BM60060FV-C [ROHM]

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。;
BM60060FV-C
型号: BM60060FV-C
厂家: ROHM    ROHM
描述:

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。

开关 栅极驱动 脉冲 驱动器
文件: 总55页 (文件大小:1689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation Voltage 2500 Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM60060FV-C  
General Description  
Key Specifications  
The BM60060FV-C is a gate driver with an isolation  
voltage of 2500 Vrms. It has an I/O delay time of 210  
ns, minimum input pulse width of 90 ns, and  
incorporates the fault signal output function, under  
voltage lockout (UVLO) function, short circuit protection  
(SCP, built-in temperature compensation of detection  
voltage) function, fast turn off function for short circuit  
protection, active miller clamping (MC) function,  
temperature monitoring function, switching controller  
function, gate resistance switching function and output  
state feedback function.  
Isolation Voltage:  
2500 Vrms  
24 V  
210 ns (Max)  
90 ns  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W (Typ) x D (Typ) x H (Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
AEC-Q100 Qualified (Note 1)  
Fault Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Temperature Compensation of Short Circuit  
Detection Voltage  
Fast Turn Off Function for Short Circuit Protection  
Soft Turn Off Function for Short Circuit Protection  
(Adjustable Turn Off Time)  
Active Miller Clamping  
Temperature Monitor  
Switching Controller  
Gate Resistance Switching Function  
Output State Feedback Function  
UL1577 Recognized: File No. E356010  
(Note 1) Grade1  
Applications  
Automotive Inverter  
Automotive DC-DC Converter  
Industrial Inverter System  
UPS System  
Typical Application Circuit  
GND1  
FLT  
GND2  
OUT2  
GRSEL  
INA  
OUT1F  
SCPTH  
TC  
RTC  
ECU  
OSFB  
SENSOR  
INB  
TO  
VCC2  
VCC2  
FB  
VREG2  
SCPIN  
TCOMP  
PROOUT1  
PROOUT2  
OUT1  
COMP  
V_BATT  
VREG1  
FET_G  
SENSE  
GND1  
V_BATT  
RTCOMP  
snubber  
GND1  
VCC2  
CVCC2  
GND2  
GND2  
CVREG2  
GND2  
CVBATT  
CVREG1  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/52  
TSZ22111 14 001  
 
 
 
 
 
 
BM60060FV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Recommended Range of External Constants.................................................................................................................................3  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................5  
Recommended Operating Conditions.............................................................................................................................................5  
Insulation Related Characteristics ..................................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
Typical Performance Curves...........................................................................................................................................................9  
UL1577 Ratings Table...................................................................................................................................................................30  
Description of Pins and Cautions on Layout of Board...................................................................................................................31  
Description of Functions and Examples of Constant Setting ........................................................................................................32  
1. Fault Status Output ...............................................................................................................................................................32  
2. Under Voltage Lockout (UVLO) Function..............................................................................................................................33  
3. Short Circuit Protection (SCP) Function................................................................................................................................35  
4. Miller Clamp (MC) Function...................................................................................................................................................38  
5. Gate Resistance Switching Function.....................................................................................................................................39  
6. Output State Feedback Function...........................................................................................................................................39  
7. Switching Controller ..............................................................................................................................................................40  
8. Temperature Monitor Function...............................................................................................................................................42  
Selection of Components Externally Connected...........................................................................................................................43  
I/O Equivalent Circuits ..................................................................................................................................................................44  
Operational Notes.........................................................................................................................................................................48  
Ordering Information.....................................................................................................................................................................50  
Marking Diagram ..........................................................................................................................................................................50  
Physical Dimension and Packing Information...............................................................................................................................51  
Revision History............................................................................................................................................................................52  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/52  
TSZ22111 15 001  
12.Jul.2021 Rev.002  
 
