BM60212FV-C [ROHM]

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。;
BM60212FV-C
型号: BM60212FV-C
厂家: ROHM    ROHM
描述:

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。

驱动 双极性晶体管 驱动器
文件: 总26页 (文件大小:2026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
1200V High Voltage  
High and Low Side Driver  
BM60212FV-C  
General Description  
Key Specifications  
The BM60212FV-C is high and low side drive IC which  
operates up to 1200V with bootstrap operation, which  
can drive N-channel power MOSFET and IGBT.  
Under-voltage Lockout (UVLO) function and Miller  
Clamp function are built-in.  
High-Side Floating Supply Voltage:  
Maximum Gate Drive Voltage:  
Turn ON/OFF Time:  
1200V  
24V  
75ns (Max)  
60ns  
Logic Input Minimum Pulse Width:  
Features  
AEC-Q100 Qualified(Note 1)  
High-Side Floating Supply Voltage 1200V  
Active Miller Clamping  
Package  
SSOP-B20W  
W(Typ) x D(Typ) x H(Max)  
6.50mm x 8.10mm x 2.01mm  
Under Voltage Lockout Function  
3.3V and 5.0V Input Logic Compatible  
(Note 1) Grade 1  
Applications  
MOSFET Gate Driver  
IGBT Gate Driver  
Typical Application Circuit  
SSOP-B20W  
VCCB  
Up to 1200V  
NC  
GND2  
NC  
GND1  
UVLO  
UVLO  
S
R
ENA  
INA  
INB  
ENA  
INA  
Pulse  
Generator  
Q
INB  
VCCA  
OUTAH  
OUTAL  
MCA  
VREG  
VCCB  
OUTBH  
OUTBL  
MCB  
Regulator  
Pre-  
driver  
CVREG  
Pre-  
driver  
NC  
+
-
CVCCA  
CVCCB  
2V  
GND2  
TO  
LOAD  
NC  
GND1  
+
-
2V  
Pin 1  
Figure 1. Typical Application Circuit  
Product structure : Semiconductor integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/23  
TSZ22111 14 001  
 
 
 
 
 
