BH6172GU-E2 [ROHM]

High-efficiency Power Management IC; 高效率的电源管理IC
BH6172GU-E2
型号: BH6172GU-E2
厂家: ROHM    ROHM
描述:

High-efficiency Power Management IC
高效率的电源管理IC

电源电路 电源管理电路
文件: 总17页 (文件大小:917K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Power Management IC Series for Mobile Phones  
High-efficiency  
Power Management IC  
BH6172GU  
Descriptions  
BH6172GU incorporates 1 DCDC+ 5 Linear LDO regulators.  
It is integrated in a small 2.6mm×2.6mm size package, with 16 steps adjustable Vo’s for every channel,  
low voltage output (0.8V~) to support almost any kind of mobile application now available.  
Features  
1) 1ch 500mA, high efficiency Step-down Converter. (16 steps adjustable VO by I2C)  
2) 5-channel CMOS-type LDOs. (16 steps adjustable VO by I2C, 150mA×3, 300mA×2)  
3) Power ON/OFF control enabled by I2C interface or external pin  
4) I2C compatible Interface. (Device address is “1001111”)  
5) Wafer Level CSP package(2.6mm×2.6mm) for space-constrained applications  
6) Discharge resistance selectable for power-down sequence ramp speed control  
7) Over-current protection in all LDO regulators  
8) Over-current protection in Step-down Converter  
9) Over-voltage protection in Step-down Converter  
10) Thermal shutdown protection  
Applications  
Mobile phones, Portable game systems, Portable mp3 players, Portable DVD players, Portable TV, Portable GPS,  
PDA, Portable electronic dictionaries, etc.  
Absolute maximum ratings (Ta=25)  
Parameter  
Symbol  
Rating  
Unit  
Maximum Supply Voltage (VBAT)  
Maximum Supply Voltage (PBAT)  
Maximum Supply Voltage (VUSB)  
VBATMAX  
VPBATMAX  
VUSBMAX  
DVDDMAX  
6.0  
6.0  
6.0  
4.5  
V
V
V
V
Maximum Supply Voltage (DVDD)  
Maximum Input Voltage 1  
(LX, FB, OUT1, OUT2, OUT3, OUT4,  
OUT5, EN_LD1, EN_LD2, EN_LD3,  
EN_LD4)  
VINMAX1  
VBAT + 0.3  
V
Maximum Input Voltage 2  
(NRST, CLK, DATA)  
VINMAX2  
DVDD + 0.3  
V
Power Dissipation  
Pd  
900*1  
mW  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
-35 +85  
-55 +125  
* This is an allowable loss of the ROHM evaluation glass epoxy board(60mm×60mm×16mm).  
To use at temperature higher than 25C , derate 9.0mW per 1C.  
** Must not exceed Pd or ASO.  
Sep. 2008  
Recommended Operating Conditions (Ta=25C)  
Parameter  
Symbol  
Range  
Unit  
2
2
VBAT Voltage  
PBAT Voltage  
VUSB Voltage  
DVDD Voltage  
VBAT  
VPBAT  
VUSB  
*
2.20 5.50  
2.20 5.50  
V
V
V
V
*
*2*3 2.20 5.50  
4
VDVDD  
*
1.70 4.20  
*2 Whenever the VBAT or PBAT or VUSB voltage is under the LDO, SWREG output voltage,  
or else under certain levels, the LDO and SWREG output is not guaranteed to meet its published specifications.  
*3 VUSB Power Supply can be externally connected to the VBAT, PBAT Power Supply when necessary.  
*4 The DVDD Voltage must be under the Battery Voltage VBAT, PBAT at any times.  
Electrical Characteristics (Unless otherwise specified, Ta=25C, VBAT=PBAT =3.6V, VUSB=5.0V)  
Parameter  
Circuit Current  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Condition  
VBAT  
Circuit Current 1  
(OFF)  
VUSB  
