOUT = 1.2 V, GAIN = Low, IOUT = 2 A)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
26/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
VIN = 5.0 V  
GAIN = Low  
VIN = 5.0 V  
GAIN = High  
40  
40  
20  
45  
20  
45  
0
0
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Gain  
Phase  
Phase  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency [kHz]  
Frequency [kHz]  
Figure 48. Frequency Characteristics  
(VOUT = 1.8 V, GAIN = High, IOUT = 2 A)  
Figure 49. Frequency Characteristics  
(VOUT = 1.8 V, GAIN = Low, IOUT = 2 A)  
80  
60  
180  
135  
90  
80  
60  
180  
135  
90  
VIN = 5.0 V  
GAIN = High  
VIN = 5.0 V  
GAIN = Low  
40  
40  
20  
45  
20  
45  
0
0
0
0
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
Gain  
Gain  
Phase  
Phase  
1
10  
100  
1000  
1
10  
100  
1000  
Frequency [kHz]  
Frequency [kHz]  
Figure 50. Frequency Characteristics  
(VOUT = 3.3 V, GAIN = High, IOUT = 2 A)  
Figure 51. Frequency Characteristics  
(VOUT = 3.3 V, GAIN = Low, IOUT = 2 A)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
27/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
IOUT: 1 A/Div  
IOUT: 1 A/Div  
VOUT = 1.0 V, VIN = 5.0 V, GAIN = High,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
VOUT = 1.0 V, VIN = 5.0 V, GAIN = Low,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
Figure 52. Load Transient Response  
Figure 53. Load Transient Response  
(VOUT = 1.0 V, GAIN = High)  
(VOUT = 1.0 V, GAIN = Low)  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
IOUT: 1 A/Div  
IOUT: 1 A/Div  
VOUT = 1.2 V, VIN = 5.0 V, GAIN = High,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
VOUT = 1.2 V, VIN = 5.0 V, GAIN = Low,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
Figure 54. Load Transient Response  
Figure 55. Load Transient Response  
(VOUT = 1.2 V, GAIN = High)  
(VOUT = 1.2 V, GAIN = Low)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
28/38  
BD9S402MUF-C  
Application Characteristic Data (Reference Data) – continued  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
IOUT: 1 A/Div  
IOUT: 1 A/Div  
VOUT = 1.8 V, VIN = 5.0 V, GAIN = High,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
VOUT = 1.8 V, VIN = 5.0 V, GAIN = Low,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
Figure 56. Load Transient Response  
Figure 57. Load Transient Response  
(VOUT = 1.8 V, GAIN = High)  
(VOUT = 1.8 V, GAIN = Low)  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
Time: 20 μs/Div  
VOUT: 50 mV/Div  
IOUT: 1 A/Div  
IOUT: 1 A/Div  
VOUT = 3.3 V, VIN = 5.0 V, GAIN = High,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
VOUT = 3.3 V, VIN = 5.0 V, GAIN = Low,  
IOUT = 0.0 A ↔ 2.0 A (1 A/μs)  
Figure 58. Load Transient Response  
Figure 59. Load Transient Response  
(VOUT = 3.3 V, GAIN = High)  
(VOUT = 3.3 V, GAIN = Low)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
29/38  
BD9S402MUF-C  
PCB Layout Design  
PCB layout design for DC/DC converter is very important. Appropriate layout can avoid various problems concerning  
power supply circuit. Figure 60 to Figure 62 show the current path in a buck DC/DC converter circuit. The Loop 1 in  
Figure 60 is a current path when High Side Switch is ON and Low Side Switch is OFF, the Loop 2 in Figure 61 is when  
High Side Switch is OFF and Low Side Switch is ON. The thick line in Figure 62 shows the difference between Loop1  
and Loop2. The current in thick line change sharply each time the switching element High Side and Low Side Switch  
change from OFF to ON, and vice versa. These sharp changes induce a waveform with harmonics in this loop. Therefore,  
the loop area of thick line that is consisted by input capacitor and IC should be as small as possible to minimize noise.  
For more details, refer to application note of switching regulator series “PCB Layout Techniques of Buck Converter”.  
Loop1  
VIN  
VOUT  
L
High Side Switch  
CIN  
COUT  
Low Side Switch  
GND  
GND  
Figure 60. Current Path when High Side Switch = ON, Low Side Switch = OFF  
VIN  
VOUT  
L
High Side Switch  
CIN  
COUT  
Loop2  
Low Side Switch  
GND  
GND  
Figure 61. Current Path when High Side Switch = OFF, Low Side Switch = ON  
VIN  
VOUT  
L
CIN  
COUT  
High Side FET  
Low Side FET  
GND  
GND  
Figure 62. Difference of Current and Critical Area in Layout  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
