BU1523KV [ROHM]

Image Correction IC for Panel; 图像校正IC,适用于面板
BU1523KV
型号: BU1523KV
厂家: ROHM    ROHM
描述:

Image Correction IC for Panel
图像校正IC,适用于面板

文件: 总23页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Image Correction ICs  
Image Correction IC  
for Panel  
BU1523KV  
No.11060EAT05  
Description  
BU1523KV is an image quality adjustment IC for in-vehicle displays. It can control brightness, contrast, hue, intensity,  
sharpness, etc. It is equipped with both RGB and YCbCr as input/output interfaces. It also incorporates LVDS output  
capability with an embedded LVDS transmitter.  
Features  
1) RGB input data format  
Width of data bus 24bit  
Vertical/horizontal synchronizing and data enable signal  
2) RGB output data format  
It is the same as the entry format  
3) YCbCr input data format  
ITU-R BT.656-4 or synchronization signal YCbCr  
Width of data bus 8bit  
Vertical/horizontal synchronizing and data field signal  
Date range conform ITU-R BT.601 or full range  
4) YCbCr output data format  
The same as the entry format  
Capable of processing BT.656 input to generate and output  
synchronization signal from SAV/EAV  
5) RGB IF Image quality adjustment  
Contrast, Brightness, Hue, Chroma and Sharpness  
Independent RGB gamma correction  
6) YCbCr Image quality adjustment  
Contrast, Brightness, Hue, Chroma and Sharpness  
7) LVDS Transmitter  
Built-in LVDS transmitter  
Converts RGB24 bit, vertical/horizontal synchronization signal  
and data enable inputs into 4ch LVDS data streams  
8) 2-line serial interface slave function  
The register in BU1523KV can be set  
9) Package  
VQFP100  
Applications  
In-vehicle display etc.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
1/22  
Technical Note  
BU1523KV  
Absolute maximum ratings  
[Table 1]  
Parameter  
Supply voltage 1  
Symbol  
VDDIO  
VDDI2C  
PVDD  
LVDD  
VDD  
Ratings  
-0.3+4.0  
Unit  
V
Supply voltage 2  
-0.3+4.0  
V
Supply voltage 3  
-0.3+4.0  
V
Supply voltage 4  
-0.3+4.0  
V
Supply voltage 5  
-0.3+2.1  
V
Input voltage range  
Storage temperature range  
VIN  
-0.3IO_LVL+0.3 *1  
-40+125  
V
Tstg  
mW  
Power dissipation  
PD  
1000 *2, 1499 *3  
*1 IO_LVL is a generic name of VDDIO, VDDI2C  
*2 IC only. In the case exceeding 25, 10mW should be reduced at the rating 1.  
*3 When packaging a glass epoxy board of 70x70x1.6mm. If exceeding 25, 14.99mW should be reduced at the rating 1℃  
*
*
Has not been designed to withstand radiation.  
Operation is not guaranteed at absolute maximum ratings.  
Operating conditions  
[Table 2]  
Ratings  
Typ.  
Parameter  
Symbol  
Unit  
Min.  
3.0  
Max.  
3.6  
Supply voltage1(IO)  
Supply voltage2(IO)  
Supply voltage3(PLL)  
Supply voltage4(LVDS)  
Supply voltage5(CORE)  
Input voltage range  
VDDIO  
VDDI2C  
PVDD  
LVDD  
VDD  
3.3  
3.3  
3.3  
3.3  
1.8  
-
V
V
3.0  
3.0  
3.6  
3.6  
V
3.0  
3.6  
V
1.65  
0.0  
1.95  
V
VIN  
IO_LVL*1  
+85  
V
Operating temperature range  
Topr  
-40  
-
*1 IO_LVL is a generic name of VDDIO, VDDI2C.  
*
Please supply power source in order of VDD(VDDIO, VDDI2C, PVDD,LVDD).  
www.rohm.com  
2011.02 - Rev.A  
2/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Block Diagram  
LPDNB  
RGBMUTE  
MIR_EN  
TAP/TAN  
TBP/TBN  
TCP/TCN  
TDP/TDN  
CbCr  
Y
YCbCr/  
RGB  
Convert  
Output  
Data  
Convert  
RDI0~RDI7  
GDI0~GDI7  
BDI0~BDI7  
Hue  
Adjust  
Chroma  
Adjust  
RGB  
Gamma  
LVDS  
Transmitter  
RGB/  
YCbCr  
Convert  
RGB  
RGBCKI  
RGBHSI  
RGBVSI  
RGBDEI  
Contrast  
Adjust  
Brightness  
Adjust  
Sharpnes  
Adjust  
TCKP/TCKN  
PLL  
RGB IF Image quality adjustment part  
YDI0~YDI7  
YDO0~YDO7  
Output  
Data  
Convert  
SAV/EAV  
Detect  
CbCr  
Y
YCKI  
YHSI  
YVSI  
Hue  
Adjust  
Chroma  
Adjust  
YCKO  
YHSO  
YVSO  
YFLDO  
YFLDI  
Contrast  
Adjust  
Brightness  
Adjust  
Sharpnes  
Adjust  
YCbCr IF Image quality adjustment part  
SCL  
SDA  
I2C IF  
(slave)  
Register  
I2CDEV  
RESETB  
TEST0  
TEST1  
The LVDS data output mode  
LPDNB  
RGBMUTE  
MIR_EN  
TAP/TAN  
TBP/TBN  
TCP/TCN  
TDP/TDN  
CbCr  
Y
RDI0~RDI7  
GDI0~GDI7  
BDI0~BDI7  
Output  
Data  
Convert  
YCbCr/  
RGB  
Convert  
Chroma  
Adjust  
Hue  
Adjust  
RGB  
Gamma  
LVDS  
Transmitter  
RGB/  
YCbCr  
conversion  
RGBCKI  
RGBHSI  
RGBVSI  
RGBDEI  
RGB  
Brightness  
Adjust  
Contrast  
Adjust  
Sharpnes  
Adjust  
TCKP/TCKN  
PLL  