Circuit Current 1  
(OFF)  
IQVB1  
-
-
0.4  
0
1
1
μA  
μA  
LDO15=OFF  
SWREG1=OFF  
NRST=L  
IQUSB1  
DVDD=0V  
LDO15=OFF  
SWREG1=OFF  
VBAT  
Circuit Current 2  
(OFF)  
IQVB2  
-
0.4  
1
μA  
NRST=L  
DVDD=0V  
VUSB=VBAT external connection  
VBAT  
Circuit Current 3  
(STANDBY)  
VUSB  
Circuit Current 2  
(STANDBY)  
IQVB3  
-
-
0.7  
0
1.4  
1
μA  
μA  
LDO15=OFF  
SWREG1=OFF  
NRST=H  
IQUSB2  
DVDD=2.6V  
LDO15=OFF  
SWREG1=OFF  
NRST=H  
DVDD=2.6V  
VBAT  
Circuit Current 4  
(STANDBY)  
IQVB4  
-
0.7  
1.4  
μA  
VUSB=VBAT external connection  
VBAT  
Circuit Current 5  
(Active)  
VUSB  
Circuit Current 3  
(Active)  
IQVB5  
-
-
170  
35  
300  
70  
μA  
μA  
LDO15=ON(no load, initial voltage)  
SWREG1=ON(no load, initial voltage)  
NRST=H  
IQUSB3  
DVDD=2.6V  
LDO15=ON(no load, initial voltage)  
SWREG1=ON(no load, initial voltage)  
NRST=H  
VBAT  
Circuit Current 6  
(Active)  
IQVB6  
-
200  
350  
μA  
DVDD=2.6V  
VUSB=VBAT external connection  
This product is not especially designed to be protected from radioactivity.  
2/16  
Electrical Characteristics (Unless otherwise specified, Ta=25C, VBAT=PBAT =3.6V, VUSB=5.0V, DVDD=2.6V)  
Logic pin character  
0.7×  
DVDD  
DVDD+  
0.3  
0.3×  
Input “H” level  
Input “L” level  
VIH1  
VIL1  
IIC1  
-
-
V
V
Pin voltage: DVDD  
Pin voltage: 0 V  
NRST  
(CMOS input)  
-0.3  
0
DVDD  
Input leak  
current  
0.3  
1
μA  
EN_LD1,  
EN_LD2,  
EN_LD3,  
Input “H” level  
Input “L” level  
VIH2  
VIL2  
1.44  
-
-
-
-
V
V
0.4  
EN_LD4  
(NMOS input)  
Input leak  
current  
IIC2  
-1  
0
1
μA  
Digital characteristics (Digital pins: CLK and DATA )  
DVDD  
+
0.3  
0.2×  
DVDD  
0.8×  
DVDD  
Input "H" level  
VIH3  
VIL3  
-
-
V
V
Input "L" level  
Input leak  
-0.3  
IIC3  
VOL  
-1  
-
0
-
1
μA  
Pin voltage: DVDD  
IOL=6mA  
current  
DATA output "L" level voltage  
0.4  
V
Electrical Characteristics (Unless otherwise specified, Ta=25C, VBAT=PBAT =3.6V, VUSB=5.0V)  
Parameter  
SWREG  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Condition  
initial value  
Output Voltage  
VOSW  
0.94  
1.00  
1.06  
V
Io=100mA  
Vo=1.00V  
Output current  
Efficiency  
IOSW  
ηSW  
fOSC  
-
-
-
-
500  
mA  
%
90  
1.7  
-
-
Io=100mA, Vo=2.40V, VBAT=3.2V  
Vo=1.00V  
Oscillating Frequency  
MHz  
Output Inductance  
Short circuit current  
LSWREG  
ISHTSW  
1.5  
-
2.2  
-
-
μH  
Ta= -3075C  
Ta= -3075C  
500  
mA  
Ta= -3075C  
with SWREG's DC bias  
Output Capacitance  
CSWREG  
3.3  
4.7  
-
μF  
3/16  
Electrical Characteristics (Unless otherwise specified, Ta=25C, VBAT=PBAT =3.6V, VUSB=5.0V)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Condition  
LDO1  
initial value  
Output Voltage  
VOM1  
0.970  
1.000  
1.030  
V
Io=1mA@VBAT=4.5V  
Io=150mA@VBAT=3.4V  
Output current  
VOM1C  
-
-
-
150  
-
mA  
V
Vo=1.0V  
Io=50mA  
Dropout Voltage  
VOM1DP  
0.1  
VBAT=3.44.5V, Io=50mA  
Vo=1.0V  
Io=50μA150mA, VBAT=3.6V  
Input Voltage Stability  
Load Stability  
VIM1  
VLM1  
-
-
2
-
-
mV  
mV  
20  
Vo=1.0V  
VR=-20dBV  
fR=120Hz  
Io=50mA, Vo=2.6V  
Ripple rejection ratio  
