RGT8NS65D(LPDS) [ROHM]

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。;
RGT8NS65D(LPDS)
型号: RGT8NS65D(LPDS)
厂家: ROHM    ROHM
描述:

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。

栅 双极性晶体管 栅极
文件: 总12页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RGT8NS65D  
650V 4A Field Stop Trench IGBT  
Data Sheet  
lOutline  
LPDS / TO-262  
VCES  
IC(100°C)  
VCE(sat) (Typ.)  
PD  
650V  
4A  
1.65V  
65W  
(1)  
(3)  
(1)(2)(3)  
lFeatures  
lInner Circuit  
1) Low Collector - Emitter Saturation Voltage  
2) Low Switching Loss  
(2)  
(1) Gate  
(2) Collector  
(3) Emitter  
*1  
3) Short Circuit Withstand Time 5μs  
(1)  
4) Built in Very Fast & Soft Recovery FRD  
(RFN - Series)  
*1 Built in FRD  
(3)  
5) Pb - free Lead Plating ; RoHS Compliant  
lPackaging Specifications  
Packaging  
Taping / Tube  
330 / -  
lApplications  
General Inverter  
Reel Size (mm)  
UPS  
Tape Width (mm)  
Type  
24 / -  
Power Conditioner  
Welder  
Basic Ordering Unit (pcs) 1,000 / 1,000  
Packing Code  
Marking  
TL / C9  
RGT8NS65D  
lAbsolute Maximum Ratings (at TC = 25°C unless otherwise specified)  
Parameter  
Collector - Emitter Voltage  
Symbol  
VCES  
VGES  
IC  
Value  
Unit  
V
650  
Gate - Emitter Voltage  
V
30  
TC = 25°C  
8
A
Collector Current  
TC = 100°C  
IC  
4
A
*1  
Pulsed Collector Current  
Diode Forward Current  
Diode Pulsed Forward Current  
Power Dissipation  
12  
A
ICP  
TC = 25°C  
IF  
IF  
7
A
TC = 100°C  
4
A
*1  
12  
65  
A
IFP  
TC = 25°C  
PD  
PD  
Tj  
W
W
°C  
°C  
TC = 100°C  
32  
Operating Junction Temperature  
-40 to +175  
-55 to +175  
Tstg  
Storage Temperature  
*1 Pulse width limited by Tjmax.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
1/11  
Data Sheet  
RGT8NS65D  
lThermal Resistance  
Values  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Rθ(j-c)  
Rθ(j-c)  
Thermal Resistance IGBT Junction - Case  
Thermal Resistance Diode Junction - Case  
-
-
-
-
2.30  
8.70  
°C/W  
°C/W  
lIGBT Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
V
Min.  
650  
Max.  
-
Collector - Emitter Breakdown  
Voltage  
BVCES IC = 10μA, VGE = 0V  
-
-
ICES  
VCE = 650V, VGE = 0V  
Collector Cut - off Current  
-
-
10  
200  
7.0  
μA  
nA  
V
IGES  
VGE = 30V, VCE = 0V  
Gate - Emitter Leakage Current  
-
Gate - Emitter Threshold  
Voltage  
VGE(th) VCE = 5V, IC = 2.8mA  
5.0  
6.0  
IC = 4A, VGE = 15V  
VCE(sat) Tj = 25°C  
Tj = 175°C  
Collector - Emitter Saturation  
Voltage  
-
-
1.65  
2.1  
2.1  
-
V
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
2/11  
Data Sheet  
RGT8NS65D  
lIGBT Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
220  
14  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
Max.  
Cies  
Coes  
Cres  
Qg  
VCE = 30V  
Input Capacitance  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VGE = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge  
Gate - Emitter Charge  
Gate - Collector Charge  
Turn - on Delay Time  
Rise Time  
pF  
nC  
f = 1MHz  
4.5  
13.5  
4
VCE = 400V  
Qge  
Qgc  
td(on)  
tr  
IC = 4A  
VGE = 15V  
5.5  
17  
IC = 4A, VCC = 400V  
VGE = 15V, RG = 50Ω  
Tj = 25°C  
36  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn - off Delay Time  
Fall Time  
69  
Inductive Load  
IC = 4A, VCC = 400V  
VGE = 15V, RG = 50Ω  
Tj = 175°C  
71  
Turn - on Delay Time  
Rise Time  
17  
37  
Turn - off Delay Time  
Fall Time  
86  
Inductive Load  
IC = 12A, VCC = 520V  
VP = 650V, VGE = 15V  
RG = 50Ω, Tj = 175°C  
72  
Reverse Bias Safe Operating Area  
Short Circuit Withstand Time  
RBSOA  
FULL SQUARE  
-
V
CC 360V  
tsc  
VGE = 15V  
Tj = 25°C  
5
-
-
μs  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
3/11  
Data Sheet  
RGT8NS65D  
lFRD Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
Min.  
Max.  
IF = 4A  
VF  
Tj = 25°C  
Diode Forward Voltage  
Diode Reverse Recovery Time  
-
-
1.45  
1.4  
1.9  
-
V
Tj = 175°C  
trr  
-
-
-
-
-
-
40  
4.3  
-
-
-
-
-
-
ns  
A
IF = 4A  
VCC = 400V  
diF/dt = 200A/μs  
Tj = 25°C  
Diode Peak Reverse Recovery  
Current  
Irr  
Diode Reverse Recovery  
Charge  
Qrr  
0.09  
94  
μC  
ns  
A
trr  
Diode Reverse Recovery Time  
IF = 4A  
VCC = 400V  
diF/dt = 200A/μs  
Tj = 175°C  
Diode Peak Reverse Recovery  
Current  
Irr  
5.4  
Diode Reverse Recovery  
Charge  
Qrr  
0.27  
μC  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
4/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.1 Power Dissipation vs. Case Temperature  