RDO0~RDO7  
GDO0~GDO7  
BDO0~BDO7  
RGBCKO  
RGB IF Image quality adjustment part  
SCL  
SDA  
RGBHSO  
RGBVSO  
RGBDEO  
I2C IF  
(slave)  
Register  
I2CDEV  
RESETB  
TEST0  
TEST1  
The RGB data output mode (YCbCr interface cannot be used.)  
Terminal selection from register  
*Change their modes with register setting.  
Fig. 1 Block diagram  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
3/22  
Technical Note  
BU1523KV  
Terminal FunctionsEquivalent circuit diagram  
[Table 3 Terminal Functions (1/4)]  
PowerSupply  
PIN  
No.  
PIN  
Name  
In/Out  
(*1)  
Init  
(*2)  
I/O  
Type  
Function Description  
System  
(*4)  
BDI4  
BDI5  
BDI6  
BDI7  
RGB B Data [4] input  
1
2
I
I
-
a
a
A
A
A
A
A
A
A
-
RGB B Data [5] input  
-
RGB B Data [6] input  
3
I
-
a
RGB B Data [7] input  
4
I
-
a
RGBHSI  
RGB H Sync input  
5
I
-
a
RGBVSI  
RGB V Sync input  
6
I
-
a
RGBDEI  
RGB Data Enable input  
7
I
-
-
a
GND  
Ground  
8
G
I
a,b  
a
RGBCKI  
RGB Clock input  
9
-
B
-
VDDIO  
IO power source  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P
P
I/O  
I
-
a
I2CVDD  
2-line serial interface IO power source  
2-line serial interface data input / output (*6)  
2-line serial interface clock input  
Ground  
-
b
-
SDA  
In  
b
G
H
-
SCL  
-
b
GND  
G
P
P
O
O
O
O
O
O
O
O
O
-
a,b  
a
VDDIO  
IO power source  
-
-
VDD  
CORE power source  
-
-
-
YDO7/RGBDEO  
YDO6/RGBVSO  
YDO5/RGBHSO  
YDO4/BDO7  
YDO3/BDO6  
YDO2/BDO5  
YDO1/BDO4  
YDO0/BDO3  
YFLDO/BDO2  
BT601 YcbCr data [7] / RGB data output  
BT601 YcbCr data [6] / RGB V Sync output  
BT601 YcbCr data [5] / RGB H Sync output  
BT601 YcbCr data [4] / RGB B data [7] output  
BT601 YcbCr data [3] / RGB B data [6] output  
BT601 YcbCr data [2] / RGB B data [5] output  
BT601 YcbCr data [1] / RGB B data [4] output  
BT601 YcbCr data [0] / RGB B data [3] output  
BT601 Field output / RGB B data [2] output  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
a
D
D
D
D
D
D
D
D
D
a
a
a
a
a
a
a
a
*
Fix an unused input pin to GND or VDDIO (Fix SDA and SCL to I2CVDD. TEST0 and TEST1 are excluded.) .  
*1) “I” shows the input, “O” shows the output, “I/O” shows the bidirection, “P” shows the power supply, and “G” shows GND.  
*2) “PD” shows the pull-down, “In” shows the input mode, and “Low” shows the Low level output.  
*4) "a" in the column in the power supply system shows VDDIO, "b" shows I2CVDD, "c" shows LVDD, and "d" shows PVDD.  
*6) “SDA” is output at "L" level when usually using it or is in the state of high impedance, and "H" level is not output.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
4/22  
Technical Note  
BU1523KV  
[Table 3 Terminal Functions (2/4) ]  
Power Supply  
PIN  
No.  
PIN  
Name  
In/Out  
(*1)  
Init  
(*2)  
I/O  
Type  
Function Description  
System  
(*4)  
YVSO/BDO1  
YHSO/BDO0  
GND  
BT601 YcbCr data [1] / RGB V Sync output  
BT601 YcbCr data [0] / RGB H Sync output  
Ground  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
O
O
Low  
Low  
-
a
a
D
D
-
G
a,b  
a
YCKO/RGBCKO  
VDDIO  
BT601 Clock output / RGB Clock output  
IO power source  
O
Low  
-
D
-
P
a
GDO7  
RGB G data [7] output  
O
Low  
Low  
Low  
Low  
-
a
D
D
D
D
-
GDO6  
RGB G data [6] output  
O
a
GDO5  
RGB G data [5] output  
O
a
GDO4  
RGB G data [4] output  
O
a
VDDIO  
IO power source  
P
a
(*5)  
YCKI/GDO3  
GND  
BT656 Clock input / RGB G data [3] output  
Ground  
I/O  
G
In  
a
F
-
-
a,b  
a
YHSI/GDO2  
YVSI/GDO1  
YFLDI/GDO0  
VDD  
BT656 H Sync input / RGB G data [2] output (*5)  
BT656 V Sync input / RGB G data [1] output (*5)  
BT601 Field input / RGB G data [0] output  
CORE power source  
I/O  
I/O  
I/O  
P
In  
E
E
E
-
In  
a
In  
a
-
-
YDI0/RDO7  
YDI1/RDO6  
YDI2/RDO5  
VDDIO  
BT656 Y data [0] input / RGB R data [7] output (*5)  
BT656 Y data [1] input / RGB R data [6] output (*5)  
BT656 Y data [2] input / RGB R data [5] output (*5)  
IO power source  
I/O  
I/O  
I/O  
P
In  
a
E
E
E
-
In  
a
In  
a
-
a
YDI3/RDO4  
YDI4/RDO3  
YDI5/RDO2  
YDI6/RDO1  
YDI7/RDO0  
BT656 Y data [3] input / RGB R data [4] output (*5)  
BT656 Y data [4] input / RGB R data [3] output (*5)  
BT656 Y data [5] input / RGB R data [2] output (*5)  
BT656 Y data [6] input / RGB R data [7] output (*5)  
BT656 Y data [7] input / RGB R data [0] output (*5)  
I/O  
I/O  
I/O  
I/O  
I/O  
In  
a
E
E
E
E
E
In  
a
In  
a
In  
a
In  
a
*