RRM1  
-
60  
-
dB  
BW=20Hz20kHz  
Short circuit current  
Output Capacitor  
ISHTM3  
COUT1  
-
-
180  
1.0  
-
-
mA  
Vo=0V  
Ta= -3075C  
with LDO's DC bias  
μF  
LDO2  
initial value  
Output Voltage  
VOM2  
2.522  
2.600  
2.678  
V
Io=1mA@VBAT=4.5V  
Io=150mA@VBAT=3.4V  
Output current  
VOM2C  
-
-
-
150  
-
mA  
V
Vo=2.6V  
Io=50mA  
Dropout Voltage  
VOM2DP  
0.1  
VBAT=3.44.5V, Io=50mA  
Vo=2.6V  
Io=50μA150mA, VBAT=3.6V  
Input Voltage Stability  
Load Stability  
VIM2  
VLM2  
-
-
2
-
-
mV  
mV  
20  
Vo=2.6V  
VR=-20dBV  
fR=120Hz  
Io=50mA, Vo=2.6V  
Ripple rejection ratio  
RRM2  
-
60  
-
dB  
BW=20Hz20kHz  
Short circuit current  
Output Capacitor  
ISHTM3  
COUT2  
-
-
180  
1.0  
-
-
mA  
Vo=0V  
Ta= -3075C  
with LDO's DC bias  
μF  
LDO3  
initial value  
Output Voltage  
VOM3  
2.716  
2.800  
2.884  
V
Io=1mA@VBAT=4.5V  
Io=150mA@VBAT=3.4V  
Output current  
VOM3C  
-
-
-
300  
-
mA  
V
Vo=2.8V  
Io=50mA  
Dropout Voltage  
VOM3DP  
0.1  
VBAT=3.44.5V, Io=50mA  
Vo=2.8V  
Io=50μA300mA, VBAT=3.6V  
Input Voltage Stability  
Load Stability  
VIM3  
VLM3  
-
-
2
-
-
mV  
mV  
20  
Vo=2.8V  
VR=-20dBV  
fR=120Hz  
Io=50mA, Vo=2.6V  
Ripple rejection ratio  
RRM3  
-
60  
-
dB  
BW=20Hz20kHz  
Short circuit current  
Output Capacitor  
ISHTM3  
COUT3  
-
-
180  
1.0  
-
-
mA  
Vo=0V  
Ta= -3075C  
with LDO's DC bias  
μF  
4/16  
Electrical Characteristics (Unless otherwise specified, Ta=25C, VBAT=PBAT =3.6V, VUSB=5.0V)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Condition  
LDO4  
initial value  
Output Voltage  
VOM4  
1.746  
1.800  
1.854  
V
Io=1mA@VBAT=4.5V  
Io=300mA@VBAT=3.4V  
Output current  
VOM4C  
-
-
-
300  
-
mA  
V
Vo=1.8V  
Io=50mA  
Dropout Voltage  
VOM4DP  
0.1  
VBAT=3.44.5V, Io=50mA  
Vo=1.8V  
Io=50μA300mA, VBAT=3.6V  
Input Voltage Stability  
Load Stability  
VIM4  
VLM4  
-
-
2
-
-
mV  
mV  
30  
Vo=1.8V  
VR=-20dBV  
fR=120Hz  
Io=50mA, Vo=2.6V  
Ripple rejection ratio  
RRM4  
-
60  
-
dB  
BW=20Hz20kHz  
Short circuit current  
Output Capacitor  
ISHTM4  
COUT4  
-
-
340  
1.0  
-
-
mA  
Vo=0V  
Ta= -3075C  
with LDO's DC bias  
μF  
LDO5  
initial value  
Output Voltage  
VOM5  
3.201  
3.300  
3.399  
V
Io=1mA@VUSB=5.5V  
Io=150mA@VUSB=4.4V  
Output current  
VOM5C  
-
-
-
150  
-
mA  
V
Vo=3.3V  
Io=50mA  
Dropout Voltage  
VOM5DP  
0.1  
VUSB=4.45.5V, Io=50mA  
Vo=3.3V  
Io=50μA150mA, VUSB=5.5V  
Input Voltage Stability  
Load Stability  
VIM5  
VLM5  
-
-
2
-
-
mV  
mV  
20  
Vo=3.3V  
VR=-20dBV  
fR=120Hz  
Io=50mA, Vo=2.6V  
Ripple rejection ratio  
RRM5  
-
60  
-
dB  
BW=20Hz20kHz  
Short circuit current  
Output Capacitor  
ISHTM5  
COUT5  
-
-
180  
1.0  
-
-
mA  
Vo=0V  
Ta= -3075C  
with LDO's DC bias  
μF  
5/16  
SWREG & LDOs Output Voltage table  
Usage  
Power Supply Initial Output Voltage  
Load max  
Adjustable range  
example  
SWREG  
CORE  
CORE  
I/O1  
VBAT/PBAT  
VBAT  
1.00V  
1.00V  
2.60V  
2.80V  
1.80V  
3.30V  
500mA  
150mA  
150mA  
300mA  
300mA  
150mA  
0.80-2.40V  
1.00-3.30V  
1.00-3.30V  
1.20-3.30V  
1.20-3.30V  