30/38  
BD9S402MUF-C  
PCB Layout Design – continued  
When designing the PCB layout, Pay extra attention to the following points.  
Connect the input capacitor CIN as close as possible to the PVIN pin on the same plane as the IC.  
Switching nodes such as SW are susceptible to noise due to AC coupling with other nodes. Route the inductor pattern  
as thick and as short as possible.  
R1 and R2 shall be located as close as possible to the FB pin and the wiring between R1 and R2 to the FB pin shall be  
as short as possible.  
• Provide line connected to FB far from the SW nodes.  
Influence from the switching noise can be minimized, by isolating Power (Input and Output Capacitor) GND and  
Reference (FB) GND.  
• R100 is provided for the measurement of feedback frequency characteristics (optional). By inserting a resistor into R100  
,
it is possible to measure the frequency characteristics of feedback (phase margin) using FRA etc. R100 is short-  
circuited for normal use.  
L1  
CIN2  
CIN1  
IC  
C3  
COUT1  
R2  
R1  
C4  
COUT2  
R100  
Example of Evaluation Board Layout (Top View)  
Example of Evaluation Board Layout (Bottom View)  
Figure 63. Example of Evaluation Board Layout  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
31/38  
BD9S402MUF-C  
Power Dissipation  
For thermal design, be sure to operate the IC within the following conditions.  
(Since the temperatures described hereunder are all guaranteed temperatures, take margin into account.)  
1. The ambient temperature Ta is to be 125 °C or less.  
2. The chip junction temperature Tj is to be 150 °C or less.  
The chip junction temperature Tj can be considered in the following two patterns:  
1. To obtain Tj from the package surface center temperature Tt in actual use  
ꢤ푗 = ꢤ푡 ꢌ 휓퐽푇 × ꢥ [°C]  
2. To obtain Tj from the ambient temperature Ta  
ꢤ푗 = ꢤ푎 ꢌ 퐽ꢛ × ꢥ [°C]  
Where:  
퐽푇  
퐽ꢛ  
is junction to top characterization parameter (Thermal Resistance)  
is junction to ambient (Thermal Resistance)  
The heat loss W of the IC can be obtained by the formula shown below:  
푂푈푇  
푂푈푇  
ꢥ = ꢋ푂푁ꢝ × ꢀ푂푈푇  
×
ꢌ ꢋ푂푁퐿 × ꢀ푂푈× ꢦꢒ −  
퐼푁  
퐼푁  
(
)
ꢌ푉 × 퐶퐶 ꢌ × 푡푟 ꢌ 푡푓 × 푉 × ꢀ푂푈푇 × 푓  
[W]  
퐼푁  
퐼푁  
푆푊  
Where:  
푂푁ꢝ  
푂푁퐿  
푂푈푇  
is the High Side FET ON Resistance (Electrical Characteristics) [Ω]  
is the Low Side FET ON Resistance (Electrical Characteristics) [Ω]  
is the Output Current [A]  
푂푈푇  
is the Output Voltage [V]  
퐼푁  
is the Input Voltage [V]  
퐶퐶  
푡푟  
푡푓  
is the Circuit Current (Electrical Characteristics) [A]  
is the Switching Rise Time [s] (Typ: 2 ns)  
is the Switching Fall Time [s] (Typ: 2 ns)  
푆푊  
is the Switching Frequency (Electrical Characteristics) [Hz]  
tr  
(2 ns)  
tf  
(2 ns)  
VIN  
1. 푂푁ꢝ × ꢀ푂푈푇  
1
VSW  
2. 푂푁퐿 × ꢀ푂푈푇  
3. × (푡푟 ꢌ 푡푓) × 푉 × ꢀ푂푈푇 × 푓  
퐼푁  
푆푊  
GND  
3
2
1
fsw  
Figure 64. SW Waveform  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
32/38  
BD9S402MUF-C  
I/O Equivalence Circuits (Note 1)  
6. FB  
8. GAIN  
AVIN  
50 kΩ  
FB  
GAIN  
10 kΩ  
4 kΩ  
2 kΩ  
500 kΩ  
AGND  
AGND  
AGND AGND  
9. SS  
10.11.12. SW  
PVIN  
SS  
20 kΩ  
100 kΩ  
AVIN  
100 kΩ  
SW  
50 Ω  
10 kΩ  
AGND AGND  
AGND  
AGND  
PGND  
PGND  
14. PGD  
15. EN  
EN  
100 kΩ  
150 kΩ  
PGD  
100 kΩ  
50 Ω  
AVIN  
10 kΩ  
850 kΩ  
AGND  
AGND  
AGND  
AGND  
AGND  
(Note 1) Resistance value is typical.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
33/38  
BD9S402MUF-C  
Operational Notes  
1.  
2.  
3.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
34/38  
BD9S402MUF-C  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 65. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
35/38  
BD9S402MUF-C  
Ordering Information  
B D 9 S 4 0 2 M U F -  
C E 2  
Package  
MUF: VQFN16FV3030  
Product class  
C for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN16FV3030 (TOP VIEW)  
Part Number Marking  
D 9 S  
4 0 2  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
36/38  
BD9S402MUF-C  
Physical Dimension and Packing Information  
Package Name  
VQFN16FV3030  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
37/38  
BD9S402MUF-C  
Revision History  
Date  
Revision  
001  
Changes  
New Release  
10.May.2022  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T4T0AA016900-1-2  
10.May.2022 Rev.001  
38/38  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD9SD11NUX-C