Fig.2 Collector Current vs. Case Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
8
6
4
2
Tj175ºC  
V
15V  
GE  
0
0
25  
50  
75 100 125 150 175  
0
25  
50  
75 100 125 150 175  
Case Temperature : Tc [ºC]  
Case Temperature : Tc [ºC]  
Fig.3 Forward Bias Safe Operating Area  
Fig.4 Reverse Bias Safe Operating Area  
100  
16  
10µs  
14  
12  
10  
8
10  
1
100µs  
6
0.1  
0.01  
4
TC= 25ºC  
Single Pulse  
Tj175ºC  
VGE=15V  
2
0
1
10  
100  
1000  
0
200  
400  
600  
800  
Collector To Emitter Voltage : VCE[V]  
Collector To Emitter Voltage : VCE[V]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
5/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.5 Typical Output Characteristics  
Fig.6 Typical Output Characteristics  
12  
12  
Tj= 175ºC  
Tj= 25ºC  
VGE= 20V  
VGE= 15V  
VGE= 12V  
10  
8
10  
VGE= 20V  
VGE= 12V  
8
6
4
2
0
VGE= 15V  
6
VGE= 10V  
VGE= 10V  
4
2
0
0
1
2
3
4
5
0
1
2
3
4
5
Collector To Emitter Voltage : VCE[V]  
Collector To Emitter Voltage : VCE[V]  
Fig.7 Typical Transfer Characteristics  
Fig.8 Typical Collector To Emitter Saturation Voltage  
vs. Junction Temperature  
4
8
VCE= 10V  
VGE= 15V  
7
IC= 8A  
3
6
5
4
3
IC= 4A  
2
IC= 2A  
1
2
Tj= 175ºC  
1
Tj= 25ºC  
0
0
25  
50  
75  
100  
125  
150  
175  
0
2
4
6
8
10  
12  
Gate To Emitter Voltage : VGE [V]  
Junction Temperature : Tj [ºC]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
6/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.9 Typical Collector To Emitter Saturation Voltage  
Fig.10 Typical Collector To Emitter Saturation Voltage  
vs. Gate To Emitter Voltage  
vs. Gate To Emitter Voltage  
20  
20  
Tj= 175ºC  
Tj= 25ºC  
15  
15  
10  
5
IC= 8A  
IC= 8A  
IC=4A  
10  
IC= 4A  
IC= 2A  
IC= 2A  
5
0
0
5
10  
15  
20  
5
10  
15  
20  
Gate To Emitter Voltage : VGE [V]  
Gate To Emitter Voltage : VGE [V]  
Fig.11 Typical Switching Time  
vs. Collector Current  
1000  
Fig.12 Typical Switching Time  
vs. Gate Resistance  
1000  
td(off)  
tf  
tf  
100  
10  
1
100  
10  
1
td(off)  
tr  
td(on)  
td(on)  
tr  
VCC=400V, VGE=15V  
RG=50Ω, Tj=175ºC  
Inductive oad  
VCC=400V, IC=4A  
VGE=15V, Tj=175ºC  
Inductive oad  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
Collector Current : IC [A]  
Gate Resistance : RG [Ω]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
7/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.13 Typical Switching Energy Losses  
Fig.14 Typical Switching Energy Losses  
vs. Gate Resistance  
vs. Collector Current  
10  
10  
1
1
Eon  
0.1  
Eoff  
0.1  
0.01  
Eoff  
VCC=400V, IC=4A  
VGE=15V, Tj=175ºC  
Inductive oad  
VCC=400V, VGE=15V  
RG=50Ω, Tj=175ºC  
Eon  
Inductive oad  
0.01  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
Collector Current : IC [A]  
Gate Resistance : RG [Ω]  
Fig.15 Typical Capacitance  
vs. Collector To Emitter Voltage  
Fig.16 Typical Gate Charge  
15  
10000  
1000  
100  
10  
10  
5
Cies  
Coes  
VCC=400V  
IC=4A  
Tj=25ºC  
f=1MHz  
VGE=0V  
Tj=25ºC  
Cres  
0
1
0
5
10  
15  
0.01  
0.1  
1
10  
100  
Collector To Emitter Voltage : VCE[V]  
Gate Charge : Qg [nC]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
8/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.17 Typical Diode Forward Current  
vs. Forward Voltage  
Fig.18 Typical Diode Reverse Recovery Time  
vs. Forward Current  
120  
12  
10  
8
100  
80  
60  
40  
20  
0
Tj= 175ºC  
6
4
Tj= 25ºC  
VCC=400V  
diF/dt=200A/µs  
Inductive oad  
Tj= 175ºC  
2
Tj= 25ºC  
0
0
2
4
6
8
10  
0
0.5  
1
1.5  
2
2.5  
3
Forward Voltage : VF[V]  
Forward Current : IF [A]  
Fig.19 Typical Diode Reverse Recovery Current  
Fig.20 Typical Diode Reverse Recovery Charge  
vs. Forward Current  
10  
vs. Forward Current  
0.5  
VCC=400V  
diF/dt=200A/µs  
Inductive oad  
0.4  
0.3  
0.2  
0.1  
0
8
6
4
2
0
Tj= 175ºC  
Tj= 25ºC  
Tj= 175ºC  
VCC=400V  
diF/dt=200A/µs  
Inductive oad  
Tj= 25ºC  
2
0
4
6
8
10  
0
2
4
6
8
10  
Forward Current : IF [A]  
Forward Current : IF [A]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
9/11  
Data Sheet  
RGT8NS65D  
lElectrical Characteristic Curves  
Fig.21 IGBT Transient Thermal Impedance  
100  
10  
1
D= 0.5  
0.2  
0.1  
PDM  
t1  
t2  
Duty=t1/t2  
Peak Tj=PDM×ZthJC+TC  
0.01  
Single Pulse  
0.001  
0.02  
0.05  
0.1  
0.0001  
0.01  
0.1  
1
Pulse Width : t1[s]  
Fig.22 Diode Transient Thermal Impedance  
100  
10  
1
D= 0.5  
0.2  