1.20-3.30V  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
VBAT  
MEMORY  
I/O2  
VBAT  
VBAT  
USB  
VBAT/VUSB  
SWREG  
0.80V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
1.20V  
1.365V  
1.40V  
1.50V  
1.65V  
1.80V  
1.85V  
2.40V  
LDO1  
LDO2  
1.00V  
1.10V  
1.20V  
1.30V  
1.40V  
1.50V  
1.60V  
1.70V  
1.80V  
1.85V  
2.60V  
2.70V  
2.80V  
2.85V  
3.00V  
3.30V  
LDO3  
LDO4  
1.20V  
1.30V  
1.40V  
1.50V  
1.60V  
1.70V  
1.80V  
1.85V  
1.90V  
2.00V  
2.60V  
2.70V  
2.80V  
2.85V  
3.00V  
3.30V  
LDO5  
1.20V  
1.30V  
1.40V  
1.50V  
1.60V  
1.70V  
1.80V  
1.85V  
1.90V  
2.00V  
2.60V  
2.70V  
2.80V  
2.85V  
3.00V  
3.30V  
1.00V  
1.10V  
1.20V  
1.30V  
1.40V  
1.50V  
1.60V  
1.70V  
1.80V  
1.85V  
2.60V  
2.70V  
2.80V  
2.85V  
3.00V  
3.30V  
1.20V  
1.30V  
1.40V  
1.50V  
1.60V  
1.70V  
1.80V  
1.85V  
1.90V  
2.00V  
2.60V  
2.70V  
2.80V  
2.85V  
3.00V  
3.30V  
Programmable  
Output Voltages  
6/16  
Block diagram, Ball matrix  
4.7uF  
init 1.00V  
150mA  
OUT1  
LDO1  
1.00-3.30V  
0.1V step  
DVDD  
DATA  
1uF  
1uF  
1uF  
1uF  
EN_LD1  
I2C IF  
VBAT1  
OUT2  
GND  
TEST2  
EN_LD2  
EN_LD1  
VBAT2  
NRST  
CLK  
OUT4  
EN_LD3  
EN_LD4  
OUT3  
OUT1  
DVDD  
FB  
CLK  
E
D
C
B
A
init 2.60V  
150mA  
OUT2  
LDO2  
1.00-3.30V  
0.1V step  
NRST  
EN_LD2  
PBAT  
init 2.80V  
300mA  
OUT3  
LDO3  
1.20-3.30V  
0.1V step  
4.7uF  
LX  
2.2uH  
SWREG  
0.8-2.40V  
4.7uF  
EN_LD3  
PGND  
FB  
500mA  
init 1.00V  
init 1.80V  
300mA  
OUT4  
LDO4  
1.20-3.30V  
0.1V step  
REFC  
TEST  
DATA  
EN_LD4  
(OPEN) TEST  
(OPEN) TEST2  
VUSB  
OUT5  
VUSB  
PGND  
LX  
PBAT  
1uF  
1uF  
REFC  
init 3.30V  
150mA  
REF  
OUT5  
LDO5  
1.20-3.30V  
0.1V step  
0.1uF  
1
2
3
4
5
Fig.1 Block diagram  
Fig.2 Ball matrix  
Pin description  
Ball No.  
B4  
C4  
E1  
E4  
A5  
A4  
A3  
B5  
D4  
D5  
D1  
E5  
E3  
A1  
B1  
C2  
D2  
D3  
C3  
A2  
C5  
C1  
B3  
E2  
PIN Name  
DATA  
CLK  
VBAT1  
VBAT2  
PBAT  
LX  
Function  
Data input/output for I2C  
CLK input for I2C  
Power Supply 1  
Power Supply 2  
Power Supply for SWREG  
Inductor Connect pin for SWREG  
Ground for SWREG  
Voltage Feed back pin for SWREG  
RESET Input Pin (Low Active)  
LDO1 Output  
PGND  
FB  
NRST  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
REFC  
LDO2 Output  
LDO3 Output  
LDO4 Output  
LDO5 Output  
Reference Voltage Output  
EN_LD1 LDO1 Enable Pin  
EN_LD2 LDO2 Enable Pin  
EN_LD3 LDO3 Enable Pin  
EN_LD4 LDO4 Enable Pin  
VUSB  
DVDD  
GND  
*1 USBVBUS Power Supply  
Digital Power Supply  
Analog Ground  
TEST  
TEST2  
TEST PIN (Always keep OPEN at normal use)  
TEST PIN (Always keep OPEN at normal use)  
*TEST, TEST2 pin is used during our company shipment test.  
Please keep TEST pin and TEST2 pin “OPEN” at all times.  
*1 VUSB Power Supply can be externally connected to the VBAT Power Supply when necessary.  
7/16  
I2C Bus INTERFACE  
The I2C compatible synchronous serial interface provides access to programmable functions and register on the device.  