Fix an unused input pin to GND or VDDIO (Fix SDA and SCL to I2CVDD. TEST0 and TEST1 are excluded.) .  
*1) “I” shows the input, “O” shows the output, “I/O” shows the bidirection, “P” shows the power supply, and “G” shows GND.  
*2) “PD” shows the pull-down, “In” shows the input mode, and “Low” shows the Low level output.  
*4) "a" in the column in the power supply system shows VDDIO, "b" shows I2CVDD, "c" shows LVDD, and "d" shows PVDD.  
*5) 36-50 pins direction depends on the modes.  
the RGB data output mode: output  
the LVDS data output mode: input  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
5/22  
Technical Note  
BU1523KV  
[Table 3 Terminal Functions (3/4) ]  
Power Supply  
PIN  
No.  
PIN  
Name  
In/Out  
(*1)  
Init  
(*2)  
I/O  
Type  
Function Description  
System  
(*4)  
GND  
Ground  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
G
I
-
a,b  
a
a
a
a
a
a
a
a
d
d
c
-
A
B
A
C
C
B
B
-
I2CDEV  
RGBMUTE  
MIR_EN  
TEST0  
TEST1  
RESETB  
LPDNB  
VDDIO  
PGND  
PVDD  
LGND  
TDP  
I2C device address setting  
MUTE signal : High active  
LVDS data mirror enable : High active  
Test pin 0 (*3) (Connect to GND)  
Test pin 1 (*3) (Connect to GND)  
Logic reset signal: Low active  
LVDS reset signal: Low active  
IO power source  
-
I
-
I
-
I
PD  
I
PD  
-
I
I
-
P
G
P
G
O
O
O
O
O
O
G
P
O
O
O
O
G
-
PLL ground  
-
-
PLL ground  
-
-
LVDS ground  
-
-
LVDS data output D ch P  
LVDS data output D ch N  
LVDS clock output P  
-
c
I
TDN  
-
c
I
TCKP  
TCKN  
TCP  
-
c
I
LVDS clock output N  
-
c
I
LVDS data output C ch P  
LVDS data output C ch N  
LVDS ground  
-
c
I
TCN  
-
c
I
LGND  
LVDD  
TBP  
-
c
-
LVDS power source  
-
c
-
LVDS data output B ch P  
LVDS data output B ch N  
LVDS data output A ch P  
LVDS data output A ch N  
LVDS ground  
-
c
I
TBN  
-
c
I
TAP  
-
c
I
TAN  
-
c
I
LGND  
-
c
-
*
Fix an unused input pin to GND or VDDIO (Fix SDA and SCL to I2CVDD. TEST0 and TEST1 are excluded.) .  
*1) “I” shows the input, “O” shows the output, “I/O” shows the bidirection, “P” shows the power supply, and “G” shows GND.  
*2) “PD” shows the pull-down, “In” shows the input mode, and “Low” shows the Low level output.  
*3) Fix TEST0 and TEST1 to GND (The opening is a prohibition of use)  
*4) "a" in the column in the power supply system shows VDDIO, "b" shows I2CVDD, "c" shows LVDD, and "d" shows PVDD.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
6/22  
Technical Note  
BU1523KV  
[Table 3 Terminal Functions (4/4) ]  
Power Supply  
PIN  
No.  
PIN  
Name  
In/Out  
(*1)  
Init  
(*2)  
I/O  
Type  
Function Description  
System  
(*4)  
GND  
RDI0  
RDI1  
RDI2  
RDI3  
RDI4  
RDI5  
RDI6  
RDI7  
Ground  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
G
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
a,b  
a
-
RGB R data [0] input  
RGB R data [1] input  
RGB R data [2] input  
RGB R data [3] input  
RGB R data [4] input  
RGB R data [5] input  
RGB R data [6] input  
RGB R data [7] input  
IO power source  
A
A
A
A
A
A
A
A
-
I
a
I
a
I
a
I
a
I
a
I
a
I
a
VDDIO  
GDI0  
GDI1  
GND  
GDI2  
GDI3  
GDI4  
GDI5  
GDI6  
GDI7  
VDD  
P
I
a
RGB G data [0] input  
RGB G data [1] input  
GND  
a
A
A
-
I
a
G
I
a,b  
a
RGB G data [2] input  
RGB G data [3] input  
RGB G data [4] input  
RGB G data [5] input  
RGB G data [6] input  
RGB G data [7] input  
CORE power source  
RGB B data [0] input  
RGB B data [1] input  
RGB B data [2] input  
RGB B data [3] input  
IO power source  
A
A
A
A
A
A
-
I
a
I
a
I
a
I
a
I
a
P
I
-
BDI0  
BDI1  
BDI2  
BDI3  
VDDIO  
a
A
A
A
A
-
I
a
I
a
I
a
P
a
*
Fix an unused input pin to GND or VDDIO (Fix SDA and SCL to I2CVDD. TEST0 and TEST1 are excluded.) .  
*1) “I” shows the input, “O” shows the output, “I/O” shows the bidirection, “P” shows the power supply, and “G” shows GND.  
*2) “PD” shows the pull-down, “In” shows the input mode, and “Low” shows the Low level output.  
*4) "a" in the column in the power supply system shows VDDIO, "b" shows I2CVDD, "c" shows LVDD, and "d" shows PVDD.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
7/22  
Technical Note  
BU1523KV  
[Table 4 (1/2)]  
Type  
Equivalent circuit configuration  
Type  
Equivalent circuit configuration  
VDDIO  
VDDIO  
VDDIO  
To internal  
A
B
To internal  
GND  
GND  
GND  
Input terminal  
Input terminal with schmitt  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
