BM61M22BFJ-C [ROHM]

本品为内置绝缘电压2500Vrms、最大输入输出延迟时间60ns、最小输入脉冲宽度60ns的绝缘元件的栅极驱动器。内置低电压时误动作防止功能(UVLO)。;
BM61M22BFJ-C
型号: BM61M22BFJ-C
厂家: ROHM    ROHM
描述:

本品为内置绝缘电压2500Vrms、最大输入输出延迟时间60ns、最小输入脉冲宽度60ns的绝缘元件的栅极驱动器。内置低电压时误动作防止功能(UVLO)。

栅极驱动 脉冲 驱动器
文件: 总26页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation Voltage 2500 Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM61M22BFJ-C  
General Description  
Key Specifications  
The BM61M22BFJ-C is a gate driver providing galvanic  
isolation with an isolation voltage of 2500 Vrms,  
maximum I/O delay time of 60 ns, and minimum input  
pulse width of 60 ns. It incorporates the Under-voltage  
Lockout (UVLO) function.  
Isolation Voltage:  
2500 Vrms  
24 V  
Maximum Gate Drive Voltage:  
Maximum I/O Delay Time:  
Minimum Input Pulse Width:  
60 ns  
60 ns  
Package  
SOP-JW8  
W (Typ) x D (Typ) x H (Max)  
4.9 mm x 6.0 mm x 1.65 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Providing Galvanic Isolation  
Under-voltage Lockout Function  
UL1577 Recognized: File No. E356010  
(Note 1) Grade1  
Applications  
IGBT Gate Driver  
MOSFET Gate Driver  
Typical Application Circuits  
Figure 1. Typical Application Circuits (in case of 2ch)  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
1/23  
 
 
 
 
 
 
BM61M22BFJ-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuits.............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Recommended Range of External Constants.................................................................................................................................3  
Pin Configurations ..........................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................5  
Recommended Operating Conditions.............................................................................................................................................5  
Insulation Related Characteristics ..................................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
UL1577 Ratings Table....................................................................................................................................................................7  
Typical Performance Curves...........................................................................................................................................................8  
Pin Descriptions............................................................................................................................................................................14  
Description of Functions and Examples of Constant Setting ........................................................................................................15  
Selection of Components Externally Connected...........................................................................................................................17  
I/O Equivalence Circuits................................................................................................................................................................18  
Operational Notes.........................................................................................................................................................................19  
Ordering Information.....................................................................................................................................................................21  
Marking Diagram ..........................................................................................................................................................................21  
Physical Dimension and Packing Information...............................................................................................................................22  
Revision History............................................................................................................................................................................23  
www.rohm.com  
TSZ02201-0818ACH00220-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/23  
TSZ22111 • 15 • 001  
12.Jan.2022 Rev.002  
 