 
BM60212FV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications...........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Recommended Range of External Constants.................................................................................................................................3  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Description of Functions and Examples of Constant Setting ..........................................................................................................5  
Absolute Maximum Ratings (Ta=25°C)...........................................................................................................................................8  
Thermal Resistance........................................................................................................................................................................9  
Recommended Operating Conditions.............................................................................................................................................9  
Electrical Characteristics...............................................................................................................................................................10  
Typical Performance Curves.........................................................................................................................................................11  
Figure 10. VCCB Circuit Current 1 vs Low-side Supply Voltage (OUTB=L)..............................................................................11  
Figure 11. VCCB Circuit Current 2 vs Low-side Supply Voltage (OUTB=H)..............................................................................11  
Figure 12. VCCB Circuit Current 3 vs Low-side Supply Voltage (INA=10kHz, Duty=50%)......................................................11  
Figure 13. VCCB Circuit Current 4 vs Low-side Supply Voltage (INA=20kHz, Duty=50%) .......................................................11  
Figure 14. VCCA Circuit Current 1 vs High-side Floating Supply Voltage (OUTA=L) ................................................................12  
Figure 15. VCCA Circuit Current 2 vs High-side Floating Supply Voltage (OUTA=H)................................................................12  
Figure 16. Logic H/L Level Input Voltage vs High-side Floating Supply Voltage........................................................................12  
Figure 17. OUTA (OUTB)Output Voltage vs Logic Input Voltage (VCCB=15V, VCCA=15V, Ta=+25°C).........................................12  
Figure 18. Logic Pull-down Resistance vs Temperature............................................................................................................13  
Figure 19. Logic Pull-down Current vs Temperature .................................................................................................................13  
Figure 20. Logic Input Minimum Pulse Width vs Temperature ..................................................................................................13  
Figure 21. ENA Input Mask Time vs Temperature.....................................................................................................................13  
Figure 22. OUTA ON Resistance (Source) vs Temperature ......................................................................................................14  
Figure 23. OUTA ON Resistance (Sink) vs Temperature...........................................................................................................14  
Figure 24. OUTB ON Resistance (Source) vs Temperature......................................................................................................14  
Figure 25. OUTB ON Resistance (Sink) vs Temperature ..........................................................................................................14  
Figure 26. OUTA Turn ON Time vs Temperature (INA=PWM, INB=L).......................................................................................15  
Figure 27. OUTA Turn OFF Time vs Temperature (INA=PWM, INB=L).....................................................................................15  
Figure 28. OUTB Turn ON Time vs Temperature (INA=L, INB=PWM)......................................................................................15  