Internal signal  
To internal  
Internal signal  
C
D
GND  
GND  
GND  
GND  
GND  
Input terminal with pull down  
Output terminal  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
To internal  
Internal signal  
To internal  
GND  
Internal signal  
E
F
Internal signal  
Internal signal  
Internal signal  
GND  
GND  
Internal signal  
GND  
GND  
Input/Output terminal  
Input/Output terminal with schmitt  
I2CVDD  
I2CVDD  
I2CVDD  
I2CVDD  
To internal  
GND  
Internal signal  
To internal  
G
H
Internal signal  
Internal signal  
GND  
GND  
GND  
Input/Output terminal  
(2-line serial I/F)  
Input terminal with schmitt  
(2-line serial I/F)  
www.rohm.com  
2011.02 - Rev.A  
8/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
[Table 4 (2/2)]  
Type  
Equivalent circuit configuration  
LVDD  
LVDD  
Internal signal  
Internal signal  
Internal signal  
T*P  
T*N  
I
Internal signal  
Internal signal  
Internal signal  
GND  
GND  
Output terminal (LVDS)  
Pin configurations  
GND [76]  
[50] YDI7/RDO0  
RDI0 [77]  
RDI1 [78]  
RDI2 [79]  
RDI3 [80]  
RDI4 [81]  
RDI5 [82]  
RDI6 [83]  
RDI7 [84]  
VDDIO [85]  
GDI0 V [86]  
GDI1 [87]  
GND [88]  
GDI2 [89]  
GDI3 [90]  
GDI4 [91]  
GDI5 [92]  
GDI6 [93]  
GDI7 [94]  
VDD [95]  
BDI0 [96]  
BDI1 [97]  
BDI2 [98]  
BDI3 [99]  
VDDIO [100]  
[49] YDI6/RDO1  
[48] YDI5/RDO2  
[47] YDI4/RDO3  
[46] YDI3/RDO4  
[45] YDDIO  
[44] YDI2/RDO5  
[43] YDI1/RDO6  
[42] YDI0/RDO7  
[41] YDD  
[40] YFLDI/GDO0  
[39] YVSI/GDO1  
[38] YHSI/GDO2  
[37] GND  
[36] YCKI/GDO3  
[35] YDDIO  
[34] GDO4  
[33] GDO5  
[32] GDO6  
[31] GDO7  
[30] VDDIO  
[29] YCKO/RGBCKO  
[28] GND  
1PIN MARK  
[27] YHSO/BDO0  
[26] YVSO/BDO1  
[Pin No.] Pin Name  
Fig.2 Pin configurations  
9/22  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
Technical Note  
BU1523KV  
Electrical characteristics (DC)  
[Table 5]  
Unless otherwise specified, VDD=1.80V, VDDIO=3.3V, I2CVDD=3.3V, PVDD=3.3V, LVDD=3.3V, GND=0.0V, Ta=25, fIN=36MHz  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
8.0  
Typ.  
-
Max.  
36.0  
Input frequency 1  
Input frequency 2  
Input clock duty  
FIN1  
FIN2  
DCKI  
IDD1  
ILVDD1  
ILVDD2  
IDDst1  
IIH  
MHz RGBCKI  
MHz YCKI  
8.0  
45  
-
-
50  
16  
55  
38  
-
55.0  
55  
-
%
mA  
mA  
mA  
μA  
μA  
μA  
μA  
V
RGBCKI, YCKI  
36MHz (VDD)  
Operational current  
LVDS supply current  
LVDS supply current  
Leakage current  
Input ”H” current  
Input ”L” current  
36MHz, LVDS_RS = 1 (LVDD, PVDD)  
Input toggle pattern (Fig.4)  
-
-
36MHz, LVDS_RS = 0 (LVDD, PVDD)  
Input toggle pattern (Fig.4)  
-
-
Release reset , input pin =GND  
(VDD)  
-
50  
10  
10  
100  
-10  
-10  
25  
-
VIH=IO_LVL  
VIL=GND  
IIL  
-
Pull-down current  
Input ”H” voltage 1  
Input ”L” voltage 1  
Input ”H” voltage 2  
Input ”L” voltage 2  
Output ”H” voltage  
IPD  
50  
-
VIH=IO_LVL  
IO_LVL  
x0.8  
IO_LVL  
+0.3  
Normal input  
VIH1  
VIL1  
(Including input mode of I/O terminal)  
IO_LVL  
x 0.2  
Normal input  
-0.3  
-
V
(Including input mode of I/O terminal)  
IO_LVL  
x0.85  
IO_LVL  
+0.3  
Hysteresis input  
(RESETB, RGBCKI, YCKI, LPDNB, SCL, RGBMUTE)  
VIH2  
VIL2  
-
V
IO_LVL  
x 0.15  
Hysteresis input  
(RESETB, RGBCKI, YCKI, LPDNB, SCL, RGBMUTE)  
-0.3  
-
V
IO_LVL  
-0.4  
IOH=-1.0mA(DC)  
(including output mode of I/O terminal)  
VOH  
VOL  
-
IO_LVL  
0.4  
V
IOL=1.0mA(DC)  
(including output mode of I/O terminal)  
Output ”L” voltage  
LVDS Transmitter  
0.0  
-
V
Normal Swing  
250  
350  
450  
300  
35  
mV  
mV  
mV  
V
LVDS_RS(*1) = 1  
RL=100Ω  
Differential output voltage  
VOD  
Reduced Swing  
120  
200  
LVDS_RS(*1) = 0  
Change in VOD between  
complementary output states  
ΔVOD  
VOC  
ΔVOC  
IOS  
-
-
Common mode voltage  
1.125  
1.25  
1.375  
35  
RL=100Ω  
Change in VOC between  
complementary output states  
-
-
-
-
-
-
mV  
mA  
μA  
Output short circuit current  
Output TRI-STATE current  
-24  
VOUT(*2)=0V, RL=100Ω  
LPDNB=GND  
IOZ  
±10  
VOUT(*2)=GND to LVDD  
*
IO_LVL is a generic name of VDDIO, VDDI2C.  
(*1) LVDS_RS is a register name controlled with 2-line serial interface.  
(*2) VOUT=TAN/P, TBN/P, TCN/P, TDN/P, TCKN/P  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
10/22  
Technical Note  
BU1523KV  
RL  
RL  
Fig.3 LVDS Transmitter characteristic diagram  
CLKIN  
Tx0  
Tx1  
Tx2  
Tx3  
Tx4  
Tx5  
Tx6  