BM61M22BFJ-C  
Recommended Range of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
Typ  
1.0  
-
Max  
VCC1  
VCC2  
CVCC1  
CVCC2  
0.1  
-
-
µF  
µF  
0.33  
CVCC2: For supplying gate charge current of MOS FET/IGBT.  
Pin Configurations  
SOP-JW8  
(TOP VIEW)  
8 GND2  
1 VCC1  
2 INA  
7 OUTL  
6 OUTH  
5 VCC2  
3 INB  
4 GND1  
Pin No.  
Pin Name  
VCC1  
INA  
Function  
1
2
3
4
5
6
7
8
Input side power supply pin  
Control input pin A  
INB  
Control input pin B  
GND1  
VCC2  
OUTH  
OUTL  
GND2  
Input side ground pin  
Output side power supply pin  
Source side output pin for gate driving  
Sink side output pin for gate driving  
Output side ground pin  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
3/23  
BM61M22BFJ-C  
Block Diagram  
UVLO2  
GND2  
OUTL  
OUTH  
VCC2  
VCC1  
INA  
UVLO1  
S
R
Pulse  
Generator  
Q
Pre  
Driver  
INB  
GND1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limits  
Unit  
Input Side Supply Voltage  
Output Side Supply Voltage  
INA Pin Input Voltage  
VCC1  
VCC2  
-0.3 to +7.0(Note 2)  
-0.3 to +30.0(Note 3)  
-0.3 to +VCC1+0.3 or +7.0(Note 2)  
-0.3 to +VCC1+0.3 or +7.0(Note 2)  
self limited  
V
V
VINA  
V
INB Pin Input Voltage  
VINB  
V
Gate Drive Output Current (10 µs)  
Storage Temperature Range  
Maximum Junction Temperature  
IOUTPEAK  
Tstg  
A
-55 to +150  
°C  
°C  
Tjmax  
150  
(Note 2) Relative to GND1.  
(Note 3) Relative to GND2.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
TSZ02201-0818ACH00220-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
4/23  
TSZ22111 • 15 • 001  
12.Jan.2022 Rev.002  
BM61M22BFJ-C  
Thermal Resistance(Note 4)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 6)  
2s2p(Note 7)  
SOP-JW8  
Input Side Junction to Ambient  
θJA1  
θJA2  
ΨJT1  
ΨJT2  
202.0  
202.5  
68  
111.6  
111.6  
48  
°C/W  
°C/W  
°C/W  
°C/W  
Output Side Junction to Ambient  
Input Side Junction to Top Characterization Parameter(Note 5)  
Output Side Junction to Top Characterization Parameter(Note 5)  
72  
42  
(Note 4) Based on JESD51-2A (Still-Air).  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 6) Using a PCB board based on JESD51-3.  
(Note 7) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
70 μm  
Copper Pattern  
Thickness  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
4.5  
9
Max  
5.5  
Unit  
(Note 8)  
Input Side Supply Voltage  
Output Side Supply Voltage  
Operating Temperature  
VCC1  
V
V
(Note 9)  
VCC2  
24  
Topr  
-40  
+125  
°C  
(Note 8) Relative to GND1.  
(Note 9) Relative to GND2.  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
Unit  
Ω
Insulation Resistance (VIO = 500 V)  
Insulation Withstand Voltage (1 min)  
Insulation Test Voltage (1 s)  
>109  
2500  
3000  
VISO  
Vrms  
Vrms  
VISO  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
5/23  
BM61M22BFJ-C  
Electrical Characteristics  
(Unless otherwise specified Ta = -40 °C to +125 °C, VCC1 = 4.5 V to 5.5 V, VCC2 = 9 V to 24 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Input Side Circuit Current 1  
Input Side Circuit Current 2  
ICC11  
ICC12  
0.25  
1.50  
0.50  
3.00  
1.00  
6.00  
mA  
mA  
INA = L, INB = H  
INA = H, INB = L  
OUT (OUTL and OUTH are  
shorted) = L  
Output Side Circuit Current 1  
ICC21  
ICC22  
0.30  
0.22  
0.60  
0.45  
1.20  
0.90  
mA  
mA  
Output Side Circuit Current 2  
Logic Block  
OUT = H  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull Down Resistance  
Logic Pull Up Resistance  
Minimum Input Pulse Width  
Output  
VINH  
VINL  
2.0  
0
-
-
VCC1  
0.8  
100  
100  
-
V
V
INA, INB  
INA, INB  
INA  
RIND  
RINU  
tINMIN  
25  
25  
60  
50  
50  
-
kΩ  
kΩ  
ns  
INB  
INA, INB  
0.60  
0.25  
1.35  
0.80  
3.00  
1.70  
IOUT = -40 mA  
IOUT = +40 mA  
OUT ON Resistance (Source)  
OUT ON Resistance (Sink)  
RONH  
RONL  
Ω
Ω
VCC2 = 15 V,  
Guaranteed by design  
VCC2 = 15 V,  
Guaranteed by design  
OUT Maximum Current (Source)  
OUT Maximum Current (Sink)  
IOUTMAXH  
2.0  
2.0  
3.0  
3.0  
-
-
A
A
IOUTMAXL  
tPONA  
tPONB  
40  
40  
50  
50  
50  
50  
0
60  
60  
ns  
ns  
ns  