This protocol uses a two-wire interface for bi-directional communications between the LSI’s connected to the bus.  
The two interface lines are the Serial Data Line(DATA), and the Serial Clock Line(CLK). These lines should be connected to  
the power supply DVDD by a pull-up resistor, and remain high even when the bus is idle.  
1.Start and Stop Conditions  
When CLK is high, pulling DATA low produces a start condition and pulling DATA high produces a stop condition.  
Every instruction is started when a start condition occurs and terminated when a stop condition occurs.  
During read, a stop condition causes the read to terminate and the chip enters the standby state.  
During write, a stop condition causes the fetching of write data to terminate, after which writing starts automatically.  
Upon the completion of writing, the chip enters the standby state. Two or more start conditions cannot be entered  
consecutively.  
tSU.STA tHD.STA  
tSU.STO  
CLK  
DATA  
Start  
condition  
Stop condition  
Fig.3 I2C Start, Stop condition  
2.Data transmission  
Data on the DATA input can be modified while CLK is low. When CLK is high, modifying the DATA input means a start or  
stop condition.  
tSU.DAT  
tHD.DAT  
CLK  
DATA  
Modify data  
Modify data  
Fig.4 I2C Data Transmission Timing  
All other acknowledge, write, and read timings all conform to the I2C standard.  
3.Device addressing  
The device address for this device is “1001111”.  
Read/write instruction  
Device address  
code  
1
0
0
1
1
1
1
R/W  
MSB  
LSB  
Fig.5 I2C device address  
8/16  
I2C Bus AC specification  
Characteristics  
CLK clock frequency  
CLK clock “low” time  
CLK clock “high” time  
Bus free time  
Start condition hold time  
Start condition setup time  
Symbol  
fCLK  
tLOW  
tHIGH  
tBUF  
tHD.STA  
tSU.STA  
tHD.DAT  
tSU.DAT  
tSU.STO  
Min  
0
Max  
400  
Unit  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
1.3  
0.6  
1.3  
0.6  
0.6  
0
-
-
-
-
-
-
-
-
Data input hold time  
Data input setup time  
Stop condition setup time  
100  
0.6  
ns  
μs  
tF  
tHIGH  
tLOW  
tR  
CLK  
tSU.STO  
tSU.STA  
tHD.DAT tSU.DAT  
tHD.STA  
DATA  
(INPUT)  
tBUF  
Fig.6 Bus timing 1  
CLK  
DATA  
(INPUT)  
DO  
tWR  
Write data  
input  
Acknowledge  
output  
Start  
condition  
Stop  
condition  
Fig.7 Bus timing 2  
9/16  
I2C Register information  
REGCNT(SWREGON, LDO*ON)  
Control each SWREG, LDO.  
0
1
ON  
OFF  
SWADJ(SWREGADJ[3:0])  
Change SWREG output voltage by 16 steps.  
“0000”  
0.80V  
“1111”  
2.40V  
LDOADJ*(LDO*ADJ[3:0])  
Change LDO15 output voltage by 16 steps.  
“0000”  
1.00V(LDO1, 2), 1.20V(LDO3, 4, 5)  
“1111”  
3.30V  
PDSEL(SWPDSEL, LDO*PDSEL)  
Change the discharge resistance of SWREG, LDO.  
0
1
1kΩ  
10kΩ  
PDCNT(SWPD, LDO*PD)  
Enable/disable the discharge resistance of SWREG, LDO.  
0
1
Discharge disable  
Discharge enable  
EN_SEL(ENLD*_EN)  
Select either an enable pin or I2C register for LDO14 ON/OFF control.  
0
1
External enable pin selected  
I2C register selected  
10/16  
Reference data(ICC)  
ICC(OFF) VUSB=5.0V  