X=A,B,C,D  
Input waveform to the LVDS transmitter block  
Tx0-7 are the data before being serialized by the LVDS transmitter.  
Refer to Fig.8 for the serialized data sequence.  
Fig.4 Input toggle pattern  
www.rohm.com  
2011.02 - Rev.A  
11/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Electric Characteristics (AC)  
1. Image quality adjustment data input interface timing  
RGB(Y)VSI / RGB(Y)HSI  
RGBDEI / YFLDI  
R(G,B,Y)DI[7:0]  
CKI  
RGB(Y)CKI  
(RGB(Y)CK_POL=1)  
RGB(Y)CKI  
(RGB(Y)CK_POL=0)  
CMS CMH  
Fig.5 Data input interface timing  
[Table 6]  
Unless otherwise specified, VDD=1.80V, VDDIO=3.3V, I2CVDD=3.3V, PVDD=3.3V, LVDD=3.3V, GND=0.0V, Ta=25℃  
Description  
Min.  
27.7  
18.1  
45  
Typ.  
Max.  
125  
125  
55  
-
Unit  
ns  
ns  
%
Symbol  
tCKI1  
RGBCKI Clock Cycle  
YCKI Clock Cycle  
-
-
tCKI2  
dCKI  
tCMS  
tCMH  
RGB(Y)CKI Clock Duty  
50  
-
RGB(Y)CKI Rise / Fall set-up Time  
RGB(Y)CKI Rise / Fall Hold Time  
6
ns  
ns  
5
-
-
* RGB(Y)CK_POL is an internal register of BU1523KV to determine the polarity of RGB(Y)CKI.  
* Ensure to make the total number of 1 line input pixels to YCbCr interface to be even (multiple of 4, in case of cycles).  
2. Image quality adjustment data output interface timing  
CKO  
RGB(Y)CKO  
(R(Y) CK_POL=1)  
OHH  
OHL  
RGB(Y)VSO  
/ RGB(Y)HSO  
RENO / YFLDO  
ODV  
R(G,B,Y)DO  
Fig.6 Data output interface timing  
[Table 7]  
Unless otherwise specified, VDD=1.80V, VDDIO=I2CVDD=PVDD=LVDD=3.3V, GND=0.0V, Ta=25℃  
Symbol  
tCKO1  
Description  
Min.  
27.7  
18.1  
40  
Typ.  
Max.  
125  
125  
60  
Unit  
ns  
ns  
%
RGBCKO Clock Cycle  
YCKO Clock Cycle  
-
-
tCKO2  
dCKO1  
dCKO2  
tODV  
RGBCKO Clock Duty  
YCKO Clock Duty  
50  
50  
-
35  
65  
%
Output delay R(G, B,Y)DO  
-
5
ns  
ns  
tOHL, tOHH Output delay RGB(Y)VSO, RGB(Y)HSO, RENO/YFLDO  
-
-
5
* The above figure shows the waveform when RGB(Y)CK_POL= “1” is set. When RGB(Y)CK_POL= “0” is set, RGB(Y)VSO, RGB(Y)HSO and  
RGB(Y)DO are output at the falling edge of RGB(Y)CKO.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
12/22  
Technical Note  
BU1523KV  
3. LVDS transmitter switching characteristic  
[Table 8]  
Unless otherwise specified, VDD=1.80V, VDDIO=I2CVDD=PVDD=LVDD=3.3V, GND=0.0V, Ta=25, fIN=36MHz  
Symbol  
Description  
MIN  
TYP  
MAX  
Unit  
tLVT  
LDVS Transition Time  
ns  
-
0.6  
1.5  
tTOP1  
tTOP0  
tTOP6  
tTOP5  
tTOP4  
tTOP3  
tTOP2  
tPLL  
Output Data Position 0  
Output Data Position 1  
Output Data Position 2  
Output Data Position 3  
Output Data Position 4  
Output Data Position 5  
Output Data Position 6  
Phase Locked Loop Set Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
-1.2  
0.0  
+1.2  
tCKI -1.2  
7
tCKI +1.2  
7
tCKI  
7
tCKI  
2
3
4
5
6
tCKI -1.2  
7
2
2
3
4
5
6
tCKI +1.2  
7
7
tCKI -1.2  
7
3
4
5
6
tCKI +1.2  
7
tCKI  
7
tCKI -1.2  
7
tCKI +1.2  
7
tCKI  
7
tCKI -1.2  
7
tCKI +1.2  
7
tCKI  
7
tCKI -1.2  
7
tCKI +1.2  
7
tCKI  
7
-
-
10.0  
LVDS Output  
Vdiff=(TxP)-(TxN)  
80%  
20%  
80%  
20%  
TxP  
Vdiff  
CL  
RL  
TxN  
tLVT  
tLVT  
LVDS Output Load  
Fig.7 LVDS Output AC Timing diagram 1  
www.rohm.com  
2011.02 - Rev.A  
13/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
TCKP/N OUT  
(Differential)  
TA2  
TB2  
TA1  
TB1  
TC1  
TD1  
TA0  
TB0  
TC0  
TD0  
TA6  
TB6  
TC6  
TD6  
TA5  
TB5  
TA4  
TB4  
TA3  
TB3  
TAP/N  
TBP/N  
TC5  
TD5  
TC4  
TD4  
TC3 TC2  
TD3 TD2  
TCP/N  
TDP/N  
Next Cycle  
Previous Cycle  
tTOP1  
tTOP0  
tTOP6  
tTOP5  
tTOP4  
tTOP3  
tTOP2  
Fig.8 LVDS Output AC Timing diagram 2  
LPDNB  
POWER  
CLKIN  
tPLL  
TCKP/N  
* POWER shows VDDIO, I2CVDD, VDD, LVDD, PVDD  
* CLKIN is a clock input to the LVDS transmitter.  
Fig.9 LVDS Phase Locked Loop Set Time  
www.rohm.com  
2011.02 - Rev.A  
14/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
4. 2-line serial interface timing  
SDA  
SCL  
tSU;DAT  
tLOW  
tBUF  
tHD;ST  
A
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
Fig.10 2-line serial interface timing  
[Table 9]  
Unless otherwise specified, VDD=1.80V, VDDIO=3.3V, I2CVDD=3.3V, PVDD=3.3V, LVDD=3.3V, GND=0.0V, Ta=25℃  
Symbol  
fSCL  
Description  
MIN  
0
TYP  
MAX  
Unit  
kHz  
µs  
SDL clock frequency  
-
-
-
-
-
400  
Holding time(Repetition) ”START” Condition  
After this period, the first clock pulse is generated.  
tHD;STA  
0.6  
1.3  
0.6  
0.6  