BM60060FV-C  
Recommended Range of External Constants  
Pin Configuration  
(TOP VIEW)  
Recommended Value  
GND2  
OUT1  
1
2
3
4
5
6
7
8
9
28 GND1  
27 SENSE  
26 FET_G  
25 VREG1  
24 V_BATT  
23 COMP  
22 FB  
Pin Name  
Symbol  
RTC  
Unit  
kΩ  
Min  
Typ  
Max  
TC  
1.25  
-
100  
(As Temperature  
monitor)  
PROOUT2  
PROOUT1  
TCOMP  
SCPIN  
TC  
RTC  
0.1  
1
10  
MΩ  
(No Temperature  
monitor)  
TCOMP  
V_BATT  
VCC2  
RTCOMP  
CVBATT  
CVCC2  
9
-
-
100  
-
kΩ  
μF  
μF  
μF  
μF  
VREG2  
VCC2  
3
21 INB  
0.4  
0.3  
0.3  
-
-
TO  
20 SENSOR  
19 OSFB  
18 INA  
VREG1  
VREG2  
CVREG1  
CVREG2  
1
1
10  
10  
TC 10  
SCPTH 11  
OUT1F 12  
OUT2 13  
GND2 14  
17 GRSEL  
16 FLT  
15 GND1  
Pin Descriptions  
Pin No.  
1
Pin Name  
Function  
GND2  
OUT1  
Output-side ground pin  
Output pin  
2
3
PROOUT2  
PROOUT1  
TCOMP  
SCPIN  
VREG2  
VCC2  
Fast turn off pin for short circuit protection  
4
Soft turn off pin for short circuit protection / Gate voltage input pin  
Temperature compensation pin of short circuit detection voltage  
Short circuit detection pin  
5
6
7
Output-side internal power supply pin  
Output-side power supply pin  
8
9
TO  
Constant current output pin / Sensor voltage input pin  
Resistor connection pin for setting constant current  
Short circuit detection threshold setting pin  
Output pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
TC  
SCPTH  
OUT1F  
OUT2  
Miller clamp pin  
GND2  
GND1  
FLT  
Output-side ground pin  
Input-side ground pin  
Fault output pin  
GRSEL  
INA  
Gate resistance switching pin  
Control input pin  
OSFB  
SENSOR  
INB  
Output state feedback output pin  
Temperature information output pin  
Control input pin  
FB  
Error amplifier inverting input pin for switching controller  
Error amplifier output pin for switching controller  
Main power supply pin  
COMP  
V_BATT  
VREG1  
FET_G  
SENSE  
GND1  
Input-side internal power supply pin  
MOS FET for transformer drive control pin for switching controller  
Current feedback resistor connection pin for switching controller  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/52  
TSZ22111 15 001  
BM60060FV-C  
Block Diagram  
Isolation  
GND1  
FLT  
GND2  
MC  
OUT2  
PWM1  
PWM2  
GRSEL  
INA  
OUT1F  
SCPTH  
TC  
OSFB  
SENSOR  
INB  
TEMPERATURE  
MONITOR  
OSFB/FLT  
TO  
TEMPERATURE  
MONITOR  
VCC2  
UVLO  
LOGIC  
LOGIC  
VREG  
FB  
VREG2  
SCPIN  
TCOMP  
PROOUT1  
PROOUT2  
OUT1  
COMP  
SCP  
V_BATT  
VREG1  
FET_G  
SENSE  
UVLO  
VREG  
OSFB  
SWITCHING  
CONTROLLER  
GND1  
GND2  
Absolute Maximum Ratings  
Parameter  
Main Power Supply Voltage  
Output-Side Supply Voltage  
Symbol  
VBATTMAX  
VCC2MAX  
VINMAX  
Rating  
Unit  
V
-0.3 to +40.0 (Note 2)  
-0.3 to +30.0 (Note 3)  
-0.3 to +7.0 (Note 2)  
-0.3 to +7.0 (Note 2)  
10  
V
INA, INB, GRSEL Pin Input Voltage  
FLT, OSFB Pin Input Voltage  
V
VFLTMAX  
IFLT  
V
FLT, OSFB Pin Output Current  
SENSOR Pin Output Current  
FB Pin Input Voltage  
mA  
mA  
V
ISENSOR  
10  
VFBMAX  
-0.3 to +7.0 (Note 2)  
1
FET_G Pin Output Current (Peak 5 µs)  
SCPIN Pin Input Voltage  
IFET_GPEAK  
VSCPINMAX  
VSCPTHMAX  
VTOMAX  
A
-0.3 to VCC2 + 0.3 or +30.0 (Note 3)  
V
SCPTH Pin Input Voltage  
-0.3 to +7.0 (Note 3)  
V
TO Pin Input Voltage  
-0.3 to VCC2 + 0.3 or +30.0 (Note 3)  
V
TO Pin Output Current  
ITOMAX  
8
mA  
A
OUT1, OUT1F Pin Output Current (Peak 5 µs)  
OUT2 Pin Output Current (Peak 5 µs)  
PROOUT1 Pin Output Current (Peak 10 µs)  
PROOUT2 Pin Output Current (Peak 5 µs)  
Storage Temperature Range  
IOUT1PEAK  
IOUT2PEAK  
IPROOUT1PEAK  
IPROOUT2PEAK  
Tstg  
10 (Note 4)  
10 (Note 4)  
2.5 (Note 4)  
5.0 (Note 4)  
-55 to +150  
+150  
A
A
A
°C  
Maximum Junction Temperature  
Tjmax  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) Should not exceed Tj = 150 C  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/52  
TSZ22111 15 001  
12.Jul.2021 Rev.002  
BM60060FV-C  
Thermal Resistance (Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s (Note 7)  
2s2p (Note 8)  
SSOP-B28W  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 6)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 5) Based on JESD51-2A (Still-Air).  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Max  
24  
Unit  
V
(Note 9)  
Main Power Supply Voltage  
Output-side Supply Voltage  
VREG1 pin Output Current  
VREG2 Pin Output Current  
TO pin Input Voltage  
VBATT  
8
13.5  
-
(Note10)  
VCC2  
24.0  
0.5  
V
IVREG1  
IVREG2  
mA  
mA  
V
-
0.5  
(Note 10)  
VTO  
1.35  
0.5  
-40  
3.84  
2.0  
(Note10)  
SCPTH Pin Input Voltage  
Operating Temperature  
VSCPTH  
V
Topr  
+125  
°C  
(Note 9) Relative to GND1  
(Note 10) Relative to GND2  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
> 109  
Unit  
Ω
Insulation Resistance (VIO = 500 V)  
Insulation Withstand Voltage / 1 min  
Insulation Test Voltage / 1 s  
VISO  
2500  
Vrms  
Vrms  
VISO  
3000  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
5/52  
BM60060FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta = -40 °C to +125 °C, VBATT = 8 V to 24 V, VCC2 = 13.5 V to 24 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Main Power Supply  
Circuit Current 1  
Main Power Supply  
Circuit Current 2  
FET_G switching operation  
INA, INB not switching  
FET_G Not switching  
INA, INB not switching  
FET_G switching operation  
INA = 10 kHz, Duty = 50 %  
INB = L  
IBATT1  
IBATT2  
0.4  
0.3  
1.2  
1.1  
2.0  
1.9  
mA  
mA  
Main Power Supply  
Circuit Current 3  
IBATT3  
0.5  
0.5  
1.3  
1.4  
2.1  
2.3  
mA  
mA  
FET_G switching operation  
INA = 20 kHz, Duty = 50 %  
INB = L  
Main Power Supply  
Circuit Current 4  
IBATT4  
Output Side Circuit Current  
VREG1 Output Voltage  
VREG2 Output Voltage  
Switching Controller  
FET_G Output Voltage H  
FET_G Output Voltage L  
FET_G On Resistance  
(Source-side)  
FET_G On Resistance  
(Sink-side)  
Oscillation Frequency  
Soft-start Time  
FB Threshold Voltage  
FB Input Current  
COMP Pin Sink Current  
COMP Pin Source Current  
Error Amplifier  
RTC = 10 kΩ  
ICC2  
1.4  
4.5  
4.8  
3.0  
5.0  
5.0  
4.6  
5.5  
5.2  
mA  
V
VREG1  
VREG2  
V
VFETGH  
VFETGL  
4.5  
0
5.0  
-
5.5  
0.3  
V
V
IFET_G = 0 A (open)  
IFET_G = 0 A (open)  
RONGH  
3
6
12  
Ω
Ω
IFET_G = 10 mA  
IFET_G = 10 mA  
RONGL  
fOSC_SW  
tSS  
VFB  
IFB  
0.3  
0.6  
1.3  
80  
-
1.47  
-0.8  
-160  
40  
100  
-
1.50  
0
-80  
80  
120  
50  
1.53  
+0.8  
-40  
kHz  
ms  
V
μA  
μA  
μA  
ICOMPSINK  
ICOMPSOURCE  
160  
gmerr  
0.5  
1.1  
2.2  
mA/V Guaranteed by design  
Transconductance  
V_BATT UVLO Off Voltage  
V_BATT UVLO On Voltage  
Maximum On Duty  
VUVLOBATTH  
VUVLOBATTL  
DONMAX  
6.5  
5.5  
50  
7.0  
6.0  
55  
7.5  
6.5  
60  
V
V
%
Over Voltage Detection  
Threshold  
VOVTH  
VUVTH  
1.88  
1.03  
0.17  
20  
1.95  
1.10  
0.20  
40  
2.02  
1.17  
0.23  
60  
V
V
Under Voltage Detection  
Threshold  
Over-current Detection  
Threshold  
VOCTH  
V
Switching Controller Protection  
Holding Time  
tDCDCRLS  
ms  
Logic Input  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-down Resistance  
Logic Input Filtering Time  
VINH  
VINL  
RIND  
tINFIL  
0.7 x VREG1  
-
-
50  
45  
5.5  
0.3 x VREG1  
100  
V
V
kΩ  
ns  
INA, INB, GRSEL  
INA, INB, GRSEL  
INA, INB, GRSEL  
INA, INB  
0
25  
5
90  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/52  
TSZ22111 15 001  
BM60060FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified Ta = -40 °C to +125 °C, VBATT = 8 V to 24 V, VCC2 = 13.5 V to 24 V)  
Parameter  
Output  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
IOUT1 = 40 mA,  
Guaranteed by design  
IOUT1 = 40 mA,  
Guaranteed by design  
VCC2 = 15 V,  
Guaranteed by design  
0.09  
0.07  
6
0.22  
0.42  
OUT1 On Resistance (Source-side)  
OUT1 On Resistance (Sink-side)  
OUT1 Maximum Current (Source-side)  
OUT1 Maximum Current (Sink-side)  
RONH1  
RONL1  
IOUTMAX1H  
IOUTMAX1L  