Figure 29. OUTB Turn OFF Time vs Temperature (INA=L, INB=PWM) ....................................................................................15  
Figure 30. MCA ON Resistance vs Temperature.......................................................................................................................16  
Figure 31. MCB ON Resistance vs Temperature.......................................................................................................................16  
Figure 32. MCA ON Threshold Voltage vs Temperature............................................................................................................16  
Figure 33. MCB ON Threshold Voltage vs Temperature ...........................................................................................................16  
Figure 34. VCCB UVLO ON/OFF Voltage vs Temperature .......................................................................................................17  
Figure 35. VCCB UVLO Mask Time vs Temperature.................................................................................................................17  
Figure 36. VCCA UVLO ON/OFF Voltage vs Temperature........................................................................................................17  
Figure 37. VCCA UVLO Mask Time vs Temperature.................................................................................................................17  
I/O Equivalence Circuits................................................................................................................................................................18  
Operational Notes.........................................................................................................................................................................19  
Ordering Information.....................................................................................................................................................................21  
Marking Diagram ..........................................................................................................................................................................21  
Physical Dimension, Tape and Reel Information ..........................................................................................................................22  
Revision History............................................................................................................................................................................23  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/23  
TSZ22111 15 001  
BM60212FV-C  
Recommended Range of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
0.1  
0.1  
0.1  
Typ  
1.0  
1.0  
3.3  
Max  
VCCA  
VCCB  
VREG  
CVCCA  
CVCCB  
CVREG  
-
-
µF  
µF  
µF  
10.0  
Pin Configuration  
(TOP VIEW)  
20  
NC  
GND2  
NC  
1
2
3
4
5
6
7
8
9
GND1  
19 MCB  
18 OUTBL  
OUTBH  
MCA  
17  
OUTAL  
OUTAH  
VCCA  
NC  
16 VCCB  
15 VREG  
14 INB  
13  
INA  
GND2  
12 ENA  
NC 10  
11  
GND1  
Figure 2. Pin Configuration  
Pin Descriptions  
Pin No.  
1
Pin Name  
NC  
Function  
Non-connection  
2
GND2  
NC  
High-side ground pin  
Non-connection  
3
4
MCA  
High-side pin for Miller Clamp  
High-side output pin (Sink)  
High-side output pin (Source)  
High-side power supply pin  
Non-connection  
5
OUTAL  
OUTAH  
VCCA  
NC  
6
7
8
9
GND2  
NC  
High-side ground pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Non-connection  
GND1  
ENA  
Low-side and input-side ground pin  
Input enabling signal input pin  
Control input pin for high-side  
Control input pin for low-side  
INA  
INB  
VREG  
VCCB  
OUTBH  
OUTBL  
MCB  
Power supply pin for input circuit  
Low-side and input-side power supply pin  
Low-side output pin (Source)  
Low-side output pin (Sink)  
Low-side pin for Miller Clamp  
Low-side and input-side ground pin  
GND1  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/23  
TSZ22111 15 001  
BM60212FV-C  
Pin Descriptions - continued  
1. VCCA (High-side power supply pin)  
The VCCA pin is a power supply pin on the high-side output. To reduce voltage fluctuations due to the OUTA pin output  
current, connect a bypass capacitor between the VCCA and GND2 pins.  
2. GND2 (High-side ground pin)  
The GND2 pin is a ground pin on the high-side. Connect the GND2 pin to the emitter/source of a high-side power  