ns  
ns  
ns  
INA = PWM, INB = L  
INA = H, INB = PWM  
INA = PWM, INB = L  
INA = H, INB = PWM  
tPOFFA - tPONA  
Turn ON Time  
tPOFFA  
tPOFFB  
tPDISTA  
tPDISTB  
40  
60  
Turn OFF Time  
40  
60  
-10  
-10  
+10  
+10  
Propagation Distortion  
Part-to-part Skew  
0
tPOFFB - tPONB  
Same temperature  
Guaranteed by design  
OUT - GND2 = 2 nF  
tSK-PP  
-
-
12  
ns  
Rise Time  
tRISE  
tFALL  
CM  
-
-
15  
15  
-
-
-
-
ns  
ns  
Fall Time  
OUT - GND2 = 2 nF  
Common Mode Transient Immunity  
Protection Functions  
VCC1 UVLO OFF Voltage  
VCC1 UVLO ON Voltage  
VCC1 UVLO Mask Time  
VCC2 UVLO OFF Voltage  
VCC2 UVLO ON Voltage  
VCC2 UVLO Mask Time  
100  
kV/µs Guaranteed by design  
VUVLO1H  
VUVLO1L  
tUVLO1MSK  
VUVLO2H  
VUVLO2L  
tUVLO2MSK  
3.35  
3.25  
0.6  
3.50  
3.40  
1.7  
3.65  
3.55  
3.4  
V
V
µs  
V
7.2  
7.8  
8.4  
6.8  
7.4  
8.0  
V
1.0  
2.9  
5.0  
µs  
INA  
INB  
VINL  
VINH  
VINH  
VINL  
tPONB  
tPOFFA  
tPONA  
tPOFFB  
90 %  
tRISE  
90 %  
90 %  
tRISE  
90 %  
OUT  
10 %  
tFALL  
10 %  
10 %  
10 %  
tFALL  
Figure 2. IN-OUT Timing Chart  
6/23  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
BM61M22BFJ-C  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input Side) Circuit Current  
Side 2 (Output Side) Circuit Current  
Side 1 (Input Side) Consumption Power  
Side 2 (Output Side) Consumption Power  
Isolation Voltage  
Value  
3
Unit  
mA  
mA  
mW  
mW  
Vrms  
°C  
Conditions  
VCC1 = 5 V, INA = H, INB = L  
VCC2 = 15 V, OUT = H  
0.45  
15  
VCC1 = 5 V, INA = H, INB = L  
VCC2 = 15 V, OUT = H  
6.75  
2500  
125  
150  
150  
8.3  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Storage Temperature  
Maximum Data Transmission Rate  
°C  
°C  
MHz  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
7/23  
BM61M22BFJ-C  
Typical Performance Curves  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VCC1 = 5.5 V  
Ta = +125 °C  
VCC1 = 5.0 V  
Ta = +25 °C  
VCC1 = 4.5 V  
Ta = -40 °C  
4.75 5.00  
Input Side Supply Voltage: VCC1 [V]  
0.20  
4.50  
5.25  
5.50  
-40 -20  
0
20  
40  
Temperature: Ta [˚C]  
60  
80 100 120  
Figure 3. Input Side Circuit Current 1  
vs Input Side Supply Voltage  
Figure 4. Input Side Circuit Current 1 vs Temperature  
6.00  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
6.00  
5.50  
5.00  
4.50  
Ta = +125 °C  
VCC1 = 5.5 V  
4.00  
VCC1 = 5.0 V  
3.50  
Ta = +25 °C  
3.00  
2.50  
VCC1 = 4.5 V  
Ta = -40 °C  
2.00  
1.50  
4.50  
4.75  
5.00  
5.25  
5.50  
-40 -20  
0
20  
40  
60  
80 100 120  
Input Side Supply Voltage: VCC1 [V]  
Temperature: Ta [˚C]  
Figure 6. Input Side Circuit Current 2 vs Temperature  
Figure 5. Input Side Circuit Current 2  
vs Input Side Supply Voltage  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
8/23  
BM61M22BFJ-C  
Typical Performance Curves - continued  
1.20  
1.10  
1.00  
0.90  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
VCC2 = 24 V  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
Ta = +125 °C  
Ta = +25 °C  
VCC2 = 15 V  
Ta = -40 °C  
VCC2 = 9 V  
9
12  
15  
18  
Output Side Supply Voltage: VCC2 [V]  
21  
24  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [˚C]  
Figure 7. Output Side Circuit Current 1  
vs Output Side Supply Voltage (OUT = L)  
Figure 8. Output Side Circuit Current 1  
vs Temperature (OUT = L)  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
Ta = +125 °C  
VCC2 = 24 V  
Ta = +25 °C  
VCC2 = 15 V  
VCC2 = 9 V  
Ta = -40 °C  
9
12  
15  
18  
Output Side Supply Voltage: VCC2 [V]  
21  
24  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
Figure 9. Output Side Circuit Current 2  
vs Output Side Supply Voltage (OUT = H)  
Figure 10. Output Side Circuit Current 2  
vs Temperature (OUT = H)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
9/23  
BM61M22BFJ-C  
Typical Performance Curves - continued  
3.0  
24  
20  
16  
12  
8
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC1 = 5 V  
H level  
L level  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
4
0
4.50  
4.75  
5.00  
5.25  
Input Side Supply Voltage: VCC1 [V]  
5.50  
0
1
2