Ω
Ω
A
A
0.20  
0.40  
-
-
-
-
VCC2 = 15 V,  
Guaranteed by design  
4
90  
80  
-60  
25  
25  
150  
140  
-10  
50  
210  
200  
+40  
120  
100  
OUT1 Turn ON Time  
OUT1 Turn OFF Time  
OUT1 Propagation Distortion  
OUT1 Rise Time  
tPON1  
tPOFF1  
tPDIST1  
tRISE1  
tFALL1  
ns  
ns  
ns  
ns  
ns  
tPOFF1 - tPON1  
Load = 4.7 Ω + 1 nF  
50  
OUT1 Fall Time  
Load = 4.7 Ω + 1 nF  
IOUT1F = 40 mA,  
Guaranteed by design  
IOUT1F = 40 mA,  
Guaranteed by design  
VCC2 = 15 V,  
Guaranteed by design  
VCC2 = 15 V,  
0.11  
0.07  
3
0.25  
0.50  
OUT1F On Resistance (Source-side)  
OUT1F On Resistance (Sink-side)  
OUT1F Maximum Current (Source-side)  
OUT1F Maximum Current (Sink-side)  
RONH1F  
RONL1F  
IOUTMAX1FH  
IOUTMAX1FL  
Ω
Ω
A
A
0.18  
0.36  
-
-
-
-
5
Guaranteed by design  
90  
80  
-60  
25  
25  
150  
140  
-10  
50  
210  
200  
+40  
130  
100  
OUT1F Turn ON Time  
OUT1F Turn OFF Time  
OUT1F Propagation Distortion  
OUT1F Rise Time  
tPON1F  
tPOFF1F  
tPDIST1F  
tRISE1F  
tFALL1F  
ns  
ns  
ns  
ns  
ns  
tPOFF1F - tPON1F  
Load = 4.7 Ω + 1 nF  
50  
OUT1F Fall Time  
Load = 4.7 Ω + 1 nF  
IPROOUT1 = 40 mA,  
Guaranteed by design  
IPROOUT2 = 40 mA,  
Guaranteed by design  
VCC2 = 15V,  
Guaranteed by design  
VCC2 = 15V,  
Guaranteed by design  
0.4  
0.1  
1
1.2  
0.3  
-
2.7  
0.8  
-
PROOUT1 On Resistance  
PROOUT2 On Resistance  
PROOUT1 Maximum Current  
PROOUT2 Maximum Current  
RONPRO1  
RONPRO2  
IOUTMAXPRO1  
IOUTMAXPRO2  
Ω
Ω
A
A
Ω
5
-
-
IOUT2 = 40 mA  
Guaranteed by design  
0.10  
0.25  
0.60  
OUT2 On Resistance  
RON2  
OUT2 On Threshold Voltage  
OUT2 Output Delay Time  
Common Mode Transient Immunity  
Temperature Monitor  
VOUT2ON  
tOUT2ON  
CM  
1.8  
-
100  
2.0  
60  
-
2.2  
90  
-
V
ns  
kV/μs  
Guaranteed by design  
Guaranteed by design  
TC Voltage  
VTC  
0.975  
0.97  
8
88.0  
47.6  
6.4  
-
1.000  
1.00  
10  
90.0  
50.0  
10.0  
60  
1.025  
1.03  
14  
92.0  
52.4  
13.6  
160  
V
mA  
kHz  
%
%
%
TO Output Current  
SENSOR Output Frequency  
SENSOR Output Duty1  
SENSOR Output Duty2  
SENSOR Output Duty3  
ITO  
fOSC_TO  
RTC = 10 kΩ  
DSENSOR1  
DSENSOR2  
DSENSOR3  
RSENSORH  
RSENSORL  
VTO = 1.35 V  
VTO = 2.59 V  
VTO = 3.84 V  
ISENSOR = 5 mA  
ISENSOR = 5 mA  
SENSOR On Resistance (Source-side)  
SENSOR On Resistance (Sink-side)  
Ω
Ω
-
60  
160  
50 %  
50 %  
INA  
tPOFF1  
90 %  
tPON1  
OUT1  
10 %  
10 %  
tPOFF1F  
90 %  
tPON1F  
OUT1F  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
7/52  
BM60060FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified Ta = -40 °C to +125 °C, VBATT = 8 V to 24 V, VCC2 = 13.5 V to 24 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Protection Function  
VREG1 UVLO Off Voltage  
VREG1 UVLO On Voltage  
VREG1 UVLO Delay Time  
(OUT1)  
VUVLOREG1H  
VUVLOREG1L  
4.05  
3.95  
4.25  
4.15  
4.45  
4.35  
V
V
tDUVLOREG1OUT  
2
2
10  
10  
30  
30  
μs  
μs  
VREG1 UVLO Delay Time  
(FLT)  
tDUVLOREG1FLT  
VUVLO2H  
VUVLO2L  
tDUVLO2OUT  
Output-side UVLO Off Voltage  
Output-side UVLO On Voltage  
Output-side UVLO Delay Time  
(OUT1)  
Output-side UVLO Delay Time  
(FLT)  
11.5  
10.5  
12.5  
11.5  
13.5  
12.5  
V
V
2
3
10  
-
30  
65  
μs  
μs  
tDUVLO2FLT  
VUVLOREG2H  
VUVLOREG2L  
VREG2 UVLO Off Voltage  
VREG2 UVLO On Voltage  
VREG2 UVLO Delay Time  
(OUT1)  
VREG2 UVLO Delay Time  
(FLT)  
4.05  
3.95  
4.25  
4.15  
4.45  
4.35  
V
V
tDUVLOREG2OUT  
tDUVLOREG2FLT  
tSCPLEB  
2
3
10  
-
30  
65  
μs  
μs  
ns  
SCPIN Leading Edge  
Blanking Time  
400  
450  
500  
Guaranteed by design  
Short Circuit Detection Offset  
TCOMP Pin Output Voltage1  
TCOMP Pin Output Voltage 2  
VSCDET  
VTCOMP1  
VTCOMP2  
-25  
3.72  
1.30  
0
+25  
3.96  
1.40  
mV  
V
VSCPTH = 0.5 V  
VTO = 3.84 V  
VTO = 1.35 V  
VTO = 3.84 V,  
RTCOMP = 9 kΩ  
VTO = 1.35 V,  
RTCOMP = 100 kΩ  
3.84  
1.35  
V
SCPIN Pin Output Current 1  
SCPIN Pin Output Current 2  
ISCPIN1  
409  
427  
445  
μA  
ISCPIN2  
tDSCPPRO  
tDSCPFLT  
11.4  
140  
1
13.5  
230  
-
15.6  
320  
35  
μA  
ns  
μs  
Short Circuit Protection Delay  
Time (PROOUT1, PROOUT2)  
Short Circuit Protection  
Delay Time (FLT)  
100  
160  
0.02  
30  
220  
0.10  
80  
PROOUT2 On Time  
tPRO2ON  
VSCPINL  
RFLTL  
ns  
V
Guaranteed by design  
ISCPIN = 1 mA  
SCPIN Pin Low Voltage  
FLT Output On Resistance  
Fault Output Holding Time  
Gate State H Detection  
Threshold Voltage  
-
-
Ω
IFLT = 5 mA  
tFLTRLS  
20  
40  
60  
ms  
VOSFBH  
12.9  
13.8  
14.7  
V
Gate State L Detection  
Threshold Voltage  
VOSFBL  
ROSFBL  
12.5  
-
13.4  
30  
14.3  
80  
V
OSFB Output On Resistance  
Ω
IOSFB = 5 mA  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves  
(Reference data)  
2.0  
1.8  
1.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VBATT = 14 V  
Ta = +125 °C  
Ta = +25 °C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VBATT = 24 V  
VBATT = 8 V  
Ta = -40 °C  
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 1. Main Power Supply Circuit Current 1  
vs Main Power Supply Voltage  
Figure 2. Main Power Supply Circuit Current 1  
vs Temperature  
(FET_G switching operation, INA not switching)  
(FET_G switching operation, INA not switching)  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
VBATT = 14 V  
Ta = +125 °C  
Ta = +25 °C  
VBATT = 24 V  
VBATT = 8 V  
Ta = -40 °C  
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 3. Main Power Supply Circuit Current 2  
vs Main Power Supply Voltage  
Figure 4. Main Power Supply Circuit Current 2  
vs Temperature  
(FET_G not switching, INA not switching)  
(FET_G not switching, INA not switching)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
2.1  
1.9  
1.7  
Ta = +125 °C  
VBATT = 14 V  
Ta = +25 °C  
1.5  
VBATT = 24 V  
1.3  
1.1  
VBATT = 8 V  
0.9  
Ta = -40 °C  
0.7  
0.5  
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Main Power SupplyVoltage : VBATT [V]  
Temperature : Ta [°C]  
Figure 5. Main Power Supply Circuit Current 3 vs Main  
Power Supply Voltage  
Figure 6. Main Power Supply Circuit Current 3 vs  
Temperature  
(FET_G switching operation, INA = 10 kHz, Duty = 50 %)  
(FET_G switching operation, INA = 10 kHz, Duty = 50 %)  
2.3  
2.1  
1.9  
2.3  
2.1  
1.9  
VBATT = 14 V  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Ta = +125 °C  
Ta = +25 °C  
VBATT = 24 V  
VBATT = 8 V  
Ta = -40 °C  
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 7. Main Power Supply Circuit Current 4 vs Main  
Power Supply Voltage  
Figure 8. Main Power Supply Circuit Current 4 vs  
Temperature  
(FET_G switching operation, INA = 20 kHz, Duty = 50 %)  
(FET_G switching operation, INA = 20 kHz, Duty = 50 %)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
4.6  
3.8  
4.6  
3.8  
3.0  
2.2  
1.4  
Ta = +25 °C  
Ta = +125 °C  
3.0  
2.2  
1.4  
VCC2 = 13.5 V  
VCC2 = 15 V  
VCC2 = 24 V  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Figure 9. Output-side Circuit Current vs  
Output-side Supply Voltage  
Figure 10. Output-side Circuit Current vs  
Temperature  
5.50  
5.25  
5.00  
4.75  
4.50  
5.50  
5.25  
5.00  
4.75  
4.50  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
VBATT = 8 V  
VBATT = 14 V  
VBATT = 24 V  
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 11. VREG1 Output Voltage vs  
Main Power Supply Voltage  
Figure 12. VREG1 Output Voltage vs  
Temperature  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
5.2  
5.2  
5.1  
5.0  
4.9  
4.8  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
VCC2 = 13.5 V  
VCC2 = 15 V  
VCC2 = 24 V  
5.1  
5.0  
4.9  
4.8  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Figure 13. VREG2 Output Voltage vs  
Output-side Supply Voltage  
Figure 14. VREG2 Output Voltage vs  
Temperature  
5.50  
5.25  
5.00  
4.75  
4.50  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 15. FET_G Output Voltage H vs  
Main Power Supply Voltage  
(IFET_G = 0 A)  
Figure 16. FET_G Output Voltage L vs  