device.  
3. VCCB (Low-side and input-side power supply pin)  
The VCCB pin is a power supply pin on the low-side output. To reduce voltage fluctuations due to the OUTB pin output  
current, connect a bypass capacitor between the VCCB and GND2 pins.  
4. GND1 (Low-side and input-side ground pin)  
The GND1 pin is a ground pin on the low-side and the input side.  
5. VREG (Power supply pin for input circuit)  
The VREG pin is a power supply pin for the input circuit. To suppress voltage fluctuations due to the current to drive  
internal transformers, connect a bypass capacitor between the VREG and GND1 pins.  
6. INA, INB, ENA (Control input pin)  
The INA, INB and ENA pins are used to determine output logic.  
ENA  
L
INA  
X
INB  
X
OUTA  
OUTB  
L
L
L
H
L
L
L
H
L
L
H
L
H
H
L
H
H
L
H
H
H
L
X: Don't care  
The High output of OUTA (OUTB) becomes effective in ENA=H and L to H edge input of INA (INB).  
7. OUTAH, OUTAL, OUTBH, OUTBL (Output pin)  
The OUTAH pin and the OUTBH pin are source side pins used to drive the gate of a power device, and the OUTAL pin  
and the OUTBL pin are sink side pins used to drive the gate of a power device.  
8. MCA, MCB (Pin for Miller Clamp)  
The MCA pin and MCB pin are for preventing the increase in gate voltage due to the Miller current of the power device  
connected to the OUT pin. If the Miller Clamp function is not used, short-circuit the MCA pin to the GND2 pin and the  
MCB pin to the GND1 pin.  
H
ENA  
L
H
INA(INB)  
L
H
OUTA(OUTB)  
L
Figure 3. Input and Output Logic Timing Chart  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/23  
TSZ22111 15 001  
BM60212FV-C  
Description of Functions and Examples of Constant Setting  
1. Miller Clamp function  
When INA (INB)=Low and MCA (MCB) pin voltage < VMCON (Typ 2.0V), the internal MOSFET of the MCA (MCB) pin is  
turned ON. It is maintained until the input signal is switched to High.  
INA (INB)  
MCA (MCB)  
Less than VMCON  
X
Internal MOSFET of the MCA (MCB) pin  
L
ON  
H
OFF  
X: Don't care  
VCCA (VCCB)  
PREDRIVER  
OUTAH (OUTBH)  
GATE  
LOGIC  
OUTAL (OUTBL)  
MCA (MCB)  
PREDRIVER  
PREDRIVER  
+
-
VMCON  
GND2 (GND1)  
Figure 4. Block Diagram of Miller Clamp Function  
tPOFF tPON  
H
INA(INB)  
L
H
OUTA(OUTB)  
L
H
GATE  
VMCON  
L
Hi-Z  
L
MCA(MCB)  
Figure 5. Timing Chart of Miller Clamp Function  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/23  
TSZ22111 15 001  
BM60212FV-C  
Description of Functions and Examples of Constant Setting - continued  
2. Under-voltage Lockout (UVLO) function  
The BM60212FV-C incorporates the Under-voltage Lockout (UVLO) function both the high and low voltage sides.  
When the power supply voltage drops to VUVLOL (Typ 8.5V), the OUT pin will output the “L” signal. When the power  
supply voltage rises to VUVLOH (Typ 9.5V), the OUT pin will return to a normal state. In addition, to prevent malfunctions  
due to noises, a mask time of tUVLOMSK (Typ 2.5µs) is set on both the high and the low voltage sides.  
H
INA  
L
VUVLOH  
VUVLOL  
VCCA  
OUTA  
H
Hi-Z  
L
Figure 6. High-side UVLO Function Operation Timing Chart  
H
L
INA (INB)  
VUVLOH  
VUVLOL  
VCCB  
H
Hi-Z  
L
OUTA (OUTB)  
Figure 7. Low-side UVLO Function Operation Timing Chart  
Input  
3. I/O condition table  
Output  
No  
Status  
VCCB  
VCCA  
ENA  
X
INB  
X
INA  
X
OUTB  
MCB  
OUTA  
MCA  
1
2
VCCB UVLO  
UVLO  
X
UVLO  
UVLO  
UVLO  
UVLO  
L
L
L
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
X
X
3
H
L
X
L
L
VCCA UVLO  
Disable  
4
H
H
H
X
L
Hi-Z  
L
L
5
H
H
X
L
6
L
L
L
7
H
L
L
L
L
8
H
L
H
L
L
Hi-Z  
L
Normal  
Operation  
9
H
H
H
Hi-Z  
L
10  
H
H
L
○ : VCCA or VCCB > UVLO, X : Don't care  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/23  
TSZ22111 15 001  
BM60212FV-C  
Description of Functions and Examples of Constant Setting - continued  
4. Power supply startup/shutdown sequence  
H
INA  
L
H
INB  
L
VUVLOL  
VUVLOL  
VUVLOH  
VUVLOH  
VUVLOH  
VUVLOH  
VCCA  
VCCB  
VUVLOL  
VUVLOL  
H
Hi-Z  
L
OUTA  
MCA  
Hi-Z  
L
H
Hi-Z  
OUTB  
MCB  
L
Hi-Z  
L
H
INA  
INB  
L
H
L
VUVLOL  
VUVLOL  
VUVLOH  
VUVLOH  
VUVLOH  
VUVLOH  
VCCA  
VCCB  
VUVLOL  
VUVLOL  
H
Hi-Z  
L
OUTA  
MCA  
Hi-Z  
L
H
Hi-Z  
OUTB  
MCB  
L
Hi-Z  
L
: Since the VCCA to GND2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z.  
: Since the VCCB to GND1 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z.  