ICC(OFF) VBAT=VUSB short  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VBAT [V]  
VBAT [V]  
ICC(ACTIVE) VBAT=VUSB short  
ICC(STBY) VBAT=VUSB short  
1
10  
9
8
7
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
VBAT [V]  
VBAT [V]  
Reference data(SWREG)  
SWREG Load Regulation VO=1.0V  
SWREG Line Regulation VO=1.0V  
2
1.9  
6
5.5  
5
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VBAT  
4.5  
4
3.5  
3
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.5  
2
1.5  
1
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
50  
100  
150  
200  
250  
IO [mA]  
300  
350  
400  
450  
500  
VBAT [V]  
SWREG Efficiency vs Io (Vo=1.365V)  
VBAT=3.6V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IO[mA]  
11/16  
Reference data(Output stability)  
4
3.5  
3
4
4
3.5  
3
LDO3 Load Regulation 3.0V  
LDO2 Load Regulation 2.60V  
LDO1 Load Regulation 1.20V  
3.5  
3
2.5  
2
2.5  
2
2.5  
2
1.5  
1
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
IO [mA]  
IO [mA]  
IO [mA]  
4
3.5  
3
4
LDO4 Load Regulation 1.80V  
LDO5 Load Regulation 3.30V  
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
100  
200  
300  
400  
0
50  
100  
150  
200  
IO [mA]  
IO [mA]  
Reference data(Input stability)  
6
6
6
LDO1 Line Regulation 1.20V  
5.5  
LDO2 Line Regulation 2.60V  
LDO3 Line Regulation 3.0V  
5.5  
5
5.5  
5
5
4.5  
4
VBAT  
VBAT  
VBAT  
4.5  
4
4.5  
4
3.5  
3
3.5  
3
3.5  
3
2.5  
2
2.5  
2
2.5  
2
1.5  
1
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VBAT [V]  
VBAT [V]  
VBAT [V]  
6
5.5  
5
6
5.5  
5
LDO4 Line Regulation 1.80V  
LDO5 Line Regulation 3.30V  
VBAT  
4.5  
4
4.5  
4
VUSB  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VBAT [V]  
VUSB [V]  
12/16  
Reference data(Load transient response)  
LDO1  
LDO2  
IO  
IO  
IO  
IO  
LDO2  
LDO1  
LDO1  
LDO2  
LDO3  
LDO4  
IO  
IO  
IO  
IO  
LDO3  
LDO3  
LDO4  
LDO4  
LDO5  
IO  
IO  
LDO5  
LDO5  
Reference data(Rise time)  
LDO1  
LDO2  
EN_LD1  
LDO1  
EN_LD2  
LDO2  
LDO3  
LDO4  
EN_LD3  
EN_LD4  
LDO3  
LDO4  
13/16  
Reference data(VBAT line transient response)  
LDO1  
LDO2  
LDO3  
VBAT  
VBAT  
VBAT  
LDO1  
LDO3  
LDO2  
LDO4  
LDO5  
VBAT  
VUSB  
LDO5  
LDO4  
14/16  
Use-related Cautions  
(1) Absolute maximum ratings  
If applied voltage (VBAT, VADP, VUSB), operating temperature range (Topr), or other absolute maximum ratings are  
exceeded, there is a risk of damage. Since it is not possible to identify short, open, or other damage modes, if special modes  
in which absolute maximum ratings are exceeded are assumed, consider applying fuses or other physical safety measures.  
(2) Recommended operating range  
This is the range within which it is possible to obtain roughly the expected characteristics. For electrical characteristics, it is  
those that are guaranteed under the conditions for each parameter. Even when these are within the recommended operating  
range, voltage and temperature characteristics are indicated.  
(3) Reverse connection of power supply connector  
There is a risk of damaging the LSI by reverse connection of the power supply connector. For protection from reverse  