Main Power Supply Voltage  
(IFET_G = 0 A)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
12.0  
10.5  
9.0  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
Ta = +25 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = +125 °C  
7.5  
6.0  
4.5  
Ta = -40 °C  
Ta = -40 °C  
3.0  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 17. FET_G On Resistance vs  
Main Power Supply Voltage  
(Source-side)  
Figure 18. FET_G On Resistance vs  
Main Power Supply Voltage  
(Sink-side)  
50.0  
42.5  
35.0  
27.5  
20.0  
12.5  
5.0  
120  
115  
110  
105  
100  
95  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
90  
Ta = -40 °C  
85  
80  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 19. Oscillation Frequency vs  
Main Power Supply Voltage  
Figure 20. Soft-start Time vs Main Power  
Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
1.53  
1.52  
0.8  
0.6  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0.4  
Ta = -40 °C  
1.51  
1.50  
1.49  
1.48  
1.47  
Ta = +25 °C  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
Ta = +125 °C  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 21. FB Threshold Voltage vs Main  
Power Supply Voltage  
Figure 22. FB Input Current vs Main  
Power Supply Voltage  
(FB = 5 V)  
160  
140  
120  
100  
80  
-40  
Ta = +25 °C  
Ta = -40 °C  
-60  
-80  
Ta = +125 °C  
Ta = +25 °C  
-100  
-120  
-140  
-160  
Ta = +125 °C  
60  
Ta = -40 °C  
40  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Power SupplyVoltage : VBATT [V]  
Power SupplyVoltage : VBATT [V]  
Figure 23. COMP Sink Current vs Main  
Power Supply Voltage  
Figure 24. COMP Source Current vs Main  
Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
14/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
6
5
60  
58  
56  
54  
52  
50  
Ta = +125 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
4
3
2
1
0
Ta = -40 °C  
5.5  
6
6.5  
7
7.5  
8
12  
16  
20  
24  
V_BATT UVLO On/Off Voltage : VUVLOBATTH/L [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 25. FLT Output Voltage vs V_BATT  
UVLO On/Off Voltage  
Figure 26. Maximum On Duty vs Main  
Power Supply Voltage  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
1.88  
1.17  
1.15  
1.13  
1.11  
1.09  
1.07  
1.05  
1.03  
Ta = +25 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = +125 °C  
Ta = +125 °C  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 28. Under Voltage Detection Threshold  
vs Main Power Supply Voltage  
Figure 27. Over Voltage Detection Threshold  
vs Main Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.23  
60  
50  
40  
30  
20  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 30. Switching Controller Protection  
Holding Time vs Main Power Supply Voltage  
Figure 29. Over-current Detection Threshold  
vs Main Power Supply Voltage  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
85  
70  
55  
40  
25  
Ta = +25 °C  
Ta = -40 °C  
H Level  
L Level  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = +125 °C  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 32. Logic Pull-down Resistance vs  
Main Power Supply Voltage  
(INA, INB, GRSEL)  
Figure 31. Logic High/Low Level Input  
Voltage vs Main Power Supply Voltage  
(INA, INB, GRSEL)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
90  
73  
0.42  
0.39  
0.36  
0.33  
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
Ta = +125 °C  
Ta = +25 °C  
56  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
39  
22  
5
Ta = -40 °C  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
VREG1 Output Voltage : VREG1 [V]  
Figure 34. OUT1 On Resistance  
(Source-side) vs Output-side Supply Voltage  
(IOUT1 = 40 mA)  
Figure 33. Logic Input Filtering Time vs  
VREG1 Output Voltage  
(INA, INB)  
0.40  
0.37  
0.34  
0.31  
0.28  
0.25  
0.22  
0.19  
0.16  
0.13  
0.10  
0.07  
210  
190  
170  
150  
130  
110  
90  
Ta = +125 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 35. OUT1 On Resistance (Sink-side) vs  
Output-side Supply Voltage  
(IOUT1 = 40 mA)  
Figure 36. OUT1 Turn ON Time vs  
Output-side Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
125.0  
112.5  
100.0  
87.5  
75.0  
62.5  
50.0  
37.5  
25.0  
200  
180  
Ta = +125 °C  
Ta = +25 °C  
160  
140  
120  
100  
80  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 38. OUT1 Rise Time vs  
Output-side Supply Voltage  
(Load = 4.7 Ω + 1 nF)  
Figure 37. OUT1 Turn OFF Time vs  
Output-side Supply Voltage  
100.0  
0.50  
0.47  
0.44  
0.41  
0.38  
0.35  
0.32  
0.29  
0.26  
0.23  
0.20  
0.17  
0.14  
0.11  
87.5  
75.0  
62.5  
50.0  
37.5  
25.0  
Ta = +125 °C  
Ta = +25 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 40. OUT1F On Resistance (Source-side)  
vs Output-side Supply Voltage  
(IOUT1F = 40 mA)  
Figure 39. OUT1 Fall Time vs Output-side  
Supply Voltage  
(Load = 4.7 Ω + 1 nF)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.36  
0.33  
210  
190  
170  
150  
130  
110  
90  
Ta = +125 °C  
0.30  
Ta = +125 °C  
0.27  
0.24  
Ta = +25 °C  
0.22  
Ta = -40 °C  
0.19  
0.16  
0.13  
Ta = +25 °C  
Ta = -40 °C  
0.10  
0.07  
13.5 15 16.5 18 19.5 21 22.5 24  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 42. OUT1F Turn ON Time vs  
Output-side Supply Voltage  
Figure 41. OUT1F On Resistance (Sink-side)  
vs Output-side Supply Voltage  
(IOUT1F = 40 mA)  
130.0  
200  
180  
160  
140  
120  
100  
80  
115.0  
100.0  
85.0  
70.0  
55.0  
40.0  
25.0  
Ta = +125 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +25 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 44. OUT1F Rise Time vs  
Output-side Supply Voltage  
(Load = 4.7 Ω + 1 nF)  
Figure 43. OUT1F Turn OFF Time vs  
Output-side Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
100.0  
87.5  
75.0  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
Ta = +125 °C  
Ta = +125 °C  
62.5  
Ta = -40 °C  
Ta = +25 °C  
50.0  
Ta = +25 °C  
0.8  
0.6  
0.4  
37.5  
25.0  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 45. OUT1F Fall Time vs  
Output-side Supply Voltage  
(Load = 4.7 Ω + 1 nF)  
Figure 46. PROOUT1 On Resistance vs  
Output-side Supply Voltage  
(IPROOUT1 = 40 mA)  
0.8  
0.6  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
Ta = +125 °C  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 47. PROOUT2 On Resistance vs  
Output-side Supply Voltage  
(IPROOUT2 = 40 mA)  
Figure 48. OUT2 On Resistance vs  
Output-side Supply Voltage  
(IOUT2 = 40 mA)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
90  
80  
70  
60  
50  
40  
30  
20  
2.2  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = +125 °C  
2.1  
2
Ta = +25 °C  
Ta = -40 °C  
1.9  
1.8  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 50. OUT2 Output Delay Time vs  
Output-side Supply Voltage  
Figure 49. OUT2 On Threshold Voltage vs  
Output-side Supply Voltage  
1.03  
1.025  
Ta = +125 °C  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
Ta = +25 °C  
1.013  
1.000  
0.988  
0.975  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 52. TO Output Current vs Output-side  
Supply Voltage  
Figure 51. TC Voltage vs Output-side  
Supply Voltage  
(RTC = 10 kΩ)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
10  
14  
13  
12  
11  
10  
9
Ta = +25 °C  
1
Ta = -40 °C  
Ta = +125 °C  
8
0.1  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
1
10  
100  
TC Resistance : RTC [kΩ]  
Figure 53. TO Output Current vs TC  
Resistance  
Figure 54. SENSOR Output Frequency vs  
Output-side Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
92  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
91  
90  
89  
88  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
1.35 1.77 2.18 2.60 3.01 3.43 3.84  
TO Voltage [V]  
Figure 55. SENSOR Output Duty vs TO Voltage  
Figure 56. SENSOR Output Duty1 vs Output-side  
Supply Voltage  
(VTO = 1.35 V)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