3
4
5
Logic H/L Level InputVoltage: VINH ,VINL [V]  
Figure 12. Output Voltage vs Logic H/L Level Input Voltage  
(VCC1 = 5 V, VCC2 = 15 V, Ta = 25 °C)  
Figure 11. Logic H/L Level Input Voltage  
vs Input Side Supply Voltage  
65  
50  
40  
30  
20  
RIND  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
59  
53  
47  
41  
35  
RINU  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
10  
0
-40 -20  
0
20  
40  
Temperature: Ta [˚C]  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [˚C]  
Figure 13. Logic Pull Up/Down Resistance vs Temperature  
Figure 14. Minimum Input Pulse Width vs Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
10/23  
BM61M22BFJ-C  
Typical Performance Curves – continued  
3.0  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
2.5  
VCC2 = 9 V  
VCC2 = 15 V  
VCC2 = 24 V  
VCC2 = 9 V  
VCC2 = 15 V  
VCC2 = 24 V  
2.0  
1.5  
1.0  
0.5  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [˚C]  
Temperature: Ta [˚C]  
Figure 15. OUT ON Resistance (Source) vs Temperature  
Figure 16. OUT ON Resistance (Sink) vs Temperature  
60  
60  
55  
55  
VCC2 = 9 V  
VCC2 = 9 V  
VCC2 = 15 V  
VCC2 = 15 V  
50  
50  
45  
45  
VCC2 = 24 V  
VCC2 = 24 V  
40  
40  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
-40 -20  
0
20  
40  
Temperature: Ta [˚C]  
60  
80 100 120  
Figure 17. Turn ON Time vs Temperature  
(INA = PWM, INB = L)  
Figure 18. Turn OFF Time vs Temperature  
(INA = PWM, INB = L)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
11/23  
BM61M22BFJ-C  
Typical Performance Curves – continued  
60  
60  
55  
50  
45  
40  
55  
VCC2 = 9 V  
VCC2 = 15 V  
50  
VCC2 = 9 V  
VCC2 = 15 V  
45  
VCC2 = 24 V  
VCC2 = 24 V  
40  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
Figure 19. Turn ON Time vs Temperature  
(INA = H, INB = PWM)  
Figure 20. Turn OFF Time vs Temperature  
(INA = H, INB = PWM)  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
5
4
3
2
1
VUVLO1H  
VUVLO1L  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [˚C]  
Figure 21. VCC1 UVLO ON/OFF Voltage vs Temperature  
Figure 22. VCC1 UVLO Mask Time vs Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
12/23  
BM61M22BFJ-C  
Typical Performance Curves – continued  
5
4
3
2
1
8.0  
VUVLO2H  
7.5  
VUVLO2L  
7.0  
6.5  
6.0  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [˚C]  
Temperature: Ta [˚C]  
Figure 24. VCC2 UVLO Mask Time vs Temperature  
Figure 23. VCC2 UVLO ON/OFF Voltage vs Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
13/23  
BM61M22BFJ-C  
Pin Descriptions  
1. VCC1 (Input side power supply pin)  
The VCC1 pin is a power supply pin on the input side. To suppress voltage fluctuations due to the current to drive internal  
transformers, connect a bypass capacitor between the VCC1 and the GND1 pins.  
2. GND1 (Input side ground pin)  
The GND1 pin is a ground pin on the input side.  
3. VCC2 (Output side power supply pin)  
The VCC2 pin is a power supply pin on the output side. To reduce voltage fluctuations due to the OUTH and OUTL pins  
output current, connect a bypass capacitor between the VCC2 pin and the GND2 pin.  
4. GND2 (Output side ground pin)  
The GND2 pin is a ground pin on the output side.  
5. INA, INB (Control input pin)  
The INA, INB are pins used to determine output logic.  
INB  
L
INA  
L
OUTH  
Hi-Z  
H
OUTL  
L
Hi-Z  
L
L
H
H
L
Hi-Z  
Hi-Z  
H
H
L
6. OUTH, OUTL (Output pin for gate driving)  
The OUT pin is used to drive the gate of a power device. OUTH is the source output. OUTL is the sink output.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
14/23  
BM61M22BFJ-C  
Description of Functions and Examples of Constant Setting  
1. Under-voltage Lockout (UVLO) Function  
The BM61M22BFJ-C incorporates the Under-voltage Lockout (UVLO) Function both on the input and the output sides. When  
the power supply voltage drops to the UVLO ON voltage (low voltage side typ 3.4 V, high voltage side typ 7.4 V), the OUT  
(OUTL and OUTH are shorted) pin will output the “L” signal. When the power supply voltage rises to the UVLO OFF voltage,  