BD9SD11NUX-C是内置低导通电阻的功率MOSFET的同步整流降压型DC/DC转换器。最大可输出600mA的电流。具有2.2MHz高速开关频率,适用于小型电感。具有基于电流模式控制的高速瞬态响应性能。内置输出电压设定为1.15V的反馈电阻和相位补偿电路,可以用较少的外接零部件构建应用。
ROHM

BD9V100MUF-C

BD9V100MUF-C是一种内置高电压额定功率MOSFET的电流型同步降压转换器。通过Nano Pulse Control技术,宽范围输入16V~60V,极短的最小脉冲宽度小于20ns,可在2.1MHz的工作频率下从48V电池直接转换为3.3V。
ROHM

BD9V101MUF-LB

本产品是面向工业设备市场的产品,保证可长期稳定供货。是适合这些用途的产品。BD9V101MUF-LB 是内置高耐压POWER MOSFET的同步整流降压DC/DC转换器。16V~60V的大输入范围适用于工业设备等所有应用。通过Nano Pulse Control®,可输出20ns的最小SW ON 时间,因此即使是2.1MHz动作,也可通过1个IC实现从60V电源转换为3.3V微控制器的电压转换(60V→3.3V)。
ROHM

BDA161251

Thermal Magnetic Circuit Breaker,
SCHNEIDER

BDA218P

KUNSTSTOFF BECHERGLAS 50ML
ETC

BDA224P

KUNSTSTOFF BECHERGLAS 100ML
ETC

BDA230P

KUNSTSTOFF BECHERGLAS 250ML
ETC

BDA234P

KUNSTSTOFF BECHERGLAS 400ML
ETC

BDA236P

KUNSTSTOFF BECHERGLAS 500ML
ETC

BDA238P

KUNSTSTOFF BECHERGLAS 600ML
ETC

BDA24020Y1

Thermal Magnetic Circuit Breaker,
SCHNEIDER

BDA240P

KUNSTSTOFF BECHERGLAS 1000ML
ETC