52.4  
13.6  
12.4  
11.2  
10  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
51.8  
51.2  
50.6  
50  
49.4  
48.8  
48.2  
47.6  
8.8  
7.6  
6.4  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 57. SENSOR Output Duty2 vs  
Output-side Supply Voltage  
(VTO = 2.59 V)  
Figure 58. SENSOR Output Duty3 vs  
Output-side Supply Voltage  
(VTO = 3.84 V)  
160  
130  
100  
70  
160  
130  
100  
70  
Ta = +125 °C  
Ta = +125 °C  
40  
40  
Ta = +25 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
10  
10  
8
12  
16  
20  
24  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 59. SENSOR On Resistance (Source-side)  
vs Main Power Supply Voltage  
Figure 60. SENSOR On Resistance (Sink-side)  
vs Main Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
6
5
30  
26  
22  
18  
14  
10  
6
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
4
3
2
1
0
2
-40  
0
40  
80  
120  
3.95  
4.05  
4.15  
4.25  
4.35  
4.45  
VREG1 Output Voltage : VREG1 [V]  
Temperature : Ta [°C]  
Figure 61. FLT Voltage vs VREG1 Output Voltage  
(VREG1 UVLO On/Off Voltage)  
Figure 62. VREG1 UVLO Delay Time (OUT1)  
vs Temperature  
30  
6
5
4
3
2
1
0
26  
22  
18  
14  
10  
6
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
2
-40  
0
40  
80  
120  
10.5  
11  
11.5  
12  
12.5  
13  
13.5  
Output-side SupplyVoltage : VCC2 [V]  
Temperature : Ta [°C]  
Figure 64. FLT Voltage vs Output-side Supply Voltage  
(Output-side UVLO On/Off Voltage)  
Figure 63. VREG1 UVLO Delay Time (FLT)  
vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
30  
26  
22  
18  
14  
10  
6
63  
53  
43  
33  
23  
13  
3
2
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 66. Output-side UVLO Delay Time (FLT)  
vs Temperature  
Figure 65. Output-side UVLO Delay Time (OUT1)  
vs Temperature  
6
5
4
3
2
1
0
30  
26  
22  
18  
14  
10  
6
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
2
-40  
0
40  
80  
120  
3.95  
4.05  
4.15  
4.25  
4.35  
4.45  
VREG2 Output Voltage : VREG2 [V]  
Temperature : Ta [°C]  
Figure 67. FLT Voltage vs VREG2 Output Voltage  
(VREG2 UVLO On/Off Voltage)  
Figure 68. VREG2 UVLO Delay Time (OUT1)  
vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
63  
53  
43  
33  
23  
13  
3
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
-40  
0
40  
80  
120  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Temperature : Ta [°C]  
Figure 69. VREG2 UVLO Delay Time (FLT)  
vs Temperature  
Figure 70. SCPIN Leading Edge Blanking Time  
vs Output-side Supply Voltage  
3.96  
3.92  
3.88  
3.84  
3.8  
25  
20  
15  
10  
5
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0
-5  
-10  
-15  
-20  
-25  
3.76  
3.72  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 72. TCOMP Pin Output Voltage1 vs  
Output-side Supply Voltage  
(VTO = 3.84 V)  
Figure 71. Short Circuit Detection Offset vs  
Output-side Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
26/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
1.40  
445  
439  
433  
427  
421  
415  
409  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
1.38  
1.36  
1.34  
1.32  
1.30  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 74. SCPIN Pin Output Current 1 vs  
Output Side Supply Voltage  
Figure 73. TCOMP Pin Output Voltage2 vs  
Output-side Supply Voltage  
(VTO = 1.35 V)  
(VTO = 3.84 V, RTCOMP = 9 kΩ)  
15.6  
15  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
14.4  
13.8  
13.2  
12.6  
12  
Ta = +125 °C  
Ta = +25 °C  
11.4  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Figure 76. Short Circuit Protection Delay Time  
(PROOUT1, PROOUT2) vs Output-side  
Supply Voltage  
Figure 75. SCPIN Pin Output Current 2 vs  
Output-side Supply Voltage  
(VTO = 1.35 V, RTCOMP = 100 kΩ)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
27/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
220  
200  
180  
160  
140  
120  
100  
33  
29  
25  
21  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
17  
13  
9
5
1
13.5 15 16.5 18 19.5 21 22.5 24  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Output_side SupplyVoltage : VCC2 [V]  
Figure 78. PROOUT2 On Time vs Output-side  
Supply Voltage  
Figure 77. Short Circuit Protection Delay Time  
(FLT) vs Output-side Supply Voltage  
0.1  
0.08  
0.06  
0.04  
0.02  
0
80  
70  
60  
50  
40  
30  
20  
10  
Ta = +125 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Figure 79. SCPIN Pin Low Voltage vs  
Output-side Supply Voltage  
(ISCPIN = 1 mA)  
Figure 80. FLT Output On Resistance vs  
Main Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/52  
TSZ22111 15 001  
BM60060FV-C  
Typical Performance Curves - continued  
(Reference data)  
60  
14.7  
14.5  
14.3  
14.1  
13.9  
13.7  
13.5  
13.3  
13.1  
12.9  
12.7  
12.5  
Ta = +25 °C  
50  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
H State  
L State  
Ta = +125 °C  
40  
30  
20  
Ta = -40 °C  
Ta = +25 °C  
Ta =
+
125
°
C  
8
12  
16  
20  
24  
13.5 15 16.5 18 19.5 21 22.5 24  
Output-side SupplyVoltage : VCC2 [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 81. Fault Output Holding Time vs  
Main Power Supply Voltage  
Figure 82. Gate State H/L Detection Threshold  
Voltage vs Output-side Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Figure 83. OSFB Output On Resistance vs  
Main Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/52  
TSZ22111 15 001  
BM60060FV-C  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input-side) Circuit Current  
Side 2 (Output-side) Circuit Current  
Side 1 (Input-side) Consumption Power  
Side 2 (Output-side) Consumption Power  
Isolation Voltage  
Value  
1.2  
Unit  
mA  
mA  
mW  
mW  
Vrms  
°C  
Conditions  
VBATT = 14 V, OUT1 = L, OUT1F = Hi-Z  
VCC2 = 15 V, OUT1 = L, OUT1F = Hi-Z  
VBATT = 14 V, OUT1 = L, OUT1F = Hi-Z  
VCC2 = 15 V, OUT1 = L, OUT1F = Hi-Z  
3.0  
16.8  
45  
2500  
125  
150  
150  
5.6  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Storage Temperature  
Maximum Data Transmission Rate  
°C  
°C  
MHz  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
30/52  
BM60060FV-C  
Description of Pins and Cautions on Layout of Board  
1. V_BATT (Main power supply pin)  
This is the main power supply pin. Connect a bypass capacitor between the V_BATT pin and the GND1 pin in order to  
suppress voltage variations.  
2. VREG1 (Input-side internal power supply pin)  
This is the internal power supply pin on the input-side. Be sure to connect a bypass capacitor between the VREG1 pin  
and the GND1 pin in order to prevent oscillation and suppress voltage variation due to the driving current of the internal  
transformer.  
3. GND1 (Input-side ground pin)  
This pin is the ground pin on the input-side.  
4. VCC2 (Output-side power supply pin)  
This is the power supply pin on the output-side. To reduce voltage fluctuations due to the output current, connect a  
bypass capacitor between the VCC2 pin and the GND2 pin.  
5. VREG2 (Output-side internal power supply pin)  
This is the internal power supply pin on the output-side. Be sure to connect a bypass capacitor between the VREG2 pin  
and the GND2 pin in order to prevent oscillation and suppress voltage variation due to the driving current of the internal  
transformer.  
6. GND2 (Output-side ground pin)  
This is the ground pin on the output-side. Connect the GND2 pin to the emitter/source of output device.  
7. INA, INB (Control input pin), GRSEL (Gate resistance switching pin)  
These are pins for determining the output logic. The OUT1F pin holds the previous state after GRSEL is switched and  
until the next the OUT1 pin is switched.  
GRSEL  
INB  
L
INA  
L
OUT1  
OUT1F  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
H
L
L
L
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
L
H
L
8. FLT (Fault output pin)  
The FLT pin is an open drain pin that sends a fault signal when a fault occurs (i.e., when the under voltage lockout  