0
-
-
-
-
tLOW  
Low period of SDL clock  
µs  
tHIGH  
High period of SDL clock  
µs  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time of repetition ”START” condition  
Data hold time  
µs  
µs  
Data setup time  
100  
0.6  
1.3  
-
-
-
-
-
-
ns  
Setup time of 'STOP' condition  
'Bus free time between STOP' condition and 'START' condition  
µs  
µs  
www.rohm.com  
2011.02 - Rev.A  
15/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Operation explanation of each block  
1. Image quality adjustment of RGB interface  
It adjusts image quality input through 24-bit RGB interface.  
The supported I/O interface consists of 24-bit data, vertical synchronization signal, horizontal synchronization signal and  
data enable signal. It converts 24-bit RGB into YCbCr444 and makes adjustment on the contrast, brightness, sharpness,  
hue and intensity in the YCbCr space. The contrast, brightness and sharpness are adjusted against the luminance (Y)  
component and the hue and intensity are adjusted against the color difference (CbCr) component. In addition to the  
image quality adjustment in the YCbCr space, it is also equipped with the RGB independent gamma correction capability  
in the RGB space. Converting YCbCr444 to 24-bit RGB, gamma correction is made to each of the RGB components.  
16 gamma curve points can be set and the intervals between those set points are linearly interpolated. When the  
RGBMUTE terminal is set to “High” level, the RGB output data will be all “0” from the next frame.  
2. Image quality adjustment of YUV  
It adjusts image quality input through YCbCr422 interface.  
The supported I/O interfaces are ITU-R BT.656-4 and YCbCr with synchronization signal (complied with ITU-R BT.601).  
When the input is ITU-R BT.656-4, the output can be selected from ITU-R BT.656-4 and YCbCr with synchronization  
signal. However, when the input is YCbCr with synchronization signal, the output can only be YCbCr with synchronization  
signal. It makes adjustment on the contrast, brightness, sharpness, hue and intensity in the YCbCr space. The contrast,  
brightness and sharpness are adjusted against the luminance (Y) component and the hue and intensity are adjusted  
against the color difference (CbCr) component.  
3. LVDS transmitter  
It outputs high-speed serial data for image quality adjustment of RGB interface in LVDS format. The data mapping to be  
output in the LVDS format can be changed by the register setting. When the LPDNB terminal is set to “Low” level, the  
LVDS transmitter part will go into power down mode. The LVDS output will become Hi-Z status.  
4. 2-line serial interface  
2-line serial interface slave function is embedded. The registers are accessed through this interface. The slave address is  
46h (in 7-bit notation) when I2CDEV=0 and 47h (in 7-bit notation) when I2CDEV=1. The sub address is automatically  
incremented when consecutively accessed twice or more in read or write operation. * Slave address of 46h and 47h are in  
hexadecimal. * Fig.11 depicts the status when I2CDEV=0.  
SDA  
SCL  
S
1-7  
8
9
1-7  
8
9
1-7  
8
9
P
START  
condition address  
Slave  
STOP  
condition  
R/W  
ACK  
Sub address  
ACK  
Data  
ACK  
Data sending and receiving waveform  
Write  
Slave address  
W
(0)  
A(S)/  
A(S)  
S
S
A(S) Sub address A(S) Write data A(S) Write data A(S)  
Write data  
P
(46h)  
sequence  
Read  
Slave address  
(46h)  
W
(0)  
Slave address  
(46h)  
R
(1)  
A(M)/  
P
A(M)  
A(S) Sub address A(S)  
S
A(S) Read data A(M)  
Read data  
sequence  
S = START condition  
P = STOP condition  
A(S) = acknowledge by slave  
A(M) = acknowledge by master  
A(S) = not acknowledge by slave  
A(M) = not acknowledge by master  
Fig.11 2-line serial interface format  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
16/22  
Technical Note  
BU1523KV  
Example of application circuit  
VDD  
VDD  
VDD  
F.Bead*1  
F.Bead*1  
(3.3V System)  
(1.8V System)  
(3.3V System)  
VDDIO  
VDD  
LVDD  
LGND  
0.1uF  
0.01uF  
LVDD  
LGND  
GND  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
I2CVDD  
CLKOUT  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
CLKOUT  
R4  
0.1uF  
0.01uF  
R5  
R6  
R7  
R8  
R9  
G4  
G5  
G6  
G7  
G8  
G9  
B4  
B5  
B6  
B7  
B8  
B9  
VDD  
GND  
PVDD  
PGND  
PVDD  
PGND  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