these pins are reset. In addition, to prevent malfunctions due to noises, a mask time of tUVLO1MSK (typ 1.7 μs) and tUVLO2MSK  
(typ 2.9 μs) are set on both the low and the high voltage sides. After the input side UVLO is released, the OUT pin will output  
the “H” signal from the time after the input signal switches.  
H
INA  
L
H
INB  
L
VUVLO1H  
VCC1  
OUT  
VUVLO1L  
H
L
tUVLO1MSK  
Figure 25. Input Side UVLO Function Operation Timing Chart  
H
INA  
INB  
L
H
L
VUVLO2H  
VUVLO2L  
VCC2  
OUT  
H
Hi-Z  
L
tUVLO2MSK  
Figure 26. Output Side UVLO Function Operation Timing Chart  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
15/23  
BM61M22BFJ-C  
Description of Functions and Examples of Constant Setting – continued  
2. I/O Condition Table  
Input  
Output  
No.  
Status  
VCC1  
VCC2  
INB  
INA  
OUTH  
OUTL  
1
2
3
4
5
VCC1UVLO  
VCC2UVLO  
UVLO  
X
X
X
H
L
X
X
X
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
H
L
L
X
UVLO  
INB Active  
L
Normal operation L input  
Normal operation H input  
L
L
H
Hi-Z  
○: VCC1 or VCC2 > UVLO, X: Don't care  
VUVLO1H  
VUVLO1L  
VCC1  
INA  
INB  
VUVLO2H  
VUVLO2L  
VCC2  
tUVLO1MSK  
tUVLO2MSK  
H
OUTH  
OUTL  
Hi-Z  
Hi-Z  
L
GATE  
OUTPUT  
H
Hi-Z  
L
Figure 27. IN-OUT Timing Chart  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
16/23  
BM61M22BFJ-C  
Selection of Components Externally Connected  
Figure 28. For Driving IGBT or MOSFET  
Figure 29. For Driving IGBT or MOSFET with Buffer Circuits  
Figure 30. For Driving IGBT or MOSFET with Negative Power Supply  
Figure 31. For Driving IGBT or MOSFET with Buffer Circuits & Negative Power Supply  
Symbol  
R1  
Manufacturer  
ROHM  
Element  
Resistor  
Recommended Components  
LTR Series  
LTR Series  
MCR Series  
R2  
ROHM  
Resistor  
Q1  
Q2  
ROHM  
ROHM  
NPN Transistor  
PNP Transistor  
2SCR542PFRA  
2SAR542PFRA  
RBR3MM30A  
RBR5LAM30A  
YFZV Series  
D1  
ROHM  
ROHM  
Diode  
ZD1  
Zener Diode  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
17/23  
BM61M22BFJ-C  
I/O Equivalence Circuits  
Pin No  
Name (Function)  
I/O equivalence circuits  
2
INA (Control input pin A)  
3
INB (Control input pin B)  
6
7
OUTH (Source side output pin)  
OUTL (Sink side output pin)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
18/23  
BM61M22BFJ-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
TSZ02201-0818ACH00220-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
19/23  
TSZ22111 • 15 • 001  
12.Jan.2022 Rev.002  
BM61M22BFJ-C  
Operational Notes – continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 32. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
20/23  
BM61M22BFJ-C  
Ordering Information  
F
J
B M 6 1 M 2 2 B  
-
C E 2  
Package  
FJ: SOP-JW8  
Rank  
C:Automotive  
Part Number  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SOP-JW8 (TOP VIEW)  
Part Number Marking  
6 1 M 2 2  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
21/23  
BM61M22BFJ-C  
Physical Dimension and Packing Information  
Package Name  
SOP-JW8  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
22/23  
BM61M22BFJ-C  
Revision History  
Date  
Revision  
Changes  
24.Apr.2020  
001  
New Release  
P1 Features : change UL1577 Recognized  
P2 Change Contents  
12.Jan.2022  
002  
P4 Change Block Diagram  
P7 Add UL1577 Ratings Table  
P16 Change Figure 27.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0818ACH00220-1-2  
12.Jan.2022 Rev.002  
23/23  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM61M41RFV-C

BM61M41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM61S40RFV-C

BM61S40RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能、过电压保护功能。
ROHM

BM61S41RFV-C

BM61S41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM6201FS

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6201FS-E2

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6202FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6202FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6203FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6203FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6204FS

3-Phase Brushless Fan Motor Driver
ROHM