connection, take measures such as externally placing a diode between the power supply and the power supply pin of the  
LSI.  
(4) Power supply lines  
In the design of the board pattern, make power supply and GND line wiring low impedance.  
When doing so, although the digital power supply and analog power supply are the same potential, separate the digital  
power supply pattern and analog power supply pattern to deter digital noise from entering the analog power supply due to  
the common impedance of the wiring patterns. Similarly take pattern design into account for GND lines as well.  
Furthermore, for all power supply pins of the LSI, in conjunction with inserting capacitors between power supply and GND  
pins, when using electrolytic capacitors, determine constants upon adequately confirming that capacitance loss occurring at  
low temperatures is not a problem for various characteristics of the capacitors used.  
(5) GND voltage  
Make the potential of a GND pin such that it will be the lowest potential even if operating below that. In addition, confirm  
that there are no pins for which the potential becomes less than a GND by actually including transition phenomena.  
(6) Shorts between pins and misinstallation  
When installing in the set board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is  
installed erroneously, there is a risk of LSI damage. There also is a risk of damage if it is shorted by a foreign substance  
getting between pins or between a pin and a power supply or GND.  
(7) Operation in strong magnetic fields  
Be careful when using the LSI in a strong magnetic field, since it may malfunction.  
(8) Inspection in set board  
When inspecting the LSI in the set board, since there is a risk of stress to the LSI when capacitors are connected to low  
impedance LSI pins, be sure to discharge for each process. Moreover, when getting it on and off of a jig in the inspection  
process, always connect it after turning off the power supply, perform the inspection, and remove it after turning off the  
power supply. Furthermore, as countermeasures against static electricity, use grounding in the assembly process and take  
appropriate care in transport and storage.  
(9) Input pins  
Parasitic elements inevitably are formed on an LSI structure due to potential relationships. Because parasitic elements  
operate, they give rise to interference with circuit operation and may be the cause of malfunctions as well as damage.  
Accordingly, take care not to apply a lower voltage than GND to an input pin or use the LSI in other ways such that parasitic  
elements operate. Moreover, do not apply a voltage to an input pin when the power supply voltage is not being applied to  
the LSI. Furthermore, when the power supply voltage is being applied, make each input pin a voltage less than the power  
supply voltage as well as within the guaranteed values of electrical characteristics.  
(10) Ground wiring pattern  
When there is a small signal GND and a large current GND, it is recommended that you separate the large current GND  