Main CPU  
(Graphic LSI)  
[RGB Data]  
TAN  
TAP  
TBN  
TBP  
RA-  
RGBCKI, RGBVSI,  
RGBHSI, RGBDEI,  
RDI07, GDI07, BDI07  
RA+  
RB-  
RB+  
[BT.601 Data]  
YCKO,YFLDO,  
YVSO, YHSO,  
YDO07  
RC-  
TC4  
TC5  
TC6  
TD0  
TD1  
TD2  
TD3  
TD4  
TD5  
TCN  
TCP  
RC+  
BU1523KV  
BU16002KVT  
TCLK  
TCLK  
TDN  
RCLK-  
RCLK+  
RD-  
VDD  
(3.3V System)  
SDA  
SCL  
OPEN  
TDP  
RD+  
R0  
R1  
G0  
G1  
B0  
B1  
LPDB  
open  
RCKO  
BDO4  
BDO3  
BDO2  
RMUTE  
open  
open  
open  
OPEN  
[BT.656 Data]  
YCKI,YFLDI,  
YVSI, YHSI,  
YDI07  
DVD,  
Digital TV Encoder,  
Camera etc.  
PD  
PD  
OE  
100Otwist  
Pair Cable  
or  
PCB trace  
DK  
R/F  
Reset IC  
RESETB  
I2CDEV  
TEST0,1,2  
PCB(Transmitter)  
PCB(Receiver)  
*1: Recommended Parts: F.Bead: BLM18A-Series (Murata Manufacturing)  
*2: If LVDS_RS is tied to “1”, LVDS swing is 350m V. If LVDS_RS is tied to “0”, LVDS swing is 200m V.  
Fig.12 BU1523KV System connection Diagram  
The above figure is an example of system connection for reference only and not intended to guarantee operation.  
www.rohm.com  
2011.02 - Rev.A  
17/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Procedure for turning on power supply  
Follow the power-on sequence of VDD(VDDIO, I2CVDD, PVDD, LVDD) as depicted in Fig.13. The timing for power-on  
sequence is shown in Table 10 however, it is recommended to make the intervals of tPWUV2, tPWUV and tPWUVL as short as  
possible. Until after voltage is applied to all the power sources, the levels of all the input pins are fixed and the low level is  
input onto RESETB, the internal status and pins remain unstable. Remove the reset after inputting the clock (RGBCKI,  
YCKI). When the clock (RGBCKI, YCKI) is to be temporarily halted during the operation, apply the reset after the clock  
(RGBCKI, YCKI) stopped to fix the operation, then follow the power-on sequence and remove the reset after inputting the  
clock (RGBCKI, YCKI). 2-line serial interface is enabled for communication after the reset (RESETB) is removed. However,  
racing may be caused if the rising edge of the reset (RESETB) signal and the signal change of 2-line serial interface occur  
at the same time. Ensure not to allow the rising edge of the reset (RESETB) signal and the signal change of 2-line serial  
interface to occur at the same time. Design the system to avoid racing and system malfunction when the internal status and  
pins are unstable.  
* The reset is also possible by the software reset (SRST_R_IP, SRST_Y_IP, SRST_LVDS).  
Min Level Voltage  
VDD  
Min Level Voltage  
I2CVDD  
VDDIO  
tPWUV2  
Min Level Voltage  
Min Level Voltage  
tPWUV  
PVDD  
LVDD  
tPWUVL  
Clock Input  
Clock Stop  
Clock Input  
Use PVDD and LVDD together.  
RGBCKI  
YCKI  
Reset after the clock stops.  
tCR  
tCR  
RESETB  
LPDNB  
Release reset after inputting the clock.  
Release reset after inputting the clock.  
I2CVDD  
All input  
terminals of  
group  
tUNCV2  
Regulations from start of I2CVDD  
VDDIO  
All input  
terminals of  
group  
tUNCV  
tRR  
tRR  
Regulations from start of I2CVDD  
Reset State  
The state of the terminal is invalid.  
Reset State  
Fig.13 Power supply input procedure (Min level is power-supply voltage lower bound of recommended range.)  
[Table 10 Recommended value at time to turn on power supply]  
Item  
tPWUV2  
tPWUV  
tPWUVL  
tUNCV2  
tUNCV  
tRR  
Min.  
0
Max.  
50  
50  
50  
1
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
0
0
0
0
1
1
-
tCR  
0.1  
-
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
18/22  
Technical Note  
BU1523KV  
The power-off sequence is reverse of the power-on sequence, in the order of (VDDIO, I2CVDD, PVDD, LVDD)VDD as  
depicted in Fig.14. The timing for power-off sequence is shown in Table 11, however, it is recommended to make the  
intervals of tPWDV2m, tPWDV and tPWDVL as short as possible.  
Note that turning off from the VDD (Power to the internal CORE) makes the internal status and pin status unstable.  
Min Level Voltage  
VDD  
Min Level Voltage  
I2CVDD  
tPWDV  
Min Level Voltage  
VDDIO  
tPWD  
Min Level Voltage  
PVDD  
LVDD  
Use PVDD and LVDD together.  
tPWDV  
Operation Stop  
Operation S  
tate  
Fig.14 Power-off procedure (Min level is power-supply voltage lower bound of recommended range of motion.)  
[Table 11 Power-off time recommended value]  
Item  