Figure 8. Power Supply Startup/Shutdown Sequence  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/23  
TSZ22111 15 001  
BM60212FV-C  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Symbol  
VCCA  
Limits  
-0.3 to +1230(Note 2)  
VCCA-30 to VCCA+0.3  
GND2-0.3 to VCCA+0.3  
GND2-0.3 to VCCA+0.3  
-0.3 to +30.0(Note 2)  
-0.3 to +VCCB+0.3 or +30.0(Note 2)  
-0.3 to +VCCB+0.3 or +30.0(Note 2)  
-0.3 to +VCCB+0.3 or +30.0(Note 2)  
5.0(Note 3)  
Unit  
V
High-side Floating Supply Voltage  
High-side Floating Supply Offset Voltage  
High-side Floating Output Voltage OUTA  
High-side Miller Clamp Pin Voltage MCA  
Low-side Supply Voltage  
GND2  
VOUTA  
VMCA  
V
V
V
VCCB  
V
Low-side Output Voltage OUTB  
VOUTB  
VMCB  
V
Low-side Miller Clamp Pin Voltage MCB  
Logic Input Voltage (INA, INB, ENA)  
OUTA Pin Output Current (Peak 1µs)  
OUTB Pin Output Current (Peak 1µs)  
MCA Pin Output Current (Peak 1µs)  
MCB Pin Output Current (Peak 1µs)  
Storage Temperature Range  
V
VIN  
V
IOUTAPEAK  
IOUTBPEAK  
IMCAPEAK  
IMCBPEAK  
Tstg  
A
5.0(Note 3)  
A
5.0(Note 3)  
A
5.0(Note 3)  
A
-55 to +150  
°C  
Maximum Junction Temperature  
Tjmax  
150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1.  
(Note 3) Should not exceed Tj=150°C.  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/23  
TSZ22111 15 001  
BM60212FV-C  
Thermal Resistance(Note 4)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 6)  
2s2p(Note 7)  
SSOP-B20W  
Junction to Ambient  
Junction to Top Characterization Parameter (Note5)  
θJA  
151.5  
47  
80.6  
40  
°C/W  
°C/W  
ΨJT  
(Note 4) Based on JESD51-2A(Still-Air)  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 6) Using a PCB board based on JESD51-3.  
(Note 7) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Thickness  
70µm  
Copper Pattern  
Thickness  
35µm  
Thickness  
70µm  
Footprints and Traces  
74.2mm x 74.2mm  
Recommended Operating Conditions  
Parameter  
Symbol  
VCCA  
Min  
GND2+10  
Typ  
Max  
Units  
High-side Floating Supply Voltage  
GND2+15  
GND2+24  
V
High-side Floating Supply Offset Voltage  
High-side Floating Output Voltage OUTA  
Low-side Output Voltage OUTB  
Logic Input Voltage (INA, INB, ENA)  
Low-side Supply Voltage  
GND2  
VOUTA  
VOUTB  
VIN  
-
-
-
1200  
VCCA  
VCCB  
VCCB  
24  
V
V
GND2  
GND1  
GND1  
10  
-
-
V
V
VCCB  
Topr  
15  
V
Operating Temperature Range  
-40  
+25  
+125  
°C  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
9/23  
BM60212FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40°C to +125°C, VCCA-GND2=10V to 24V, VCCB=10V to 24V)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
General  
VCCB Circuit Current 1  
VCCB Circuit Current 2  
VCCB Circuit Current 3  
VCCB Circuit Current 4  
VCCA Circuit Current 1  
VCCA Circuit Current 2  
Logic Block  
ICC11  
ICC12  
ICC12  
ICC13  
ICC21  
ICC22  
0.54  
0.49  
1.28  
1.29  
0.49  
0.38  
0.85  
0.80  
1.89  
1.92  
0.73  
0.57  
1.35  
1.30  
3.30  
3.40  
1.15  
0.95  
mA  
mA  
mA  
mA  
mA  
mA  
OUTB=L  
OUTB=H  
INA=10kHz, Duty=50%  
INA=20kHz, Duty=50%  
OUTA=L  
OUTA=H  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-down Resistance  
Logic Pull-down Current  
Logic Input Minimum Pulse Width  
ENA Input Mask Time  
VINH  
VINL  
2.0  
0
-
-
VCCB  
0.8  
V
V
INA, INB, ENA  
INA, INB, ENA  
INA<3V, INB<3V, ENA<3V  
INA3V, INB3V, ENA3V  
INA, INB  
RIND  
25  
20  
-
50  
50  
-
100  
150  
60  
kΩ  
µA  
ns  
µs  
IIND  
tINMIN  
tENAMSK  
0.6  
1.0  
1.4  
ENA  
Output  
0.4  
0.2  
0.9  
0.6  
2.0  
1.3  
IOUT=-40mA, OUTA, OUTB  
IOUT=40mA, OUTA, OUTB  
OUT ON Resistance (Source)  
OUT ON Resistance (Sink)  
RONH  
RONL  
Ω
Ω
Guaranteed by design,  
OUTA, OUTB  
Guaranteed by design,  
OUTA, OUTB  
OUT Maximum Current (Source)  
OUT Maximum Current (Sink)  
IOUTMAXH  
IOUTMAXL  
3.0  
3.0  
4.5  
3.9  
-
-
A
A
OUT Turn ON Time  
tPON  
tPOFF  
tPDIST  
tDM  
35  
35  
-25  
-
55  
55  
0
75  
75  
25  
25  
-
ns  
ns  
ns  
ns  
ns  
ns  
Ω
OUTA, OUTB  
OUT Turn OFF Time  
OUTA, OUTB  
OUT Propagation Distortion  
Delay Matching, HS&LS Turn ON/OFF  
OUT Rise Time  
tPOFF tPON, OUTA, OUTB  
-
tRISE  
-
50  
50  
0.65  
OUT-GND 10nF, OUTA, OUTB  
OUT-GND 10nF, OUTA, OUTB  
IMC=40mA, MCA, MCB  
OUT Fall Time  
tFALL  
-
-
0.20  
1.40  
MC ON Resistance  
RONMC  
VMCON  
VVREG  
CM  
MC ON Threshold Voltage  
VREG Output Voltage  