0.1  
PDM  
Single Pulse  
0.01  
t1  
t2  
Duty=t1/t2  
0.05  
0.02  
Peak Tj=PDM×ZthJC+TC  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
Pulse Width : t1[s]  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
10/11  
Data Sheet  
RGT8NS65D  
lInductive Load Switching Circuit and Waveform  
Gate Drive Time  
90%  
D.U.T.  
VGE  
D.U.T.  
10%  
VG  
90%  
10%  
IC  
td(on)  
Fig.23 Inductive Load Circuit  
td(off)  
tf  
tr  
ton  
toff  
trr , Qrr  
IF  
VCE  
diF/dt  
VCE(sat)  
Irr  
Fig.24 Inductive Load Waveform  
Fig.25 Diode Reverce Recovery Waveform  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
2015.11 - Rev.C  
11/11  
Notice  
N o t e s  
1) The information contained herein is subject to change without notice.  
2) Before you use our Products, please contact our sales representative and verify the latest specifica-  
tions :  
3) Although ROHM is continuously working to improve product reliability and quality, semicon-  
ductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury or fire arising from failure, please take safety  
measures such as complying with the derating characteristics, implementing redundant and  
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no  
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by  
ROHM.  
4) Examples of application circuits, circuit constants and any other information contained herein are  
provided only to illustrate the standard usage and operations of the Products. The peripheral  
conditions must be taken into account when designing circuits for mass production.  
5) The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by ROHM or any other  
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of  
such technical information.  
6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communi-  
cation, consumer systems, gaming/entertainment sets) as well as the applications indicated in  
this document.  
7) The Products specified in this document are not designed to be radiation tolerant.  
8) For use of our Products in applications requiring a high degree of reliability (as exemplified  
below), please contact and consult with a ROHM representative : transportation equipment (i.e.  
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety  
equipment, medical systems, servers, solar cells, and power transmission systems.  
9) Do not use our Products in applications requiring extremely high reliability, such as aerospace  
equipment, nuclear power control systems, and submarine repeaters.  
10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with  
the recommended usage conditions and specifications contained herein.  
11) ROHM has used reasonable care to ensur the accuracy of the information contained in this  
document. However, ROHM does not warrants that such information is error-free, and ROHM  
shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
12) Please use the Products in accordance with any applicable environmental laws and regulations,  
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a  
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
13) When providing our Products and technologies contained in this document to other countries,  
you must abide by the procedures and provisions stipulated in all applicable export laws and  
regulations, including without limitation the US Export Administration Regulations and the Foreign  
Exchange and Foreign Trade Act.  
14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of  
ROHM.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
R1102  
A

相关型号:

RGT8NS65D(TO-262)

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。
ROHM

RGT8TM65D

RGT8TM65D是低VCE(sat)的Field Stop Trench IGBT。适合逆变器、UPS、功率调节器、焊接等用途。
ROHM

RGTH00TK65

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM

RGTH00TK65D

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM

RGTH00TS65

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。
ROHM

RGTH00TS65D

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。
ROHM

RGTH40TK65

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM

RGTH40TK65D

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM

RGTH40TS65

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。
ROHM

RGTH40TS65D

罗姆的IGBT(绝缘栅极型双极晶体管)产品为高电压、大电流应用的高效化和节能化作贡献。
ROHM

RGTH50TK65

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM

RGTH50TK65D

罗姆的IGBT(绝缘栅极型双极晶体管)产品为广大的高电压、大电流应用的高效化和节能化做出了贡献。
ROHM