pattern and small signal GND pattern and provide single point grounding at the reference point of the set so that voltage  
variation due to resistance components of the pattern wiring and large currents do not cause the small signal GND voltage  
to change. Take care that the GND wiring pattern of externally attached components also does not change.  
(11) Externally attached capacitors  
When using ceramic capacitors for externally attached capacitors, determine constants upon taking into account a  
lowering of the rated capacitance due to DC bias and capacitance change due to factors such as temperature.  
(12) Thermal shutdown circuit (TSD)  
When the junction temperature becomes higher than a certain specific value, the thermal shutdown circuit operates and  
turns the switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as  
possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit  
operating or use the LSI assuming its operation.  
(13) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(14) Rush Current  
Extra care must be taken on power coupling, power, ground line impedance, and PCB design while excess amount of rush  
current might instantly flow through the power line when powering-up a LSI which is equipped with several power supplies,  
depending on on/off sequence, and ramp delays.  
15/16  
Selecting a Model Name When Ordering  
B
H
6
1
7
2
G
U
E
2
Part number  
6172 :  
DCDC 1ch + LDO 5 ch  
Package type  
GU : VCSP85H2 (BH6172)  
Taping type  
ROHM model name  
E2 : Reel-wound embossed taping  
VCSP85H2 (BH6172GU)  
< Tape and Reel information >  
< Dimension >  
1PIN MARK  
Lot. No.  
Embossed carrier tape(with dry pack)  
Tape  
BH6172  
3000pcs  
E2  
Quantity  
Direction  
of feed  
2.60±0.05  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
S
0.06  
S
A
24-φ0.3±0.05  
0.05  
A
B
E
1234  
1234  
1234  
1234  
1234  
1234  
D
C
B
A
B
(φ0.15) INDEX POST  
Direction of feed  
reel  
1pin  
1
2
3
4
5
0.3±0.05  
P=0.5×4  
When you order , please order in times the amount of package quantity.  
(Unit:mm)  
Catalog No.08T305A '08.9 ROHM ©  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

BH6172GU_11

System Regulator with High Efficiency DC/DC Converters
ROHM

BH6173GUL

Silicon Monolithic Integrated Circuit
ROHM

BH6173GUL-E2

Power Management Circuit, PBGA16
ROHM

BH6173GUL_11

Silicon Monolithic Integrated Circuit
ROHM

BH6174GUL

Power Supply Support Circuit, Adjustable, 7 Channel, PBGA25, WLCSP-25
ROHM

BH6174GUL-E2

Power Management Circuit, PBGA25
ROHM

BH6176GU

Silicon Monolithic Integrated Circuit
ROHM

BH6176GU-E2

Power Supply Support Circuit, Adjustable, 6 Channel, CMOS, PBGA25, 2.60 X 2.60 MM, ROHS COMPLIANT, VCSP-25
ROHM

BH6176GU_11

Silicon Monolithic Integrated Circuit Power Management LSI for MultiMedia LSI on Cellular
ROHM

BH6260MWX

USB Switch ICs SPST Type(Single Pole Single Throw)
ROHM

BH62UV1600

Ultra Low Power/High Speed CMOS SRAM 2M X 8 bit
BSI

BH62UV1600AI

Ultra Low Power/High Speed CMOS SRAM 2M X 8 bit
BSI