tPWDV2  
tPWDV  
tPWDVL  
Min.  
0
Max.  
50  
Unit  
ms  
ms  
ms  
0
50  
0
50  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
19/22  
Technical Note  
BU1523KV  
PCB Design Guideline for LVDS  
Interconnecting media between Transmitter and Receiver ( i.e.PCB trace, connector, and cable) should be well balanced.  
(Keep all these differential impedance and the length of media as same as possible.).  
Locate by –pass capacitors adjacent to the device pins as close as possible.  
Minimize the distance between traces of a pair. (S1) to maximize common mode rejection.  
See following figure.  
Place adjacent LVDS trace pair at least twice (>2 x S1) as far away.  
Avoid 90 degree bends.  
Minimize the number of VIA on LVDS traces.  
Match impedance of PCB trace, connector, media (cable) and termination to minimize reflections (emissions)  
for cabled applications (typically 100Differential mode characteristic impedance).  
GND  
+Signal  
-Signal  
GND  
S1  
>2 x S1  
+
+
+Receiver  
Driver  
Driver  
+Receiver  
Receiver  
Driver  
Driver  
100Ω  
100Ω  
Receiver  
-
+
+
+
-
-
Receiver  
Receiver  
-
-
-
-
+
Point-to-point configuration  
Good  
Multi-drop configuration  
No Good  
Monitor Pad  
Stub  
Layer1  
Layer2  
GND  
GND  
Signal Via  
GND Via  
Fig.15 PCB Design Guideline for LVDS  
www.rohm.com  
2011.02 - Rev.A  
20/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Recommended Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown  
due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply  
terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard,  
for the digital block power supply and the analog block power supply, even though these power supplies has the same  
level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing  
the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns.  
For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply  
terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an  
electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem  
including the occurrence of capacity dropout at a low temperature, thus determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric  
transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between  
the terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set  
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the  
jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In  
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to  
the transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals  
a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage  
to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is  
applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the  
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(12) Rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width  
of GND wiring, and routing of wiring.  
www.rohm.com  
2011.02 - Rev.A  
21/22  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BU1523KV  
Ordering part number  
B
U
1
5
2
3
K
V
-
E
2
Part No.  
Part No.  
Package  
KV:VQFP100  
Packaging and forming specification  
E2: Embossed tape and reel  
VQFP100  
<Tape and Reel information>  
16.0 0.2  
14.0 0.1  
Tape  
Embossed carrier tape (with dry pack)  
75  
51  
Quantity  
500pcs  
E2  
50  
76  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
100  
1.0  
26  
1
25  
+0.05  
1PIN MARK  
0.145  
-
0.03  
+
6°  
4°  
4°  
0.08  
S
+0.05  
0.2  
-
0.04  
M
0.08  
Direction of feed  
1pin  
0.5 0.1  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.02 - Rev.A  
22/22  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BU1523KV-E2

Image Correction IC for Panel
ROHM

BU1561GV

Built-in JPEG Codec, SXGA Camera Module Interface, and QCIF+LCD controller interface
ROHM

BU1563GV

Built-in JPEG Codec, VGA Camera Module Interface, and QCIF LCD controller interface
ROHM

BU1570KN

Camera Image Adaptive Enhancer IC for security devices
ROHM

BU1570KN-E2

AIE: Adaptive Image Enhancer
ROHM

BU1570KN_09

AIE: Adaptive Image Enhancer
ROHM

BU1571KN

AIE: Adaptive Image Enhancer
ROHM

BU1571KN-E2

Consumer Circuit, ROHS COMPLIANT, VQFN-36
ROHM

BU1571KN_10

Image Correction IC for Camera
ROHM

BU1572GUW

Real Time Video Processor ICs
ROHM

BU1573KV

Real Time Video Processor ICs
ROHM

BU1573KV-E2

Consumer Circuit, PQFP64, ROHS COMPLIANT, VQFP-64
ROHM