Common Mode Transient Immunity  
Protection Functions  
UVLO OFF Voltage  
1.8  
4.2  
2.0  
4.7  
-
2.2  
5.2  
-
V
V
MCA, MCB  
100  
kV/µs Guaranteed by design  
VUVLOH  
VUVLOL  
9.0  
8.0  
1.0  
9.5  
8.5  
2.5  
10.0  
9.0  
V
V
VCCA, VCCB  
VCCA, VCCB  
VCCA, VCCB  
UVLO ON Voltage  
UVLO Mask Time  
tUVLOMSK  
5.0  
µs  
50%  
50%  
INA  
(INB)  
tPON  
tPOFF  
90%  
90%  
10%  
10%  
OUTA  
(OUTB)  
tFALL  
tRISE  
Figure 9. IN-OUT Timing Chart  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
10/23  
BM60212FV-C  
Typical Performance Curves  
1.29  
1.24  
1.19  
1.14  
1.09  
1.04  
0.99  
0.94  
0.89  
0.84  
0.79  
0.74  
0.69  
0.64  
0.59  
0.54  
0.49  
1.32  
1.26  
1.20  
1.14  
1.08  
Ta=+125°C  
Ta=+125°C  
1.02  
Ta=+25°C  
Ta=+25°C  
Ta=-40°C  
0.96  
0.90  
0.84  
0.78  
0.72  
0.66  
0.60  
0.54  
Ta=-40°C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
Low-side SupplyVoltage : VCCB [V]  
Low-side SupplyVoltage : VCCB [V]  
Figure 11. VCCB Circuit Current 2 vs Low-side Supply  
Voltage (OUTB=H)  
Figure 10. VCCB Circuit Current 1 vs Low-side Supply  
Voltage (OUTB=L)  
3.37  
3.11  
2.85  
2.59  
2.33  
2.07  
1.81  
1.55  
1.29  
3.28  
3.03  
2.78  
2.53  
2.28  
2.03  
1.78  
1.53  
1.28  
Ta=+125°C  
Ta=+25°C  
Ta=-40°C  
Ta=+125°C  
Ta=+25°C  
Ta=-40°C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
Low-side SupplyVoltage : VCCB [V]  
Low-side SupplyVoltage : VCCB [V]  
Figure 13. VCCB Circuit Current 4 vs Low-side Supply  
Voltage (INA=20kHz, Duty=50%)  
Figure 12. VCCB Circuit Current 3 vs Low-side Supply  
Voltage (INA=10kHz, Duty=50%)  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/23  
TSZ22111 15 001  
BM60212FV-C  
Typical Performance Curves - continued  
1.14  
1.09  
1.04  
0.99  
0.94  
0.89  
0.93  
0.88  
0.83  
0.78  
0.73  
0.68  
0.63  
0.58  
0.53  
0.48  
0.43  
0.38  
Ta=+25°C  
Ta=+125°C  
Ta=+125°C  
Ta=+25°C  
0.84  
0.79  
0.74  
0.69  
0.64  
0.59  
0.54  
0.49  
Ta=-40°C  
Ta=-40°C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
High-side Floating SupplyVoltage : VCCA [V]  
High-side Floating SupplyVoltage : VCCA [V]  
Figure 14. VCCA Circuit Current 1 vs High-side  
Floating Supply Voltage (OUTA=L)  
Figure 15. VCCA Circuit Current 2 vs High-side  
Floating Supply Voltage (OUTA=H)  
24  
20  
16  
12  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCCB=10V  
VCCB=15V  
VCCB=24V  
H level  
L level  
VCCB=10V  
VCCB=15V  
VCCB=24V  
4
0
0
1
2
3
4
5
10  
12  
14  
16  
18  
20  
22  
24  
Logic Input Voltage : VIN [V]  
High-side Floating SupplyVoltage : VCCA [V]  
Figure 16. Logic H/L Level Input Voltage vs High-side  
Floating Supply Voltage  
Figure 17. OUTA (OUTB)Output Voltage vs Logic Input  
Voltage (VCCB=15V, VCCA=15V, Ta=+25°C)  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/23  
TSZ22111 15 001  
BM60212FV-C  
Typical Performance Curves - continued  
100  
90  
160  
140  
120  
100  
80  
80  
VCCB=10V  
VCCB=15V  
VCCB=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
70  
60  
50  
40  
30  
20  
60  
40  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 18. Logic Pull-down Resistance vs Temperature  
Figure 19. Logic Pull-down Current vs Temperature  
60  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
50  
40  
30  
20  
10  
0
VCCB=10V  
VCCB=15V  
VCCB=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 20. Logic Input Minimum Pulse Width  
vs Temperature  
Figure 21. ENA Input Mask Time vs Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
13/23  
BM60212FV-C  
Typical Performance Curves - continued  
2.0  
1.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
1.6  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 23. OUTA ON Resistance (Sink) vs Temperature  
Figure 22. OUTA ON Resistance (Source) vs  
Temperature  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VCCB=10V  
VCCB=15V  
VCCB=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
0.4  
0.2  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 25. OUTB ON Resistance (Sink) vs Temperature  
Figure 24. OUTB ON Resistance (Source) vs  
Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
14/23  
BM60212FV-C  
Typical Performance Curves - continued  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
70  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
65  
60  
55  
50  
45  
40  
35  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 26. OUTA Turn ON Time vs Temperature  