function (UVLO) or short circuit protection function (SCP) is activated).  
State  
FLT  
Hi-Z  
L
While in normal operation  
When a Fault occurs (UVLO/SCP)  
9. OSFB (Output pin for monitoring gate condition)  
The OSFB pin is an open drain pin that outputs L when the gate theory of output element being monitored by the  
PROOUT1 pin is H. However, the OSFB pin becomes Hi-Z when a fault occurs (i.e., when the under voltage lockout  
function (UVLO) or short circuit protection function (SCP) is activated).  
Status  
PROOUT1 (input)  
OSFB  
H
L
L
While in normal operation  
When a Fault occurs (UVLO / SCP)  
Hi-Z  
X
Hi-Z  
X: Don't care  
10. SENSOR (Temperature information output pin)  
This is a pin outputs the voltage of the TO pin converted to Duty cycle.  
11. FB (Error amplifier inverting input pin for switching controller)  
This is a voltage feedback pin of the switching controller. This pin combine with voltage monitoring at overvoltage  
protection function and under voltage protection function for switching controller. When overvoltage or under voltage  
protection is activated, switching controller will be at OFF state (the FET_G pin outputs L). When the switching  
controller protection holding time tDCDCRLS is completed, the protection function will be released. Under voltage function  
is not activated during soft-start. Connect it to the VREG1 pin when the switching controller is not used.  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
31/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Pins and Cautions on Layout of Board continued  
12. COMP (Error amplifier output pin for switching controller)  
This is the gain control pin of the switching controller. Connect a phase compensation capacitor and resistor. When  
the switching controller is not used, connect it to the GND1 pin.  
13. FET_G (MOS FET for transformer drive control pin for switching controller)  
This is a MOS FET for transformer drive control pin for switching controller. Leave it open when the switching controller  
is not used.  
14. SENSE (Current feedback resistor connection pin for switching controller)  
This is a pin connected to the resistor of the switching controller current feedback. This pin combines with current  
detection at overcurrent restriction function for switching controller. When overcurrent restriction is activated, switching  
controller will be at OFF state (the FET_G pin outputs Low), and the overcurrent restriction function will be released in  
the next switching period. When the switching controller is not used, connect it to the VREG1 pin.  
15. OUT1, OUT1F (Output pin)  
The OUT1 pin and the OUT1F pin are gate driving pins.  
16. OUT2 (Miller clamp pin)  
This is the miller clamp pin for preventing a rise of gate voltage due to miller current of output element. It also functions  
as a pin for monitoring gate voltage for miller clamp and the OUT2 pin voltage become not more than VOUT2ON (Typ 2.0 V),  
miller clamp function operates. The OUT2 pin should be connect to the GND2 pin when miller clamp function is not  
used.  
17. PROOUT1 (Soft turn off pin for short circuit protection / Gate voltage input pin), PROOUT2 (Fast turn off pin for short  
circuit protection)  
They are pins for soft turn off of output element when short-circuit protection is activated. Both the PROOUT1 pin and  
the PROOUT2 pin turn on for tPRO2ON from short circuit detection. After tPRO2ON, only the PROOUT1 pin turns on.  
Leave the PROOUT2 pin open when the fast turn off function is not used. It also functions as the PROOUT1 pin for  
monitoring gate voltage for output state feedback function.  
18. SCPIN (Short circuit detection pin), SCPTH (Short circuit detection threshold setting pin)  
The SCPIN pin and the SCPTH pin are current detection pins for short circuit protection. When the SCPIN pin voltage  
becomes the SCPTH pin voltage, or more, the short circuit protection function is activated. Built-in MOSFET between  
the SCPIN pin and the GND2 pin for discharging electric charge of external filter when the OUT1 pin is L state. In the  
open state, the IC may possibly malfunction. To avoid this risk, apply voltage to SCPTH pin even when not using the  
short circuit protection function and connect the SCPIN pin to the GND2 pin.  
19. TCOMP (Temperature compensation pin of short circuit detection voltage)  
The TCOMP pin connects a resistor that sets the SCPIN pin output current according to TO pin voltage.  
20. TC (Resistor connection pin for setting constant current)  
The TC pin is a resistor connection for setting the constant current output. If an arbitrary resistance value is connected  
between the TC pin and the GND2 pin, it is possible to set the constant current value output from the TO1 pin.  
21. TO (Constant current output / sensor voltage input pin)  
The TO pin is constant current output / voltage input pins. It can be used as a sensor input by connecting an element  
with arbitrary impedance between the TO pin and the GND2 pin.  
Description of Functions and Examples of Constant Setting  
1. Fault Status Output  
This function is used to set a fault signal from the FLT pin when a fault occurs (i.e., when the under voltage lockout  
function (UVLO) or short circuit protection function (SCP) is activated) and hold the fault signal until fault output holding  
time (tFLTRLS) is completed.  
Fault occurs (UVLO or SCP)  
Status  
Status  
Normal  
FLT pin  
Hi-Z  
L
Hi-Z  
FLT  
Fault occurs  
L
H
OUT1  
L
Fault output holding time (tFLTRLS  
)
Figure 84. Fault Status Output Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
32/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
2. Under Voltage Lockout (UVLO) Function  
The BM60060FV-C incorporates the under voltage lockout (UVLO) function on V_BATT, VCC2, VREG1 and VREG2.  
When the power supply voltage drops to the UVLO ON voltage, the OUT1 pin and the FLT pin will both output the L”  
signal and the OUT1F pin becomes the "Hi-Z" state. However, if V_BATT or VREG1 voltage drops to the UVLO ON  
voltage when the OUT1F pin is "L", the OUT1F pin holds "L" state. When the power supply voltage rises to the UVLO  
OFF voltage, UVLO will be reset after the fault output holding time tFLTRLS is completed. However, if the INA pin is "L" or  
the INB pin is "H", when UVLO reset timing, the OUT1F pin holds the previous state until the next the OUT1 pin is  
switched even if the GRSEL pin is H. In addition, to prevent malfunction due to noise, filtering time are set on both  
V_BATT, VCC2, VREG1 and VREG2.  
H
GRSEL  
L
H
INA  
L
UVLOBATTH  
UVLOBATTL  
V
V_BATT  
V
Hi-Z  
L
FLT  
H
OUT1  
OUT1F  
FET_G  
L
H
Hi-Z  
L
H
L
Hi-Z  
Figure 85. V_BATT UVLO Function Operation Timing Chart (When GRSEL = L)  
H
L
GRSEL  
INA  
H
L
UVLOREG1H  
UVLOREG1L  
V
VREG1  
V
Hi-Z  
L
FLT  
OUT1  
H
L
H
Hi-Z  
OUT1F  
L
H
L
FET_G  
Hi-Z  
Figure 86. VREG1 UVLO Function Operation Timing Chart (When GRSEL = L)  
H
L
GRSEL  
INA  
H
L
UVLO2H  
V
VCC2  
UVLO2L  
V
Hi-Z  
L
FLT  
OUT1  
H
Hi-Z  
L
H
L
Hi-Z  
OUT1F  
H
L
FET_G  
Figure 87. VCC2 UVLO Function Operation Timing Chart (When GRSEL = L)  
H
L
H
L
GRSEL  
INA  
UVLOREG2H  
V
VREG2  
UVLOREG2L  
V
Hi-Z  
L
FLT  
OUT1  
H
Hi-Z  
L
H
Hi-Z  
OUT1F  
FET_G  
L
H
L
Figure 88. VREG2 UVLO Function Operation Timing Chart (When GRSEL = L)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
33/52  
TSZ22111 15 001  
BM60060FV-C  
2. Under Voltage Lockout (UVLO) Function continued  
H
L
GRSEL  
INA  
H
L
UVLOBATTH  
V
V_BATT  
UVLOBATTL  
V
Hi-Z  
L
FLT  
OUT1  
H
L
H
Hi-Z  
OUT1F  
L
H
L
Hi-Z  
FET_G  
Figure 89. V_BATT UVLO Function Operation Timing Chart (When GRSEL = H)  
H
L
GRSEL  
INA  
H
L
UVLOREG1H  
UVLOREG1L  
V
VREG1  
V
Hi-Z  
L
FLT  
OUT1  
H
L
H
OUT1F  
Hi-Z  
L
H
L
Hi-Z  
FET_G  
Figure 90. VREG1 UVLO Function Operation Timing Chart (When GRSEL = H)  
H
L
GRSEL  
INA  
H
L
UVLO2H  
V
VCC2  
UVLO2L  
V
Hi-Z  
L
FLT  
OUT1  
H
Hi-Z  
L
H
L
Hi-Z  
OUT1F  
H
L
FET_G  
Figure 91. VCC2 UVLO Function Operation Timing Chart (When GRSEL = H)  
H
L
H
L
GRSEL  
INA  
UVLOREG2H  
V
VREG2  
UVLOREG2L  
V
Hi-Z  
L
FLT  
OUT1  
H
Hi-Z  
L
H
OUT1F  
Hi-Z  
L
H
L
FET_G  
Figure 92. VREG2 UVLO Function Operation Timing Chart (When GRSEL = H)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
34/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
3. Short Circuit Protection (SCP) Function  
Continuing the state where the SCPIN pin voltage the SCPTH pin voltage for tDSCPPRO or more, the short circuit  
protection function is activated. Once the function is activated, the OUT1 pin and the OUT1F pin become "Hi-Z" state  
and both the PROOUT1 pin and the PROOUT2 pin turn on (Fast Turn Off). After tPRO2ON since the short circuit  
detection, the PROOUT2 pin turns off (Soft Turn Off). Furthermore, when the SCPIN pin voltage < the SCPTH pin  
voltage and the OUT2 pin voltage < VOUT2ON, the OUT1 pin and the OUT2 pin become L. In additional, the FLT pin  
becomes L after tDSCPFLT since the short circuit protection function is activated. Finally, when the fault output holding  
time tFLTRLS is completed, the SCP function will be released and the FLT pin becomes "Hi-Z". The PROOUT1 pin hold L  
state until the OUT1 pin becomes H.  
This IC has a built-in temperature characteristics correction function for short circuit detection voltage. Since the SCPIN  
pin outputs current ISCPIN according to the TO pin voltage, the IC is capable of correcting the temperature characteristics  
for short circuit detection voltage using voltage drop of resistor RSCPCOMP connected to the SCPIN pin in series. The  
SCPIN pin output current ISCPIN can be formulated as:  
ISCPIN [mA] = VTO [V] /RTCOMP [kΩ]  
Therefore, short circuit detection voltage VSC can be formulated as:  
VSC [V] = VSCPTH [V] - VTO [V] × RSCPCOMP [kΩ] / RTCOMP [kΩ]  
Still more, built-in MOSFET between the SCPIN pin and the GND2 pin for discharging electric charge of external filter  
when OUT1 is L state. This MOSFET turns off after tSCPLEB since the OUT1 pin becomes H. And this MOSFET  
immediately turns on after the OUT1 pin becomes L. Also, this MOSFET immediately turns on after short circuit  
detection.  
VCC2  
OUT2  
+
-
OUT1  
OUT1F  
LOGIC  
PROOUT1  
PROOUT2  
FLT  
FLT  
SCPIN  
RSCPCOMP  
+
-
VREG2  
GND1  
SCPTH  
TCOMP  
TO  
TEMP  
COMPENSATION  
GND2  
Figure 93. SCP Function Block Diagram  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
35/52  
TSZ22111 15 001  
BM60060FV-C  
3. Short Circuit Protection (SCP) Function continued  
H
L
INA  
VSCDET  
SCPIN  
tDSCPPRO  
OUT1  
tDSCPPRO  
H
Hi-Z  
L
H
OUT1F  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT1  
PROOUT2  
L
Hi-Z  
L
Hi-Z  
L
tDSCPFLT  
tDSCPFLT  
FLT  
Gate Voltage  
VOUT2ON  
tPRO2ON  
VOUT2ON  
tPRO2ON  
tFLTRLS  
tFLTRLS  
Figure 94. SCP Function Operation Timing Chart (When GRSEL = L)  
START  
Yes  
No  
No  
No  
VOUT2 < VOUT2ON  
No  
No  
VSCPIN VSCPTH  
Yes  
Yes  
Exceed tDSCPPRO  
Yes  
OUT1 = L, OUT2 = L  
OUT1 = Hi-Z, OUT1F = Hi-Z  
PROOUT1 = L, PROOUT2 = L  
FLT = L (Note 11)  
Exceed tFLTRLS  
Yes  
No  
FLT = Hi-Z  
Exceed tPRO2ON  
Yes  
PROOUT2 = Hi-Z  
INA = H  
Yes  
No  
OUT1 = H  
OUT2 = Hi-Z, PROOUT1 = Hi-Z  
VSCPIN < VSCPTH  
Yes  
(Note 11) The FLT pin becomes "L" after tDSCPFLT  
Figure 95. SCP Function Operation Status Transition Diagram (When GRSEL = L)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
36/52  
BM60060FV-C  
3. Short Circuit Protection (SCP) Function continued  
H
L
INA  
VSCDET  
SCPIN  
tDSCPPRO  
OUT1  
tDSCPPRO  
H
Hi-Z  
L
H
OUT1F  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT1  
PROOUT2  
L
Hi-Z  
L
Hi-Z  
L
tDSCPFLT  
tDSCPFLT  
FLT  
Gate Voltage  
VOUT2ON  
tPRO2ON  
VOUT2ON  
tPRO2ON  
tFLTRLS  
tFLTRLS  
Figure 96. SCP Function Operation Timing Chart (When GRSEL = H)  
START  
Yes  
No  
No  
No  
VOUT2 < VOUT2ON  
No  
No  
VSCPIN VSCPTH  
Yes  
Yes  
Exceed tDSCPPRO  
Yes  
OUT1 = L, OUT2 = L  
OUT1 = Hi-Z, OUT1F = Hi-Z  
PROOUT1 = L, PROOUT2 = L  
FLT = L (Note 12)  
Exceed tFLTRLS  
Yes  
No  
FLT = Hi-Z  
Exceed tPRO2ON  
Yes  
PROOUT2 = Hi-Z  
INA = H  
Yes  
No  
OUT1 = H, OUT1F = H  
OUT2 = Hi-Z, PROOUT1 = Hi-Z  
VSCPIN < VSCPTH  
Yes  
(Note 12) The FLT pin becomes "L" after tDSCPFLT  
Figure 97. SCP Function Operation Status Transition Diagram (When GRSEL = H)  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
37/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
4. Miller Clamp (MC) Function  
When the OUT1 pin = L and the OUT2 pin voltage < VOUT2ON, internal MOS of the OUT2 pin is turned ON and miller  
clamp function operates. After miller clamp function operates, the OUT2 pin keeps L state until the OUT1 pin goes H  
again. While the short circuit protection function is activated, miller clamp function operates when the OUT2 pin voltage  
< VOUT2ON  
.
Short Circuit  
OUT1  
H
OUT2 (Input)  
X
OUT2 (Output)  
Hi-Z  
Hi-Z  
L
Not detected  
L
Not less than VOUT2ON  
less than VOUT2ON  
Not less than VOUT2ON  
less than VOUT2ON  
L
Hi-Z  
Hi-Z  
Hi-Z  
L
Detected  
VCC2  
OUT1  
LOGIC  
OUT2  
+
-
VOUT2ON  
GND2  
Figure 98. Miller Clamp Function Block Diagram  
H
OUT1  
OUT2 (Input)  
L
tOUT2ON  
VOUT2ON  
0V  
Hi-Z  
OUT2 (Output)  
L
Figure 99. Miller Clamp Function Operation Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
38/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
5. Gate Resistance Switching Function  
When the GRSEL pin is L, the OUT1 pin alone outputs the theory according to the input of the INA pin and INB pin, and  
the OUT1F pin becomes Hi-Z. When the GRSEL pin is H, the OUT1 pin and the OUT1F pin output the theory  
according to the input of the INA pin and INB pin. The OUT1F pin holds the previous state until next switching of the  
OUT1 pin after the GRSEL pin is switched.  
GRSEL  
INB  
L
INA  
L
OUT1  
OUT1F  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
H
L
L
L
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
L
H
L
H
GRSEL  
L
H
INA  
L
H
OUT1  
L
H
OUT1F  
Hi-Z  
L
Figure 100. Gate Resistance Switching Function Operation Timing Chart  
6. Output State Feedback Function  
When the output element gate state being monitored at the PROOUT1 pin is H, the OSFB pin becomes L. However,  
when a fault occurs (i.e., when the under voltage lockout function (UVLO) or short circuit protection function (SCP) is  
activated), the OSFB pin becomes Hi-Z.  
State  
PROOUT1 Input  
OSFB  
L
H
L
Normal operation  
Fault occurs  
Hi-Z  
X
Hi-Z  
X: Don't care  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
39/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
7. Switching Controller  
(1) Basic action  
This IC has a built-in switching controller which repeats ON/OFF synchronizing with internal clock. When V_BATT  
voltage is supplied (VBATT > VUVLOBATTH and VREG1 > VUVLOREG1), the FET_G pin starts switching by soft-start. Output  
voltage is determined by the following equation by external resistance and winding ratio nof flyback transformer (n =  
VOUT2 side winding number/VOUT1 side winding number)  
VOUT = VFB×{(R1+R2)/R2} ×n [V]  
(2) MAX DUTY  
When, for example, output load is large, and voltage level of the SENSE pin does not reach current detection level,  
output is forcibly turned OFF by Maximum On Duty (DONMAX).  
(3) Over voltage protection function, under voltage protection function  
The switching controller has protection function as overvoltage protection (OVP) and under voltage protection (UVP).  
OVP and UVP monitor the voltage of the FB pin. When the protection function is activated, switching controller will  
be OFF state (the FET_G pin outputs Low). The switching controller protection holding time (tDCDCRLS) is completed,  
the protection function will be released. Under voltage function is not activated during soft-start.  
VOVTH  
FB  
0V  
tDCDCRLS  
FET_G  
Figure 101. Over Voltage Protection Function Operation Timing Chart  
V_BATT  
0V  
VUVTH  
tss  
FB  
0V  
tDCDCRLS  
FET_G  
Figure 102. Under Voltage Protection Function Operation Timing Chart  
(4) Overcurrent restriction function  
The switching controller has overcurrent restriction function that monitors the SENSE pin voltage. When overcurrent  
restriction is activated, switching controller will be at OFF state (FET_G = L), and the overcurrent restriction function  
will be released in the next switching period.  
Internal Clock  
VOCTH  
SENSE  
0V  
FET_G  
Figure 103. Overcurrent Restriction Function Operation Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
40/52  
TSZ22111 15 001  
12.Jul.2021 Rev.002  
BM60060FV-C  
7. Switching Controller continued  
(5) Pin conditions when switching controller is not used  
Implement pin setting as shown below when switching power supply is not used.  
Pin Number  
Pin Name  
FB  
Treatment Method  
Connect to VREG1  
22  
23  
24  
25  
26  
27  
COMP  
V_BATT  
VREG1  
FET_G  
SENSE  
Connect to GND1  
Connect power supply  
Connect capacitor  
No connection  
Connect to VREG1  
Soft start  
R1  
R2  
-
FB  
UVLO_BATT  
VFB  
+
OVP  
UVP  
COMP  
V_BATT  
VREG1  
FET_G  
SENSE  
GND1  
Max duty  
VOUT  
VREG  
Slope  
COMP  
+
-
R
Q
S
OSC  
OC  
Figure 104. Block Diagram of switching controller  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
41/52  
TSZ22111 15 001  
BM60060FV-C  
Description of Functions and Examples of Constant Setting - continued  
8. Temperature Monitor Function  
This IC has a built-in constant current circuit and constant current is supplied from the TO pin. This current value ITO  
can be adjusted in accordance with the resistance value connected between the TC pin and the GND2 pin.  
Furthermore, the TO pin has voltage input function, and outputs signal of the TO pin voltage converted to Duty from the  
SENSOR pin.  
Constant Current Value ITO [mA]=10 × VTC [V] / RTC [kΩ]  
VCC2  
OSC  
x10  
TO  
TC  
SENSOR  
Z
RTC  
GND2  
Figure 105. Block Diagram of Temperature Monitor Function  
4.1 V  
1.1 V  
Internal triangle wave  
TO pin voltage  
SENSOR pin output  
Figure 106. Temperature Monitor Function Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
42/52  
TSZ22111 15 001  
BM60060FV-C  
Selection of Components Externally Connected  
The following components are recommended for external components.  
ROHM  
ROHM  
MCR03EZP  
MCR100JZH  
LTR100JZP  
LTR50UZP  
LTR18EZP  
GND1  
GND2  
OUT2  
sumida  
FLT  
GRSEL  
INA  
CEER117  
OUT1F  
SCPTH  
TC  
ROHM  
MCR03EZP  
ECU  
OSFB  
SENSOR  
INB  
TO  
VCC2  
VCC2  
ROHM  
LTR50UZP  
LTR18EZP  
FB  
VREG2  
SCPIN  
TCOMP  
PROOUT1  
PROOUT2  
OUT1  
COMP  
V_BATT  
VREG1  
FET_G  
SENSE  
GND1  
V_BATT  
snubber  
GND1  
VCC2  
ROHM  
MCR100JZH  
GND2  
GND2  
GND2  
ROHM  
RB168VYM150FH  
ROHM  
LTR18EZP  
ROHM  
ROHM  
RTR020N05FRA  
RSR025N05FRA  
RTR025N05FRA  
RTR030N05FRA  
MCR100JZH  
LTR100JZP  
LTR50UZP  
LTR18EZP  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
43/52  
TSZ22111 15 001  
BM60060FV-C  
I/O Equivalent Circuits  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
VCC2  
Pin Function  
OUT1  
2
Output pin  
OUT1F  
OUT1  
OUT1F  
12  
GND2  
Output pin  
VCC2  
OUT2  
VREG2  
OUT2  
13  
Miller clamp pin  
GND2  
VCC2  
PROOUT1  
VREG2  
4
PROOUT1  
GND2  
Soft turn off pin for short circuit  
protection / Gate voltage input pin  
VCC2  
PROOUT2  
PROOUT2  
GND2  
3
Fast turn off pin for short circuit  
protection  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
44/52  
TSZ22111 15 001  
BM60060FV-C  
I/O Equivalence Circuits - Continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VCC2  
TCOMP  
5
Temperature compensation pin of short  
circuit detection voltage  
VREG2  
SCPIN  
SCPIN  
TCOMP  
6
Short circuit detection pin  
GND2  
VCC2  
SCPTH  
VREG2  
11  
SCPTH  
GND2  
Short circuit detection threshold  
setting pin  
VCC2  
VREG2  
TO  
9
TO  
Constant current output pin / Sensor  
voltage input pin  
TC  
TC  
10  
Constant current setting resistor  
connection pin  
GND2  
VCC2  
Internal  
Power Supply  
VREG2  
VREG2  
7
Output-side internal power supply pin  
GND2  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
45/52  
BM60060FV-C  
I/O Equivalence Circuits - Continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
FLT  
FLT  
16  
OSFB  
Fault output pin  
OSFB  
19  
GND1  
Output state feedback output pin  
VREG1  
GRSEL  
GRSEL  
17  
Gate resistance switching pin  
GND1  
VREG1  
INA  
18  
Control input pin  
INA  
INB  
INB  
21  
GND1  
Control input pin  
VREG1  
SENSOR  
SENSOR  
GND2  
20  
Temperature information output pin  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
46/52  
BM60060FV-C  
I/O Equivalence Circuits - Continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VREG1  
FB  
22  
FB  
Error amplifier inverting input pin for  
switching controller  
GND1  
VREG1  
COMP  
COMP  
23  
Error amplifier output pin for switching  
controller  
GND1  
VREG1  
V_BATT  
VREG1  
Internal  
Power Supply  
25  
Input-side internal power supply pin  
FET_G  
GND1  
FET_G  
26  
MOS FET for transformer drive control  
pin for switching controller  
VREG1  
SENSE  
27  
SENSE  
GND1  
Current feedback resistor connection  
pin for switching controller  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
47/52  
BM60060FV-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground  
at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using  
electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause  
variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the  
electrical characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power  
supply should always be turned off completely before connecting or removing it from the test setup during the  
inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar  
precautions during transport and storage.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
48/52  
BM60060FV-C  
Operational Notes continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result  
in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output  
pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid  
environment) and unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance  
and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The  
small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor  
and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected  
to the power supply or ground line.  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 107. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
49/52  
TSZ22111 15 001  
BM60060FV-C  
Ordering Information  
B M 6 0 0 6 0  
F
V -  
C E 2  
Part Number  
Package  
FV: SSOP-B28W  
Product class  
C: for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 0 0 6 0  
Pin1 Mark  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
50/52  
TSZ22111 15 001  
BM60060FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B28W  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
51/52  
BM60060FV-C  
Revision History  
Date  
Revision  
001  
Changes  
13.Mar.2019  
12.Jul.2021  
New Release  
Page 1 Added UL1577 Recognizedin the Features column  
002  
Page 30 Added UL1577 Rating Tables  
www.rohm.com  
TSZ02201-0818ACH00150-1-2  
12.Jul.2021 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
52/52  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM60210FV-C

High Voltage High & Low-side, Gate Driver
ROHM

BM60210FV-CE2

High Voltage High & Low-side, Gate Driver
ROHM

BM60212FV-C

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER

BM6032B

Supplementary Fuseblocks BM Series
COOPER

BM6032PQ

Supplementary Fuseblocks BM Series
COOPER

BM6032SQ

Supplementary Fuseblocks BM Series
COOPER

BM6033B

Supplementary Fuseblocks BM Series
COOPER