(INA=PWM, INB=L)  
Figure 27. OUTA Turn OFF Time vs Temperature  
(INA=PWM, INB=L)  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
70  
65  
60  
55  
50  
45  
40  
35  
VCCB=10V  
VCCB=15V  
VCCB=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 28. OUTB Turn ON Time vs Temperature  
(INA=L, INB=PWM)  
Figure 29. OUTB Turn OFF Time vs Temperature  
(INA=L, INB=PWM)  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/23  
TSZ22111 15 001  
BM60212FV-C  
Typical Performance Curves - continued  
1.4  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
1.0  
0.8  
0.6  
0.4  
0.2  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 31. MCB ON Resistance vs Temperature  
Figure 30. MCA ON Resistance vs Temperature  
2.2  
2.1  
2.0  
1.9  
1.8  
2.2  
2.1  
2.0  
1.9  
1.8  
VCCA-GND2=10V  
VCCA-GND2=15V  
VCCA-GND2=24V  
VCCB=10V  
VCCB=15V  
VCCB=24V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 32. MCA ON Threshold Voltage vs Temperature  
Figure 33. MCB ON Threshold Voltage vs Temperature  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/23  
TSZ22111 15 001  
BM60212FV-C  
Typical Performance Curves - continued  
10.0  
5.0  
4.0  
3.0  
2.0  
1.0  
9.5  
VUVLOH  
9.0  
8.5  
VUVLOL  
8.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 35. VCCB UVLO Mask Time vs Temperature  
Figure 34. VCCB UVLO ON/OFF Voltage vs  
Temperature  
10.0  
5.0  
9.5  
9.0  
8.5  
8.0  
4.0  
3.0  
2.0  
1.0  
VUVLOH  
VUVLOL  
-50  
-25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 36. VCCA UVLO ON/OFF Voltage vs  
Temperature  
Figure 37. VCCA UVLO Mask Time vs Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
17/23  
BM60212FV-C  
I/O Equivalence Circuits  
Pin No  
Name  
I/O equivalence circuits  
Function  
OUTAH  
6
High-side output pin (Source)  
VCCA (VCCB)  
OUTAL  
5
OUTAH (OUTBH)  
OUTAL (OUTBL)  
High-side output pin (Sink)  
OUTBH  
17  
18  
4
Low-side output pin (Source)  
GND2 (GND1)  
OUTBL  
Low-side output pin (Sink)  
VCCA (VCCB)  
MCA  
Internal power  
supply  
High-side output pin for Miller Clamp  
MCA (MCB)  
MCB  
Low-side output pin for Miller Clamp  
INA  
19  
13  
14  
12  
GND2 (GND1)  
VCCB  
Control input pin for high-side  
INB  
Internal power  
supply  
INA  
INB  
ENA  
Control input pin for low-side  
ENA  
GND1  
Input enabling signal input pin  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/23  
TSZ22111 15 001  
BM60212FV-C  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on  
the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
5.  
6.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has  
more than one power supply. Therefore, give special consideration to power coupling capacitance, power  
wiring, width of ground wiring, and routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
19/23  
BM60212FV-C  
Operational Notes continued  
10. Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance  
and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to the  
power supply or ground line  
11. Regarding Input Pins of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 38. Example of IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others. Operation (ASO).  
13. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/23  
TSZ22111 15 001  
BM60212FV-C  
Ordering Information  
F
V
B M 6  
0
2
1
2
-
CE 2  
Package  
FV: SSOP-B20W  
Rank  
Part Number  
C:for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B20W(TOP VIEW)  
Part Number Marking  
LOT Number  
BM60212  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/23  
TSZ22111 15 001  
BM60212FV-C  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B20W  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
22/23  
BM60212FV-C  
Revision History  
Date  
Revision  
Changes  
18.Jan.2018  
001  
New Release  
www.rohm.com  
TSZ02201-0818ABH00270-1-2  
18.Jan.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/23  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER

BM6032B

Supplementary Fuseblocks BM Series
COOPER

BM6032PQ

Supplementary Fuseblocks BM Series
COOPER

BM6032SQ

Supplementary Fuseblocks BM Series
COOPER

BM6033B

Supplementary Fuseblocks BM Series
COOPER

BM6033PQ

Supplementary Fuseblocks BM Series
COOPER

BM6033SQ

Supplementary Fuseblocks BM Series
COOPER

BM6101FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM